JP3722362B2 - Novel fluorine-containing ketone compound and process for producing the same - Google Patents

Novel fluorine-containing ketone compound and process for producing the same Download PDF

Info

Publication number
JP3722362B2
JP3722362B2 JP2001308332A JP2001308332A JP3722362B2 JP 3722362 B2 JP3722362 B2 JP 3722362B2 JP 2001308332 A JP2001308332 A JP 2001308332A JP 2001308332 A JP2001308332 A JP 2001308332A JP 3722362 B2 JP3722362 B2 JP 3722362B2
Authority
JP
Japan
Prior art keywords
fluorine
ketone
reaction
perfluoro
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001308332A
Other languages
Japanese (ja)
Other versions
JP2003113149A (en
Inventor
隆 阿部
邦夫 奥原
勇治 黒河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Daikin Industries Ltd
Asahi Kasei Corp
Showa Denko KK
Central Glass Co Ltd
Toagosei Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Chemours Mitsui Fluoroproducts Co Ltd
AGC Inc
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Daikin Industries Ltd
Asahi Kasei Corp
Asahi Glass Co Ltd
Showa Denko KK
Central Glass Co Ltd
Du Pont Mitsui Fluorochemicals Co Ltd
Toagosei Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd., Daikin Industries Ltd, Asahi Kasei Corp, Asahi Glass Co Ltd, Showa Denko KK, Central Glass Co Ltd, Du Pont Mitsui Fluorochemicals Co Ltd, Toagosei Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2001308332A priority Critical patent/JP3722362B2/en
Publication of JP2003113149A publication Critical patent/JP2003113149A/en
Application granted granted Critical
Publication of JP3722362B2 publication Critical patent/JP3722362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogenated Pyridines (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な含フッ素ケトン化合物及びその製造方法に関するものであり、更に詳しくは、含フッ素ポリマー製造用モノマー、界面活性剤、農薬、医薬品などのフッ素含有製品の原料や合成中間体、更に、クロロフルオロカーボン(CFC)、ヒドロクロロフルオロカーボン(HCFC)に代替し得る伝熱媒体、洗浄剤、消火剤、反応溶媒などとして使用できる新規な含フッ素ケトン化合物及びその製造方法に関するものである。
【0002】
【従来の技術】
一般に、含フッ素ケトン化合物は、種々のフッ素含有製品の原料や合成中間体として有用であり、例えば、界面活性剤、農薬、医薬品などの製造に用いることができる。
一方、従来より、冷媒、伝熱媒体、発泡剤、洗浄剤、消火剤、反応溶媒などとして、クロロフルオロカーボン(CFC)類が広く利用されてきた。このCFC類は、毒性が少なく、不燃性で、化学的及び熱的に安定であることから、各種の産業分野に広く使用されていた。しかしながら、このように優れた特徴を有するCFC類は、大気中に放出されると、成層圏のオゾン層を破壊するため、人類を含む地球上の生態系に重大な悪影響を及ぼすことが指摘され、その製造が1995年末に国際的条約により禁止されるに至った。また、ヒドロクロロフルオロカーボン(HCFC)類は、CFC類ほどその影響は大きくないものの、オゾン層を破壊するために、2020年までに、その使用及び製造が段階的に制限されていくことが決定している。
【0003】
このような地球環境問題に対処するために、大気中に放出された場合にもオゾン層を破壊しない冷媒、伝熱媒体、発泡剤、洗浄剤、消火剤、反応溶媒などとして使用できる、CFC類、HCFC類に代替し得る化合物が求められている。この目的に応えうる化合物として、例えば、ヘテロ原子に酸素原子を持つポリフルオロアルキルエーテル類(日本特許第2908033号、3099964号)や、更に、2重結合を付与することにより分解性を向上させたポリフルオロアルキル基を持つケトン類が提案されている(日本特許第2961924号、2869432号、2952414号、3141325号)。
一方、後者のケトン系の候補化合物として、分子内に含窒素ペルフルオロアルキル基を持つポリフルオロアルキルケトンについては、ペルフルオロアルキル基の中にヘテロ原子として窒素原子が挿入されていることから、更に、適度の分解性(すなわち、地球環境にやさしい性質)を持つ化合物として期待できる。そのため、該化合物は、有用な含フッ素製品の素材として考えられていたものの、この種の化合物は、これまでに知られていなかった。
【0004】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記含フッ素製品の素材として使用することができる新規な含フッ素ケトン化合物を開発することを目標として鋭意研究を重ねた結果、対応する含窒素カルボン酸メチルの電解フッ素化反応により一段階で容易に合成することができる含窒素ペルフルオロカルボン酸フルオリドをそのまま原料として用いて、これと相当する有機金属化合物を反応させることにより新規なペルフルオロアルキル・アルキルケトン化合物を製造することで所期の目的を達成しうることを見出し、本発明を完成するに至った。
すなわち、本発明は、界面活性剤、農薬、医薬品などのフッ素含有製品の原料や合成中間体、更に、CFC、HCFCに代替し得る冷媒、伝熱媒体、発泡剤、洗浄剤、消火剤、反応溶媒などとして使用できる新規な含フッ素ケトン化合物を提供することを目的とする。
また、本発明は、上記の新規な含フッ素ケトン化合物を効率よく製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
すなわち、本発明は、下記一般式(1)
【0006】
【化3】

Figure 0003722362
【0007】
(式中、Rは炭素数が1〜4の低級脂肪族アルキル基を示す。また、RF 1,RF 2は、炭素数が1〜3の低級脂肪族ペルフルオロアルキル基を示し、これらは酸素原子を介して、あるいは介さないで5員環又は6員環の複素環を形成してもよい。n=1〜2の整数。)で表される新規な含フッ素ケトン化合物、である。
【0008】
また、本発明は、上記一般式(1)で表される新規な含フッ素ケトン化合物を製造する方法であって、下記一般式(2)
【0009】
【化4】
Figure 0003722362
【0010】
(式中、RF 1,RF 2は、炭素数が1〜3の低級脂肪族ペルフルオロアルキル基を示し、これらは酸素原子を介して、あるいは介さないで5員環又は6員環の複素環を形成してもよい。n=1〜2の整数。)で表される含窒素ペルフルオロカルボン酸フルオリドと、低級脂肪族アルキル基をもつ有機金属化合物を、非プロトン性極性溶媒中で反応させることを特徴とする含フッ素ケトンの製造方法、である。
【0011】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
ペルフルオロアルキル・アルキルケトンの一般的な合成方法としては、例えば、1)含フッ素カルボン酸に2当量のグリニヤール試薬又は有機リチウム化合物を作用させる方法[Organic Reactions Vol.18, Chapter 1, M.J. Jorgensen, "Preparation of Ketones from the Reaction of Organolithium Reagents withCarboxylic Acids", John Wiley & Sons (1970) ]、及び2)含フッ素カルボン酸塩化物に有機金属化合物を作用させる方法、挙げられる。また、上記の2つの方法以外にも、相当する含フッ素カルボン酸のエステルやケトエステル類の塩基触媒下での縮合反応、次いで、その縮合生成物の加水分解反応による方法、が広く知られている[A.M. Lovelace, D.A. Rausch and W. Postelnek, "AliphaticFluorine Compounds", ACS Monograph No. 138, Reinhold Publishing Co. (1957), p.182 ].
【0012】
上記一般的な合成方法のうち、上記2)の酸塩化物の反応に用いる金属化合物としては、有機亜鉛、有機カドミウム又は銅のアート錯体が知られている。酸塩化物との反応に用いられるこれらの試薬には、選択性があり、この試薬は、生成したケトンと更に反応することはない。反応性の大きいグリニヤール試薬を用いる方法としては、酸塩化物の溶液に、限られた量のグリニヤール試薬を滴下する方法がある程度用いられていたが、グリニヤール試薬よりも更に反応性の高い有機リチウム化合物と酸塩化物との反応によりケトンが合成されたことは殆どなかった。また、基質の方からみると、酸塩化物の代わりに酸フッ化物を用いることもなかった。
【0013】
本発明によれば、対応する含窒素カルボン酸メチルの電解フッ素化反応により一段階で容易に合成することができる含窒素ペルフルオロカルボン酸フルオリドをそのまま原料として用いて、これと相当する有機金属化合物を反応させることにより、容易に含窒素ペルフルオロアルキル基を持つ新規なペルフルオロアルキル・アルキルケトン化合物を製造することができる。
【0014】
本発明で用いる含窒素ペルフルオロカルボン酸フルオリドは、対応する含窒素カルボン酸メチルの電解フッ素化反応により一段階で容易に合成することができる。例えば、ペルフルオロピロリジノアセチルフルオリド、ペルフルオロモルホリノアセチルフルオリド、及びペルフルオロ[3−(N,N−ジメチルアミノ)プロピオニルフルオリド]は、それぞれピロリジノ酢酸メチル、モルホリノ酢酸メチル、及び3−(N,N−ジメチルアミノ) プロピオン酸メチルを、無水フッ化水素酸中で電解フッ素化することにより好収率で合成することができる[T. Abe, E. Hayashi, H. Baba, H. Fukaya, J. Fluorine Chem., 48 (1990) 257-278; 50 (1990) 173-196 ]。無水フッ化水素酸から分離したフッ素化生成物中には、目的の含窒素ペルフルオロカルボン酸フルオリドと共に、各種の開裂生成物が混在しているが、ペルフルオロカルボン酸フルオリドの精製工程を省いて、その混合物のままで、有機金属化合物との反応に用いることができる。
【0015】
本発明において、有機金属化合物としては、ブチルリチウムやメチルリチウムなどの有機リチウム化合物、グリニヤール試薬、有機亜鉛化合物、有機カドミウム化合物などが挙げられるが、好ましくはブチルリチウムやメチルリチウムなどの有機リチウム化合物やグリニヤール試薬が使用される。
本発明の方法では、溶媒が用いられるが、この場合は、エーテル、グライム、ジグライム、トリグライム、テトラグライム、テトラヒドロフランなどの非プロトン性極性溶媒を使用することが好ましい。また、この場合、目的とする含フッ素ケトンの収率を向上させるためには、完全に脱水した溶媒を用いることが好ましい。
【0016】
有機金属化合物の使用量は、試薬が有機亜鉛化合物又はカドミウム化合物のように選択性がある場合には、特に限定されず、含窒素ペルフルオロカルボン酸フルオリド1molに対して1〜5mol、好ましくは1〜2molである。一方、リチウム化合物又はグリニヤール試薬のように反応性が大きく選択性が低い場合には、得られるケトンの収率は、用いた試薬の当量に鋭敏に影響される。この場合には、含窒素ペルフルオロカルボン酸フルオリドに対して、ほぼ当量の試薬が好ましく使用される。
【0017】
反応は、溶媒に含窒素ペルフルオロカルボン酸フルオリドを溶解、又は分散させ、有機金属化合物を導入することにより行う。有機金属化合物の添加は、反応の制御のために反応中に連続的又は間欠的に導入することにより行われる。
反応温度は、用いる有機金属化合物の種類や反応条件(試薬の滴下速度、反応規模など)により大きく異なるが、−110℃から100℃の温度範囲が適用される。グリニヤール試薬や有機リチウム化合物を用いる場合には、比較的低温の温度範囲(−100℃から20℃)が用いられ、有機亜鉛化合物や有機カドミウム化合物の場合には、反応の速度が遅いために比較的高温の温度範囲(0℃から50℃)が好ましく用いられる。
反応時間は、使用する有機金属化合物の種類や反応条件などにより一概に決定できないが、数10分から数時間あれば、反応はほぼ完結する。
【0018】
上記方法により合成される新規含フッ素ケトン化合物は、1)各種のフッ素含有製品の出発原料、2)その合成中間体、3)CFC、HCFCに代替し得る材料、として有用である。まず、上記1)の出発原料としての一例について具体的に説明すると、本発明化合物である新規含フッ素ケトン化合物を還元剤(例えば、水素化リチウムアルミニウム、水素化ホウ素ナトリウムなど)を用い、還元反応を行うと、含フッ素ポリマーやノニオン系含フッ素界面活性材の原料として有用な対応する第2級アルコールへ導くことができる。また、この化合物は、不斉炭素を有する含フッ素アルコールであるために、これを光学分割することにより、光学活性を利用する各種製品の原料となる。
【0019】
【化5】
Figure 0003722362
【0020】
また、上記2)の合成中間体としての一例について具体的に説明すると、含フッ素アルコールとアクリル酸クロリドとの反応により、対応する含フッ素アクリル酸エステルが容易に得られる。これは、含フッ素アクリル樹脂のモノマー原料となる。
【0021】
【化6】
Figure 0003722362
【0022】
また、上記3)の代替材料としての一例について具体的に説明すると、メチル・ペルフルオロ(モルホリノメチル)ケトンは、沸点が123.97℃、密度が1.6169(23℃)を有する無色透明の液体であり、このものを単独で、あるいは他の溶媒(例えば、炭化水素系、HCHC系、含フッ素エーテル系など)と混合することにより、これらは、従来、CFC系フッ素系溶剤として使われてきたような、金属製あるいはプラスチック製の精密部品の水切剤や洗浄剤に使用することができる。
【0023】
【実施例】
次に、本発明の新規含フッ素ケトン及びその製造例について実施例を挙げて具体的に説明する。
実施例1
ペルフルオロモルホリノアセチルフルオリドと有機リチウム化合物(n−C49 Li)との反応によるn−ブチル・ペルフルオロ(モルホリノメチル)ケトンの合成
粗製のペルフルオロ(モルホリノアセチルフルオリド)75.7gを500mL四つ口フラスコにとり、200mLの乾燥エーテルを加えた。次いで、滴下ロートにn−ブチルリチウムの溶液90mL(約0.133モル)を入れてから攪拌を開始し、液体窒素をフラスコ用ステンレス製広口デュア−瓶に注ぎフラスコの温度を下げた。内部の温度が−100℃まで下がったところで、ブチルリチウム溶液の滴下を開始して、冷却浴の高さと滴下の速度を加減して、内部温度が約−100℃に保たれるようにした。滴下には25分を要した。その後、約2時間を要して、13℃まで内部温度が上昇した後、反応混合物を数日放置してから加水分解した。糊状の不溶物がエーテル層と水槽の分離を妨げたので、この不溶物を吸引濾過によって除いた。エーテル層を分離し、硫酸マグネシウムで乾燥した後に、エーテル層を留去後に減圧分別蒸留することにより、n−ブチル・ペルフルオロ(モルホリノメチル)ケトン、bp68℃/29mmHg、27.5g(0.0753mol)を得た。粗原料中の当該酸フッ化物の割合が60%であったので、原料中の当該フッ化物の量は0.139molであり、これを基にすると、n−ブチル・ペルフルオロ(モルホリノメチル)ケトンの収率は54%であった。
【0024】
目的生成物のIR、1 H−NMR、19F−NMR及びMSデータを以下に示す。
IR (capillary film)(cm-1):2968ν(CH)(w),2943ν(CH)(w),2878ν(CH)(w),1769ν[C(O)](ms),1467(w),1408(w),1333(ms),1300(vs),1217(vs),1164(vs),1145(vs),1083(m),1016(w),970(w),927(s),817(w),754(w),657(w).
【0025】
1 H−NMR(CDCl3 ):δ2.75[2H,t,J=7,−C(O)CH2 ],δ1,68[2H,t−t,J=7,J=6,−C(O)CH2 CH2 CH2 CH3 ],δ1.38[2H,q−t,J=7,J=7,−C(O)CH2CH2 CH2 CH3 ],δ0.97[3H,t,J=7,CH3 ].
19F−NMR(CFCl3 ),δ−85.6[4F,s,c−O(CF2 CF22 ],δ−90.9[4F,t,J=14,c−N(CF2 CF22 ],δ−88.8[2F,quin,J=14,NCF2 ].
【0026】
MS:m/e280c−O(CF2 CF22 NCF2 + (2.8),164C36+ (1.6),119C25 + (8.),114C24+ (8.9),100C24 + (4.2),85C(O)C49 + (28.1),69CF3 + (5.6),57C49 + (100),41C35 + (78.9).
【0027】
実施例2
ペルフルオロ(モルホリノアセチルフルオリド)とグリニヤール試薬(C25 MgBr)との反応によるエチル・ペルフルオロ(モルホリノメチル)ケトンの合成
実施例1とほぼ同様に、容量500mLの四つ口フラスコ中に、粗製のペルフルオロ(モルホリノアセチルフルオリド)65.7g[63%含有率として41.4g(0.126mol)を含有]を採り、エーテル200mLを加えた後、アルゴン雰囲気下で機械攪拌して、この中にグリニヤール試薬(C25 MgBr:1.00当量)を滴下した。この実験では、滴下中の内部温度は−50℃に保たれた。冷却を次第にゆるめて、内部温度が18℃になった時に、激しく攪拌しながら水を20mL加えて反応を停止させた。エーテル溶液をデカンテ−ションによって不純物から分離し、硫酸マグネシウムで乾燥後エーテルを留去し、残液を減圧分別蒸留したところ、エチル・ペルフルオロ(モルホリノメチル)ケトン、bp48℃/44mmHg、25.8g(0.08mol)を得た。原料中に含まれる当該酸フッ化物の量を基にすると、エチル・ペルフルオロ(モルホリノメチル)ケトンの収率は63%であった。
【0028】
目的生成物のIR、1 H−NMR、19F−NMR及びMSデータを以下に示す。
IR (capillary film)(cm-1):2995ν(CH)(w),2943ν(CH)(w),2878ν(CH)(w),1771ν[C(O)](ms),1506(w),1412(w),1300(vs),1215(vs),1170〜1142(vs),1083(m),1018(w),957(w),926(s),787(w),714(w),656(w).
【0029】
1 H−NMR(CDCl3 ):δ2.79[2H,t,J=7,−C(O)CH2 ],δ1.20[3H,t,J=7,CH3 ].
19F−NMR(CFCl3 ),δ−85.7[4F,s,c−O(CF2 CF22 ],δ−91.0[4F,t,J=14,c−N(CF2 CF22 ],δ−88.7[2F,quin,J=14,NCF2 ].
【0030】
MS:m/e280c−O(CF2 CF22 NCF2 + (9.3),119C25 (6.3),114C24 + (10.0),100C24 + (5.8),69CF3 + (6.3),57C(O)C25 + (8.4),41C35 + (100).
【0031】
実施例3
ペルフルオロ(モルホリノアセチルフルオリド)とジエチルカドミウムとの反応によるエチル・ペルフルオロ(モルホリノメチル)ケトンの合成
実験方法は、グリニヤール試薬の替わりに、塩化カドミウムとグリニヤール試薬との反応により調製したジエチルカドミウムを使用した以外は、実施例2とほぼ同様に行った。粗製のジエチルカドミウムは、200mLの四つ口フラスコ中に、アルゴンガスの気流下に塩化カドミウムの粉末をエーテル中で攪拌して、グリニヤール試薬のエーテル溶液を加えた後に、一時間加熱還流して調製した。この混合物を氷冷し、この中に粗製のペルフルオロ(モルホリノアセチルフルオリド)20g[63%含有率として12.6g(0.039mol)を含有]を50mLの乾燥エーテルに溶解した溶液を加えた後に、5時間熱還流した。反応後に、5mLの水を加えて反応を停止させた。実施例2と同様に、エーテル層を分離し、乾燥後に分別蒸留をしたところ、エチル・ペルフルオロ(モルホリノメチル)ケトンが6.9g(0.021mol)得られた。原料中に含まれる当該酸フッ化物の量を基にすると、エチル・ペルフルオロ(モルホリノメチル)ケトンの収率は53%であった。
【0032】
実施例4
ペルフルオロ(モルホリノアセチルフルオリド)とグリニヤール試薬(CH3MgI)との反応によるメチル・ペルフルオロ(モルホリノメチル)ケトンの合成
実験方法は、グリニヤール試薬として、臭化エチルマグネシウムの替わりに、ヨウ化メチルマグネシウム(CH3 MgI)を使用した以外は、実施例2とほぼ同様に行った。すなわち、粗製のペルフルオロ(モルホリノアセチルフルオリド)104.8g[63%含有率として該酸フルオリドを66.0g(0.201mol)を含有]を反応フラスコに入れ、更に、エーテル250mLを加えて機械攪拌し、−100℃の内部温度を保ちながら、ヨウ化メチルマグネシウムのエーテル溶液157mL(0.23mol)を約1時間を要して加えた。冷却を次第にゆるめて、0℃付近になったところで、激しく攪拌しながら水25mLを加えて反応を停止させ、デカンテーシヨンによって分離したエーテルを分離し、硫酸マグネシウムで乾燥後、エーテルを留去した。残液の減圧分別蒸留によって、メチル・ペルフルオロ(モルホリノメチル)ケトン、bp35℃/49mmHg、35g(0.108mol)を得た。原料中に含まれる当該酸フッ化物の量を基にすると、メチル・ペルフルオロ(モルホリノメチル)ケトンの収率は54%であった。
【0033】
新規化合物として得られたメチル・ペルフルオロ(モルホリノメチル)ケトンの物理化学データ、並びにIR、1 H−NMR、19F−NMR及びMSデータを以下に示す。
沸点:123.97℃(760mmHgで測定)、密度:1.6169(23℃で測定)、蒸気圧:12.4mmHg(23℃で測定).
【0034】
IR(capillary film)(cm-1):2928ν(CH)(w),1774ν[C(O)](ms),1425(w),1412(w),1337(ms),1300(vs),1217〜1142(vs),1082(m),1016(w),956(w),926(s),818(w),797(w),657(w).
【0035】
1 H−NMR(CDCl3 ):δ2.45[t,J=1.3,−C(O)CH3].
19F−NMR(CFCl3 ),δ−85.7[4F,s,O(CF22 ],δ−89.0[2F,quintet,J=14,NCF2 ],δ−91.7[4F,t,J=14,N(CF22 ].
【0036】
MS:m/e280c−O(CF2 CF2 2 NCF2 + (1.3),262(3.3),164C36+ (2.6),119C25 + (7.9),114C24 + (12.0),100C24 + (7.9),69CF3 + (8.2),50CF2 + (3.1),43C(O)CH3 + (100).
【0037】
実施例5
ペルフルオロ(ピロリジノアセチルフルオリド)とグリニヤール試薬(CH3 MgBr)との反応によるメチル・ペルフルオロ(ピロリジノメチル)ケトンの合成
容量が500mLの四つ口フラスコ中に101gの粗製のペルフルオロ(ピロリジノアセチルフルオリド)を採り、250mLの乾燥エーテルを加えた。フラスコの中央口には、機械式攪拌機を付け、側管には低温温度計(−150〜+30℃)、滴下ロート、及び上部よりアルゴンガスを導入したジムロート冷却器をそれぞれ装着した。ステンレス製デュアー瓶に入れた液体窒素で冷却して反応温度を−100℃に調節した。内部温度が−100℃まで低下した時点で、30分を要して臭化メチルマグネシウムのエーテル溶液(89mL,0.217mol)を滴下した。その間、試薬の滴下速度と液体窒素を入れたデュアー瓶の高さを加減して内部の温度を−110℃と−100℃の間に保った。滴下後、攪拌を続けて内部温度を徐々に上昇させ、0℃に上昇してから(約1時間半後)25mLの水を加えたところ、弱い発熱が起こり、ゼリー状の不溶物とともに殆ど透明なエーテル溶液が生成した。
【0038】
デカンテーションによりエーテルを分離し、不溶物を少量のエーテルで2回洗浄して洗浄液をエーテル溶液に合体し、合体溶液を無水硫酸マグネシウムで乾燥した。エーテル留去後に残液を減圧下に分別蒸留し、メチル・ペルフルオロ(ピロリジノメチル)ケトン、bp37℃/39mmHg、31.8g(0.102mol)を得た。粗原料中の当該酸フッ化物の割合が56%であったので、原料中の当該フッ化物の量は0.182molであり、これを基にすると、メチル・ペルフルオロ(ピロリジノメチル)ケトンの収率は56%であった。
新規化合物として得られたメチル・ペルフルオロ(ピロリジノメチル)ケトンの物理化学データ、並びにIR、1 H−NMR、19F−NMR及びMSデータを以下に示す。
沸点:115.1℃(760mmHgで測定)、密度:1.6103(23℃で測定)、蒸気圧:18.0mmHg(23℃で測定).
【0039】
IR(capillary film)(cm-1):2928ν(CH)(w),1772ν[C(O)](ms),1430(w),1402(w),1337(vs),1307(ms),1274(w),1216(vs),1171(s),1133(s),1083(m),1031(m),1007(w),872(m),804(m),639(w),602(w).
【0040】
1 H−NMR(CDCl3 ):δ2.46[t,J=1.4,−C(O)CH3].
19F−NMR(CFCl3 ),δ−90.7[4F,t,J=9,c−(CF2CF22 N],δ−91.1[2F,quintet,J=9,NCF2 ],δ−132.9[4F,s,J=14,c−(CF2 CF22 N].
【0041】
MS:m/e264c−(CF2 CF22 NCF2 + (4.7),246(4.4),214(2.1),145(3.3),114C2 4 + (6.6),100C24 + (4.3),69CF3 + (12.8),50CF2 + (2.3),43C(O)CH3 + (100).
【0042】
実施例6
ペルフルオロ(3−N,N−ジメチルアミノプロピオニルフルオリド)とグリニヤール試薬(CH3 MgBr)との反応によるメチル・ペルフルオロ(2−N,N−ジメチルアミノエチル)ケトンの合成
実験方法は、原料の含窒素ペルフルオロカルボン酸フルオリドとして、ペルフルオロ(モルホリノアセチルフルオリド)の替わりに、ペルフルオロ(3−N,N−ジメチルアミノプロピオニルフルオリド)を使用した以外は、実施例4とほぼ同様に行った。すなわち、粗製のペルフルオロ(3−N,N−ジメチルアミノプロピオニルフルオリド)のサンプル100g(含有率が70%として0.234moL) をフラスコに採り、エーテル250mLを加えて攪拌し、−100℃の内部温度を保って、臭化メチルマグネシウム(0.234mol)の溶液100mLを約1時間を要して加えた。冷却をゆるめて、1時間で内部温度を0℃まで上昇させ、激しく攪拌しながら水25mLを加えたところ、不純物はフラスコ内壁に付着し、ほとんど透明なエーテル溶液をデカンテーシヨンにより分離することが出来た。無水硫酸マグネシウムで乾燥後、エーテルを留去し、残液を分別蒸留をしたところ、メチル・ペルフルオロ(2−N,N−ジメチルアミノエチル)ケトン、bp101〜102℃、31.1g(0.105mol)を得た。原料中に含まれる当該酸フッ化物の量を基にすると、メチル・ペルフルオロ(2−N,N−ジメチルアミノエチル)ケトンの収率は45%であった。
【0043】
新規化合物として得られたメチル・ペルフルオロ(2−N,N−ジメチルアミノエチル)ケトンの物理化学的データ、並びにそれらのIR、1 H−NMR、19F−NMR及びMSデータを以下に示す。
沸点:100.1℃(760mmHgで測定) 、密度:1.5645(25℃で測定) 、蒸気圧:34.1mmHg(25℃で測定) 。
【0044】
IR(capillary film)(cm-1):2935ν(CH)(w),1763ν[C(O)](ms),1425(w),1320〜1352(vs),1208(vs),1120(m),1044(w),883(m),834(m),763(m),728(ms).
【0045】
1 H−NMR(CDCl3 ):δ2.46[−C(O)CH3 ].
19F−NMR(CFCl3 ),δ−52.8[6F,t−t,J=7.5,J=15.0,(CF32 N],δ−91.4[2F,heptet,J=15.0,NCF2 CF2 ],δ−120.2[2F,heptet,J=7.3,NCF2 CF2 ].
【0046】
MS:m/e143CF2 CF2 NC(O)CH3 + (15.5),119C25 + (2.4),114C24+ (8.2),100C24 + (5.5),69CF3 + (30.7),50CF2 + (2.0),43C(O)CH3 + (100).
【0047】
【発明の効果】
以上詳述したように、本発明は、新規な含フッ素ケトン化合物及びその製造方法に係るものであり、本発明によれば、新規な含フッ素ケトン化合物及びそれを効率よく製造する方法が提供される。この新規な含フッ素ケトン化合物は、界面活性剤、農薬、医薬品、含フッ素ポリマーなどの各種のフッ素含有製品の原料や合成中間体として、更に、CFC、HCFCに代替し得る冷媒、伝熱媒体、発泡剤、洗浄剤、消火剤、反応溶媒などとして有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel fluorine-containing ketone compound and a method for producing the same, and more specifically, raw materials and synthetic intermediates for fluorine-containing products such as monomers, surfactants, agricultural chemicals and pharmaceuticals for producing fluorine-containing polymers, The present invention relates to a novel fluorine-containing ketone compound that can be used as a heat transfer medium, a cleaning agent, a fire extinguishing agent, a reaction solvent, or the like that can replace chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC), and a method for producing the same.
[0002]
[Prior art]
In general, the fluorine-containing ketone compound is useful as a raw material or a synthetic intermediate for various fluorine-containing products, and can be used, for example, in the production of surfactants, agricultural chemicals, pharmaceuticals, and the like.
On the other hand, chlorofluorocarbons (CFCs) have been widely used as refrigerants, heat transfer media, foaming agents, cleaning agents, fire extinguishing agents, reaction solvents, and the like. These CFCs have been widely used in various industrial fields because of their low toxicity, nonflammability, and chemical and thermal stability. However, it has been pointed out that CFCs with such superior characteristics, when released into the atmosphere, have a serious adverse effect on the earth's ecosystems including human beings because they destroy the stratospheric ozone layer. Its production was banned by international treaties at the end of 1995. Hydrochlorofluorocarbons (HCFCs) are less affected than CFCs, but it is decided that their use and production will be gradually limited by 2020 to destroy the ozone layer. ing.
[0003]
In order to deal with such global environmental problems, CFCs that can be used as refrigerants, heat transfer media, foaming agents, cleaning agents, fire extinguishing agents, reaction solvents, etc. that do not destroy the ozone layer when released into the atmosphere There is a need for compounds that can replace HCFCs. As compounds that can meet this purpose, for example, polyfluoroalkyl ethers having an oxygen atom as a hetero atom (Japanese Patent Nos. 290833 and 3099964), and further, a double bond is added to improve decomposability. Ketones having a polyfluoroalkyl group have been proposed (Japanese Patent Nos. 2,961,924, 2,869,432, 2,952,414, 3141325).
On the other hand, as the latter ketone-based candidate compound, for a polyfluoroalkyl ketone having a nitrogen-containing perfluoroalkyl group in the molecule, a nitrogen atom is inserted as a heteroatom in the perfluoroalkyl group. It can be expected as a compound having a degradability (that is, a property friendly to the global environment). Therefore, although this compound was considered as a raw material of a useful fluorine-containing product, this kind of compound has not been known so far.
[0004]
[Problems to be solved by the invention]
Under such circumstances, the present inventors have conducted extensive research with the goal of developing a novel fluorine-containing ketone compound that can be used as a material for the fluorine-containing product in view of the above-described conventional technology. As a result, the nitrogen-containing perfluorocarboxylic acid fluoride, which can be easily synthesized in one step by the electrolytic fluorination reaction of the corresponding nitrogen-containing methyl carboxylate, is used as a raw material as it is, and the corresponding organometallic compound is reacted. Thus, the inventors have found that the intended purpose can be achieved by producing a novel perfluoroalkyl / alkyl ketone compound, and the present invention has been completed.
That is, the present invention includes raw materials and synthetic intermediates for fluorine-containing products such as surfactants, agricultural chemicals, and pharmaceuticals, as well as refrigerants, heat transfer media, foaming agents, cleaning agents, fire extinguishing agents, reactions that can be substituted for CFCs and HCFCs. It aims at providing the novel fluorine-containing ketone compound which can be used as a solvent.
Another object of the present invention is to provide a method for efficiently producing the novel fluorine-containing ketone compound.
[0005]
[Means for Solving the Problems]
That is, the present invention provides the following general formula (1)
[0006]
[Chemical Formula 3]
Figure 0003722362
[0007]
(In the formula, R represents a lower aliphatic alkyl group having 1 to 4 carbon atoms.F 1, RF 2 represents a lower aliphatic perfluoroalkyl group having 1 to 3 carbon atoms, and these may form a 5-membered ring or a 6-membered heterocyclic ring with or without an oxygen atom.. n is an integer of 1 to 2.) A novel fluorine-containing ketone compound represented by:
[0008]
The present invention is also a method for producing a novel fluorine-containing ketone compound represented by the above general formula (1), which comprises the following general formula (2):
[0009]
[Formula 4]
Figure 0003722362
[0010]
(Wherein RF 1, RF 2 represents a lower aliphatic perfluoroalkyl group having 1 to 3 carbon atoms, and these may form a 5-membered ring or a 6-membered heterocyclic ring with or without an oxygen atom.. n is an integer of 1 to 2.And a organometallic compound having a lower aliphatic alkyl group is allowed to react in an aprotic polar solvent.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
General synthesis methods for perfluoroalkyl alkyl ketones include, for example, 1) a method in which 2 equivalents of a Grignard reagent or an organolithium compound are allowed to act on a fluorinated carboxylic acid [Organic Reactions Vol.18, Chapter 1, MJ Jorgensen, " Preparation of Ketones from the Reaction of Organolithium Reagents with Carboxylic Acids ", John Wiley & Sons (1970)], and 2) a method of allowing an organometallic compound to act on a fluorine-containing carboxylic acid chloride. In addition to the above two methods, a condensation reaction under the base catalyst of the corresponding fluorinated carboxylic acid ester or ketoester, followed by a hydrolysis reaction of the condensation product is widely known. [AM Lovelace, DA Rausch and W. Postelnek, “Aliphatic Fluorine Compounds”, ACS Monograph No. 138, Reinhold Publishing Co. (1957), p. 182].
[0012]
Among the above general synthesis methods, art complexes of organic zinc, organic cadmium or copper are known as metal compounds used in the reaction of the acid chloride of 2) above. These reagents used in the reaction with the acid chloride are selective and do not react further with the resulting ketone. As a method using a highly reactive Grignard reagent, a method in which a limited amount of a Grignard reagent is dropped into an acid chloride solution has been used to some extent, but an organolithium compound having a higher reactivity than a Grignard reagent. Almost no ketones were synthesized by the reaction of aldehyde with acid chloride. Further, from the viewpoint of the substrate, oxyfluoride was not used in place of acid chloride.
[0013]
According to the present invention, nitrogen-containing perfluorocarboxylic acid fluoride, which can be easily synthesized in one step by electrolytic fluorination reaction of the corresponding nitrogen-containing methyl carboxylate, is used as a raw material as it is, and an organometallic compound corresponding thereto is obtained. By reacting, a novel perfluoroalkyl / alkyl ketone compound having a nitrogen-containing perfluoroalkyl group can be easily produced.
[0014]
The nitrogen-containing perfluorocarboxylic acid fluoride used in the present invention can be easily synthesized in one step by the electrolytic fluorination reaction of the corresponding nitrogen-containing methyl carboxylate. For example, perfluoropyrrolidinoacetyl fluoride, perfluoromorpholinoacetyl fluoride, and perfluoro [3- (N, N-dimethylamino) propionyl fluoride] are respectively methyl pyrrolidinoacetate, methyl morpholinoacetate, and 3- (N, N -Dimethylamino) methyl propionate can be synthesized in good yield by electrolytic fluorination in anhydrous hydrofluoric acid [T. Abe, E. Hayashi, H. Baba, H. Fukaya, J. Fluorine Chem., 48 (1990) 257-278; 50 (1990) 173-196]. In the fluorinated product separated from anhydrous hydrofluoric acid, various cleavage products are mixed together with the target nitrogen-containing perfluorocarboxylic acid fluoride, but the purification step of perfluorocarboxylic acid fluoride is omitted. The mixture can be used for the reaction with the organometallic compound as it is.
[0015]
In the present invention, examples of the organometallic compound include organolithium compounds such as butyllithium and methyllithium, Grignard reagents, organozinc compounds, and organocadmium compounds. Preferably, organolithium compounds such as butyllithium and methyllithium are used. Grignard reagents are used.
In the method of the present invention, a solvent is used. In this case, it is preferable to use an aprotic polar solvent such as ether, glyme, diglyme, triglyme, tetraglyme and tetrahydrofuran. In this case, it is preferable to use a completely dehydrated solvent in order to improve the yield of the target fluorine-containing ketone.
[0016]
The amount of the organometallic compound used is not particularly limited when the reagent is selective such as an organozinc compound or a cadmium compound, and is 1 to 5 mol, preferably 1 to 1 mol of nitrogen-containing perfluorocarboxylic acid fluoride. 2 mol. On the other hand, when the reactivity is large and the selectivity is low, such as a lithium compound or a Grignard reagent, the yield of the resulting ketone is sensitively influenced by the equivalent amount of the reagent used. In this case, an approximately equivalent reagent is preferably used with respect to the nitrogen-containing perfluorocarboxylic acid fluoride.
[0017]
The reaction is carried out by dissolving or dispersing nitrogen-containing perfluorocarboxylic acid fluoride in a solvent and introducing an organometallic compound. The addition of the organometallic compound is carried out by introducing continuously or intermittently during the reaction in order to control the reaction.
The reaction temperature varies greatly depending on the type of organometallic compound used and the reaction conditions (reagent dropping rate, reaction scale, etc.), but a temperature range of −110 ° C. to 100 ° C. is applied. When using a Grignard reagent or an organolithium compound, a relatively low temperature range (−100 ° C. to 20 ° C.) is used, and in the case of an organozinc compound or an organocadmium compound, the reaction rate is slow, so comparison is made. A high temperature range (0 ° C. to 50 ° C.) is preferably used.
The reaction time cannot be determined unconditionally depending on the type of organometallic compound to be used, reaction conditions, and the like, but the reaction is almost completed in several tens of minutes to several hours.
[0018]
The novel fluorine-containing ketone compounds synthesized by the above method are useful as 1) starting materials for various fluorine-containing products, 2) intermediates for synthesis thereof, and 3) materials that can replace CFC and HCFC. First, an example as a starting material of the above 1) will be described in detail. A novel fluorine-containing ketone compound as a compound of the present invention is reduced using a reducing agent (for example, lithium aluminum hydride, sodium borohydride, etc.). Can lead to a corresponding secondary alcohol useful as a raw material for the fluorine-containing polymer or nonionic fluorine-containing surfactant. Moreover, since this compound is a fluorine-containing alcohol having an asymmetric carbon, it is a raw material for various products utilizing optical activity by optical resolution.
[0019]
[Chemical formula 5]
Figure 0003722362
[0020]
Further, an example as a synthetic intermediate of the above 2) will be specifically described. The corresponding fluorine-containing acrylic ester can be easily obtained by the reaction of the fluorine-containing alcohol and acrylic acid chloride. This is a monomer raw material for the fluorine-containing acrylic resin.
[0021]
[Chemical 6]
Figure 0003722362
[0022]
Further, an example as an alternative material of the above 3) will be described in detail. Methyl perfluoro (morpholinomethyl) ketone is a colorless transparent liquid having a boiling point of 123.97 ° C. and a density of 1.6169 (23 ° C.). These have been used as CFC fluorine-based solvents by themselves or by mixing with other solvents (for example, hydrocarbon-based, HCHC-based, fluorine-containing ether-based, etc.). It can be used as a draining agent or cleaning agent for precision parts made of metal or plastic.
[0023]
【Example】
Next, the novel fluorine-containing ketone of the present invention and production examples thereof will be specifically described with reference to examples.
Example 1
Perfluoromorpholinoacetyl fluoride and organolithium compounds (n-CFourH9 Synthesis of n-butyl perfluoro (morpholinomethyl) ketone by reaction with Li)
75.7 g of crude perfluoro (morpholinoacetyl fluoride) was placed in a 500 mL four-necked flask and 200 mL of dry ether was added. Next, 90 mL (about 0.133 mol) of an n-butyllithium solution was placed in the dropping funnel, and stirring was started. Liquid nitrogen was poured into a stainless steel wide-mouthed dual bottle for flasks, and the temperature of the flask was lowered. When the internal temperature dropped to −100 ° C., the dropping of the butyllithium solution was started, and the internal temperature was maintained at about −100 ° C. by adjusting the height of the cooling bath and the dropping speed. The dripping took 25 minutes. Thereafter, after about 2 hours were required and the internal temperature rose to 13 ° C., the reaction mixture was allowed to stand for several days and then hydrolyzed. Since the paste-like insoluble matter prevented separation of the ether layer and the water tank, the insoluble matter was removed by suction filtration. The ether layer was separated and dried over magnesium sulfate, and then the ether layer was distilled off and subjected to fractional distillation under reduced pressure to obtain n-butyl perfluoro (morpholinomethyl) ketone, bp 68 ° C./29 mmHg, 27.5 g (0.0753 mol). Got. Since the proportion of the oxyfluoride in the raw material was 60%, the amount of the fluoride in the raw material was 0.139 mol. Based on this, the amount of n-butyl perfluoro (morpholinomethyl) ketone was The yield was 54%.
[0024]
IR of the desired product,1 H-NMR,19F-NMR and MS data are shown below.
IR (capillary film) (cm-1): 2968 ν (CH) (w), 2943 ν (CH) (w), 2878 ν (CH) (w), 1769 ν [C (O)] (ms), 1467 (w), 1408 (w), 1333 (ms) ), 1300 (vs), 1217 (vs), 1164 (vs), 1145 (vs), 1083 (m), 1016 (w), 970 (w), 927 (s), 817 (w), 754 (w ), 657 (w).
[0025]
1 H-NMR (CDClThree ): Δ 2.75 [2H, t, J = 7, -C (O) CH2 ], Δ1, 68 [2H, tt, J = 7, J = 6, -C (O) CH2 CH2 CH2 CHThree ], Δ 1.38 [2H, q-t, J = 7, J = 7, -C (O) CH2CH2 CH2 CHThree ], [Delta] 0.97 [3H, t, J = 7, CHThree ].
19F-NMR (CFClThree ), Δ-85.6 [4F, s, c-O (CF2 CF2)2 ], [Delta] -90.9 [4F, t, J = 14, c-N (CF2 CF2 )2 ], Δ-88.8 [2F, quin, J = 14, NCF2 ].
[0026]
MS: m / e 280c-O (CF2 CF2 )2 NCF2 + (2.8), 164CThree F6 N+ (1.6), 119C2 FFive + (8.), 114C2 FFour N+ (8.9), 100C2 FFour + (4.2), 85C (O) CFour H9 + (28.1), 69CFThree + (5.6), 57CFour H9 + (100), 41CThree HFive + (78.9).
[0027]
Example 2
Perfluoro (morpholinoacetyl fluoride) and Grignard reagent (C2 HFive Synthesis of ethyl perfluoro (morpholinomethyl) ketone by reaction with MgBr)
In substantially the same manner as in Example 1, 65.7 g of crude perfluoro (morpholinoacetyl fluoride) [containing 41.4 g (0.126 mol) as 63% content] was taken in a 500 mL four-necked flask, After adding 200 mL of ether, it was mechanically stirred under an argon atmosphere, and Grignard reagent (C2 HFive MgBr: 1.00 equivalent) was added dropwise. In this experiment, the internal temperature during the dropping was kept at -50 ° C. The cooling was gradually loosened, and when the internal temperature reached 18 ° C., 20 mL of water was added with vigorous stirring to stop the reaction. The ether solution was separated from the impurities by decantation, dried over magnesium sulfate, and then the ether was distilled off. The residue was fractionally distilled under reduced pressure to obtain ethyl perfluoro (morpholinomethyl) ketone, bp 48 ° C./44 mmHg, 25.8 g ( 0.08 mol) was obtained. Based on the amount of the acid fluoride contained in the raw material, the yield of ethyl perfluoro (morpholinomethyl) ketone was 63%.
[0028]
IR of the desired product,1 H-NMR,19F-NMR and MS data are shown below.
IR (capillary film) (cm-1): 2995ν (CH) (w), 2943ν (CH) (w), 2878ν (CH) (w), 1771ν [C (O)] (ms), 1506 (w), 1412 (w), 1300 (vs) ), 1215 (vs), 1170 to 1142 (vs), 1083 (m), 1018 (w), 957 (w), 926 (s), 787 (w), 714 (w), 656 (w).
[0029]
1 H-NMR (CDClThree ): Δ 2.79 [2H, t, J = 7, -C (O) CH2 ], Δ 1.20 [3H, t, J = 7, CHThree ].
19F-NMR (CFClThree ), Δ-85.7 [4F, s, cO (CF2 CF2)2 ], [Delta] -91.0 [4F, t, J = 14, c-N (CF2 CF2 )2 ], Δ-88.7 [2F, quin, J = 14, NCF2 ].
[0030]
MS: m / e 280c-O (CF2 CF2 )2 NCF2 + (9.3), 119C2 FFive (6.3), 114C2 FFour + (10.0), 100C2 FFour + (5.8), 69CFThree + (6.3), 57C (O) C2 HFive + (8.4), 41CThree HFive + (100).
[0031]
Example 3
Synthesis of ethyl perfluoro (morpholinomethyl) ketone by reaction of perfluoro (morpholinoacetyl fluoride) with diethylcadmium
The experimental method was carried out in substantially the same manner as in Example 2 except that diethyl cadmium prepared by the reaction of cadmium chloride and Grignard reagent was used instead of the Grignard reagent. Crude diethylcadmium was prepared by stirring cadmium chloride powder in ether under a stream of argon gas in ether in 200 ml four-necked flask, adding an ether solution of Grignard reagent, and heating to reflux for 1 hour. did. The mixture was ice-cooled, and a solution of 20 g of crude perfluoro (morpholinoacetyl fluoride) [containing 12.6 g (0.039 mol) as 63% content] in 50 mL of dry ether was added thereto. Heated to reflux for 5 hours. After the reaction, 5 mL of water was added to stop the reaction. In the same manner as in Example 2, the ether layer was separated and subjected to fractional distillation after drying, whereby 6.9 g (0.021 mol) of ethyl perfluoro (morpholinomethyl) ketone was obtained. Based on the amount of the acid fluoride contained in the raw material, the yield of ethyl perfluoro (morpholinomethyl) ketone was 53%.
[0032]
Example 4
Perfluoro (morpholinoacetyl fluoride) and Grignard reagent (CHThreeSynthesis of methyl perfluoro (morpholinomethyl) ketone by reaction with MgI)
In the experimental method, instead of ethylmagnesium bromide as a Grignard reagent, methylmagnesium iodide (CHThree The procedure was the same as in Example 2 except that MgI) was used. That is, 104.8 g of crude perfluoro (morpholinoacetyl fluoride) [containing 66.0 g (0.201 mol) of the acid fluoride as 63% content] was placed in a reaction flask, and further 250 mL of ether was added and mechanically stirred. Then, while maintaining the internal temperature of −100 ° C., 157 mL (0.23 mol) of methylmagnesium iodide ether solution was added over about 1 hour. The cooling was gradually loosened, and when the temperature reached about 0 ° C., 25 mL of water was added with vigorous stirring to stop the reaction. The separated ether was separated by decantation, dried over magnesium sulfate, and then the ether was distilled off. . The residue was subjected to fractional distillation under reduced pressure to obtain methyl perfluoro (morpholinomethyl) ketone, bp 35 ° C./49 mmHg, 35 g (0.108 mol). Based on the amount of the acid fluoride contained in the raw material, the yield of methyl perfluoro (morpholinomethyl) ketone was 54%.
[0033]
Physicochemical data of methyl perfluoro (morpholinomethyl) ketone obtained as a novel compound, as well as IR,1 H-NMR,19F-NMR and MS data are shown below.
Boiling point: 123.97 ° C. (measured at 760 mmHg), density: 1.6169 (measured at 23 ° C.), vapor pressure: 12.4 mmHg (measured at 23 ° C.).
[0034]
IR (capillary film) (cm-1): 2928ν (CH) (w), 1774ν [C (O)] (ms), 1425 (w), 1412 (w), 1337 (ms), 1300 (vs), 1217-1114 (vs), 1082 ( m), 1016 (w), 956 (w), 926 (s), 818 (w), 797 (w), 657 (w).
[0035]
1 H-NMR (CDClThree ): Δ 2.45 [t, J = 1.3, -C (O) CHThree].
19F-NMR (CFClThree ), Δ-85.7 [4F, s, O (CF2 )2 ], Δ-89.0 [2F, quintet, J = 14, NCF2 ], Δ-91.7 [4F, t, J = 14, N (CF2 )2 ].
[0036]
MS: m / e 280c-O (CF2 CF2)2 NCF2 + (1.3), 262 (3.3), 164CThree F6 N+ (2.6), 119C2 FFive + (7.9), 114C2 FFourN+ (12.0), 100C2 FFour + (7.9), 69CFThree + (8.2), 50CF2 + (3.1), 43C (O) CHThree + (100).
[0037]
Example 5
Perfluoro (pyrrolidinoacetyl fluoride) and Grignard reagent (CHThreeSynthesis of methyl perfluoro (pyrrolidinomethyl) ketone by reaction with MgBr)
101 g of crude perfluoro (pyrrolidinoacetyl fluoride) was taken in a 500 mL four-necked flask and 250 mL of dry ether was added. A mechanical stirrer was attached to the central port of the flask, and a low temperature thermometer (−150 to + 30 ° C.), a dropping funnel, and a Dimroth cooler into which argon gas was introduced from the top were attached to the side tubes. The reaction temperature was adjusted to −100 ° C. by cooling with liquid nitrogen contained in a stainless dewar. When the internal temperature decreased to −100 ° C., an ether solution of methylmagnesium bromide (89 mL, 0.217 mol) was added dropwise over 30 minutes. Meanwhile, the internal temperature was kept between −110 ° C. and −100 ° C. by adjusting the dropping rate of the reagent and the height of the Dewar bottle containing liquid nitrogen. After dropping, the stirring was continued to gradually raise the internal temperature, and after raising the temperature to 0 ° C. (about 1 hour and a half), when 25 mL of water was added, a weak exotherm occurred and it was almost transparent with jelly-like insoluble matter. An ether solution formed.
[0038]
The ether was separated by decantation, the insoluble matter was washed twice with a small amount of ether, the washing solution was combined with the ether solution, and the combined solution was dried over anhydrous magnesium sulfate. After distilling off the ether, the residue was fractionally distilled under reduced pressure to obtain methyl perfluoro (pyrrolidinomethyl) ketone, bp 37 ° C./39 mmHg, 31.8 g (0.102 mol). Since the proportion of the oxyfluoride in the raw material was 56%, the amount of the fluoride in the raw material was 0.182 mol. Based on this, the yield of methyl perfluoro (pyrrolidinomethyl) ketone was The rate was 56%.
Physicochemical data of methyl perfluoro (pyrrolidinomethyl) ketone obtained as a novel compound, as well as IR,1 H-NMR,19F-NMR and MS data are shown below.
Boiling point: 115.1 ° C. (measured at 760 mmHg), density: 1.6103 (measured at 23 ° C.), vapor pressure: 18.0 mmHg (measured at 23 ° C.).
[0039]
IR (capillary film) (cm-1): 2928ν (CH) (w), 1772ν [C (O)] (ms), 1430 (w), 1402 (w), 1337 (vs), 1307 (ms), 1274 (w), 1216 (vs) , 1171 (s), 1133 (s), 1083 (m), 1031 (m), 1007 (w), 872 (m), 804 (m), 639 (w), 602 (w).
[0040]
1 H-NMR (CDClThree): Δ 2.46 [t, J = 1.4, -C (O) CHThree].
19F-NMR (CFClThree ), Δ-90.7 [4F, t, J = 9, c- (CF2CF2 )2 N], δ-91.1 [2F, quintet, J = 9, NCF2 ], Δ-132.9 [4F, s, J = 14, c- (CF2 CF2 )2 N].
[0041]
MS: m / e 264c- (CF2 CF2 )2 NCF2 + (4.7), 246 (4.4), 214 (2.1), 145 (3.3), 114C2FFourN+ (6.6), 100C2 FFour + (4.3), 69CFThree + (12.8), 50CF2 + (2.3), 43C (O) CHThree + (100).
[0042]
Example 6
Perfluoro (3-N, N-dimethylaminopropionyl fluoride) and Grignard reagent (CHThree Synthesis of methyl perfluoro (2-N, N-dimethylaminoethyl) ketone by reaction with MgBr)
The experimental method was almost the same as Example 4 except that perfluoro (3-N, N-dimethylaminopropionyl fluoride) was used instead of perfluoro (morpholinoacetyl fluoride) as the raw material nitrogen-containing perfluorocarboxylic acid fluoride. The same was done. That is, 100 g of crude perfluoro (3-N, N-dimethylaminopropionyl fluoride) sample (0.234 mol as 70% content) was put in a flask, 250 mL of ether was added and stirred, and the internal temperature of −100 ° C. While maintaining the temperature, 100 mL of a solution of methylmagnesium bromide (0.234 mol) was added over about 1 hour. When cooling is loosened and the internal temperature is raised to 0 ° C. in 1 hour and 25 mL of water is added with vigorous stirring, impurities adhere to the inner wall of the flask and the almost transparent ether solution can be separated by decantation. done. After drying over anhydrous magnesium sulfate, ether was distilled off, and the residue was subjected to fractional distillation. As a result, methyl perfluoro (2-N, N-dimethylaminoethyl) ketone, bp 101-102 ° C., 31.1 g (0.105 mol) ) Based on the amount of the acid fluoride contained in the raw material, the yield of methyl perfluoro (2-N, N-dimethylaminoethyl) ketone was 45%.
[0043]
Physicochemical data of methyl perfluoro (2-N, N-dimethylaminoethyl) ketones obtained as novel compounds, as well as their IR,1 H-NMR,19F-NMR and MS data are shown below.
Boiling point: 100.1 ° C. (measured at 760 mmHg), density: 1.5645 (measured at 25 ° C.), vapor pressure: 34.1 mmHg (measured at 25 ° C.).
[0044]
IR (capillary film) (cm-1): 2935 ν (CH) (w), 1763 ν [C (O)] (ms), 1425 (w), 1320 to 1352 (vs), 1208 (vs), 1120 (m), 1044 (w), 883 ( m), 834 (m), 763 (m), 728 (ms).
[0045]
1 H-NMR (CDClThree ): Δ 2.46 [-C (O) CHThree ].
19F-NMR (CFClThree ), Δ-52.8 [6F, tt, J = 7.5, J = 15.0, (CFThree )2 N], δ-91.4 [2F, heptet, J = 15.0, NCF2 CF2 ], Δ-120.2 [2F, heptet, J = 7.3, NCF2 CF2].
[0046]
MS: m / e143CF2CF2 NC (O) CHThree + (15.5), 119C2FFive + (2.4), 114C2 FFour N+ (8.2), 100C2 FFour + (5.5), 69CFThree + (30.7), 50CF2 + (2.0), 43C (O) CHThree + (100).
[0047]
【The invention's effect】
As described above in detail, the present invention relates to a novel fluorine-containing ketone compound and a method for producing the same, and according to the present invention, a novel fluorine-containing ketone compound and a method for efficiently producing the same are provided. The This novel fluorine-containing ketone compound is used as a raw material and synthetic intermediate for various fluorine-containing products such as surfactants, agricultural chemicals, pharmaceuticals, and fluorine-containing polymers. Further, it can be used as a refrigerant, heat transfer medium, It is useful as a foaming agent, cleaning agent, fire extinguishing agent, reaction solvent and the like.

Claims (2)

下記一般式(1)
Figure 0003722362
(式中、Rは炭素数が1〜4の低級脂肪族アルキル基を示す。また、RF 1,RF 2は、炭素数が1〜3の低級脂肪族ペルフルオロアルキル基を示し、これらは酸素原子を介して、あるいは介さないで5員環又は6員環の複素環を形成してもよい。n=1〜2の整数。)で表される含フッ素ケトン。
The following general formula (1)
Figure 0003722362
(In the formula, R represents a lower aliphatic alkyl group having 1 to 4 carbon atoms. Further, R F 1 and R F 2 represent a lower aliphatic perfluoroalkyl group having 1 to 3 carbon atoms. fluorinated ketone represented by via an oxygen atom, or not via 5-membered ring or may form a heterocyclic ring of 6-membered ring .n = 1 to 2 integer.).
上記一般式(1)で表される含フッ素ケトンを製造する方法であって、下記一般式(2)
Figure 0003722362
(式中、RF 1,RF 2は、炭素数が1〜3の低級脂肪族ペルフルオロアルキル基を示し、これらは酸素原子を介して、あるいは介さないで5員環又は6員環の複素環を形成してもよい。n=1〜2の整数。)で表される含窒素ペルフルオロカルボン酸フルオリドと、低級脂肪族アルキル基をもつ有機金属化合物を、非プロトン性極性溶媒中で反応させることを特徴とする含フッ素ケトンの製造方法。
A method for producing a fluorine-containing ketone represented by the above general formula (1), wherein the following general formula (2)
Figure 0003722362
(Wherein, R F 1 and R F 2 represent a lower aliphatic perfluoroalkyl group having 1 to 3 carbon atoms, and these are 5-membered or 6-membered heterocycles with or without oxygen atoms. A ring may be formed.An integer of n = 1 to 2. A nitrogen-containing perfluorocarboxylic acid fluoride represented by the following formula is reacted with an organometallic compound having a lower aliphatic alkyl group in an aprotic polar solvent. A method for producing a fluorine-containing ketone,
JP2001308332A 2001-10-04 2001-10-04 Novel fluorine-containing ketone compound and process for producing the same Expired - Lifetime JP3722362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308332A JP3722362B2 (en) 2001-10-04 2001-10-04 Novel fluorine-containing ketone compound and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308332A JP3722362B2 (en) 2001-10-04 2001-10-04 Novel fluorine-containing ketone compound and process for producing the same

Publications (2)

Publication Number Publication Date
JP2003113149A JP2003113149A (en) 2003-04-18
JP3722362B2 true JP3722362B2 (en) 2005-11-30

Family

ID=19127664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308332A Expired - Lifetime JP3722362B2 (en) 2001-10-04 2001-10-04 Novel fluorine-containing ketone compound and process for producing the same

Country Status (1)

Country Link
JP (1) JP3722362B2 (en)

Also Published As

Publication number Publication date
JP2003113149A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
US7083705B2 (en) Process for producing a fluorine-containing compound by liquid phase fluorination
JP2002501035A (en) Method for preparing hydrofluoroether
JPH0420901B2 (en)
JPS6145972B2 (en)
KR100758163B1 (en) Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
JP3722362B2 (en) Novel fluorine-containing ketone compound and process for producing the same
US7053238B2 (en) Process for producing fluorinated polyvalent carbonyl compound
JPH07149709A (en) Preparation of fluorocarbonfluoroalkanesulfonate
JP2006298855A (en) Method for producing 3,3,3-trifluoropropionic acid
WO2002026693A1 (en) Process for producing fluoroamine compound
JP3530975B2 (en) Method for producing fluorine-containing ether compound
JP2589960B2 (en) Heptafluoropropylfluoroalkyl ethers and method for producing the same
JPH06206835A (en) Preparation of halogenated aromatic compound
Tverdomed et al. Application of perfluoro (2-propoxypropyl vinyl ether)(PPVE-2) in the synthesis of perfluoro (propyl vinyl ether)(PPVE-1)
JP2024074671A (en) Method for producing fluorine-containing compound
JP3837628B2 (en) 1-chloro-1,1,2,2-tetrafluoro-2-methoxyethane and method for producing the same
JP4518247B2 (en) Method for producing α, α-difluoromethyl compound
JP2001240571A (en) Preparation method of fluoroalcohol
JPS6251943B2 (en)
JPS6034941B2 (en) Production method of fluoromalonate ester
JP4022413B2 (en) Perfluoroalkylacrylic acid multimers and multimer compositions and methods for their production
WO2001081287A1 (en) Process for the preparation of perfluoroalkanones
JPH0834754A (en) Pentafluoroethylfluoropropyl ethers and their production
JP3177649B2 (en) N-fluoroalkyl perfluorocyclic amines and method for producing the same
JPH11147847A (en) Fluorine-containing diether compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350