JP3721894B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3721894B2
JP3721894B2 JP30520499A JP30520499A JP3721894B2 JP 3721894 B2 JP3721894 B2 JP 3721894B2 JP 30520499 A JP30520499 A JP 30520499A JP 30520499 A JP30520499 A JP 30520499A JP 3721894 B2 JP3721894 B2 JP 3721894B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
deterioration
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30520499A
Other languages
Japanese (ja)
Other versions
JP2001123826A (en
Inventor
保樹 田村
博邦 瀬戸
川島  一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP30520499A priority Critical patent/JP3721894B2/en
Publication of JP2001123826A publication Critical patent/JP2001123826A/en
Application granted granted Critical
Publication of JP3721894B2 publication Critical patent/JP3721894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化用の三元触媒と排ガス中の窒素酸化物をトラップするNOx トラップ触媒を排気通路に備えた内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
近年、燃費の向上を図るため、リーン空燃比での燃焼を可能とした希薄燃焼内燃機関が実用化されている。この希薄燃焼内燃機関では、従来の三元触媒ではその浄化特性によりリーン燃焼時の排ガス中の窒素酸化物(NOx )を十分に浄化できないといった問題がある。そこで、近年では、例えば、リーン空燃比で運転中に排ガス中のNOx を吸蔵し、理論空燃比(ストイキ)またはリッチ空燃比で運転中に吸蔵されたNOx を放出還元する吸蔵型NOx 触媒等のNOx トラップ触媒装置を備えた排気浄化装置が採用されてきている。
【0003】
例えば、この吸蔵型NOx 触媒は、リーン空燃比(酸素の過剰状態)で排ガス中のNOx から硝酸塩(もしくは酸化塩)を生成し、これによりNOx を吸蔵する一方、ストイキまたはリッチ空燃比(酸素濃度が低下した雰囲気)では、触媒装置に吸蔵した硝酸塩と排気中のCOとを反応させて炭酸塩を生成し、これによりNOx を放出還元させるようになっている。
【0004】
また、三元触媒は、一般に、貴金属(例えば、白金やロジウム等)が担持されており、排ガスが高温のリーン雰囲気になったときに酸化して触媒性能が低下(劣化)する。そのため、排気通路に三元触媒を有する排気浄化装置では、酸化雰囲気下でこの触媒が所定の高温状態に晒される場合、排気空燃比をストイキにする熱劣化対策のための空燃比制御が、例えば、特開平5-59935 号公報によって提案されている。
【0005】
【発明が解決しようとする課題】
ところで、希薄燃焼内燃機関にあっては、例えば、排気通路に三元触媒と吸蔵型NOx 触媒を設けているが、三元触媒と吸蔵型NOx 触媒とでは熱劣化をはじめとした劣化特性が異なるものであるため、両者を両立させて有効に劣化抑制する技術が確立されていないのが現状である。
【0006】
即ち、三元触媒と吸蔵型NOx 触媒とでは耐熱温度が異なると共に、三元触媒は高温で排ガスがリーン雰囲気になったときに酸化して劣化する一方、吸蔵型NOx 触媒は高温でストイキ雰囲気になってCOやTHC 等が少なくなったときに吸蔵材が炭酸塩、硝酸塩(もしくは酸化塩)のいずれの状態にもならず吸蔵材が不安定となり担体と結びついてNOx を吸蔵することができなくなる(劣化)。特に、排ガス流量が多い場合に、酸化が促進されて三元触媒の劣化に対して悪影響を及ぼし、排ガス流量が少ない場合にCOやTHC 等が不足して吸蔵型NOx 触媒の劣化に対して悪影響を及ぼしてしまう。触媒温度が高くなりやすい状況下で空燃比をリッチ雰囲気に制御すれば、触媒温度の上昇及び酸化や不安定化が抑制され、三元触媒と吸蔵型NOx 触媒の両者の劣化を抑制することができるが、空燃比をリッチ空燃比に単純に切り換える手法は燃費の大幅な悪化を招いてしまう問題があった。
【0007】
このように、三元触媒と吸蔵型NOx 触媒を備えた希薄燃焼内燃機関の触媒装置では、三元触媒と吸蔵型NOx 触媒の両者の劣化を抑制するためには様々な問題が生じ、燃費の悪化を抑えながら触媒の劣化を抑制することは困難で、劣化抑制の技術が確立されていないのが現状である。
【0008】
本発明は上記状況に鑑みてなされたもので、燃費の悪化を抑えて三元触媒とNOx トラップ触媒の両者の劣化を抑制することができる内燃機関の排気浄化装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため請求項1の本発明では、排気浄化用の三元触媒と窒素酸化物をトラップするNOx トラップ触媒とを備えた触媒装置において、劣化指数導出手段により内燃機関の運転状態や排ガス量に基づいて三元触媒の劣化指数及びNOx トラップ触媒の劣化指数を導出し、空燃比制御手段により、三元触媒の劣化指数が三元触媒用の所定値を越えたときにリーン空燃比での内燃機関の運転を禁止すると共にNOx トラップ触媒の劣化指数がNOx トラップ触媒用の所定値を越えたときに理論空燃比での内燃機関の運転を禁止するようにしたものである。このため、劣化指数が高い、即ち、劣化しやすい側の触媒の劣化が優先的に抑制されると共に、両方の劣化指数が高くなったときにリーン空燃比及び理論空燃比での内燃機関の運転が禁止され、状況によってはリッチ空燃比にしなくても劣化を抑制できる。これにより、燃費の悪化を抑えて三元触媒とNOx トラップ触媒の両者の劣化が抑制される。
【0010】
好ましい態様として、劣化指数を導出する場合には、具体的には、触媒温度、排ガス流量及び排ガス成分の情報が少なくとも1つ以上用いられる。
【0011】
上記目的を達成するため請求項2の本発明では、排気浄化用の三元触媒と窒素酸化物をトラップするNOx トラップ触媒とを備えた触媒装置において、触媒の温度に相関するパラメータ値と排ガス流量に相関するパラメータ値とに応じて内燃機関のリーン空燃比運転領域及びリッチ運転領域を設定するようにしたものである。このため、触媒の劣化特性に合わせて温度及び排ガス流量に応じて適切な運転領域が選択され、燃費の悪化を抑えて三元触媒とNOx トラップ触媒の両者の劣化が抑制される。
【0012】
好ましい態様として、運転領域は、触媒温度と排ガス流量(吸気流量)との関係のマップにより三元触媒とNOx トラップ触媒のそれぞれに設定され、運転領域の選択は、所定の高温度以上の領域で実施されて熱劣化が抑制される。
【0013】
この場合、NOx トラップ触媒のマップにおける排ガス流量が少ない領域では、リッチ空燃比側への切り換えが極力高温側で実施され、リーン空燃比側への切り換えが極力低温側で実施されるように設定されることが望ましい。これは、NOx トラップ触媒の場合、リーン空燃比では吸蔵材が硝酸塩(もしくは酸化塩)の状態になって安定しているので、リーン空燃比からリッチ空燃比側への切り換えを極力高温側で実施することで、酸素もしくはNOx の放出を阻止して安定状態を維持することができるからである。また、リッチ空燃比でのNOx 吸蔵触媒は、吸蔵材が炭酸塩の状態になって安定しているので、リッチ空燃比からリーン空燃比側への切り換えを極力低温側で実施することで、炭酸塩の放出を阻止して安定状態を維持することができるからである。
【0014】
【発明の実施の形態】
以下図面に基づいて本発明の実施形態例を説明する。図示の実施形態例は、混合気の空燃比を理論空燃比よりも燃料希薄側に制御して燃焼室内に燃料を直接噴射するようにした火花点火式の多気筒型筒内噴射内燃機関を例に挙げて説明してある。図1には本発明の一実施形態例に係る排気浄化装置を備えた内燃機関の概略構成、図2には排気浄化装置による劣化抑制制御のフローチャート、図3には吸蔵型NOx 触媒の劣化指数の状況を表すグラフ、図4には三元触媒の劣化指数の状況を表すグラフを示してある。
【0015】
多気筒型筒内噴射内燃機関としては、例えば、燃料を直接燃焼室に噴射する筒内噴射型直列4気筒ガソリンエンジン(筒内噴射エンジン)1が適用される。筒内噴射エンジン1は、例えば、燃焼モード(運転モード)を切り換えることで、吸気行程での燃料噴射(吸気行程噴射モード)または圧縮行程での燃料噴射(圧縮行程噴射モード)が実施可能となっている。そして、この筒内噴射エンジン1は、理論空燃比(ストイキ)での運転やリッチ空燃比での運転(リッチ空燃比運転)の他、リーン空燃比での運転(リーン空燃比運転)が実現可能となっており、特に、圧縮行程噴射モードでは、吸気行程でのリーン空燃比運転よりも大きな空燃比となる超リーン空燃比での運転が可能となっている。
【0016】
図1に示すように、筒内噴射エンジン1のシリンダヘッド2には各気筒毎に点火プラグ3が取り付けられると共に、各気筒毎に電磁式の燃料噴射弁4が取り付けられている。燃焼室5内には燃料噴射弁4の噴射口が開口し、燃料噴射弁4から噴射される燃料が燃焼室5内に直接噴射されるようになっている。筒内噴射エンジン1のシリンダ6にはピストン7が上下方向に摺動自在に支持され、ピストン7の頂面には半球状に窪んだキャビティ8が形成されている。キャビティ8により、図1では時計回りの逆タンブル流を発生させるようになっている。
【0017】
シリンダヘッド2には、各気筒毎に略直立方向に吸気ポートが形成され、各吸気ポートと連通するようにして吸気マニホールド9の一端がそれぞれ接続されている。吸気マニホールド9の他端にはドライブバイワイヤ(DBW)方式の電動スロットル弁(ETV)21が接続され、ETV21にはスロットル開度θthを検出するスロットルポジションセンサ22が設けられている。また、筒内噴射エンジン1には、クランク角を検出するクランク角センサ23が設けられ、クランク角センサ23はエンジン回転速度Neを検出可能となっている。
【0018】
また、シリンダヘッド2には各気筒毎に略水平方向に排気ポートが形成され、各排気ポートと連通するようにして排気マニホールド10の一端がそれぞれ接続されている。また、排気マニホールド10には図示しないEGR装置が設けられている。一方、排気マニホールド10には排気管11が接続され、排気管11には筒内噴射エンジン1に隣接した小型の三元触媒32及び排気浄化触媒装置13を介して図示しないマフラーが接続されている。
【0019】
三元触媒32は、筒内噴射エンジン1の冷態始動時に排ガスによって加熱して早期に活性化させると共に、排気空燃比がストイキ近傍のときに排ガス中の有害物質(HC,CO,NOx )を浄化するものであり、貴金属として白金(Pt)、ロジウム(Rh)等を有した触媒となっている。排気管11における三元触媒32と排気浄化触媒装置13の間には、排気浄化触媒装置13の直上流に位置して、即ち、後述するNOx トラップ触媒としての吸蔵型NOx 触媒33及び三元触媒32の直上流に位置して排気温度を検出する高温センサ14,14aが設けられている。
【0020】
排気浄化触媒装置13は、排気空燃比がリーン空燃比のときに排ガス中のNOx を吸蔵すると共に主としてCOの存在する還元雰囲気中において吸蔵したNOx を放出して窒素(N2)等に還元させる吸蔵・放出・還元機能と、排気空燃比がストイキ近傍のときに排ガス中の有害物質(HC,CO,NOx ) を浄化する還元機能とを有している。つまり、排気浄化触媒装置13は、吸蔵・放出・還元機能を持たせるための吸蔵型NOx 触媒33と、三元機能を持たせるための三元触媒34とを備えた構成になっており、三元触媒34が吸蔵型NOx 触媒33の下流側に配置されている。
【0021】
吸蔵型NOx 触媒33は、貴金属として白金(Pt)、ロジウム(Rh)等を有し吸蔵材としてバリウム(Ba)等のアルカリ金属、アルカリ土類金属が採用された触媒で構成されている。また、三元触媒34は、吸蔵されたNOx が吸蔵型NOx 触媒33から放出された際に吸蔵型NOx 触媒33自身で還元しきれなかったNOx を還元する役目も果たしている。尚、排気浄化触媒装置13は、吸蔵型NOx 触媒33がNOx を還元し、HCとCOを酸化する三元触媒の機能(三元機能)を十分有している場合には、吸蔵型NOx 触媒33だけで構成してもよい。
【0022】
車両には電子制御ユニット(ECU)31が設けられ、このECU31には、入出力装置、制御プログラムや制御マップ等の記憶を行う記憶装置、中央処理装置及びタイマやカウンタ類が備えられている。ECU31によって筒内噴射エンジン1を含めた本実施形態の排気浄化装置の総合的な制御が実施される。各種センサ類の検出情報はECU31に入力され、ECU31は各種センサ類の検出情報に基づいて、燃料噴射モードや燃料噴射量を始めとして点火時期等を決定し、燃料噴射弁4や点火プラグ3等を駆動制御する。
【0023】
筒内噴射エンジン1では、吸気マニホールド9から燃焼室5内に流入した吸気流が逆タンブル流を形成し、圧縮行程中期以降に燃料を噴射して逆タンブル流を利用しながら燃焼室5の頂部中央に配設された点火プラグ3の近傍のみに少量の燃料を集め、点火プラグ3から離隔した部分で極めてリーンな空燃比状態とする。点火プラグ3の近傍のみをストイキ又はリッチな空燃比とすることで、安定した層状燃焼(層状超リーン燃焼)を実現しながら燃料消費を抑制する。
【0024】
また、筒内噴射エンジン1から高出力を得る場合には、燃料噴射弁4からの燃料を吸気行程に噴射することにより燃焼室5全体に均質化し、燃焼室5内をストイキやリーン空燃比の混合気状態にさせて予混合燃焼を行う。もちろん、ストイキもしくはリッチ空燃比の方がリーン空燃比よりも高出力が得られるため、この際にも、燃料の霧化及び気化が十分に行なわれるようなタイミングで燃料噴射を行ない、効率よく高出力を得るようにしている。
【0025】
ECU31では、スロットルポジションセンサ22からのスロットル開度θthとクランク角センサ23からのエンジン回転速度Neとに基づいてエンジン負荷に対応する目標筒内圧、即ち、目標平均有効圧Peが求められ、更に、この目標平均有効圧Peとエンジン回転速度Neとに応じてマップ(図示せず)より燃料噴射モードが設定される。例えば、目標平均有効圧Peとエンジン回転速度Neとが共に小さいときは、燃料噴射モードは圧縮行程噴射モードとされて燃料が圧縮行程で噴射され、一方、目標平均有効圧Peが大きくなり、あるいはエンジン回転速度Neが大きくなると燃料噴射モードは吸気行程噴射モードとされ、燃料が吸気行程で噴射される。そして、目標平均有効圧Peとエンジン回転速度Neとから各燃料噴射モードでの制御目標となる目標空燃比(目標A/F)が設定され、適正量の燃料噴射量がこの目標A/Fに基づいて決定される。
【0026】
また、高温センサ14あるいは高温センサ14aにより検出された排気温度情報から触媒温度(三元触媒32、吸蔵型NOx 触媒33、三元触媒34)が推定される。詳しくは、高温センサ14と三元触媒32及び排気浄化装置13とが多少なりとも離れて配置されていることに起因する誤差を補正するため、目標平均有効圧Peとエンジン回転速度Neとの情報に応じて温度誤差マップが予め実験等により設定されており、触媒温度は目標平均有効圧Peとエンジン回転速度Neが決まると一義的に推定される。更に、運転状態により排ガス流量及び排ガス成分の状況がマップにより設定されている。尚、排ガス流量は図示しない吸気量センサの情報により推定することも可能であり、排ガス成分は排ガスの状況を直接検出するセンサを別途設けることも可能である。
【0027】
上記構成の内燃機関の排気浄化装置では、三元触媒32では、筒内噴射エンジン1の冷態始動時に排ガスによって加熱されて早期に活性化すると共に、排気空燃比がストイキ近傍のときに排ガス中の有害物質(HC,CO,NOx )を浄化する。
【0028】
また、排気浄化装置13において、吸蔵型NOx 触媒33では、リーンモードにおける超リーン燃焼運転のような酸素濃度過剰雰囲気で、排気中のNOx が硝酸塩として吸蔵されて排気の浄化が行なわれる。一方、酸素濃度が低下した雰囲気では、吸蔵型NOx 触媒33に吸蔵した硝酸塩と排気中のCOとが反応して炭酸塩が生成されると共にNOx が放出される。従って、吸蔵型NOx 触媒33へのNOx の吸蔵が進むと、空燃比のリッチ化あるいは追加の燃料噴射を行なう等して、吸蔵型NOx 触媒33からNOx を放出させて機能を維持する。
【0029】
更に、排気浄化装置13の三元触媒34では、三元触媒32と同様に、排気空燃比がストイキ近傍のときに排ガス中の有害物質(HC,CO,NOx )を浄化する。また、吸蔵型NOx 触媒33から吸蔵されたNOx が放出された際に、吸蔵型NOx 触媒33自身だけでは還元しきれなかったNOx を還元する。
【0030】
本実施形態例の内燃機関の排気浄化装置では、排ガス温度、排ガス流量及び排ガス成分を最適に制御して(運転状態を最適に切り換えて)、三元触媒32、吸蔵型NOx 触媒33及び三元触媒34の熱劣化を抑制している。
【0031】
三元触媒と吸蔵型NOx 触媒とでは耐熱温度が異なると共に、三元触媒は排ガスがリーン雰囲気になったときに酸化して劣化する一方、吸蔵型NOx 触媒はストイキ雰囲気になってCOやTHC 等が少なくなったときに吸蔵材が炭酸塩、硝酸塩(もしくは酸化塩)のいずれの状態にもならず吸蔵材が不安定となり担体と結びついてNOx を吸蔵することができなくなる(劣化)。特に、排ガス流量が多い場合に、酸化が促進されて三元触媒の劣化に対して悪影響を及ぼし、排ガス流量が少ない場合にCOやTHC 等が不足して吸蔵型NOx 触媒の劣化に対して悪影響を及ぼしてしまう。つまり、吸蔵型NOx 触媒33と三元触媒32(三元触媒34)とは排ガス流量に対する劣化の特性が相反する。
【0032】
このため、排ガス温度、排ガス流量及び排ガス成分に対する吸蔵型NOx 触媒33と三元触媒32(三元触媒34)の劣化指数をそれぞれ導出し(劣化指数導出手段)、吸蔵型NOx 触媒33での排ガス温度、排ガス流量及び排ガス成分に対する劣化指数により劣化指標を求めると共に三元触媒32(三元触媒34)での排ガス温度、排ガス流量及び排ガス成分に対する劣化指数により劣化指標を求め、各劣化指標に基づいて運転領域を最適に切り換えて劣化を抑制している。
【0033】
具体的には、吸蔵型NOx 触媒33の劣化指標(劣化指数)がNOx 触媒用の所定値(第1所定値)を越えたときにストイキでの筒内噴射エンジン1の運転を禁止すると共に、三元触媒32(三元触媒34)の劣化指標(劣化指数)が三元触媒用の所定値(第2所定値)を越えたときにリーン空燃比での筒内噴射エンジン1の運転を禁止するようにしている(空燃比制御手段)。これにより、燃費の悪化を招くことなく、劣化の特性が相反する吸蔵型NOx 触媒33及び三元触媒32(三元触媒34)の熱劣化を抑制するようにしている。
【0034】
以下、図2のフローチャートに基づいて排気浄化装置における劣化抑制制御について説明する。
【0035】
図に示すように、ステップS1で吸蔵型NOx 触媒33の劣化指数を図3に基づいて検出し、ステップS2で三元触媒32の劣化指数を図4に基づいて検出し、ステップS3で三元触媒34の劣化指数を図4に基づいて検出する。つまり、図3に示すように、吸蔵型NOx 触媒33における触媒温度に対する劣化指数1A、排ガス流量に対する劣化指数1B、排ガス成分に対する劣化指数1Cが設定されている。また、図4に示すように、三元触媒32及び三元触媒34における触媒温度に対する劣化指数2A、排ガス流量に対する劣化指数2B、排ガス成分に対する劣化指数2Cが設定されている。
【0036】
図3(a) 、図4(a) に示すように、吸蔵型NOx 触媒33及び三元触媒32、34は触媒温度が高くなるにしたがって劣化指数が悪化状態になる。図3(b) 、図4(b) に示すように、吸蔵型NOx 触媒33は排ガス流量が少ない状態で劣化指数が悪化状態になる一方、三元触媒32、34は排ガス流量が多くなる状態で劣化指数が悪化状態になる。図3(c) 、図4(c) に示すように、吸蔵型NOx 触媒33は排ガス成分のCO,H2,TCH,NOx ,O2 が少ない状態で劣化指数が悪化状態になる一方、三元触媒32、34はO2,NO x が多くなる状態で劣化指数が悪化状態になる。
【0037】
ステップS1では、図3に基づいて劣化指数1A、劣化指数1B、劣化指数1Cが検出され、ステップS2及びステップS3では、図4に基づいて劣化指数2A、劣化指数2B、劣化指数2Cが検出される。それぞれの劣化指数が検出されると、ステップS4で劣化指標1、2が演算される。劣化指標1は劣化指数1A、劣化指数1B、劣化指数1Cに基づいて演算される吸蔵型NOx 触媒33の劣化の指標であり、劣化指標2は劣化指数2A、劣化指数2B、劣化指数2Cに基づいて演算される三元触媒32、34の劣化の指標である。
【0038】
例えば、劣化指標1は、(劣化指数1A×劣化指数1B×劣化指数1C)または{劣化指数1A×(劣化指数1B+劣化指数1C)}として演算される。また、劣化指標2は劣化指標1と同様に、(劣化指数2A×劣化指数2B×劣化指数2C)または{劣化指数2A×(劣化指数2B+劣化指数2C)}として演算される。尚、触媒の性質等により重み付けをして演算することも可能である。また、劣化指標を演算する場合には、各劣化指数を少なくとも1つ以上を用いればよい。
【0039】
ステップS4で劣化指標1、2が演算されると、即ち、吸蔵型NOx 触媒33及び三元触媒32、34の劣化のし易さが求められると、ステップS5で劣化指標1が第1所定値を越えているか否かが判断される。ステップS5で劣化指標1が第1所定値を越えていると判断された場合、ステップS6でストイキフィードバック(ストイキF/B)運転が禁止される。即ち、高温で排ガス流量が少なく排ガス成分のCO,H2,TCH,NOx ,O2 が少ない状態の場合に、吸蔵型NOx 触媒33が劣化しやすい状況にあると判断され、排ガス成分のCO,H2,TCH,NOx ,O2 が少ないストイキF/B が禁止されて吸蔵型NOx 触媒33の劣化が抑制される。
【0040】
ステップS6でストイキF/B 運転を禁止した後、もしくは、ステップS5で劣化指標1がNOx 所定値を越えていないと判断された場合、ステップS7で劣化指標2が第2所定値を越えているか否かが判断される。ステップS7で劣化指標2が第2所定値を越えていると判断された場合、ステップS8でリーン運転が禁止される。高温で排ガス流量が多く排ガス成分のNOx ,O2 が多い場合に、三元触媒32、34が劣化しやすい状況にあると判断され、NOx ,O2 が多いリーン運転が禁止されて三元触媒32、34の劣化が抑制される。
【0041】
つまり、劣化指標1が第1所定値を越え且つ劣化指標2が第2所定値を越えている場合には、両方の触媒の劣化を抑制するために、ストイキF/B 及びリーンが禁止されてリッチ運転状態とされる。また、劣化指標1が第1所定値を越え劣化指標2が第2所定値を越えてていない場合には、吸蔵型NOx 触媒33の劣化を抑制するために、ストイキF/B だけが禁止されてリーン運転もしくはリッチ運転が可能な状態とされる。また、劣化指標1が第1所定値を越えておらず劣化指標2が第2所定値を越えている場合には、リーン運転だけが禁止されてストイキF/B もしくはリッチ運転が可能な状態とされ、劣化指標1が第1所定値を越えておらず且つ劣化指標2が第2所定値を越えていない場合には、ストイキF/B 及びリーンは禁止されず、ストイキF/B 、リーン運転及びリッチ運転の全てが可能な状態とされる。
【0042】
尚、ストイキF/B を禁止する際に、CO,H2,TCH,NOx ,O2 を増量させたり、触媒を冷却して温度を低下させたり、排ガス流量を増加させる手段を併用することも可能である。この場合、第1所定値を別設定にしてもよい。また、リーン運転を禁止する際に、NOx ,O2 を減少させたり、触媒を冷却して温度を低下させたり、排ガス流量を減少させる手段を併用することも可能である。この場合、第2所定値を別設定にしてもよい。
【0043】
上述したように、劣化指標が高い、即ち、触媒温度や排ガス流量や排ガス成分に起因する劣化指数が高く劣化しやすくなっている側の触媒の劣化を抑制する状態に運転状態が制御されて優先的に劣化が抑制されると共に、劣化指標1、2両方が高い、即ち、触媒温度や排ガス流量や排ガス成分に起因する劣化指数が高く共に劣化しやすくなっている場合は吸蔵型NOx 触媒33及び三元触媒32、34の劣化を抑制するようにリーン及びストイキでの運転が禁止されるようになっている。このため、リッチ運転のみに運転領域が制限されるのは吸蔵型NOx 触媒33及び三元触媒32,34が共に劣化しやすくなっている場合のみとなり、燃費の悪化を抑えて劣化特性が異なる吸蔵型NOx 触媒33及び三元触媒32、34の両者の劣化を効率よく抑制することができる。
【0044】
図5、図6に基づいてい劣化抑制制御の他の実施形態例を説明する。本実施形態例の劣化抑制制御は、触媒の温度と排ガス流量(吸気流量)とで定まる吸蔵型NOx 触媒33の劣化指数及び三元触媒32、34の劣化指数に応じて定まる筒内噴射エンジン1の運転領域を触媒温度と排ガス流量とをパラメータとしてマップ化(運転領域設定手段)したもので、マップに従い劣化を抑制する状態の運転領域となるように運転を行なって三元触媒32、吸蔵型NOx 触媒33及び三元触媒34の熱劣化を抑制するようにしたものである。
【0045】
図5には吸蔵型NOx 触媒33の運転領域を表す触媒温度と吸気流量との関係のマップ、図6には三元触媒32、34の運転領域を表す触媒温度と吸気流量との関係のマップを示してある。
【0046】
図5、図6に示すように、吸蔵型NOx 触媒33及び三元触媒32、34のそれぞれにおいて、触媒温度と吸気流量との関係で劣化が抑制される運転領域が設定されている。即ち、所定温度T℃以上で触媒温度と吸気流量とに基づいて運転領域が高温側から順にAゾーン、Bゾーン、Cゾーン及びDゾーンに分けられている。尚、各ゾーンの境界における実線は低温側から高温側にゾーンを切り換えるときの境界で、点線は高温側から低温側にゾーンを切り換えるときの境界となっており、ヒステリシスが設けられた状態になっている。
【0047】
Aゾーンはリッチ空燃比で、触媒温度が高くオープンループモードのゾーンとなっている。但し、A/Fは所定値(例えば13)以下になっている。BゾーンはストイキF/B +リッチシフトによりストイキよりややリッチな空燃比を達成するゾーンとなっており、F/B ゲインは通常のストイキF/B とは別設定される。Cゾーンはリーン空燃比で、定常時はリーンモードとなるゾーンとなっている。但し、目標A/F<所定値(ストイキF/B +リッチシフトも含む)が30秒以上経過した後に突入した場合は上述の、ストイキF/B +リッチシフトを所定時間(例えば5秒間)実行させた後にリーンモードとして触媒の昇温が防止される。また、この領域での加速時は、上述のストイキF/B +リッチシフトが実行され、F/B ゲインは別設定される。Dゾーンは高負荷オープンループモード禁止のゾーンとなっている。但し、図7に示すように、判定A/Fが規定A/F(例えば13.8)以下では、オープンループモードとし目標A/Fを判定A/F以下とする。始動モード、フェールモード、燃料カットモードは除く。このため、Aゾーンに比べてBゾーンが、Bゾーンに比べてCゾーンの方が燃費は向上し、Dゾーンはドライバビリティを犠牲にしない範囲内で燃費を抑制できる。
【0048】
尚、上記実施形態例では、筒内噴射エンジン1の運転領域を4つの運転領域に設定しているが、4つ以上の運転領域に設定することも可能であり、また、ストイキ空燃比の領域を設定することも可能である。更に、所定温度T℃以上で触媒の劣化抑制のための運転領域を設定しているが、低温域を含む全ての温度領域で劣化抑制のための運転領域を設定することも可能である。
【0049】
吸気流量が少ない場合には、吸蔵型NOx 触媒33が劣化しやすいため、高い触媒温度までリーンモードを実施し(Cゾーンの領域を広くし)、吸蔵型NOx 触媒33の劣化を抑制する。吸気流量が多い場合には、三元触媒32、34が劣化しやすいため、触媒温度が高くならないうちにリッチ側のモードであるBゾーンの非リーンモードを実施し、三元触媒32、34の劣化を抑制する。各触媒温度から求めたゾーンに対し、図5及び図6で選択されるゾーンが異なった場合、Aゾーン、Bゾーン、Cゾーン、Dゾーンの順に優先される(例えば、図5ではBゾーンが選択され図6ではCゾーンが選択された場合、Bゾーンが優先される)。
【0050】
このため、図5及び図6で示したように、Aゾーン、Bゾーン、Cゾーン、Dゾーンに運転領域を設定し、触媒温度と吸気流量(排ガス流量)とに基づいてゾーンを選択することで、劣化しやすい触媒の劣化が優先的に抑制される状態の運転領域が選択され、燃費の悪化を抑えて吸蔵型NOx 触媒33と三元触媒32、34の両者の劣化が効率よく抑制される。
【0051】
尚、図5に示したように、BゾーンとCゾーンの境界において、高温側から低温側のBゾーンからCゾーンに切り換える時(点線)、吸気流量が少ない領域で低温側に点線が傾いている。これは、Bゾーンにおける吸蔵型NOx 触媒33はリッチ運転のために炭酸塩になっており、排ガス流量が少ないので、低温側でリーンにしても新たなCO,O2,Noが少ない状態になっている。このため、すぐにリーンに切り換えると炭酸塩を放出してしまうので、なるべく低温側までリッチ状態を維持して炭酸塩の放出を抑え劣化を抑制するためである。
【0052】
逆に、BゾーンとCゾーンの境界において、低温側から高温側のCゾーンからBゾーンに切り換える時(実線)、吸気流量が少ない領域で高温側に実線が傾いている。これは、Cゾーンにおける吸蔵型NOx 触媒33はリーン運転のために硝酸塩になっており、排ガス流量が少ない。このため、すぐにリッチに切り換えるとO2を放出してしまうので、なるべく低温側までリッチ状態である安定状態を維持して劣化を抑制するためである。
【0053】
上記実施形態例では、排気管11に三元触媒32と排気浄化装置13とを別々に設けたが、1つの触媒装置の中に三元触媒32、吸蔵型NOx 触媒33、三元触媒34を設けるようにしてもよい。また、吸蔵型NOx 触媒33に三元機能を持たせて一体型としてもよい。また、内燃機関として筒内噴射エンジン1を例に挙げて説明したが、排気浄化用の三元触媒(三元機能)と排ガス中の窒素酸化物を吸蔵する吸蔵型NOx 触媒を有するものであれば、吸気管噴射型のリーンバーンエンジンに本発明を適用することも可能である。
【0054】
また、NOx 選択還元型触媒を更に使用する場合、NOx 選択還元型触媒は三元触媒と類似した劣化特性を示すため、三元触媒と同じ傾向の劣化指数やマップを使用すればよい。また、触媒温度に相関するパラメータ値として、実施形態例では触媒温度と排気温度から推定するものとしたが、触媒温度を実測してもよいし、排気温度検出値を直接または補正して使用するものとしてもよい。更に、NOx トラップ触媒として、リーン雰囲気でNOx を吸蔵してリッチまたはストイキ雰囲気で吸蔵しているNOx を放出還元する吸蔵型NOx 触媒を例に挙げて説明したが、リーン雰囲気でNOx を吸蔵しリッチまたはストイキ雰囲気で吸蔵しているNOx を直接還元するNOx トラップ触媒を使用してもよい。
【0055】
【発明の効果】
請求項1の本発明の内燃機関の排気浄化装置は、内燃機関の運転状態や排ガス量に基づいて三元触媒の劣化指数及びNOx トラップ触媒の劣化指数を導出し、三元触媒の劣化指数が三元触媒用の所定値を越えたときにリーン空燃比での内燃機関の運転を禁止すると共にNOx トラップ触媒の劣化指数がNOx トラップ触媒用の所定値を越えたときに理論空燃比での内燃機関の運転を禁止するようにしたので、劣化しやすい側の触媒の劣化が優先的に抑制されると共に、両方の劣化指数が高くなったときにリーン空燃比及び理論空燃比での内燃機関の運転が禁止される。この結果、燃費の悪化を抑えて三元触媒とNOx トラップ触媒の両者の劣化を効率よく抑制することが可能となる。
【0056】
請求項2の本発明の内燃機関の排気浄化装置は、触媒の温度と排ガス流量とに応じて内燃機関のリーン空燃比運転領域及びリッチ運転領域を設定するようにしたもので、触媒の劣化特性に合わせて温度及び排ガス流量に応じて適切な運転領域が選択される。この結果、燃費の悪化を抑えて三元触媒とNOx トラップ触媒の両者の劣化を効率よく抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る排気浄化装置を備えた内燃機関の概略構成図。
【図2】排気浄化装置による劣化抑制制御のフローチャート。
【図3】吸蔵型NOx 触媒の劣化指数の状況を表すグラフ。
【図4】三元触媒の劣化指数の状況を表すグラフ。
【図5】吸蔵型NOx 触媒の運転領域を表す触媒温度と吸気流量との関係のマップ。
【図6】三元触媒の運転領域を表す触媒温度と吸気流量との関係のマップ。
【図7】空燃比と負荷との関係を表すグラフ。
【符号の説明】
1 筒内噴射エンジン
13 排気浄化触媒装置
31 電子制御ユニット(ECU)
32 三元触媒
33 吸蔵型NOx 触媒
34 三元触媒
[0001]
BACKGROUND OF THE INVENTION
The present invention is a three-way catalyst for exhaust gas purification and NO that traps nitrogen oxides in the exhaust gas. x The present invention relates to an exhaust gas purification apparatus for an internal combustion engine provided with a trap catalyst in an exhaust passage.
[0002]
[Prior art]
In recent years, lean combustion internal combustion engines that enable combustion at a lean air-fuel ratio have been put into practical use in order to improve fuel efficiency. In this lean combustion internal combustion engine, the conventional three-way catalyst uses nitrogen oxides (NO) in exhaust gas during lean combustion due to its purification characteristics. x ) Cannot be sufficiently purified. Therefore, in recent years, for example, NO in exhaust gas during operation at a lean air-fuel ratio. x NO is occluded during operation at the stoichiometric or rich air / fuel ratio. x Occlusion type NO x NO such as catalyst x Exhaust gas purification devices equipped with a trap catalyst device have been adopted.
[0003]
For example, this storage type NO x The catalyst is a lean air-fuel ratio (oxygen excess) and NO in exhaust gas. x Produces nitrates (or oxides) from the NO x On the other hand, in stoichiometric or rich air-fuel ratio (atmosphere where oxygen concentration is reduced), nitrate stored in the catalytic device reacts with CO in the exhaust to produce carbonate, thereby producing NO. x Is released and reduced.
[0004]
In addition, the three-way catalyst generally carries a noble metal (for example, platinum, rhodium, etc.), and is oxidized when the exhaust gas is in a high temperature lean atmosphere, resulting in a reduction (deterioration) in catalyst performance. Therefore, in an exhaust purification device having a three-way catalyst in the exhaust passage, when this catalyst is exposed to a predetermined high temperature state in an oxidizing atmosphere, air-fuel ratio control for countermeasures against thermal deterioration that makes the exhaust air-fuel ratio stoichiometric is, for example, JP-A-5-59935.
[0005]
[Problems to be solved by the invention]
By the way, in a lean combustion internal combustion engine, for example, a three-way catalyst and an occlusion type NO x A catalyst is provided, but a three-way catalyst and storage NO x Since the deterioration characteristics such as thermal deterioration are different from those of the catalyst, the present situation is that a technique for effectively suppressing deterioration by combining the two has not been established.
[0006]
That is, three-way catalyst and storage type NO x While the heat-resistant temperature differs from the catalyst, the three-way catalyst is oxidized and deteriorates when the exhaust gas becomes lean at high temperature, while the NO x When the catalyst is in a stoichiometric atmosphere at high temperatures and CO and THC, etc. are reduced, the storage material becomes neither carbonate or nitrate (or oxide), but the storage material becomes unstable and binds to the carrier. x Can no longer be stored (deteriorated). In particular, when the exhaust gas flow rate is high, oxidation is promoted and adversely affects the deterioration of the three-way catalyst. When the exhaust gas flow rate is low, CO, THC, etc. are insufficient and the storage type NO x It will have an adverse effect on the deterioration of the catalyst. If the air-fuel ratio is controlled to a rich atmosphere under circumstances where the catalyst temperature tends to be high, the catalyst temperature rise and oxidation and destabilization will be suppressed, and the three-way catalyst and the storage NO x Although the deterioration of both of the catalysts can be suppressed, the method of simply switching the air-fuel ratio to the rich air-fuel ratio has a problem that the fuel consumption is greatly deteriorated.
[0007]
In this way, three-way catalyst and storage type NO x In a catalytic device for a lean combustion internal combustion engine equipped with a catalyst, a three-way catalyst and an occlusion type NO x Various problems occur in order to suppress the deterioration of both of the catalysts, and it is difficult to suppress the deterioration of the catalyst while suppressing the deterioration of fuel consumption, and the present situation is that the technology for suppressing the deterioration has not been established.
[0008]
The present invention has been made in view of the above situation, and suppresses the deterioration of fuel consumption, and a three-way catalyst and NO. x An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress deterioration of both of the trap catalysts.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the three-way catalyst for exhaust purification and NO trapping nitrogen oxides are provided. x In a catalyst device equipped with a trap catalyst, the deterioration index and NO of the three-way catalyst based on the operating state of the internal combustion engine and the amount of exhaust gas by the deterioration index deriving means x The trap index of the trap catalyst is derived, and the air-fuel ratio control means prohibits the operation of the internal combustion engine at the lean air-fuel ratio when the three-way catalyst deterioration index exceeds a predetermined value for the three-way catalyst and NO. x Trap catalyst deterioration index is NO x When the predetermined value for the trap catalyst is exceeded, the operation of the internal combustion engine at the stoichiometric air-fuel ratio is prohibited. For this reason, the deterioration index of the catalyst having a high deterioration index, that is, the deterioration-prone catalyst is preferentially suppressed, and the operation of the internal combustion engine at the lean air-fuel ratio and the stoichiometric air-fuel ratio when both the deterioration indexes are high. Is prohibited, and deterioration can be suppressed depending on the situation without using a rich air-fuel ratio. As a result, the three-way catalyst and NO x Deterioration of both of the trap catalysts is suppressed.
[0010]
As a preferred embodiment, when deriving the degradation index, specifically, at least one piece of information on the catalyst temperature, the exhaust gas flow rate, and the exhaust gas component is used.
[0011]
In order to achieve the above object, according to the present invention, the three-way catalyst for exhaust purification and NO trapping nitrogen oxides are provided. x In a catalyst device including a trap catalyst, a lean air-fuel ratio operation region and a rich operation region of an internal combustion engine are set according to a parameter value correlating to the catalyst temperature and a parameter value correlating to the exhaust gas flow rate. is there. For this reason, an appropriate operating region is selected according to the temperature and the exhaust gas flow rate in accordance with the deterioration characteristics of the catalyst, and the three-way catalyst and the NO. x Deterioration of both of the trap catalysts is suppressed.
[0012]
As a preferred embodiment, the operation region is determined by a map of the relationship between the catalyst temperature and the exhaust gas flow rate (intake flow rate) and the three-way catalyst and NO. x The operation region selected for each of the trap catalysts is selected in a region above a predetermined high temperature to suppress thermal degradation.
[0013]
In this case, NO x In an area where the exhaust gas flow rate is small in the trap catalyst map, it is desirable that switching to the rich air-fuel ratio side is performed on the high temperature side as much as possible, and switching to the lean air-fuel ratio side is performed on the low temperature side as much as possible. . This is NO x In the case of a trap catalyst, since the occlusion material is stable in the state of nitrate (or oxide) at the lean air-fuel ratio, by switching from the lean air-fuel ratio to the rich air-fuel ratio side as much as possible, Oxygen or NO x This is because a stable state can be maintained by preventing the release of. NO at rich air-fuel ratio x The storage catalyst is stable because the storage material is in the form of carbonate, so switching from the rich air-fuel ratio to the lean air-fuel ratio side is performed on the low temperature side as much as possible to prevent the release of carbonate and stabilize the storage catalyst. This is because the state can be maintained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. The illustrated embodiment is an example of a spark ignition type multi-cylinder in-cylinder injection internal combustion engine in which the air-fuel ratio of the air-fuel mixture is controlled to be leaner than the stoichiometric air-fuel ratio and fuel is directly injected into the combustion chamber. It is listed in the description. FIG. 1 is a schematic configuration of an internal combustion engine provided with an exhaust purification apparatus according to an embodiment of the present invention, FIG. 2 is a flowchart of deterioration suppression control by the exhaust purification apparatus, and FIG. x FIG. 4 shows a graph showing the state of the deterioration index of the catalyst, and FIG. 4 shows a graph showing the state of the deterioration index of the three-way catalyst.
[0015]
As the multi-cylinder in-cylinder internal combustion engine, for example, an in-cylinder in-line four-cylinder gasoline engine (in-cylinder injection engine) 1 that directly injects fuel into a combustion chamber is applied. For example, the in-cylinder injection engine 1 can perform fuel injection in the intake stroke (intake stroke injection mode) or fuel injection in the compression stroke (compression stroke injection mode) by switching the combustion mode (operation mode). ing. The in-cylinder injection engine 1 can be operated at a lean air-fuel ratio (lean air-fuel ratio operation) in addition to an operation at a stoichiometric air-fuel ratio (stoichiometric) or an operation at a rich air-fuel ratio (rich air-fuel ratio operation). In particular, in the compression stroke injection mode, it is possible to operate at a super lean air-fuel ratio that has a larger air-fuel ratio than a lean air-fuel ratio operation in the intake stroke.
[0016]
As shown in FIG. 1, a spark plug 3 is attached to each cylinder of the cylinder head 2 of the direct injection engine 1, and an electromagnetic fuel injection valve 4 is attached to each cylinder. An injection port of the fuel injection valve 4 is opened in the combustion chamber 5 so that the fuel injected from the fuel injection valve 4 is directly injected into the combustion chamber 5. A piston 7 is supported on the cylinder 6 of the direct injection engine 1 so as to be slidable in the vertical direction, and a hemispherical cavity 8 is formed on the top surface of the piston 7. The cavity 8 generates a clockwise reverse tumble flow in FIG.
[0017]
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and one end of an intake manifold 9 is connected so as to communicate with each intake port. A drive-by-wire (DBW) type electric throttle valve (ETV) 21 is connected to the other end of the intake manifold 9, and a throttle position sensor 22 for detecting a throttle opening θth is provided in the ETV 21. The in-cylinder injection engine 1 is provided with a crank angle sensor 23 that detects the crank angle, and the crank angle sensor 23 can detect the engine rotational speed Ne.
[0018]
Further, an exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of the exhaust manifold 10 is connected so as to communicate with each exhaust port. The exhaust manifold 10 is provided with an EGR device (not shown). On the other hand, an exhaust pipe 11 is connected to the exhaust manifold 10, and a muffler (not shown) is connected to the exhaust pipe 11 via a small three-way catalyst 32 adjacent to the in-cylinder injection engine 1 and an exhaust purification catalyst device 13. .
[0019]
The three-way catalyst 32 is activated by the exhaust gas when the in-cylinder injection engine 1 is cold-started and activated early, and when the exhaust air-fuel ratio is in the vicinity of the stoichiometric, toxic substances (HC, CO, NO) in the exhaust gas x ) And a catalyst having platinum (Pt), rhodium (Rh), etc. as noble metals. Between the three-way catalyst 32 and the exhaust purification catalyst device 13 in the exhaust pipe 11, it is located immediately upstream of the exhaust purification catalyst device 13, that is, NO to be described later. x Occlusion type NO as a trap catalyst x High temperature sensors 14 and 14a for detecting the exhaust gas temperature are provided just upstream of the catalyst 33 and the three-way catalyst 32.
[0020]
The exhaust purification catalyst device 13 is configured to detect NO in exhaust gas when the exhaust air-fuel ratio is a lean air-fuel ratio. x NO is occluded in a reducing atmosphere mainly containing CO x Release nitrogen (N 2 ) Occlusion / release / reduction function to reduce to toxic substances (HC, CO, NO) in exhaust gas when exhaust air-fuel ratio is near stoichiometric x It has a reducing function to purify). In other words, the exhaust purification catalyst device 13 has an occlusion type NOO for providing occlusion / release / reduction functions. x The catalyst 33 and a three-way catalyst 34 for providing a three-way function are provided, and the three-way catalyst 34 is an occlusion type NO. x It is arranged downstream of the catalyst 33.
[0021]
Occlusion type NO x The catalyst 33 is composed of a catalyst that includes platinum (Pt), rhodium (Rh), or the like as a noble metal, and an alkali metal such as barium (Ba) or an alkaline earth metal as an occlusion material. In addition, the three-way catalyst 34 is stored NO. x Is occlusion type NO x Storage type NO when released from catalyst 33 x NO that could not be reduced by catalyst 33 itself x It also plays the role of reducing The exhaust purification catalyst device 13 is a storage type NO. x Catalyst 33 is NO x If it has sufficient function of a three-way catalyst (three-way function) to reduce HC and CO, store NO x You may comprise only the catalyst 33. FIG.
[0022]
The vehicle is provided with an electronic control unit (ECU) 31, and this ECU 31 includes an input / output device, a storage device for storing a control program, a control map, and the like, a central processing unit, a timer, and counters. The ECU 31 performs comprehensive control of the exhaust purification system of this embodiment including the in-cylinder injection engine 1. Detection information of various sensors is input to the ECU 31. The ECU 31 determines the ignition timing and the like including the fuel injection mode and the fuel injection amount based on the detection information of the various sensors, and the fuel injection valve 4, the ignition plug 3, etc. Is controlled.
[0023]
In the in-cylinder injection engine 1, the intake air flow that flows into the combustion chamber 5 from the intake manifold 9 forms a reverse tumble flow, and fuel is injected after the middle of the compression stroke to use the reverse tumble flow and the top of the combustion chamber 5. A small amount of fuel is collected only in the vicinity of the spark plug 3 disposed at the center, and an extremely lean air-fuel ratio is obtained at a portion separated from the spark plug 3. By making only the vicinity of the spark plug 3 a stoichiometric or rich air-fuel ratio, fuel consumption is suppressed while realizing stable stratified combustion (stratified super lean combustion).
[0024]
When high output is obtained from the direct injection engine 1, the fuel from the fuel injection valve 4 is injected into the intake stroke to be homogenized throughout the combustion chamber 5. The inside of the combustion chamber 5 has a stoichiometric or lean air-fuel ratio. Premixed combustion is performed in a mixed gas state. Of course, the stoichiometric or rich air-fuel ratio can provide a higher output than the lean air-fuel ratio. In this case as well, fuel injection is performed at such a timing that the atomization and vaporization of the fuel is sufficiently performed. I try to get the output.
[0025]
In the ECU 31, a target in-cylinder pressure corresponding to the engine load, that is, a target average effective pressure Pe, is obtained based on the throttle opening degree θth from the throttle position sensor 22 and the engine rotational speed Ne from the crank angle sensor 23. A fuel injection mode is set from a map (not shown) according to the target average effective pressure Pe and the engine rotational speed Ne. For example, when the target average effective pressure Pe and the engine speed Ne are both small, the fuel injection mode is set to the compression stroke injection mode, and fuel is injected in the compression stroke, while the target average effective pressure Pe is increased, or When the engine speed Ne increases, the fuel injection mode is changed to the intake stroke injection mode, and fuel is injected in the intake stroke. Then, a target air-fuel ratio (target A / F) that is a control target in each fuel injection mode is set from the target average effective pressure Pe and the engine rotational speed Ne, and an appropriate amount of fuel injection amount is set to this target A / F. To be determined.
[0026]
Further, from the exhaust temperature information detected by the high temperature sensor 14 or the high temperature sensor 14a, the catalyst temperature (three-way catalyst 32, occlusion type NO. x A catalyst 33 and a three-way catalyst 34) are estimated. Specifically, in order to correct an error caused by the high temperature sensor 14, the three-way catalyst 32, and the exhaust purification device 13 being arranged somewhat apart, information on the target average effective pressure Pe and the engine rotational speed Ne Accordingly, a temperature error map is set in advance by experiments or the like, and the catalyst temperature is uniquely estimated when the target average effective pressure Pe and the engine rotational speed Ne are determined. Furthermore, the state of the exhaust gas flow rate and the exhaust gas component is set by a map according to the operating state. The exhaust gas flow rate can be estimated from information of an intake air amount sensor (not shown), and a sensor for directly detecting the state of the exhaust gas component can be separately provided for the exhaust gas component.
[0027]
In the exhaust gas purification apparatus for an internal combustion engine having the above-described configuration, the three-way catalyst 32 is heated by the exhaust gas when the in-cylinder injection engine 1 is cold-started and is activated early, and the exhaust gas is in the exhaust gas when the exhaust air-fuel ratio is near the stoichiometric. Hazardous substances (HC, CO, NO x ) Purify.
[0028]
Further, in the exhaust purification device 13, the storage type NO. x In the catalyst 33, NO in the exhaust gas in an atmosphere with excess oxygen concentration as in the super lean combustion operation in the lean mode. x Is stored as nitrate to purify the exhaust. On the other hand, in an atmosphere with a reduced oxygen concentration, the storage type NO x The nitrate stored in the catalyst 33 reacts with the CO in the exhaust to produce carbonate and NO. x Is released. Therefore, occlusion type NO x NO to catalyst 33 x As the storage of the fuel proceeds, the air-fuel ratio is enriched or additional fuel injection is performed. x NO from catalyst 33 x Is released to maintain the function.
[0029]
Further, in the three-way catalyst 34 of the exhaust purification device 13, similarly to the three-way catalyst 32, harmful substances (HC, CO, NO) in the exhaust gas when the exhaust air-fuel ratio is near the stoichiometric range. x ) Purify. Also, storage type NO x NO occluded from catalyst 33 x When NO is stored x NO that could not be reduced by the catalyst 33 alone x Reduce.
[0030]
In the exhaust gas purification apparatus for an internal combustion engine of the present embodiment, the exhaust gas temperature, the exhaust gas flow rate, and the exhaust gas component are optimally controlled (the operation state is optimally switched), and the three-way catalyst 32, the occlusion-type NO. x Thermal degradation of the catalyst 33 and the three-way catalyst 34 is suppressed.
[0031]
Three-way catalyst and storage NO x While the heat-resistant temperature differs from the catalyst, the three-way catalyst is oxidized and deteriorated when the exhaust gas enters a lean atmosphere. x When the catalyst is in a stoichiometric atmosphere and the amount of CO, THC, etc. is reduced, the storage material will not be in the state of carbonate or nitrate (or oxide salt), and the storage material will become unstable and tied to the carrier. x Can no longer be stored (deteriorated). In particular, when the exhaust gas flow rate is high, oxidation is promoted and adversely affects the deterioration of the three-way catalyst. When the exhaust gas flow rate is low, CO, THC, etc. are insufficient and the storage type NO x It will have an adverse effect on the deterioration of the catalyst. In other words, storage type NO x The catalyst 33 and the three-way catalyst 32 (three-way catalyst 34) have opposite characteristics of deterioration with respect to the exhaust gas flow rate.
[0032]
For this reason, the storage NO for exhaust gas temperature, exhaust gas flow rate and exhaust gas components x Degradation indexes of the catalyst 33 and the three-way catalyst 32 (three-way catalyst 34) are derived (degradation index deriving means), respectively, and the storage type NO x The deterioration index is obtained from the exhaust gas temperature at the catalyst 33, the exhaust gas flow rate, and the deterioration index for the exhaust gas component, and the deterioration index is obtained from the exhaust gas temperature, the exhaust gas flow rate, and the deterioration index for the exhaust gas component at the three-way catalyst 32 (three-way catalyst 34). Based on each deterioration index, the operation region is optimally switched to suppress deterioration.
[0033]
Specifically, storage type NO x The deterioration index (deterioration index) of the catalyst 33 is NO. x When the predetermined value for catalyst (first predetermined value) is exceeded, operation of the in-cylinder injection engine 1 with stoichiometry is prohibited, and the deterioration index (deterioration index) of the three-way catalyst 32 (three-way catalyst 34) is three. When the predetermined value for the original catalyst (second predetermined value) is exceeded, the operation of the direct injection engine 1 at the lean air-fuel ratio is prohibited (air-fuel ratio control means). Occupancy type NO with which the characteristics of deterioration conflict with each other without causing deterioration of fuel consumption x Thermal degradation of the catalyst 33 and the three-way catalyst 32 (three-way catalyst 34) is suppressed.
[0034]
Hereinafter, the deterioration suppression control in the exhaust emission control device will be described based on the flowchart of FIG.
[0035]
As shown in the figure, in step S1, the storage type NO x The deterioration index of the catalyst 33 is detected based on FIG. 3, the deterioration index of the three-way catalyst 32 is detected based on FIG. 4 in step S2, and the deterioration index of the three-way catalyst 34 is detected based on FIG. 4 in step S3. To do. That is, as shown in FIG. x A deterioration index 1A for the catalyst temperature in the catalyst 33, a deterioration index 1B for the exhaust gas flow rate, and a deterioration index 1C for the exhaust gas components are set. Further, as shown in FIG. 4, a deterioration index 2A with respect to the catalyst temperature in the three-way catalyst 32 and the three-way catalyst 34, a deterioration index 2B with respect to the exhaust gas flow rate, and a deterioration index 2C with respect to the exhaust gas components are set.
[0036]
As shown in Fig. 3 (a) and Fig. 4 (a), the storage type NO x The deterioration index of the catalyst 33 and the three-way catalysts 32 and 34 deteriorates as the catalyst temperature increases. As shown in Fig. 3 (b) and Fig. 4 (b), the storage type NO x While the catalyst 33 has a deteriorated deterioration index when the exhaust gas flow rate is low, the three-way catalysts 32 and 34 have a deteriorated deterioration index when the exhaust gas flow rate increases. As shown in Fig. 3 (c) and Fig. 4 (c), the storage type NO x The catalyst 33 is an exhaust gas component of CO, H 2 , TCH, NO x , O 2 The three-way catalyst 32, 34 is in a state where the deterioration index deteriorates with a small amount of oxygen. 2 , NO x The deterioration index becomes worse when the amount of increases.
[0037]
In step S1, the degradation index 1A, the degradation index 1B, and the degradation index 1C are detected based on FIG. 3, and in steps S2 and S3, the degradation index 2A, the degradation index 2B, and the degradation index 2C are detected based on FIG. The When each deterioration index is detected, deterioration indexes 1 and 2 are calculated in step S4. Degradation index 1 is a storage NO calculated based on degradation index 1A, degradation index 1B, and degradation index 1C x The degradation index 2 is a degradation index of the three-way catalysts 32 and 34 calculated based on the degradation index 2A, the degradation index 2B, and the degradation index 2C.
[0038]
For example, the degradation index 1 is calculated as (degradation index 1A × degradation index 1B × degradation index 1C) or {degradation index 1A × (degradation index 1B + degradation index 1C)}. Similarly to the degradation index 1, the degradation index 2 is calculated as (degradation index 2A × degradation index 2B × degradation index 2C) or {degradation index 2A × (degradation index 2B + degradation index 2C)}. It is also possible to calculate by weighting according to the properties of the catalyst. Further, when calculating the deterioration index, at least one or more deterioration indexes may be used.
[0039]
When the deterioration indexes 1 and 2 are calculated in step S4, that is, the storage type NO. x When the ease of deterioration of the catalyst 33 and the three-way catalysts 32 and 34 is determined, it is determined in step S5 whether or not the deterioration index 1 exceeds the first predetermined value. If it is determined in step S5 that the degradation index 1 exceeds the first predetermined value, the stoichiometric feedback (stoichiometric F / B) operation is prohibited in step S6. That is, CO, H 2 , TCH, NO x , O 2 Occlusion type NO x It is judged that the catalyst 33 is likely to deteriorate, and the exhaust gas components CO, H 2 , TCH, NO x , O 2 No stoichiometric F / B is prohibited and storage type NO x Deterioration of the catalyst 33 is suppressed.
[0040]
After prohibiting stoichiometric F / B operation in step S6, or deterioration index 1 is NO in step S5 x If it is determined that the predetermined value is not exceeded, it is determined in step S7 whether or not the deterioration index 2 exceeds the second predetermined value. If it is determined in step S7 that the deterioration index 2 exceeds the second predetermined value, lean operation is prohibited in step S8. Exhaust gas component NO with high exhaust gas flow rate x , O 2 If there is a large amount of NO, it is determined that the three-way catalysts 32 and 34 are in a state of being easily deteriorated, and NO. x , O 2 Lean operation with a large amount is prohibited, and the deterioration of the three-way catalysts 32 and 34 is suppressed.
[0041]
That is, when the deterioration index 1 exceeds the first predetermined value and the deterioration index 2 exceeds the second predetermined value, stoichiometric F / B and lean are prohibited in order to suppress deterioration of both catalysts. The rich operation state is set. Further, if the deterioration index 1 exceeds the first predetermined value and the deterioration index 2 does not exceed the second predetermined value, the storage type NO. x In order to suppress the deterioration of the catalyst 33, only the stoichiometric F / B is prohibited, and a lean operation or a rich operation is enabled. If the deterioration index 1 does not exceed the first predetermined value and the deterioration index 2 exceeds the second predetermined value, only lean operation is prohibited and stoichiometric F / B or rich operation is possible. If the deterioration index 1 does not exceed the first predetermined value and the deterioration index 2 does not exceed the second predetermined value, the stoichiometric F / B and lean are not prohibited, and the stoichiometric F / B and lean operation are not performed. In addition, all the rich operations are possible.
[0042]
When prohibiting stoichiometric F / B, CO, H 2 , TCH, NO x , O 2 It is also possible to use a means for increasing the amount of catalyst, cooling the catalyst to lower the temperature, or increasing the exhaust gas flow rate. In this case, the first predetermined value may be set separately. Also, when prohibiting lean operation, x , O 2 It is also possible to use a means for decreasing the temperature, cooling the catalyst to lower the temperature, or reducing the exhaust gas flow rate. In this case, the second predetermined value may be set separately.
[0043]
As described above, the operation state is controlled and prioritized so that the deterioration index is high, that is, the deterioration index due to the catalyst temperature, the exhaust gas flow rate, or the exhaust gas component is high and the deterioration of the catalyst on the side that is easily deteriorated is suppressed. If the degradation index is suppressed and the degradation indices 1 and 2 are both high, that is, the degradation index due to the catalyst temperature, exhaust gas flow rate and exhaust gas components is both high, it is easy to degrade. x The lean and stoichiometric operation is prohibited so as to suppress the deterioration of the catalyst 33 and the three-way catalysts 32 and 34. For this reason, the operating range is limited only to rich operation. x This is only when both the catalyst 33 and the three-way catalysts 32 and 34 are easily deteriorated, and the storage type NO. x Degradation of both the catalyst 33 and the three-way catalysts 32 and 34 can be efficiently suppressed.
[0044]
Another embodiment of deterioration suppression control will be described with reference to FIGS. The deterioration suppression control of this embodiment is an occlusion type NO determined by the catalyst temperature and the exhaust gas flow rate (intake flow rate). x The operating region of the in-cylinder injection engine 1 determined according to the deterioration index of the catalyst 33 and the deterioration indexes of the three-way catalysts 32 and 34 is mapped (operation region setting means) using the catalyst temperature and the exhaust gas flow rate as parameters. In accordance with the three-way catalyst 32, occlusion-type NO. x The thermal deterioration of the catalyst 33 and the three-way catalyst 34 is suppressed.
[0045]
Fig. 5 shows the storage type NO x A map of the relationship between the catalyst temperature and the intake flow rate representing the operation region of the catalyst 33 is shown in FIG. 6, and a map of the relationship between the catalyst temperature and the intake flow rate representing the operation region of the three-way catalysts 32 and 34 is shown.
[0046]
As shown in FIG. 5 and FIG. x In each of the catalyst 33 and the three-way catalysts 32 and 34, an operation region in which deterioration is suppressed is set by the relationship between the catalyst temperature and the intake air flow rate. That is, the operating region is divided into the A zone, the B zone, the C zone, and the D zone in order from the high temperature side based on the catalyst temperature and the intake air flow rate at a predetermined temperature T ° C or higher. The solid line at the boundary of each zone is the boundary when switching the zone from the low temperature side to the high temperature side, and the dotted line is the boundary when switching the zone from the high temperature side to the low temperature side. ing.
[0047]
Zone A is a rich air-fuel ratio, has a high catalyst temperature, and is an open loop mode zone. However, A / F is a predetermined value (for example, 13) or less. Zone B is a zone that achieves a slightly richer air / fuel ratio than stoichiometric by stoichiometric F / B + rich shift, and F / B gain is set separately from normal stoichiometric F / B. The C zone is a lean air-fuel ratio, and is a zone that is in a lean mode in a steady state. However, when the target A / F <predetermined value (including stoichiometric F / B + rich shift) enters after 30 seconds or more, the above-described stoichiometric F / B + rich shift is executed for a predetermined time (for example, 5 seconds). Then, the temperature of the catalyst is prevented from rising as a lean mode. Further, during acceleration in this region, the above-described stoichiometric F / B + rich shift is executed, and the F / B gain is set separately. The D zone is a zone where high load open loop mode is prohibited. However, as shown in FIG. 7, when the determination A / F is a predetermined A / F (for example, 13.8) or less, the open loop mode is set, and the target A / F is set to be the determination A / F or less. Except for start mode, fail mode, and fuel cut mode. For this reason, the B zone can improve fuel efficiency compared to the A zone, the C zone can improve fuel efficiency compared to the B zone, and the D zone can suppress fuel consumption within a range that does not sacrifice drivability.
[0048]
In the above embodiment, the operating range of the in-cylinder injection engine 1 is set to four operating ranges. However, it is possible to set four or more operating ranges, and the stoichiometric air-fuel ratio range. Can also be set. Furthermore, although an operation region for suppressing deterioration of the catalyst is set at a predetermined temperature T ° C. or higher, it is also possible to set an operation region for suppressing deterioration in all temperature regions including a low temperature region.
[0049]
If the intake flow rate is low, the storage type NO x Since the catalyst 33 is likely to deteriorate, the lean mode is carried out up to a high catalyst temperature (the C zone is widened), and the storage type NO x Deterioration of the catalyst 33 is suppressed. When the intake air flow rate is large, the three-way catalysts 32 and 34 are likely to deteriorate. Therefore, the non-lean mode of the B zone, which is the rich mode, is performed before the catalyst temperature becomes high, and the three-way catalysts 32 and 34 Suppress deterioration. When the zones selected in FIGS. 5 and 6 are different from the zones obtained from the catalyst temperatures, priority is given in the order of A zone, B zone, C zone, and D zone (for example, in FIG. If selected and the C zone is selected in FIG. 6, the B zone has priority).
[0050]
For this reason, as shown in FIG. 5 and FIG. 6, operating regions are set in the A zone, the B zone, the C zone, and the D zone, and the zones are selected based on the catalyst temperature and the intake flow rate (exhaust gas flow rate). Therefore, the operating range in which deterioration of the catalyst, which is likely to deteriorate, is preferentially suppressed, is selected, and the storage NO x Deterioration of both the catalyst 33 and the three-way catalysts 32 and 34 is efficiently suppressed.
[0051]
As shown in FIG. 5, at the boundary between the B zone and the C zone, when switching from the high temperature side to the low temperature side B zone to the C zone (dotted line), the dotted line is inclined to the low temperature side in a region where the intake air flow rate is small. Yes. This is storage NO in the B zone x The catalyst 33 is carbonated for rich operation, and the exhaust gas flow rate is small. 2 , No is less. For this reason, since carbonate is released when it is immediately switched to lean, the rich state is maintained as low as possible to suppress the release of carbonate and suppress deterioration.
[0052]
Conversely, when switching from the low temperature side to the high temperature side C zone to the B zone at the boundary between the B zone and the C zone (solid line), the solid line is inclined to the high temperature side in a region where the intake air flow rate is small. This is the storage type NO in the C zone x The catalyst 33 is nitrate for lean operation, and the exhaust gas flow rate is small. Therefore, if you switch to rich immediately, O 2 This is because the stable state, which is a rich state, is maintained as low as possible and the deterioration is suppressed.
[0053]
In the above embodiment, the three-way catalyst 32 and the exhaust purification device 13 are separately provided in the exhaust pipe 11, but the three-way catalyst 32, the occlusion-type NO. x A catalyst 33 and a three-way catalyst 34 may be provided. Also, storage type NO x The catalyst 33 may have a three-way function and may be integrated. The in-cylinder injection engine 1 has been described as an example of the internal combustion engine, but a three-way catalyst (three-way function) for purifying exhaust gas and a storage type NO that stores nitrogen oxides in exhaust gas. x The present invention can be applied to an intake pipe injection type lean burn engine as long as it has a catalyst.
[0054]
NO x When further using a selective catalytic reduction catalyst, NO x Since the selective catalytic reduction catalyst exhibits deterioration characteristics similar to those of the three-way catalyst, a deterioration index or map having the same tendency as the three-way catalyst may be used. Further, in the embodiment, the parameter value correlated with the catalyst temperature is estimated from the catalyst temperature and the exhaust temperature. However, the catalyst temperature may be measured, or the exhaust temperature detection value may be used directly or after being corrected. It may be a thing. In addition, NO x NO in a lean atmosphere as a trap catalyst x NO is stored in a rich or stoichiometric atmosphere x Occlusion type NO x Explained with catalyst as an example, but NO in lean atmosphere x NO is stored in a rich or stoichiometric atmosphere x NO directly reducing x A trap catalyst may be used.
[0055]
【The invention's effect】
The exhaust gas purification apparatus for an internal combustion engine according to the first aspect of the present invention is based on the operating state of the internal combustion engine and the amount of exhaust gas, and the deterioration index and NO of the three-way catalyst. x The trap catalyst deterioration index is derived, and when the three-way catalyst deterioration index exceeds a predetermined value for the three-way catalyst, the operation of the internal combustion engine at a lean air-fuel ratio is prohibited and NO x Trap catalyst deterioration index is NO x Since the operation of the internal combustion engine at the stoichiometric air-fuel ratio is prohibited when the predetermined value for the trap catalyst is exceeded, the deterioration of the catalyst on the side that tends to deteriorate is preferentially suppressed, and both deterioration indexes are When it becomes high, the operation of the internal combustion engine at the lean air-fuel ratio and the stoichiometric air-fuel ratio is prohibited. As a result, the three-way catalyst and NO x It is possible to efficiently suppress deterioration of both of the trap catalysts.
[0056]
According to a second aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine, wherein the lean air-fuel ratio operation region and the rich operation region of the internal combustion engine are set according to the temperature of the catalyst and the exhaust gas flow rate. Accordingly, an appropriate operation region is selected according to the temperature and the exhaust gas flow rate. As a result, the three-way catalyst and NO x It is possible to efficiently suppress deterioration of both of the trap catalysts.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an internal combustion engine including an exhaust purification device according to an embodiment of the present invention.
FIG. 2 is a flowchart of deterioration suppression control by an exhaust purification device.
[Figure 3] Storage type NO x The graph showing the condition of the deterioration index of a catalyst.
FIG. 4 is a graph showing the situation of the deterioration index of a three-way catalyst.
[Figure 5] Storage type NO x The map of the relationship between the catalyst temperature and the intake air flow rate showing the catalyst operating region.
FIG. 6 is a map of the relationship between the catalyst temperature and the intake air flow rate representing the operating range of the three-way catalyst.
FIG. 7 is a graph showing the relationship between air-fuel ratio and load.
[Explanation of symbols]
1 In-cylinder injection engine
13 Exhaust gas purification catalyst device
31 Electronic control unit (ECU)
32 Three-way catalyst
33 Occlusion type NO x catalyst
34 Three-way catalyst

Claims (2)

内燃機関の排気通路に設けられた排気浄化用の三元触媒と、前記排気通路に設けられ排ガス中の窒素酸化物をトラップするNOx トラップ触媒と、排気ガス温度、排ガス流量及び排ガス成分に基づいて前記三元触媒の劣化指数及び前記NOx トラップ触媒の劣化指数を導出する劣化指数導出手段と、前記三元触媒の劣化指数が三元触媒用の所定値を越えたときにリーン空燃比での前記内燃機関の運転を禁止すると共に前記NOx トラップ触媒の劣化指数がNOx トラップ触媒用の所定値を越えたときに理論空燃比での前記内燃機関の運転を禁止する空燃比制御手段とを備えたことを特徴とする内燃機関の排気浄化装置。Based on a three-way catalyst for exhaust purification provided in an exhaust passage of an internal combustion engine, a NOx trap catalyst provided in the exhaust passage for trapping nitrogen oxides in exhaust gas , an exhaust gas temperature, an exhaust gas flow rate, and an exhaust gas component Degradation index deriving means for deriving the deterioration index of the three-way catalyst and the deterioration index of the NOx trap catalyst, and when the deterioration index of the three-way catalyst exceeds a predetermined value for a three-way catalyst, the lean air-fuel ratio Air-fuel ratio control means for prohibiting operation of the internal combustion engine and prohibiting operation of the internal combustion engine at the stoichiometric air-fuel ratio when the deterioration index of the NOx trap catalyst exceeds a predetermined value for the NOx trap catalyst. An exhaust emission control device for an internal combustion engine characterized by the above. 内燃機関の排気通路に設けられた排気浄化用の三元触媒と、前記排気通路に設けられ排ガス中の窒素酸化物をトラップするNOx トラップ触媒と、触媒の温度に相関するパラメータ値と排ガス流量に相関するパラメータ値とに応じて前記内燃機関のリーン空燃比運転領域及びリッチ運転領域を設定し各触媒において選択された運転領域が異なる場合にはリッチ運転領域を優先して設定する運転領域設定手段とを備えたことを特徴とする内燃機関の排気浄化装置。A three-way catalyst for exhaust purification provided in the exhaust passage of the internal combustion engine, a NOx trap catalyst provided in the exhaust passage for trapping nitrogen oxides in the exhaust gas, a parameter value correlated with the temperature of the catalyst, and an exhaust gas flow rate An operation region setting means for setting the lean air-fuel ratio operation region and the rich operation region of the internal combustion engine according to the correlated parameter values and preferentially setting the rich operation region when the operation regions selected in the respective catalysts are different. An exhaust emission control device for an internal combustion engine, comprising:
JP30520499A 1999-10-27 1999-10-27 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3721894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30520499A JP3721894B2 (en) 1999-10-27 1999-10-27 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30520499A JP3721894B2 (en) 1999-10-27 1999-10-27 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001123826A JP2001123826A (en) 2001-05-08
JP3721894B2 true JP3721894B2 (en) 2005-11-30

Family

ID=17942313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30520499A Expired - Fee Related JP3721894B2 (en) 1999-10-27 1999-10-27 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3721894B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510654B2 (en) * 2005-02-02 2010-07-28 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5106294B2 (en) * 2008-07-29 2012-12-26 本田技研工業株式会社 Deterioration judgment device for exhaust gas purification device
JP6439749B2 (en) 2016-05-18 2018-12-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2001123826A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
JP5664884B2 (en) Air-fuel ratio control device for internal combustion engine
JP3850999B2 (en) Internal combustion engine
JP4228154B2 (en) Exhaust gas purification device for internal combustion engine
JP3721894B2 (en) Exhaust gas purification device for internal combustion engine
JP3888054B2 (en) Fuel control device for internal combustion engine
JP3873537B2 (en) Exhaust gas purification device for internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP4255224B2 (en) Internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP4608758B2 (en) Air-fuel ratio control device for internal combustion engine
JP3777788B2 (en) Lean combustion internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP5035670B2 (en) Catalyst deterioration detection device for internal combustion engine
JP3867182B2 (en) Internal combustion engine
JP4666542B2 (en) Exhaust gas purification control device for internal combustion engine
JP2004360484A (en) Nox purge controller
JP2004346844A (en) Exhaust emission control system
JP2001115829A (en) Exhaust emission control device for internal combustion engine
JP4154589B2 (en) Combustion control device for internal combustion engine
JP3427882B2 (en) Exhaust gas purification device for internal combustion engine
JP4174952B2 (en) Exhaust gas purification device for internal combustion engine
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine
JP4406958B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R151 Written notification of patent or utility model registration

Ref document number: 3721894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees