JP3721420B2 - Light switch - Google Patents

Light switch Download PDF

Info

Publication number
JP3721420B2
JP3721420B2 JP5742799A JP5742799A JP3721420B2 JP 3721420 B2 JP3721420 B2 JP 3721420B2 JP 5742799 A JP5742799 A JP 5742799A JP 5742799 A JP5742799 A JP 5742799A JP 3721420 B2 JP3721420 B2 JP 3721420B2
Authority
JP
Japan
Prior art keywords
electrode plate
movable electrode
substrate
supports
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5742799A
Other languages
Japanese (ja)
Other versions
JP2000258702A (en
Inventor
嘉睦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP5742799A priority Critical patent/JP3721420B2/en
Priority to DE2000621638 priority patent/DE60021638T2/en
Priority to CA 2299832 priority patent/CA2299832C/en
Priority to EP00104411A priority patent/EP1033601B1/en
Priority to US09/519,883 priority patent/US6463190B1/en
Publication of JP2000258702A publication Critical patent/JP2000258702A/en
Application granted granted Critical
Publication of JP3721420B2 publication Critical patent/JP3721420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は可動電極板にミラーを立て、可動電極板と固定電極との間に静電引力を作用させたり、除去させたりしてミラーを変位させ、ミラーに向かう光束を通過又は反射させる光スイッチに関する。
【0002】
【従来の技術】
図7に提案されている光スイッチを示す。方形シリコン基板11に方形凹部12が形成され、方形凹部12の中央部と対向して方形可動電極板13が配され、可動電極板13の対向辺の中点がそれぞれフレクチュア部14,15を介して基板11上に連結され、フレクチュア部14,15により、可動電極板13は、基板11の表面に対して垂直方向に変位自在に基板11に支持されている。可動電極板13の基板11と反対側の面上にミラー16が立てられている。
【0003】
可動電極板13、フレクチュア部14,15はシリコン基板11と一体に形成され、シリコン基板11、可動電極板13にそれぞれ不純物が混入されて導電性が与えられている。よって基板11の可動電極板13と対向する部分は固定電極として作用させることができる。入射側光ファイバ又は光導波路17よりの光束18が基板11の表面と平行にミラー16に斜めに入射され、その反射光が出射側光ファイバ又は光導波路19に入射される。この状態で基板11と可動電極板13との間に電圧が印加されると、基板11と可動電極板13との間に静電引力が作用し、可動電極板13が基板11側に変位し、入射側光ファイバ又は光導波路17よりの光束18はミラー16に入射することなく、ミラー16上を通過し、他方の出射側光ファイバ又は光導波路21に入射する。
【0004】
このように基板11と可動電極板13との間に電圧を印加するかしないかにより、入射側光ファイバ又は光導波路17よりの光束18を出射側光ファイバ又は光導波路19と出射側光ファイバ又は光導波路21との一方に切替え入射させることができる。
【0005】
【発明が解決しようとする課題】
図7に示した提案されている光スイッチにおいては、比較的大きな駆動電圧を必要とする。駆動電圧を低減するにはフレクチュア部14,15を含む支持部材の基板11と可動電極板13との間の長さを長くして柔らかにするか、可動電極板13の面積を大きくする必要がある。このようにフレクチュア部を含む支持部材を長くしたり、可動電極板13の面積を大きくすると、光スイッチの大きさが大型化してしまう。この大型化は、N×Mマトリックス状に個々の光スイッチを配置した大規模な光スイッチ装置(マトリックス光スイッチ)では、顕著な大型化を招くことになる。
【0006】
この発明の目的は小型に構成でき、しかも低電圧駆動が可能な、マトリックス光スイッチに適する光スイッチを提供することにある。
【0007】
【課題を解決するための手段】
この発明によれば、可動電極板を基板上に支持する支持体は可動電極板とほぼ平行な面内で、折り返しビーム状に形成され、支持体が占める領域と可動電極板が占める領域とが全体として方形領域を構成している。
【0008】
【発明の実施の形態】
図1にこの発明の実施例を示す。方形基板31と間隔をおいてこれと平行に可動電極板32が配され、可動電極板32は弾性を有する支持体33〜36により基板31に支持されている。各支持体33〜36はそれぞれ、可動電極板32がなす平面とほぼ同一平面上で折り返しビーム状に形成されている。支持体33〜36がそれぞれ占める領域37〜40と、可動電極板32が占める領域とは全体としてほぼ方形、この例では正方形領域を構成する。
【0009】
つまりこの実施例では、正方形状の可動電極板32の各辺の中央部に長方形の切除部41〜44が形成され、その切除部41〜44にそれぞれ支持体33〜36が配され、各支持体33〜36はそれぞれその各外端は、可動電極板32の各辺の中点と対応して、基板31上に立てられた固定部45〜48と連結され、内端は切除部41〜44の内端の中点にて可動電極板32に連結され、これら外端と内端間においてそれぞれ切除部41〜44の幅方向にほぼ一杯に延長して折り返すことが繰り返されて繰り返しビーム状支持体33〜36が構成されている。
【0010】
つまり可動電極板32の中央正方形部32aの各辺の中点にそれぞれ支持体33〜36の内端が連結され、それぞれ折り返されながら互いに外側へ延長されて、それぞれ固定部45〜48に連結される。これら支持体33〜36の各両側に可動電極板32の周辺正方形部32b,32c,32d,32eが中央正方形部32aの各頂角部分と一部、一つの頂角部分を共通として配されている。支持体33〜36の各折り返し幅L2は切除部41〜44の各幅W1よりわずか小とされている。
【0011】
支持体33〜36は基板31上の固定部45〜48の上端と連結され、これにより可動電極板32は基板31と間隔D1を保って保持され、また支持体33〜36の折り返しビーム状構造により、支持体33〜36は弾性を有し、可動電極板32は基板31に対し垂直に変位可能とされている。基板31、可動電極板32、支持体33〜36、固定部45〜48は一体物として構成することができる。
【0012】
この構造は例えば図2に示すように作ることができる。図2Aに示すようにシリコン基板31a上にSiO2 の保護膜51を形成し、フォトリゾグラフィにより、固定部43〜48が設けられる位置の保護膜51を図2Bに示すように除去して小穴52を形成する。図2Cに示すように、可動電極板32となる多結晶シリコン層53を全体の上に形成し、多結晶シリコン層53に対し、図2Dに示すようにフォトリゾグラフィによりパターンニングして可動電極板32、支持体33〜36、固定部45〜48を形成する。
【0013】
次に図2Eに示すようにSiO2 の保護膜54,55を可動電極板32を含む全面と、基板31aの底面とにそれぞれ形成し、図2Fに示すようにその底面の保護膜55を周辺部を残して除去し、これをマスクとして基板31aをKOH溶液でエッチングし、図2Gに示すように可動電極板32と対応する部分に大きな穴56を開け、基板31aは枠のみ残す。その後、化学的エッチングによりSiO2 の保護膜51,54,55を除去し、図2Hに示すように、枠状基板31a上に可動電極板32が支持された構造体を得る。図2Iに示すように、この枠状基板31aの枠内を、可動電極板32と反対側からシリコン基板31bで塞ぎ、基板31a,31bを接合させる。基板31aと31bとにより図1中の基板31が構成される。
【0014】
可動電極板32上に図1に示すようにミラー49が立てられる。ミラー49の鏡面は、例えば支持体33,34を結ぶ方向と45度をなすようにされる。可動電極板32が静電引力により基板31側に変位することができるようにされる。つまり可動電極板32は導電性体で構成され、例えばシリコンに適当に不純物が混入されて導電性が与えられ、また基板31もシリコンに不純物が混入されて導電性体とされ、基板31自体を固定電極とされる。基板31上に導電膜を形成して固定電極としてもよい。
【0015】
ミラー49は可動電極板32と一体に形成してもよいし、別体のミラー49を可動電極板32に固着してもよい。可動電極板32、支持体33〜36の厚みは例えば2〜5μm程度とされる。
この光スイッチも、図7に示したものと同様に、図1において左側に配された入射側光ファイバ又は光導波路17からの光束18はミラー49に入射し、これにて反射され、出射側光ファイバ又は光導波路19に入射する。可動電極板32と基板31の間に電圧が印加され、これら間に静電引力を作用させると、可動電極板32が基板31側に変位して、入射側光ファイバ又は光導波路17よりの光束はミラー49上を通過して反対側の出射側光ファイバ又は光導波路21に入射する。よって可動電極板32と基板31との間に電圧を印加するかしないかにより、光ファイバ又は光導波路17からの光束を光ファイバ又は光導波路19と光ファイバ又は光導波路21とに切替え入射させることができる。
【0016】
この光スイッチの寸法としては例えば可動電極板32の1辺の長さL4を1000μm、支持体33〜36の各長さL1を300μm、その折り返し幅L2を200μm、ビーム幅W2を10μm、固定部45〜48をそれぞれ角柱状とし、その断面を50μm□とし、中央方形部32aと各周辺方形部32b〜32eとの各共通部の長さL3を30μmとする。
【0017】
このように方形電極板32の一部を切除して、その切除部に支持体33〜36を配しているため、方形電極板32の面積を大きくとることができ、支持体33〜36は折り返しビーム状とされているため、その長さL1に対し、ビームの長さが長くなり、柔らかいものとすることができる。図7の考えからすると可動電極板は中央正方形部32aのみであったが、この実施例では支持体33〜36の部分の両側に周辺正方形部32b〜32eを配し、中央正方形部32aと連結し、可動電極板32の面積が著しく大きくなったと云える。前記数値例では中央正方形部32aの300×300μm2 に対し、4つの周辺正方形部32b〜32eの4×380×380μm2 分、面積が増加したと云える。あるいは逆に可動電極板32に切除部を設け、切除部内に支持体33〜36を配置し、全体の大きさを著しく小さくしたと云える。
【0018】
図1の実施例では可動電極板32を、その中心に対し、90度角間隔で支持体33〜36により4点支持したが、図3Aに示すように2つの支持体33,34により180度角間隔で2点支持としてもよい。この場合の数値例を示す。可動電極板32は1辺が1000μmの正方形(ただし二つの長方形切除部41,42がある)、支持体33,34の各長さL1を300μm、その折り返し幅L2を200μm、ビーム幅W2を10μm、固定部45,46の断面を50μm□、切除部41と42の内端間の距離L3を300μm、切除部41,42の幅W1を240μmとする。なお図3Aに示す実施例では基板31を、可動電極板32の正方形形状とほぼ同一とした場合である。つまりこの光スイッチの水平面内の大きさは、可動電極板32の大きさと一致し、光スイッチの外形は前記数値例では1000μm4方となる。
【0019】
図3Bに示すように可動電極板32を1点支持とさせることもできる。つまり、可動電極板32の一辺に沿って二つの支持体33,34が配され、支持体33,34の離れた端が固定部45,46を介して基板31に連結され、接近した端が互いに連結され、その連結点が連結部61を介して可動電極板32の隣接辺の中点に連結される。つまりこの連結部61との連結点で可動電極板32は支持体33,34により片持支持される。正方形可動電極板32の一辺に沿ってその一部が切除された切除部62が形成され、その切除部62に支持体33,34が配されていると云える。
【0020】
この場合の数値例は、可動電極板32の長い辺L4を1000μm、短い辺L5を780μm、支持体33,34の各長さL1を450μm、折り返し幅L2を200μm、ビーム幅W1を10μm、連結部61の長さL3を115μm、幅W2を10μm、固定部45,46の断面を50μm□とする。光スイッチの外形は1000μm4方となる。
【0021】
1点支持であるが図4Aに示すように構成することもできる。即ち、長方形可動電極板32の二つの長辺にそれぞれ沿った支持体33,34が配され、支持体33,34の同一側の一端が固定部45,46をそれぞれ介して基板31に連結され、支持体33,34の他端が連結ビーム62の両端に連結され、連結ビーム62の中点が可動電極板32の一つの短辺の中点に連結される。つまり支持体33,34と連結ビーム62により、可動電極板32がその一つの短辺を残して囲まれている。正方形の可動電極板32の両側辺部を切除し、その切除部に支持体33,34が配されているとも云える。このようにすると支持体33,34の長さを長くすることができる。
【0022】
この場合の数値例を示す。支持体33,34の各長さL1を940μm、折り返し幅L2を200μm、ビーム幅W1を10μm、連結ビーム62の長さL3を810μm、幅W2を10μm、固定部45,46の断面を50μm□、可動電極板32の長辺L4を970μm、短辺L5を560μmとする。光スイッチの各形が1000μm4方となる。
【0023】
図4Bに示すように、図4A中の連結ビーム62を省略して支持体33,34の各一端を連結部63,64で可動電極板32の短辺の両端に連結してもよい。この場合の数値例は、支持体33,34の長さL1が940μm、折り返し幅L2が200μm、ビーム幅W1が10μm、連結部63,64の長さL3が125μm、幅W2が10μm、固定部45,46の端面が50μm□、可動電極板32の長辺L4が1000μm、短辺L5が560μm、光スイッチの外形が1000μm4方となる。
【0024】
図5Aに示すように、図3Bに対し、支持体33,34と可動電極板32と反対側に同様に支持体35,36を設け、その支持体35,36を連結し、その連結点を可動電極板32に連結して、可動電極板32を2点支持とすることもできる。
図5Bに示すように正方形スイッチ外形65に内接して90度回転された正方形可動電極板32を配し、可動電極板32の各辺の中点に、支持体33〜36の各一端を連結し、支持体33〜36の各他端を、光スイッチ外形65の各コーナ部で基板31に立てた固定部45〜48に連結する。各支持体33〜36はその折り返しビームの幅を、可動電極板32側で大きく、固定部側で小さくなるようにして、可動電極板32と光スイッチ外形65との空き領域を有効に使用する。この場合も、可動電極板32は光スイッチ外形65と同様であった所を各コーナ部を切除し、その切除部を埋めるように支持体33〜36を配したと云うことができる。
【0025】
図6に示すように、可動電極板32の外形を、光スイッチ外形65とほぼ一致させ、可動電極板32の各コーナ部より中心に向って長方形の切除部41〜44を設け、これら切除部41〜44に支持体33〜36を配し、支持体33〜36の各内端を可動電極板32に連結し、各外端を固定部45〜48を介して基板31に連結する。
【0026】
上述では支持体として折り返しビーム状のものを用いたが、弾性をもつものであればよく、例えば図7に示した方形状部を設けたフレクチュア部でもよい。
【0027】
【発明の効果】
この発明によれば可動電極板と支持体が占める領域との全体が占める領域が方形状となっているため、マトリックス光スイッチを構成した場合スペースを無駄なく利用できる。
可動電極板の切除部に支持体が配されているため、小型に構成でき、かつ可動電極板の面積を大きくすることができ、つまり光スイッチ外形面積が無駄なく有効に利用され、低電圧駆動が可能である。
【図面の簡単な説明】
【図1】Aはこの発明の実施例を示す平面図、Bは図1AのA−A線断面図。
【図2】図1の実施例の製造工程を示す断面図。
【図3】この発明の他の実施例を示す平面図。
【図4】この発明の更に他の実施例を示す平面図。
【図5】この発明の更に他の実施例を示す平面図。
【図6】この発明の更に他の実施例を示す平面図。
【図7】Aに提案されている光スイッチの平面図、BはAのA−A線断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical switch in which a mirror is set up on a movable electrode plate, and an electrostatic attractive force is applied or removed between the movable electrode plate and a fixed electrode to displace the mirror and pass or reflect a light beam directed to the mirror. About.
[0002]
[Prior art]
FIG. 7 shows a proposed optical switch. A rectangular recess 12 is formed in the rectangular silicon substrate 11, a rectangular movable electrode plate 13 is arranged opposite to the central portion of the rectangular recess 12, and the midpoints of the opposing sides of the movable electrode plate 13 are interposed via the flexure portions 14 and 15, respectively. The movable electrode plate 13 is supported on the substrate 11 by the flexure portions 14 and 15 so as to be displaceable in a direction perpendicular to the surface of the substrate 11. A mirror 16 is erected on the surface of the movable electrode plate 13 opposite to the substrate 11.
[0003]
The movable electrode plate 13 and the flexure portions 14 and 15 are formed integrally with the silicon substrate 11, and impurities are mixed into the silicon substrate 11 and the movable electrode plate 13 to give conductivity. Therefore, the part of the substrate 11 facing the movable electrode plate 13 can act as a fixed electrode. A light beam 18 from the incident side optical fiber or optical waveguide 17 is obliquely incident on the mirror 16 parallel to the surface of the substrate 11, and the reflected light is incident on the output side optical fiber or optical waveguide 19. When a voltage is applied between the substrate 11 and the movable electrode plate 13 in this state, an electrostatic attractive force acts between the substrate 11 and the movable electrode plate 13, and the movable electrode plate 13 is displaced toward the substrate 11 side. The light beam 18 from the incident side optical fiber or optical waveguide 17 passes through the mirror 16 without entering the mirror 16 and enters the other outgoing side optical fiber or optical waveguide 21.
[0004]
In this way, depending on whether or not a voltage is applied between the substrate 11 and the movable electrode plate 13, the light beam 18 from the incident side optical fiber or the optical waveguide 17 is emitted from the output side optical fiber or the optical waveguide 19 and the output side optical fiber. The light can be switched and incident on one side of the optical waveguide 21.
[0005]
[Problems to be solved by the invention]
The proposed optical switch shown in FIG. 7 requires a relatively large drive voltage. In order to reduce the drive voltage, it is necessary to lengthen the length between the substrate 11 and the movable electrode plate 13 of the support member including the flexure portions 14 and 15 to be soft, or to increase the area of the movable electrode plate 13. is there. As described above, when the support member including the flexure portion is lengthened or the area of the movable electrode plate 13 is increased, the size of the optical switch is increased. This increase in size leads to a significant increase in size in a large-scale optical switch device (matrix optical switch) in which individual optical switches are arranged in an N × M matrix.
[0006]
An object of the present invention is to provide an optical switch suitable for a matrix optical switch, which can be made compact and can be driven at a low voltage.
[0007]
[Means for Solving the Problems]
According to the present invention, the support for supporting the movable electrode plate on the substrate is formed in a folded beam shape in a plane substantially parallel to the movable electrode plate, and the region occupied by the support and the region occupied by the movable electrode plate are As a whole, a rectangular region is formed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the present invention. A movable electrode plate 32 is arranged in parallel to the rectangular substrate 31 with a space therebetween, and the movable electrode plate 32 is supported on the substrate 31 by elastic supports 33 to 36. Each of the supports 33 to 36 is formed in a folded beam shape on substantially the same plane as the plane formed by the movable electrode plate 32. The regions 37 to 40 occupied by the supports 33 to 36 and the region occupied by the movable electrode plate 32 form a substantially square shape as a whole, in this example, a square region.
[0009]
In other words, in this embodiment, rectangular cut portions 41 to 44 are formed at the center of each side of the square movable electrode plate 32, and supports 33 to 36 are arranged on the cut portions 41 to 44, respectively. The outer ends of the bodies 33 to 36 are respectively connected to the fixing portions 45 to 48 standing on the substrate 31 corresponding to the midpoints of the sides of the movable electrode plate 32, and the inner ends are cut portions 41 to 48. 44 is connected to the movable electrode plate 32 at the midpoint of the inner end of 44, and is repeatedly extended in the width direction of the cut portions 41 to 44 between the outer end and the inner end so as to be repeated repeatedly. Support bodies 33 to 36 are configured.
[0010]
In other words, the inner ends of the supports 33 to 36 are connected to the midpoints of the sides of the central square portion 32a of the movable electrode plate 32, respectively, extended outward while being folded back, and connected to the fixed portions 45 to 48, respectively. The Peripheral square portions 32b, 32c, 32d, and 32e of the movable electrode plate 32 are arranged on both sides of these supports 33 to 36, with each apex angle portion of the central square portion 32a being partially shared, and one apex angle portion being common. Yes. Each folding width L2 of the supports 33 to 36 is slightly smaller than each width W1 of the cut portions 41 to 44.
[0011]
The support members 33 to 36 are connected to the upper ends of the fixed portions 45 to 48 on the substrate 31, whereby the movable electrode plate 32 is held with a distance D 1 from the substrate 31, and the folded beam-like structure of the support members 33 to 36. Accordingly, the supports 33 to 36 have elasticity, and the movable electrode plate 32 can be displaced vertically with respect to the substrate 31. The board | substrate 31, the movable electrode plate 32, the support bodies 33-36, and the fixing | fixed parts 45-48 can be comprised as an integral thing.
[0012]
This structure can be made, for example, as shown in FIG. A protective film 51 of SiO 2 is formed on the silicon substrate 31a as shown in FIG. 2A, and the protective film 51 at positions where the fixing portions 43 to 48 are provided is removed by photolithography to remove small holes as shown in FIG. 2B. 52 is formed. As shown in FIG. 2C, a polycrystalline silicon layer 53 to be a movable electrode plate 32 is formed on the entire surface, and the polycrystalline silicon layer 53 is patterned by photolithography as shown in FIG. A plate 32, supports 33 to 36, and fixing portions 45 to 48 are formed.
[0013]
Next, as shown in FIG. 2E, SiO 2 protective films 54 and 55 are formed on the entire surface including the movable electrode plate 32 and the bottom surface of the substrate 31a, respectively, and as shown in FIG. Using this as a mask, the substrate 31a is etched with a KOH solution to form a large hole 56 in the portion corresponding to the movable electrode plate 32 as shown in FIG. 2G, leaving only the frame of the substrate 31a. Thereafter, the protective films 51, 54, and 55 of SiO 2 are removed by chemical etching to obtain a structure in which the movable electrode plate 32 is supported on the frame substrate 31a as shown in FIG. 2H. As shown in FIG. 2I, the inside of the frame-shaped substrate 31a is closed with a silicon substrate 31b from the side opposite to the movable electrode plate 32, and the substrates 31a and 31b are joined. The substrate 31 in FIG. 1 is configured by the substrates 31a and 31b.
[0014]
A mirror 49 is erected on the movable electrode plate 32 as shown in FIG. The mirror surface of the mirror 49 is, for example, 45 degrees with the direction connecting the supports 33 and 34. The movable electrode plate 32 can be displaced toward the substrate 31 by electrostatic attraction. In other words, the movable electrode plate 32 is made of a conductive material, for example, silicon is appropriately mixed with impurities to give conductivity, and the substrate 31 is also mixed with silicon to make conductive materials. A fixed electrode is used. A conductive film may be formed on the substrate 31 to form a fixed electrode.
[0015]
The mirror 49 may be formed integrally with the movable electrode plate 32, or a separate mirror 49 may be fixed to the movable electrode plate 32. The thickness of the movable electrode plate 32 and the supports 33 to 36 is, for example, about 2 to 5 μm.
In this optical switch, similarly to the one shown in FIG. 7, the light beam 18 from the incident side optical fiber or the optical waveguide 17 arranged on the left side in FIG. The light enters the optical fiber or the optical waveguide 19. When a voltage is applied between the movable electrode plate 32 and the substrate 31 and an electrostatic attractive force is applied between them, the movable electrode plate 32 is displaced to the substrate 31 side, and the luminous flux from the incident side optical fiber or the optical waveguide 17 is obtained. Passes through the mirror 49 and enters the opposite output side optical fiber or optical waveguide 21. Therefore, depending on whether or not a voltage is applied between the movable electrode plate 32 and the substrate 31, the light beam from the optical fiber or optical waveguide 17 is switched and incident on the optical fiber or optical waveguide 19 and the optical fiber or optical waveguide 21. Can do.
[0016]
As the dimensions of this optical switch, for example, the length L4 of one side of the movable electrode plate 32 is 1000 μm, the lengths L1 of the supports 33 to 36 are 300 μm, the folding width L2 is 200 μm, the beam width W2 is 10 μm, and the fixed part Each of 45 to 48 is shaped like a prism, its cross section is 50 μm □, and the length L3 of each common part of the central square part 32a and the peripheral square parts 32b to 32e is 30 μm.
[0017]
As described above, a part of the rectangular electrode plate 32 is excised and the supports 33 to 36 are arranged in the excised portion. Therefore, the area of the rectangular electrode plate 32 can be increased, and the supports 33 to 36 are Since it has a folded beam shape, the length of the beam becomes longer than the length L1, and the beam can be made soft. From the idea of FIG. 7, the movable electrode plate is only the central square portion 32a. In this embodiment, peripheral square portions 32b to 32e are arranged on both sides of the support members 33 to 36 and connected to the central square portion 32a. In addition, it can be said that the area of the movable electrode plate 32 is remarkably increased. It can be said as in the above numerical example to 300 × 300 [mu] m 2 of the central square portion 32a, 4 × 380 × 380μm 2 minutes of four peripheral square portions 32B~32e, the area has increased. Or conversely, it can be said that the movable electrode plate 32 is provided with an excision part, and the supports 33 to 36 are disposed in the excision part, thereby significantly reducing the overall size.
[0018]
In the embodiment of FIG. 1, the movable electrode plate 32 is supported at four points by the supports 33 to 36 at 90 ° angular intervals with respect to the center thereof, but as shown in FIG. 3A, the movable electrode plate 32 is 180 degrees by the two supports 33 and 34. Two points may be supported at angular intervals. A numerical example in this case is shown. The movable electrode plate 32 is a square having a side of 1000 μm (however, there are two rectangular cut portions 41 and 42), the lengths L1 of the supports 33 and 34 are 300 μm, the folding width L2 is 200 μm, and the beam width W2 is 10 μm. The cross section of the fixing portions 45 and 46 is 50 μm □, the distance L3 between the inner ends of the cut portions 41 and 42 is 300 μm, and the width W1 of the cut portions 41 and 42 is 240 μm. In the embodiment shown in FIG. 3A, the substrate 31 is substantially the same as the square shape of the movable electrode plate 32. In other words, the size of the optical switch in the horizontal plane matches the size of the movable electrode plate 32, and the outer shape of the optical switch is 1000 μm 4 in the numerical example.
[0019]
As shown in FIG. 3B, the movable electrode plate 32 can be supported at one point. That is, the two support bodies 33 and 34 are arranged along one side of the movable electrode plate 32, the separated ends of the support bodies 33 and 34 are connected to the substrate 31 via the fixing portions 45 and 46, and the approached end is The connection points are connected to the midpoints of adjacent sides of the movable electrode plate 32 via the connection portion 61. That is, the movable electrode plate 32 is cantilevered by the supports 33 and 34 at the connection point with the connection portion 61. It can be said that a cut portion 62 is formed by cutting a part of the square movable electrode plate 32 along one side, and supports 33 and 34 are arranged in the cut portion 62.
[0020]
In this example, the long side L4 of the movable electrode plate 32 is 1000 μm, the short side L5 is 780 μm, the lengths L1 of the supports 33 and 34 are 450 μm, the folding width L2 is 200 μm, the beam width W1 is 10 μm, and the connection The length L3 of the part 61 is 115 μm, the width W2 is 10 μm, and the cross sections of the fixing parts 45 and 46 are 50 μm □. The outer shape of the optical switch is 1000 μm 4.
[0021]
Although it is one-point support, it can also be configured as shown in FIG. 4A. That is, supports 33 and 34 are arranged along the two long sides of the rectangular movable electrode plate 32, and one ends of the same side of the supports 33 and 34 are connected to the substrate 31 via the fixing portions 45 and 46, respectively. The other ends of the supports 33 and 34 are connected to both ends of the connection beam 62, and the midpoint of the connection beam 62 is connected to the midpoint of one short side of the movable electrode plate 32. In other words, the movable electrode plate 32 is surrounded by the supports 33 and 34 and the connecting beam 62 leaving one short side thereof. It can also be said that both sides of the square movable electrode plate 32 are excised and the supports 33 and 34 are arranged in the excised part. If it does in this way, the length of the support bodies 33 and 34 can be lengthened.
[0022]
A numerical example in this case is shown. Each length L1 of the supports 33 and 34 is 940 μm, the folding width L2 is 200 μm, the beam width W1 is 10 μm, the length L3 of the connecting beam 62 is 810 μm, the width W2 is 10 μm, and the cross section of the fixing portions 45 and 46 is 50 μm □. The long side L4 of the movable electrode plate 32 is 970 μm, and the short side L5 is 560 μm. Each shape of the optical switch is 1000 μm 4.
[0023]
4B, the connecting beam 62 in FIG. 4A may be omitted, and one end of each of the supports 33 and 34 may be connected to both ends of the short side of the movable electrode plate 32 by connecting portions 63 and 64. In this example, the lengths L1 of the supports 33 and 34 are 940 μm, the folding width L2 is 200 μm, the beam width W1 is 10 μm, the lengths L3 of the coupling parts 63 and 64 are 125 μm, the width W2 is 10 μm, and the fixed part. The end faces of 45 and 46 are 50 μm square, the long side L4 of the movable electrode plate 32 is 1000 μm, the short side L5 is 560 μm, and the outer shape of the optical switch is 1000 μm 4.
[0024]
As shown in FIG. 5A, in contrast to FIG. 3B, support bodies 35 and 36 are similarly provided on the opposite side of the support bodies 33 and 34 and the movable electrode plate 32, and the support bodies 35 and 36 are connected. The movable electrode plate 32 can be connected to the movable electrode plate 32 to support the two points.
As shown in FIG. 5B, a square movable electrode plate 32 that is inscribed in the square switch outer shape 65 and rotated 90 degrees is arranged, and each end of the supports 33 to 36 is connected to the midpoint of each side of the movable electrode plate 32. Then, the other ends of the supports 33 to 36 are connected to fixing portions 45 to 48 that stand on the substrate 31 at each corner portion of the optical switch outer shape 65. Each of the supports 33 to 36 effectively uses the space between the movable electrode plate 32 and the optical switch outer shape 65 so that the width of the folded beam is increased on the movable electrode plate 32 side and decreased on the fixed portion side. . Also in this case, it can be said that the corners of the movable electrode plate 32 similar to those of the optical switch outer shape 65 are cut off, and the supports 33 to 36 are arranged so as to fill the cut portions.
[0025]
As shown in FIG. 6, the outer shape of the movable electrode plate 32 is made to substantially coincide with the optical switch outer shape 65, and rectangular cut portions 41 to 44 are provided from the corner portions of the movable electrode plate 32 toward the center. Support bodies 33 to 36 are disposed on 41 to 44, the inner ends of the support bodies 33 to 36 are connected to the movable electrode plate 32, and the outer ends are connected to the substrate 31 via fixing portions 45 to 48.
[0026]
In the above description, a folded beam-like support is used as the support, but any support having elasticity may be used. For example, a flexure part provided with a square part shown in FIG. 7 may be used.
[0027]
【The invention's effect】
According to the present invention, the area occupied by the whole of the movable electrode plate and the area occupied by the support has a rectangular shape, so that a space can be used without waste when a matrix optical switch is configured.
Since the support is arranged at the excision part of the movable electrode plate, it can be made compact and the area of the movable electrode plate can be increased. In other words, the outer area of the optical switch can be effectively used without waste, and it can be driven at low voltage. Is possible.
[Brief description of the drawings]
FIG. 1A is a plan view showing an embodiment of the present invention, and B is a cross-sectional view taken along line AA of FIG. 1A.
2 is a cross-sectional view showing a manufacturing process of the embodiment of FIG. 1;
FIG. 3 is a plan view showing another embodiment of the present invention.
FIG. 4 is a plan view showing still another embodiment of the present invention.
FIG. 5 is a plan view showing still another embodiment of the present invention.
FIG. 6 is a plan view showing still another embodiment of the present invention.
FIG. 7 is a plan view of the optical switch proposed in A, and B is a cross-sectional view taken along the line AA of A. FIG.

Claims (1)

基板と、
その基板表面と対向して平行に配され、基板表面に対し垂直に変位できる可動電極板と、
その可動電極板上に直立されたミラーと、
上記可動電極板に一端が、他端が上記基板にそれぞれ連結され、可動電極板を基板上に支持する弾性を有する支持体とを具備し、
可動電極板と基板の固定電極との間に電圧印加、その除去により可動電極板及びミラーを上記基板平面に対して垂直方向に変位させ、ミラーに向かう光束を通過又は反射させる光スイッチにおいて、
上記可動電極板はほぼ方形をしており、その少くとも1辺の中央部から中心部に向って切除部が形成され、その切除部にその領域をほぼ埋めるように上記支持体が位置され、
上記支持体が占める領域と上記可動電極板が占める領域とが、全体として方形領域を形成していることを特徴とする光スイッチ。
A substrate,
A movable electrode plate that is arranged parallel to the substrate surface and can be displaced perpendicularly to the substrate surface;
A mirror upright on the movable electrode plate;
The movable electrode plate has one end and the other end connected to the substrate, and an elastic support for supporting the movable electrode plate on the substrate,
In an optical switch that applies a voltage between the movable electrode plate and the fixed electrode of the substrate, displaces the movable electrode plate and the mirror in a direction perpendicular to the substrate plane, and passes or reflects a light beam directed to the mirror.
The movable electrode plate has a substantially square shape, a cut portion is formed from the central portion of at least one side toward the central portion, and the support is positioned so as to substantially fill the region in the cut portion.
An optical switch characterized in that an area occupied by the support and an area occupied by the movable electrode plate form a square area as a whole.
JP5742799A 1998-10-16 1999-03-04 Light switch Expired - Fee Related JP3721420B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5742799A JP3721420B2 (en) 1999-03-04 1999-03-04 Light switch
DE2000621638 DE60021638T2 (en) 1999-03-04 2000-03-02 Optical switch and method of making such a switch
CA 2299832 CA2299832C (en) 1999-03-04 2000-03-02 Optical switch and method of making the same
EP00104411A EP1033601B1 (en) 1999-03-04 2000-03-02 Optical switch and method of making the same
US09/519,883 US6463190B1 (en) 1998-10-16 2000-03-06 Optical switch and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5742799A JP3721420B2 (en) 1999-03-04 1999-03-04 Light switch

Publications (2)

Publication Number Publication Date
JP2000258702A JP2000258702A (en) 2000-09-22
JP3721420B2 true JP3721420B2 (en) 2005-11-30

Family

ID=13055367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5742799A Expired - Fee Related JP3721420B2 (en) 1998-10-16 1999-03-04 Light switch

Country Status (1)

Country Link
JP (1) JP3721420B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463190B1 (en) * 1998-10-16 2002-10-08 Japan Aviation Electronics Industry Limited Optical switch and method of making the same
JP2002221673A (en) * 2001-01-26 2002-08-09 Olympus Optical Co Ltd Optical unit equipped with actuator
KR100402991B1 (en) * 2001-10-26 2003-10-23 한국과학기술연구원 Micro optical switching device
US7010200B2 (en) 2001-12-26 2006-03-07 Nikon Corporation Light-beam switching/adjusting apparatus and manufacturing method thereof
JP4686784B2 (en) * 2005-01-26 2011-05-25 独立行政法人 宇宙航空研究開発機構 Inertial drive actuator

Also Published As

Publication number Publication date
JP2000258702A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
KR100486716B1 (en) 2-dimensional actuator and manufacturing method thereof
JP3405528B2 (en) Optical device
JP4988807B2 (en) Mirror device and method of manufacturing mirror device
US7952778B2 (en) Biaxial MEMS mirror with hidden hinge
CN102067009A (en) Movable structure and micro-mirror element using the same
JPH07151985A (en) Optical switching device
JP4351586B2 (en) Optical scanner having curved mirror and method for manufacturing the same
JP3639978B2 (en) Light switch
JP3721420B2 (en) Light switch
JP3500497B2 (en) Light switch
US6625343B2 (en) Optical switch
JP2001117029A (en) Micro electromechanical optical device
JPWO2003020633A1 (en) Micro device and method of manufacturing the same
JP3840225B2 (en) Light switch
JP4227531B2 (en) Hinge structure
JP3577693B2 (en) Micro movable device and manufacturing method thereof
US20030210453A1 (en) Optical device and a movable mirror driving method
CN1661413A (en) Digital controlled self aligned micro mechanical optical switches in free space
JP3418863B2 (en) Optical switch manufacturing method
KR100493168B1 (en) Optical switch using Micro ElectroMechanical System
JP2004117525A (en) Optical switch
KR100708083B1 (en) Optical switch being driven by electrostatic force and manufacturing method thereof
JP2002221673A (en) Optical unit equipped with actuator
JP3733100B2 (en) Light switch
JP4002145B2 (en) MEMS optical switch

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees