JP3719305B2 - Wire electric discharge machining method and wire electric discharge machining apparatus - Google Patents

Wire electric discharge machining method and wire electric discharge machining apparatus Download PDF

Info

Publication number
JP3719305B2
JP3719305B2 JP06990297A JP6990297A JP3719305B2 JP 3719305 B2 JP3719305 B2 JP 3719305B2 JP 06990297 A JP06990297 A JP 06990297A JP 6990297 A JP6990297 A JP 6990297A JP 3719305 B2 JP3719305 B2 JP 3719305B2
Authority
JP
Japan
Prior art keywords
path
correction
wire
corner portion
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06990297A
Other languages
Japanese (ja)
Other versions
JPH10263933A (en
Inventor
康有 清水
裕介 殿木
秀良 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP06990297A priority Critical patent/JP3719305B2/en
Publication of JPH10263933A publication Critical patent/JPH10263933A/en
Application granted granted Critical
Publication of JP3719305B2 publication Critical patent/JP3719305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、NC制御によりワイヤとワークとを相対的に移動させてワークを加工するワイヤ放電加工方法およびワイヤ放電加工装置に関するものである。
【0002】
【従来の技術】
ワイヤ放電加工方法は、隙間を設けて対向させたワイヤとワークとの間に電圧を印加し、発生する放電エネルギによりワークを加工する方法である。このようなワイヤ放電加工方法を図5により説明する。図5は従来のワイヤ放電加工機の系統図である。図で、1は加工対象であるワーク。2はワークの取付台。3は取付台2を固定したテーブル。4X、4Yはそれぞれテーブル3をX軸、Y軸方向に移動させるモータである。5はワイヤで、所定の張力を付加された状態でリール6aから引き出され、リール6bに巻取られる。7a、7bはガイドで、ワイヤ5を位置決めしている。8は加工電源で、ワーク1とワイヤ5との間に電力を供給する。9はNC装置で、演算部9a、記憶部9b、制御部9cを備え、加工を自動的に遂行するための種々の制御を行なう。10はNC装置9に必要な指令や数値を入力するキーボードである。
【0003】
次に、上記従来のワイヤ放電加工加工機の加工手順を説明する。図6はワーク1の正面図である。11は製品で、頂点がA,B,C,Dの実線で示す正方形である。製品11を2回の加工で仕上げる場合、通常、先ず加工面の品質よりも加工速度を重視し、放電エネルギが大きい加工条件で、ワーク1から製品寸法よりも僅かに大きい点線で示す正方形abcdを切り出す(以下、ファーストカットという。)。次に、加工速度よりも加工面の品質を重視し、放電エネルギが小さい加工条件で、正方形abcdを実線で示す正方形ABCDに仕上げる(以下、セカンドカットという。)。
【0004】
上記ファーストカット、セカンドカットのいずれの場合も、加工に先立ち、加工に必要な付帯情報と形状プログラムをNC装置9に入力しておく。上記付帯情報の項目は、ワイヤ5の直径・材質とワーク1の材質・板厚および加工面の面粗さで決まる加工条件、ワイヤ5の直径、進行方向のいずれ側にワイヤ5をオフセットさせるかの指定等である。なお、記憶部9bに加工条件選定のためのデータベースが備えられている場合には、ワイヤ5の直径・材質とワークの材質・板厚および加工面の面粗さをNC装置9に入力すると、適正な加工条件が演算部9aにより選定され、記憶部9bに上記データベースがない場合には、加工条件データブックを参照して作業者が加工条件をNC装置9に入力する。上記いずれの場合も、それぞれの加工条件には固有の加工条件番号が付され、整理されている。そして、加工条件が決まると、電力の供給方法、加工間隙の大きさおよびワイヤ5に付加すべき張力の大きさ等が決まる。また、形状プログラムの内容は、図6におけるファーストカットの場合、頂点a,b,c,d、加工開始点S、加工開始点Sから線分daに下ろした垂線と線分daとの交点tおよび加工終了点の各座標および加工順序等である。
【0005】
ファーストカット時、NC装置9は付帯情報からワイヤ5の半径と加工条件で決まる加工間隙の大きさの和をオフセット量kとし、形状プログラムを解析して正方形abcdからの距離が上記オフセット量kである、図で2点鎖線で示す経路SR−RL−LM−MN−NP−PRを演算し、ワイヤ5の中心が上記経路上を等速度で移動するようにテーブル3をX軸、Y軸方向に移動させ、正方形abcdを加工する。セカンドカット時も上記ファーストカットの同様に、付帯情報と形状プログラムとからワイヤ5の中心を移動させる図示しない経路を演算し、正方形ABCDを仕上げる。
【0006】
【発明が解決しようとする課題】
ところで、加工時、放電反力によりワイヤ5はガイド7a、7b間で弓形状にたわみ、ワーク1と対向する部分のワイヤ5はガイド7a、7bを結ぶ直線上から外れる。ファーストカットの場合、放電反力はワイヤ5の進行方向の前側半円部にほぼ一様に加わり、その大きさはほとんど変化しない。この結果、ワイヤ5のたわみの大きさはほとんど変化せず、ほぼ所望の加工をすることができる。
【0007】
しかし、セカンドカットの場合、図7に示すように、頂点Aに向かう側では斜線を付して示すワイヤ5と製品11とが対向する長さ、すなわち加工量が徐々に減少するため、矢印で示す放電反力fが徐々に減少し、頂点Aから離れる側では放電反力が徐々に増加する。ワイヤ5の張力は一定であるから、ワイヤ5のたわみ量は頂点Aに向かう側で徐々に減少し、頂点Aから離れる側では徐々に増加する。この結果、1点鎖線で示す演算で求めた経路lでワイヤ5の中心(実際はガイド7a、7b)を移動させても、加工面は同図に実線で示すものとなり、コーナ部にいわゆるだれが発生する。
【0008】
そこで、従来技術の1は、演算で求めた経路には手を付けず、コーナ部における加工条件(例えば加工速度、ワイヤの張力、加工液圧等)を変更していた。また、従来技術の2は、加工条件には手を付けず、コーナ部における経路を形状プログラムで変更することにより、形状精度を向上させていた。
【0009】
しかし、上記従来技術のいずれも、加工に当たり、別のワークで実際の加工を行なってデータを採取する必要があった。通常、適切な加工条件または経路を1回のテスト加工で見出すことはできないから、作業能率が低下した。さらに、適切な加工条件あるいは経路を短時間で選定するためには、経験に富む作業者を必要とした。
【0010】
本発明の目的は、上記従来技術における課題を解決し、作業能率を向上させることがことができ、かつ経験の少ない作業者でも形状精度の優れた加工を行なうことができるワイヤ放電加工方法およびワイヤ放電加工装置を提供するにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、請求項1の発明は、仕上げ形状に対しオフセット量の距離にある経路を演算し、ワイヤの中心を前記経路で移動させるワイヤ放電加工方法において、加工条件ごとに適用する30°以上170°以下のコーナ角度とコーナ部の経路補正式とパラメータを準備しておき、加工に先立ち、前記経路補正式と前記パラメータに基づいて前記コーナ部の移動方向手前側で一旦予め設定した第1の角度で加工部側から離間し、前記コーナ部を越えた後、転回して前記コーナ部に続く加工部に予め設定した第2の角度で戻って加工する補正経路を演算し、コーナ部はワイヤの中心を前記経路に代えて前記補正経路で移動させることを特徴とする。
【0012】
また、請求項2の発明は、仕上げ形状に対しオフセット量の距離にある経路を演算し、ワイヤの中心を前記経路で移動させるワイヤ放電加工装置において、加工条件ごとに適用する30°以上170°以下のコーナ角度とコーナ部の経路補正式とパラメータとが格納されたデータ保存手段と、このデータ保存手段に格納された前記経路補正式と前記パラメータに基づいて前記コーナ部の移動方向手前側で一旦予め設定した第1の角度で加工部側から離間し、前記コーナ部を越えた後、転回して前記コーナ部に続く加工部に予め設定した第2の角度で戻って加工する補正経路を演算し、コーナ部はワイヤの中心を前記経路に代えて前記補正経路で移動させる制御手段とを設けたことを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて説明する。
図1は本発明の実施の形態に係るワイヤ放電加工機の系統図で、図5と同じものあるいは同一の機能のものは同一符号を付してある。21はデータ保存装置で、図2に示すように、加工条件ごとに適用するコーナ角度θと、入口側の経路補正式f(X,Y)と出口側の経路補正式g(X,Y)と、パラメータである入口距離p、出口距離qと、入り口角度αおよび出口角度βが登録されている。なお、入り口角度αおよび出口角度βは、オフセットの方向により符号が逆になる。
【0014】
次に、本実施の形態の動作を、図2の加工条件番号1001によりセカンドカットを行う場合について、図3、図4により説明する。図3は制御手順を示すフローチャートであり、図4はコーナ部の平面図で、図6における頂点A部を拡大して示している。加工に先立ち、付帯情報と形状プログラムをNC装置9に入力してから(図3に示す手順S10)、コーナ部の経路補正を行なうことをNC装置9に入力する(手順S20)。経路の演算開始ボタンがオンされると(手順S30)、NC装置9は従来と同様にワイヤ5中心の経路SE−EF−FG……を演算し(手順S40)、その結果を記憶する(手順S50)。なお、手順S50までは従来と同一である。
【0015】
次に、コーナ部の経路補正の要否を確認し(手順S60)、要の場合は手順S70の処理を行ない、否の場合は処理を終了する(手順S200)。手順S70では加工開始点Sから終点に向けて経路のコーナ部の有無をサーチし、コーナ部があるときには手順S80の処理を行ない、コーナ部がないときには処理を終了する(手順S200)。手順S80では、加工開始点Sから加工終了点に向けて、i番目(iは1,2,3…)の経路とi+1番目の経路が接続点で交差する角度θを演算し、30≦θか否かを判定する(手順S90)。そして、30≦θの場合には手順S100の処理を行ない、θ<30の場合にはアラームを表示して動作を終了する(手順S110)。手順S100ではθ≦170か否かを判定し、θ≦170の場合は手順S120の処理を行ない、170<θの場合は当該コーナ部における補正を行なわず、手順70の処理を行う。図4の場合、先ず、手順S80において1番目の経路SEと2番目の経路EFの角度がθE=270度であることを演算し、手順S90、100を経て手順70に戻る。すなわち、経路SEと経路EFの接続点Eにおいては、経路の補正をしない。
【0016】
次に、2番目の経路EFと3番目の経路FGの接続点Fにおける角度θFを演算し、θF=90度であるから、手順S120の処理を行う。すなわち、経路EF上で点Fからデータ保存装置21に登録された距離pとオフセット量kだけ離れた位置を補正開始点Iとし、補正開始点Iの座標XI,YIとXY座標系における経路EFの傾きγをデータ保存装置21に登録された入口側補正式f(X,Y)に代入してf(X,Y)を確定する(手順S130)。また、経路FG上で点Fからデータ保存装置21に登録された距離qとオフセット量kだけ離れた位置を補正終了点Kとし(手順S140)、補正終了点Kの座標XK,YKとXY座標系における経路FGの傾きδをデータ保存装置21に登録された出口側補正式g(X,Y)に代入してg(X,Y)を確定する(手順S150)。次に、入口側補正式f(X,Y)と出口側補正式g(X,Y)の交点Qを求め(手順S160)、交点Qが存在するときは、手順S50で記憶した経路EF−FGを補正経路EI−IQ−QK−KGに置き換えてから(手順S170)、手順S70の処理を行う。また、交点Qが存在しない場合、すなわち、入口側補正式f(X,Y)と出口側補正式g(X,Y)が平行の場合は手順S110の処理を行う。以下、同様にしてコーナ部の補正経路を演算し、手順S50で記憶した経路を補正経路に置き換える。
【0017】
加工時、NC装置9は、記憶した経路をワイヤ中心が移動するようにテーブル3をX軸、Y軸方向に移動させるから、コーナ部は上記補正経路を通ることになり、形状精度の優れる加工をすることができる。
【0018】
上記実施の形態では、加工に先立ち、予めワイヤ5が通る経路を演算するようにしたから、例えばコーナ部の角度θが30度未満あるいは交点Qがない場合でも加工が中断することはなく、形状精度の優れた加工をすることができる。
【0019】
なお、上記では、総ての経路が直線の場合を説明したが、経路の一方が直線、他方が曲線の場合は、接続点における曲線の接線と直線が交差する角度を求めるようにすれば良い。また、入口側および出口側の補正経路を算出する関数式は1次式に限らず、n次式あるいはその他の関数式としても良いし、角度θは30≦θ≦170の範囲に限らず、さらに広げるようにしても良い。また、手順S90においてθ<30の場合にはアラームの表示(手順S110)に代えて、手順S70の処理を行なうようにしても良い。同様に、手順S160において交点が無い場合もアラームの表示(手順S110)に代えて、手順S70の処理を行なうようにしても良い。さらに、補正制御の選択をプログラム上で行っても良いし、データ保存装置21を設けず、NC装置9の記憶部9bにデータテーブルを保存させても良い。また、加工をしながらこれから加工をするコーナ部の補正経路を演算するようにしても良い。
【0020】
【発明の効果】
以上説明したように、本発明によれば、コーナ部の移動方向手前側で一旦予め設定した第1の角度で加工部側から離間し、前記コーナ部を越えた後、転回して前記コーナ部に続く加工部に予め設定した第2の角度で戻って加工するので、コーナ部のだれの発生を確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るワイヤ放電加工機の系統図である。
【図2】データ保存装置に記憶されたデータを示す図である。
【図3】制御手順を示すフローチャートである。
【図4】コーナ部の平面図である。
【図5】従来のワイヤ放電加工機の系統図である。
【図6】ワークの正面図である。
【図7】コーナ部における放電反力の大きさと加工結果を示す図である。
【符号の説明】
5 ワイヤ
21 データ保存装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wire electric discharge machining method and a wire electric discharge machining apparatus for machining a workpiece by relatively moving a wire and a workpiece by NC control.
[0002]
[Prior art]
The wire electric discharge machining method is a method in which a voltage is applied between a wire and a workpiece opposed to each other with a gap, and the workpiece is machined by the generated discharge energy. Such a wire electric discharge machining method will be described with reference to FIG. FIG. 5 is a system diagram of a conventional wire electric discharge machine. In the figure, 1 is a workpiece to be machined. 2 is a work mounting base. 3 is a table to which the mounting base 2 is fixed. Reference numerals 4X and 4Y denote motors for moving the table 3 in the X-axis and Y-axis directions, respectively. Reference numeral 5 denotes a wire which is pulled out from the reel 6a in a state where a predetermined tension is applied and wound on the reel 6b. Reference numerals 7a and 7b denote guides for positioning the wire 5. Reference numeral 8 denotes a machining power supply that supplies electric power between the workpiece 1 and the wire 5. Reference numeral 9 denotes an NC device, which includes a calculation unit 9a, a storage unit 9b, and a control unit 9c, and performs various controls for automatically performing machining. Reference numeral 10 denotes a keyboard for inputting necessary commands and numerical values to the NC device 9.
[0003]
Next, a processing procedure of the conventional wire electric discharge machine will be described. FIG. 6 is a front view of the workpiece 1. Reference numeral 11 denotes a product, which is a square whose vertices are indicated by solid lines of A, B, C, and D. When finishing the product 11 by two times of machining, usually, a square abcd indicated by a dotted line slightly larger than the product size is first taken from the workpiece 1 under a machining condition in which the machining speed is more important than the quality of the machined surface and the discharge energy is large. Cut out (hereinafter referred to as first cut). Next, emphasis is placed on the quality of the machined surface rather than the machining speed, and the square abcd is finished into a square ABCD indicated by a solid line under machining conditions with low discharge energy (hereinafter referred to as a second cut).
[0004]
In either case of the first cut or the second cut, incidental information and a shape program necessary for machining are input to the NC device 9 prior to machining. The above-mentioned incidental information items include the processing conditions determined by the diameter and material of the wire 5 and the material and thickness of the workpiece 1 and the surface roughness of the work surface, the diameter of the wire 5 and the direction in which the wire 5 is offset. Designation. When the storage unit 9b is provided with a database for selecting machining conditions, the diameter and material of the wire 5, the material and thickness of the workpiece, and the surface roughness of the machining surface are input to the NC device 9, When an appropriate machining condition is selected by the calculation unit 9a and the database is not stored in the storage unit 9b, the operator inputs the machining condition to the NC device 9 with reference to the machining condition data book. In any of the above cases, each processing condition is assigned a unique processing condition number and arranged. When the processing conditions are determined, the power supply method, the size of the processing gap, the size of the tension to be applied to the wire 5 and the like are determined. In the case of the first cut in FIG. 6, the shape program includes the vertices a, b, c, d, the machining start point S, and the intersection t between the perpendicular line drawn from the machining start point S to the line segment da and the line segment da. The coordinates of the processing end point, the processing order, and the like.
[0005]
At the time of the first cut, the NC device 9 uses the incidental information to determine the sum of the machining gap size determined by the radius of the wire 5 and the machining conditions as an offset amount k, and analyzes the shape program so that the distance from the square abcd is the offset amount k. A route SR-RL-LM-MN-NP-PR indicated by a two-dot chain line in the figure is calculated, and the table 3 is moved in the X-axis and Y-axis directions so that the center of the wire 5 moves on the route at a constant speed. To move the square abcd. Also in the second cut, as in the case of the first cut, a route (not shown) for moving the center of the wire 5 is calculated from the incidental information and the shape program to finish the square ABCD.
[0006]
[Problems to be solved by the invention]
By the way, at the time of processing, the wire 5 bends in a bow shape between the guides 7a and 7b due to the discharge reaction force, and the wire 5 at the portion facing the workpiece 1 deviates from the straight line connecting the guides 7a and 7b. In the case of the first cut, the discharge reaction force is applied almost uniformly to the front semicircular portion in the traveling direction of the wire 5 and the magnitude thereof hardly changes. As a result, the amount of deflection of the wire 5 hardly changes, and almost desired processing can be performed.
[0007]
However, in the case of the second cut, as shown in FIG. 7, since the length of the wire 5 and the product 11 facing each other on the side toward the apex A is opposed to the product 11, that is, the processing amount gradually decreases, The discharge reaction force f shown gradually decreases, and the discharge reaction force gradually increases on the side away from the vertex A. Since the tension of the wire 5 is constant, the amount of deflection of the wire 5 gradually decreases on the side toward the apex A and gradually increases on the side away from the apex A. As a result, even if the center of the wire 5 (actually the guides 7a and 7b) is moved along the path l obtained by the calculation indicated by the one-dot chain line, the machined surface is shown by the solid line in FIG. appear.
[0008]
Therefore, in the prior art 1, the processing conditions (for example, processing speed, wire tension, processing fluid pressure, etc.) in the corner portion are changed without changing the route obtained by the calculation. In the prior art 2, the shape accuracy is improved by changing the path in the corner portion with the shape program without changing the processing conditions.
[0009]
However, in any of the above prior arts, it is necessary to collect data by performing actual machining with another workpiece. Usually, it is not possible to find an appropriate processing condition or path in a single test processing, so that the work efficiency is lowered. Furthermore, in order to select an appropriate processing condition or route in a short time, an experienced worker is required.
[0010]
An object of the present invention is to solve the above-mentioned problems in the prior art, improve the work efficiency, and allow a less experienced worker to perform machining with excellent shape accuracy and wire An electrical discharge machining apparatus is provided.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is applied to each machining condition in a wire electric discharge machining method that calculates a path that is at an offset distance from the finished shape and moves the center of the wire along the path. prepare the corner angle of 30 ° or more 170 ° or less and the corner path correction equation for the a parameter advance, prior to processing, once in the movement direction front side of the corner portion on the basis of the said path correction equation parameters Calculates a correction path that moves away from the machining part side at a first angle set in advance, goes over the corner part, turns and returns to the machining part that follows the corner part at a second angle set in advance. The corner portion moves the center of the wire along the correction path instead of the path.
[0012]
The invention of claim 2 is a wire electric discharge machining apparatus that calculates a path that is an offset distance from the finished shape and moves the center of the wire along the path, and is applied to each machining condition by 30 ° to 170 °. Data storage means storing the following corner angles, corner path correction formulas and parameters, and based on the path correction formulas stored in the data storage means and the parameters, the corner section is moved in front of the moving direction. A correction path that is once separated from the processing portion side by a first angle set in advance, passes the corner portion, and then turns to return to the processing portion that follows the corner portion and returns at a second angle set in advance. The corner section is provided with control means for moving the center of the wire along the correction path instead of the path.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
FIG. 1 is a system diagram of a wire electric discharge machine according to an embodiment of the present invention. Components having the same or the same functions as those in FIG. Reference numeral 21 denotes a data storage device. As shown in FIG. 2, a corner angle θ applied to each machining condition, a path correction formula f (X, Y) on the inlet side, and a path correction formula g (X, Y) on the outlet side. And the parameters of the entrance distance p and the exit distance q, the entrance angle α and the exit angle β are registered. Note that the sign of the entrance angle α and the exit angle β is reversed depending on the offset direction.
[0014]
Next, the operation of the present embodiment will be described with reference to FIGS. 3 and 4 in the case of performing the second cut with the processing condition number 1001 in FIG. FIG. 3 is a flowchart showing the control procedure, and FIG. 4 is a plan view of the corner portion, showing the vertex A portion in FIG. 6 in an enlarged manner. Prior to machining, the incidental information and the shape program are input to the NC device 9 (step S10 shown in FIG. 3), and then the corner unit path correction is input to the NC device 9 (step S20). When the route computation start button is turned on (procedure S30), the NC device 9 computes the route SE-EF-FG... At the center of the wire 5 as in the prior art (procedure S40) and stores the result (procedure). S50). The procedure up to step S50 is the same as the conventional one.
[0015]
Next, the necessity of route correction at the corner is confirmed (procedure S60). If necessary, the process of step S70 is performed, and if not, the process is terminated (procedure S200). In step S70, the presence or absence of a corner portion of the path is searched from the machining start point S to the end point. When there is a corner portion, the processing of step S80 is performed, and when there is no corner portion, the processing is terminated (step S200). In step S80, from the machining start point S to the machining end point, an angle θ at which the i-th (i is 1, 2, 3,...) And i + 1-th path intersect at the connection point is calculated, and 30 ≦ θ Whether or not (step S90). If 30 ≦ θ, the process of step S100 is performed, and if θ <30, an alarm is displayed and the operation is terminated (step S110). In step S100, it is determined whether or not θ ≦ 170. If θ ≦ 170, the process in step S120 is performed. If 170 <θ, the correction in the corner portion is not performed, and the process in step 70 is performed. In the case of FIG. 4, first, in step S80, it is calculated that the angle of the first route SE and the second route EF is θ E = 270 degrees, and the procedure returns to step 70 through steps S90 and S100. That is, the route is not corrected at the connection point E between the route SE and the route EF.
[0016]
Next, the angle θ F at the connection point F between the second route EF and the third route FG is calculated, and θ F = 90 degrees, so the process of step S120 is performed. That is, a position that is separated from the point F on the path EF by the distance p registered in the data storage device 21 and the offset amount k is set as the correction start point I, and the coordinates X I , Y I of the correction start point I and the XY coordinate system. The inclination γ of the path EF is substituted into the inlet side correction formula f (X, Y) registered in the data storage device 21 to determine f (X, Y) (step S130). Further, a position that is separated from the point q on the path FG by the distance q registered in the data storage device 21 and the offset amount k is set as the correction end point K (step S140), and the coordinates X K and Y K of the correction end point K are The inclination δ of the path FG in the XY coordinate system is substituted into the exit side correction equation g (X, Y) registered in the data storage device 21 to determine g (X, Y) (step S150). Next, an intersection point Q between the inlet side correction equation f (X, Y) and the outlet side correction equation g (X, Y) is obtained (step S160). When the intersection point Q exists, the route EF− stored in step S50 is obtained. After replacing FG with the correction route EI-IQ-QK-KG (procedure S170), the processing of procedure S70 is performed. If the intersection point Q does not exist, that is, if the inlet side correction equation f (X, Y) and the outlet side correction equation g (X, Y) are parallel, the process of step S110 is performed. Thereafter, the corner correction path is calculated in the same manner, and the path stored in step S50 is replaced with the correction path.
[0017]
At the time of machining, the NC device 9 moves the table 3 in the X-axis and Y-axis directions so that the center of the wire moves along the memorized path. Therefore, the corner portion passes through the correction path and machining with excellent shape accuracy. Can do.
[0018]
In the above embodiment, since the path through which the wire 5 passes is calculated in advance prior to machining, for example, even when the angle θ of the corner portion is less than 30 degrees or there is no intersection Q, the machining is not interrupted. Processing with excellent accuracy can be performed.
[0019]
In the above description, the case where all the routes are straight lines has been described. However, when one of the routes is a straight line and the other is a curved line, the angle at which the tangent line of the curve at the connection point intersects the straight line may be obtained. . Further, the functional equation for calculating the correction paths on the inlet side and the outlet side is not limited to the linear equation, and may be an n-order equation or other functional equations, and the angle θ is not limited to the range of 30 ≦ θ ≦ 170, It may be further expanded. If θ <30 in step S90, the process of step S70 may be performed instead of displaying an alarm (step S110). Similarly, when there is no intersection in step S160, the process of step S70 may be performed instead of displaying an alarm (step S110). Furthermore, correction control may be selected on a program, or the data table may be stored in the storage unit 9b of the NC device 9 without providing the data storage device 21. Further, the correction path of the corner portion to be processed may be calculated while processing.
[0020]
【The invention's effect】
As described above, according to the present invention, the corner portion is separated from the processing portion side by a first angle once preset in front of the corner portion in the moving direction, passes the corner portion, and then turns to turn the corner portion. Since the machining portion subsequent to is processed by returning to the second angle set in advance, it is possible to reliably prevent the corner portion from being drooped .
[Brief description of the drawings]
FIG. 1 is a system diagram of a wire electric discharge machine according to an embodiment of the present invention.
FIG. 2 is a diagram showing data stored in a data storage device.
FIG. 3 is a flowchart showing a control procedure.
FIG. 4 is a plan view of a corner portion.
FIG. 5 is a system diagram of a conventional wire electric discharge machine.
FIG. 6 is a front view of a workpiece.
FIG. 7 is a diagram showing the magnitude of the discharge reaction force at the corner and the processing result.
[Explanation of symbols]
5 Wire 21 Data storage device

Claims (2)

仕上げ形状に対しオフセット量の距離にある経路を演算し、ワイヤの中心を前記経路で移動させるワイヤ放電加工方法において、
加工条件ごとに適用する30°以上170°以下のコーナ角度とコーナ部の経路補正式とパラメータを準備しておき、
加工に先立ち、前記経路補正式と前記パラメータに基づいて前記コーナ部の移動方向手前側で一旦予め設定した第1の角度で加工部側から離間し、前記コーナ部を越えた後、転回して前記コーナ部に続く加工部に予め設定した第2の角度で戻って加工する補正経路を演算し、
コーナ部はワイヤの中心を前記経路に代えて前記補正経路で移動させることを特徴とするワイヤ放電加工方法。
In the wire electric discharge machining method of calculating a path at a distance of an offset amount with respect to the finished shape and moving the center of the wire along the path,
The path correction equation of the corner angle and the corner portion below 170 ° 30 ° or more to apply for each processing condition and the parameters in advance to prepare,
Prior to machining, based on the path correction formula and the parameters, the corner portion is moved away from the machining portion side at a first angle once set in front of the moving direction, and after turning the corner portion, it is turned. Calculating a correction path for processing by returning at a second angle set in advance to the processing portion following the corner portion;
The wire electric discharge machining method, wherein the corner portion moves the center of the wire along the correction path instead of the path.
仕上げ形状に対しオフセット量の距離にある経路を演算し、ワイヤの中心を前記経路で移動させるワイヤ放電加工装置において、
加工条件ごとに適用する30°以上170°以下のコーナ角度とコーナ部の経路補正式とパラメータとが格納されたデータ保存手段と、
このデータ保存手段に格納された前記経路補正式と前記パラメータに基づいて前記コーナ部の移動方向手前側で一旦予め設定した第1の角度で加工部側から離間し、前記コーナ部を越えた後、転回して前記コーナ部に続く加工部に予め設定した第2の角度で戻って加工する補正経路を演算し、コーナ部はワイヤの中心を前記経路に代えて前記補正経路で移動させる制御手段と、
を設けたことを特徴とするワイヤ放電加工装置。
In a wire electric discharge machining apparatus that calculates a path at a distance of an offset amount with respect to the finished shape and moves the center of the wire along the path,
Data storage means storing a corner angle of 30 ° or more and 170 ° or less applied for each processing condition, a path correction formula and parameters of the corner portion;
After separating from the processing portion side at a first angle once set in advance in the moving direction of the corner portion based on the path correction formula and the parameters stored in the data storage means, and after exceeding the corner portion A control path that turns and calculates a correction path to be processed by returning to the machining section following the corner section at a preset second angle, and the corner section moves the center of the wire along the correction path instead of the path. When,
A wire electric discharge machining apparatus characterized by comprising:
JP06990297A 1997-03-24 1997-03-24 Wire electric discharge machining method and wire electric discharge machining apparatus Expired - Fee Related JP3719305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06990297A JP3719305B2 (en) 1997-03-24 1997-03-24 Wire electric discharge machining method and wire electric discharge machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06990297A JP3719305B2 (en) 1997-03-24 1997-03-24 Wire electric discharge machining method and wire electric discharge machining apparatus

Publications (2)

Publication Number Publication Date
JPH10263933A JPH10263933A (en) 1998-10-06
JP3719305B2 true JP3719305B2 (en) 2005-11-24

Family

ID=13416101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06990297A Expired - Fee Related JP3719305B2 (en) 1997-03-24 1997-03-24 Wire electric discharge machining method and wire electric discharge machining apparatus

Country Status (1)

Country Link
JP (1) JP3719305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534843B2 (en) 2020-03-31 2022-12-27 Sodick Co., Ltd. Wire electric discharge machining method and wire electric discharge machining apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104023891B (en) * 2012-10-30 2016-04-13 三菱电机株式会社 Wire discharge processing apparatus and control device
JP5837031B2 (en) 2013-12-26 2015-12-24 ファナック株式会社 Wire electric discharge machine for correcting path of concave arc corner, machining path creation device of wire electric discharge machine, and machining method of wire electric discharge machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534843B2 (en) 2020-03-31 2022-12-27 Sodick Co., Ltd. Wire electric discharge machining method and wire electric discharge machining apparatus

Also Published As

Publication number Publication date
JPH10263933A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
JP4068321B2 (en) Processing speed setting method and processing apparatus of processing apparatus
JP3719305B2 (en) Wire electric discharge machining method and wire electric discharge machining apparatus
US4700314A (en) Taper cutting method
JP4480869B2 (en) Numerical controller
JP4143384B2 (en) EDM method
WO1998014298A1 (en) Wire cut electric discharge method and apparatus
EP3281735A1 (en) Wire electrical discharge machine and wire electrical discharge machining method
JPH027105A (en) Method for preparing offsetting shape
JP3202068B2 (en) Method of creating tool movement path for NC machining
JP3328150B2 (en) Tool path data generation method
JPH0530568B2 (en)
JPH07136855A (en) Wire electric discharge machining device
EP3321753B1 (en) Program generating apparatus
JP2021160009A (en) Wire-edm method and wire-edm device
JP3288799B2 (en) Wire electric discharge machine
JP3668607B2 (en) Wire cut electric discharge machining method and apparatus
JPH05233048A (en) Passage teaching data generating method, robot control method and robot system for deburring/polishing
JPS62102920A (en) Wire cut electric discharge machine
JPH10328938A (en) Wire electric discharge machining method and device
JPH04176516A (en) Second cut machining method and second cut machining controller in wire electric discharge machining
JP3343826B2 (en) Numerical control information creation device
JPS6238096B2 (en)
JPH03117519A (en) Wire electric discharge machining
EP0124611B1 (en) A wire-cut taper machining method
JP2000163110A (en) Method for generating tool path and medium for recording tool path generation program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees