JP3718887B2 - Porphyrin derivatives and their uses - Google Patents

Porphyrin derivatives and their uses Download PDF

Info

Publication number
JP3718887B2
JP3718887B2 JP31571095A JP31571095A JP3718887B2 JP 3718887 B2 JP3718887 B2 JP 3718887B2 JP 31571095 A JP31571095 A JP 31571095A JP 31571095 A JP31571095 A JP 31571095A JP 3718887 B2 JP3718887 B2 JP 3718887B2
Authority
JP
Japan
Prior art keywords
porphyrin
cancer
diasp
chloroform
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31571095A
Other languages
Japanese (ja)
Other versions
JPH09124652A (en
Inventor
功 阪田
進 中島
弘一 小清水
弘之 高田
裕史 乾
Original Assignee
株式会社光ケミカル研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光ケミカル研究所 filed Critical 株式会社光ケミカル研究所
Priority to JP31571095A priority Critical patent/JP3718887B2/en
Publication of JPH09124652A publication Critical patent/JPH09124652A/en
Application granted granted Critical
Publication of JP3718887B2 publication Critical patent/JP3718887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Radiation-Therapy Devices (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ポルフィリン誘導体とその用途、特に新規なポルフィリン誘導体を有効成分とする光物理化学的診断用および治療用の増感剤および/または光物理化学による癌の診断および治療に用いる薬剤に関する。
【0002】
【従来の技術】
癌の新しい治療法として光物理化学的診断治療(PDT)が行われている。これはある種のポルフィリン化合物を静脈注射などの方法により投与し、癌組織に保持させた後、レーザー光を照射して癌組織のみを選択的に破壊するというものである。PDTは、ポルフィリンの癌組織に保持される時間が正常組織に比べて長いという性質と光増感作用を持つという2つの性質を利用している。過去15年間に世界中で5000人以上の人々がPDTによる悪性腫瘍の治療を受けており、癌治療法の1つとして定着しつつある。PDTにより良好な治療成績が報告されている癌種は、網膜癌、皮膚癌、食道癌、表在性膀胱癌、初期の肺癌など多岐に渡っている。
【0003】
現在PDTに使用されている薬剤は主としてヘマトポルフィリン誘導体(HPD)およびphotofrin II▲R▼(HPDのエーテル体および/またはエステル体の二量体)である。HPDはヘマトポルフィリンを酢酸中硫酸処理し、さらに0.1N水酸化ナトリウムで処理して得られる混合物である。また、photofrin II▲R▼は1995年より日本で臨床応用されているが、HPDの疎水性の高い成分を主として含んでおり、HPDとともに複雑な混合物であり活性成分が不明である。また成分比が一定でないために治療効果が極めて不安定である。
【0004】
一方、PDTのための新しいポルフィリン誘導体が特開平1−246286号、昭63−145283号、昭62−205082号、昭62−167783号、特開昭62−249986号、昭62−246580号、昭62−246579号および昭62−205081号に、そしてJ.F.Evensenらにより[Br.J.Cancer,55,483(1987)]に開示されている。また、クロリン誘導体が特開平1−250381号、昭63−290881号、昭62−5986号、昭62−5985号、昭62−5924号、昭62−5912号、昭58−981号および昭57−185220号に、ポルフィリンダイマー誘導体が米国特許4649151号(1987)、特開昭62−63586号および昭60−500132号に、ポルフィリン金属錯体が特開平1−221382号、昭63−104987号および昭57−31688号に開示されている。ごく最近になって、670nm付近に吸収を持つメターテトラヒドロキシフェニル クロリン(m−THPC)やベンゾポルフィリン誘導体(BPD)などのポルフィリン誘導体も開発されてきた。我々も種々検討し、クロリン誘導体を特開昭61−7279号および昭60−92287号に、ポルフィリン金属錯体を特開平2−138280号、昭62−174079号、特公平4−24661号、平6−15545号および平7−25763号に、バクテリオクロリン誘導体を特開昭63−196586号に開示してきた。しかしながら、PDT用の増感剤として用いるには上記化合物では合成、安定性、水溶性の面において実用化が困難であった。そこで更に検討を行い、アルコキシポルフィリンアミノ酸誘導体およびクロリン誘導体を特開平5−97857号に開示し、PDT用の増感剤としての有効性を示したが、さらに高い治療効果の得られる誘導体が期待されている。
【0005】
またPDTに使われるレーザー光の組織透過性の問題もある。HPDやphotofrin II▲R▼は最大吸収波長が630nmであり、モル吸光係数も3000と低い。630nmの光では組織透過性が悪く、PDTの治療効果が5〜10mmの表層癌に限定されてしまっている。
【0006】
一方レーザー装置の方にも問題がある。現在最もよく使用されている色素レーザーは安定性が悪く、運用上取扱いが難しい。チタンサファイアレーザーを用いれば運用がかなり簡単になる。しかしこのレーザーを用いると670nm以上600nm以下の吸収波長に限られ、630nm付近の吸収波長を持つHPDやPtofrin II▲R▼には適用できない。最近、半導体レーザー(670nm)も開発され670nmに吸収を持つ化合物が有利とされてきた。
【0007】
更に薬剤の副作用として一時的な光過敏症を引き起こすことが知られている。このため薬剤投与後、皮膚などの正常組織が光増感作用で破壊されないように患者を長期間暗所に閉じ込めておかなければならない。HPDおよびPtofrin II▲R▼は正常組織からの排出速度が遅いので長いときには6週間以上も光過敏症が残ることもある。現在使用されている薬剤はこうした多くの問題点を抱えておりHPDおよびPhotofrin II▲R▼に代わる新しい薬剤の開発が強く望まれている。そこで上記薬剤が持つ欠点を克服するものとして単一化合物でありかつより長波長領域(650〜800nm)に吸収を持つ化合物が第2世代の薬物として提案されている。現在フタロシアニンなどのアザポルフィリン類、クロリン・バクテリオクロリンなどのポルフィリン類、テキサフィリンなどの環拡張型ポルフィリン類などさまざまな化合物が研究されている。
【0008】
【発明が解決しようとする課題】
本発明者らは、単一成分であり安定かつ癌組織に対する良好な集積性を維持したまま、正常組織からは排出速度が速く光毒性を低減させ、しかもできうればチタンサファイアレーザー(670nm以上600nm以下の波長)ならびに半導体レーザー(670nm)の使用が可能であるボルフィリン誘導体を探索し、PDTに適した光増感剤を提供することを目的として、種々の研究を重ねた。
【0009】
【問題を解決するための手段】
その結果、以前出願の誘導体(特開平5−97857号)の中で血液由来のプロトポルフィリンより合成誘導体化したクロリン類の側鎖に、ある種のイミノ基およびアスパラギン酸残基を結合させると、単一成分で癌組織に対して優れた集積性と正常組織より速やかな排出性を、更に670nm以上の最長波長吸収端を持ち、かつ良好なPDT効果を有することを見出した。
【0010】
また本発明者らは以前出願の誘導体(特開平5−97857号)と同様に、これらクロリン誘導体とアルブミンの混液の紫外線吸収(UV)スペクトルを分析したところ、スペクトルの動向が正の方向すなわち特定臓器、特に癌への親和性につながっていることが分かった。
【0011】
一方、本発明者らは以前出願の誘導体(特願平4−276488号)と同様に薄層クロマトグラフィー(TLC)や高速液体クロマトグラフィー(HPLC)により光に対する反応性の強弱を簡便に評価できるダンシルメチオニン基質の系を用いる光増感酸化反応によりこれらクロリン誘導体を評価したところ、強い作用を持つことがわかった
【0012】
本発明は上記の知見に基づいて完成されたものであって、その要旨は
一般式(I)化1
〔式中、RはC,CHCH(CH,CH,CHを表わし、Rは化2(アスパラギン酸から水素を除いた残基)〕で示されるポルフィリン化合物、である。
【0013】
本発明のポルフィリン化合物は、自体常套によって製造することができる。一般式(I)に対応するポルフィリン化合物にあっては、まずアルデヒド基を有する化合物に誘導体化し(工程a)、得られたクロリン誘導体にアスパラギン酸の残基を結合せしめる(工程b)、そして種々のヒドロキシルアミン誘導体を縮合させる(工程c)。また必ずしも工程(b)、(c)は順次反応させる必要はなく(c)、(b)のように工程順が代わっても良い。
【0014】
構成工程(a)はJ.E.Falk著[Porphyrins and Metalloporphyrins](Elsevier発行、1975年)およびD.Dolphin著[The Porphyrins](AcademicPress発行、1978年)等に記載された常套の方法によってこれを行うことができる。
【0015】
例えば(I)に対応するR、Rを有するポルフィリン化合物であるものは、特開昭61−7279号、特公昭63−13997号、特公平6−15545、特公平7−25763号、特開平2−138280号、特開平4−59779号、特開平5−97857号および特願平3−323597号に記載された方法に従ってこれを調製すれば良い。すなわちクロリン化工程(a)についてはプロトポルフィリン ジメチルエステル(以下PP−Meと言う)を光化学反応処理して得られた1−ヒドロキシ−2−ホルミルエチリデン−プロトポルフィリンジメチルエステル(以下P−Meと言う)を調製する(ただし、4つのテトラピロール環のうちAおよびB環の側鎖の官能基がそれぞれ入れ替わった3−ヒドロキシ−4−ホルミルエチリデン−プロトポルフィリン ジメチルエステル体も含む。)。
【0016】
次にアミノ酸の残基の結合工程(b)に付す。すなわち、Rが水酸基であるポルフィリン化合物(I)にアスパラギン酸を反応させて、Rがアスパラギン酸担持ポルフィリン化合物(I)を製造する。このものは泉屋ら著[ペプチド合成の基礎と実験](丸善発行、1985年)等に記載された常套の方法によってこれを行うことができ、特開昭64−61481号、特公平7−25763号、特開平2−138280号および特開平4−59779号に記載された方法に従ってこれを調製すればよい。
【0017】
この場合、要はポルフィリン化合物の側鎖にアスパラギン酸の残基を導入すればよいから、(I)のR側鎖のカルボキシル基とアスパラギン酸のアミノ基との間で反応を進行させることが好ましく、このため前者のカルボキシル基および/または後者のアミノ基を常套の反応性基に変換したり、両者に存在する反応に関与することが好ましくない官能基を適宜に保護することが考慮されてよい。なお、いずれの場合も適宜脱水剤や脱酸剤のような反応促進剤や縮合剤の使用も考慮されてよい。
【0018】
以上のようにして構成したクロリン化合物を縮合工程(c)に付す。P−Meに、ヒドロキシルアミン誘導体を反応させて縮合体ポルフィリン化合物を製造する。このものは一般有機化学実験書中[ヒドロキシルアミンとアルデヒド化合物との縮合反応]に記載された常套の方法によってこれを行うことができる。なお人為的に合成する代わりに、植物や動物のような天然資源からこれを採取してもよい。
【0019】
以下、代表例を挙げてポルフィリン化合物(I)の調製を更に具体的に説明する。例えばP−Meを加水分解して得られた1−ヒドロキシ−2−ホルミルエチリデン−プロトポルフィリン(以下Pと言う)を調製する(ただし、4つのテトラピロール環のうちAおよびB環の側鎖の官能基がそれぞれ入れ替わった3−ヒドロキシ−4−ホルミルエチリデン−プロトポルフィリンも含む。)。これに、アスパラギン酸 メチルエステル等を溶媒中で縮合剤[例えばジシクロヘキシルカルボジイミド(DCC)や水溶性カルポジイミド(WSC)]等を用いて反応せしめて、Rの側鎖にアスパラギン酸残基が結合したポルフィリン化合物(I)を得る。次いで、ヒドロキシルアミン誘導体(例えばO−メチルヒドロキシルアミン、O−エチルヒドロキシルアミン、O−ベンジルヒドロキシルアミン等)を溶媒中で縮合剤(例えばピリジン、ピペリジン、酸、アルカリ等)を用いて反応せしめて、Rの側鎖にこれらの化合物が縮合したポルフィリン化合物(I)を得る。その具体例としては以下のものを挙げることができる。
【0020】
(1)13、17−ビスプロピオニルアスパラギン酸−3−エテニル−7−ヒドロキシ−8−メトキシイミノエチリデン−2、7、12、18−テトラメチル−ポルフィン(以下NOMe−P−diAspと言う)
(2)13、17−ビスプロピオニルアスパラギン酸−3−エテニル−7−ヒドロキシ−8−エトキシイミノエチリデン−2、7、12、18−テトラメチル−ポルフィン(以下NOEt−P−diAspと言う)
(3)13、17−ビスプロピオニルアスパラギン酸−3−エテニル−7−ヒドロキシ−8−イソブトキシイミノエチリデン−2、7、12、18−テトラメチル−ポルフィン(以下NOisoBu−P−diAspと言う)
(4)13、17−ビスプロピオニルアスパラギン酸−3−エテニル−7−ヒドロキシ−8−ベンジルオキシイミノエチリデン−2、7、12、18−テトラメチル−ポルフィン(以下NOCH−P−diAspと言う)
(5)13、17−ビスプロピオニルアスパラギン酸−3−エテニル−7−ヒドロキシ−8−ペンタフルオロベンジルオキシイミノエチリデン−2、7、12、18−テトラメチル−ポルフィン(以下NOCH−P−diAspと言う)
【0021】
本発明によるポルフィリン誘導体の医薬品製剤の製造は自体公知法により行われ、本発明による誘導体を適当な緩衝液で溶解するだけでよい。好適な添加物として例えば医薬的に認容できる溶解補助剤(例えば有機溶媒)、pH調製剤(例えば酸、塩基、緩衝液)、安定剤(例えばアスコルビン酸)、賦形剤(例えばグルコース)、等張化剤(例えば塩化ナトリウム)などが配合されても良い。
【0022】
本発明による薬剤はPDT用薬剤としての必要十分な特性すなわち長燐光寿命、アルブミンに対する親和性、特定臓器特に癌に対する特異的集積性、ダンシルメチオニン評価による光殺細胞効果、吸収波長、水溶性、純度などを充分満足しているものである。本発明による薬剤の良好な水溶性は、高濃度溶液(50mg/ml)の製造を可能とし、更に本発明による薬剤は試験管内だけでなく生体内でも高い安定性を示す。一般に、PDT用薬剤として適用するためには本発明の薬剤を1mg〜5mg/kg体重の量で投与するのが望ましい。
【0023】
【作用】
本発明にかかるポルフィリン化合物は、ポルフィリン骨格の側鎖にアミノ酸残基、またはアルデヒド縮合体を有する点に化学構造上の特徴を有し、その結果種々の生理学的もしくは薬理学的特性を発揮する。
【0024】
これらポルフィリン誘導体は癌細胞に選択的に集積し、かつ癌細胞からの排泄が遅い。なお、正常な臓器や細胞からは速やかに排泄されるため、それらに損傷を与えることはない。元来、ポルフィリン誘導体の殆んどのものは光に対して強い作用を有するが、本発明に従ってポルフィリン誘導体の側鎖に多官能性化合物残基を導入することによって正常組織からの排泄性を高めるとともに、光毒性の発現を極力抑制するようデザインした誘導体が可能となった。また、ポルフィリンをクロリン誘導体化して波長がレッドシフトすることにより治療効果の深達度をはかることができた。これらの特性(癌親和性、光殺細胞効果、吸収波長、水溶性)に基づき、本発明のポルフィリン誘導体は特定の臓器、特に癌や悪性腫瘍に対するPDT薬剤として有用である。
【0025】
以下実施例を挙げて説明する。なお、実施例での収率はすべて出発原料であるPP−Meから換算して求めた値である。
【0026】
【実施例】
実施例 1
Pの合成
R.K.Dinelloらの方法[The Porphyrins、Academic Press発行、Vol.1,303(1978)]に準じて合成した。PP−Me100gをクロロホルム10lに溶解し、光照射下一週間反応させた。(ポルフィリンからクロリン誘導体化)反応後減圧濃縮し、残渣を得た。得られた残渣をシリカゲルカラムクロマトグラフィ−(溶離液:n−ヘキサン−クロロホルム)にて精製して、P−Meを得た。(50.0g)続いて、これをピリジン・メタノール混液中で加水分解して暗緑色結晶のPを得た。(43.0g、収率42.7%)
【0027】
実施例 2
ポルフィリンのアスパラギン酸誘導体化
実施例1で得たP2gをテトラヒドロフランに溶解しジシクロヘキシルアミン(DCHA)にて常法によりP−DCHA塩(2.0g)とした。本DCHA塩をクロロホルム150mlに溶解し、アスパラギン酸 ジメチルエステル(AspMe)塩酸塩2gを加え、撹拌下に水溶性カルボジイミド(WSC)2gを徐々に加えて1.5時間反応せしめた。反応後(TLCにて反応終末点を確認)、反応液を水洗分液後、クロロホルム層を減圧濃縮した。得られた濃縮物を酢酸エチル−エーテル−n−ヘキサンにて再沈殿および再結晶化を繰り返し行い、暗緑色結晶のフォトプロトポルフィニル−6、7−ビスアスパラギン酸テトラメチルエステル(以下P−AspMeと言う)を得た。(1.2g、収率17.3%)
【0028】
実施例 3
NOMe−P−diAsp(1)の合成
実施例2で得られたP−AspMe500mgをピリジン20mlに溶解し室温撹拌下にO−メチルヒドロキシルアミン塩酸塩150mgを添加、30分間反応せしめた。反応後、反応液にクロロホルムを加え、水洗分液後クロロホルム層を減圧濃縮した。得られた濃縮物を酢酸エチル−n−ヘキサンにて再沈殿を行い沈殿を濾取乾燥後、ピリジン10mlに溶解し、1N水酸化ナトリウム10mlを加え加水分解を行った。1N塩酸で中和後、クロロホルムにて分液し、クロロホルム層を減圧濃縮した。濃縮物をメタノール−酢酸エチル−n−ヘキサンにて再沈殿を行い、暗緑色結晶のNOMe−P−diAsp(1)を得た。(390mg、13.9%)
【0029】
実施例 4
NOEt−P−diAsp(2)の合成
実施例2で得られたP−AspMe500mgをピリジン20mlに溶解し、室温撹拌下にO−エチルヒドロキシルアミン塩酸塩150mgを添加、30分間反応せしめた。反応後、反応液にクロロホルムを加え、水洗分液後クロロホルム層を減圧濃縮した。得られた濃縮物を酢酸エチル−n−ヘキサンにて再沈殿を行い沈殿を濾取乾燥後、ピリジン10mlに溶解し、1N水酸化ナトリウム10mlを加え加水分解を行った。1N塩酸で中和後、クロロホルムにて分液し、クロロホルム層を減圧濃縮した。濃縮物をメタノール−酢酸エチル−n−ヘキサンにて再沈殿を行い、暗緑色結晶のNOEt−P−diAsp(2)を得た。(420mg、14.8%)
【0030】
実施例 5
NOisoBu−P−diAsp(3)の合成
実施例2で得られたP−AspMe500mgをピリジン20mlに溶解し、室温撹拌下にO−イソブチルヒドロキシルアミン塩酸塩150mgを添加、30分間反応せしめた。反応後、反応液にクロロホルムを加え、水洗分液後クロロホルム層を減圧濃縮した。得られた濃縮物を酢酸エチル−n−ヘキサンにて再沈殿を行い沈殿を濾取乾燥後、ピリジン10mlに溶解し、1N水酸化ナトリウム10mlを加え加水分解を行った。1N塩酸で中和後、クロロホルムにて分液し、クロロホルム層を減圧濃縮した。濃縮物をメタノール−酢酸エチル−n−ヘキサンにて再沈殿を行い、暗緑色結晶のNOisoBu−P−diAsp(3)を得た。(450mg、15.3%)
【0031】
実施例 6
NOCH−P−diAsp(4)の合成
実施例2で得られたP−AspMe500mgをピリジン20mlに溶解し、室温撹拌下にO−ベンジルヒドロキシルアミン塩酸塩150mgを添加、60分間反応せしめた。反応後、反応液にクロロホルムを加え、水洗分液後クロロホルム層を減圧濃縮した。得られた濃縮物を酢酸エチル−n−ヘキサンにて再沈殿を行い沈殿を濾取乾燥後、ピリジン10mlに溶解し、1N水酸化ナトリウム10mlを加え加水分解を行った。1N塩酸で中和後、クロロホルムにて分液し、クロロホルム層を減圧濃縮した。濃縮物をメタノール−酢酸エチル−n−ヘキサンにて再沈殿を行い、暗緑色結晶のNOCH−P−diAsp(4)を得た。(400mg、13.1%)
【0032】
実施例 7
NOCH−P−diAsp(5)の合成
実施例2で得られたP−AspMe500mgをピリジン20mlに溶解し、室温撹拌下にO−(ペンタフルオロベンジル)ヒドロキシルアミン塩酸塩150mgを添加、120分間反応せしめた。反応後、反応液にクロロホルムを加え、水洗分液後クロロホルム層を減圧濃縮した。得られた濃縮物を酢酸エチル−n−ヘキサンにて再沈殿を行い沈殿を濾取乾燥後、ピリジン10mlに溶解し、1N水酸化ナトリウム10mlを加え加水分解を行った。1N塩酸で中和後、クロロホルムにて分液し、クロロホルム層を減圧濃縮した。濃縮物をメタノール−酢酸エチル−n−ヘキサンにて再沈殿を行い、暗緑色結晶のNOCH−P−diAsp(5)を得た。(390mg、11.7%)
【0033】
実施例 8
摘出器官でのレーザー照射(励起蛍光スペクトル)
ニトロソアミン発癌の膵癌細胞を移植した14〜21日目のゴールデンハムスター(1群五匹)にリン酸緩衝液(1ml)にて希釈した5mgの被験薬剤NOMe−P−diAsp(1)を静注後、癌を含む各臓器を摘出し、得られた各器官にN−pulsed laser(N、337nm、2ns、400〜1000nm)を照射、励起蛍光スペクトルを測定し、470nmのNADHのピーク波長を基準として600〜900nmの波長を検討した。(N−PLS測定)以下同様にして得られた結果(癌/各臓器 比)を表1に示す。表1は薬剤投与3時間後に摘出した各器官の各励起蛍光スペクトルを測定し、470nmのピーク波長を基準1として600〜900nmでのピーク波長を算出した値を示す。
【0034】
【表1】

Figure 0003718887
【0035】
実施例 9
ダンシルメチオニンを用いる光増感酸化反応の評価
基質(ダンシルメチオニン)10μMをクロロホルム1mlに溶解し、前記実施例で得られた増感剤0.1μMを加え、攪拌下にCold Spot PICL−SX(Nippon P.I.Co..Ltd.)(ハロゲンランプ、150W、80,000Lux)で照射した。光照射1分毎に反応液をTLC板(Kieselgel 60 F254)にスポットし、クロロホルム−メタノール(3:2)で展開後、UVランプ(254nm)でダンシルメチオニンとその酸化生成物(ダンシルメチオニン スルホキシド)を確認した。TLC板上でダンシルメチオニンが完全に消失した時間を反応終了時間とし、各増感剤の光酸化反応の強弱を比較検討した。その結果を図1および表2に示す。なお、図1中縦軸はRfを横軸は時間(分)を示し、Rf値0.79はダンシルメチオニン、0.43はダンシルメチオニン スルホキシドのスポットである。また、表2の数値は反応完了時間を分で示し、この値(分)が小さければ小さいほど光酸化反応が強いことを意味する。
【0036】
【表2】
Figure 0003718887
【0037】
実施例 10
紫外線吸収スペクトル分析(アルブミンテスト)
ポルフィリン化合物はアルブミン溶液中で、二単量体あるいは多量体を形成することが知られている。この性質はアルブミン濃度を種々変えて分析を行うことで極大吸収値の移動または吸光係数の変動がみられることで判る。したがって癌細胞との親和性を検討するには簡単なスクリーニングテストである。アルブミン54mgを3mlの生理食塩水に溶解し、1.8%濃度とする。次いでこれを10倍希釈して0.18%とした液を公比3で希釈して各アルブミン濃度(1.8、0.18、0.06、0.02、0.0066、0.0022%)の液を調製した。一方、ポルフィリン誘導体1mgをリン酸緩衝液(pH8.0)1mlに溶解し、生理食塩水で100mlにした。そしてアルブミン希釈液2mlとポルフィリン溶液2mlを混合し、混液のアルブミン最終濃度を0.9、0.09、0.03、0.01、0.0033、0.0011%とし紫外線吸収スペクトル測定(350〜900nm)を行った。またアルブミン希釈液のかわりに生理食塩水およびメタノール溶液中でも同様に測定した。これらの測定結果を表3に示す。その代表例として、NOMe−P−diAsp(1)の紫外線吸収スペクトルを図2および図3に示す。
【0038】
【表3】
Figure 0003718887
【0039】
実施例 11
赤外吸収スペクトル分析
赤外分光光度計によりKBr錠剤法にて本誘導体の赤外吸収スペクトルを測定した。その代表例として、NOEt−P−diAsp(2)の赤外吸収スペクトルを図4に示す。
【0040】
【発明の効果】
本発明のポルフィリン誘導体は癌細胞への集積性、外部エネルギーに対する反応性ならびに癌細胞の破壊作用を有し、しかも正常細胞に対して毒性を発現することがないから、癌治療薬あるいは癌診断薬として究めて有用である。
【図面の簡単な説明】
【図1】NOisoBu−P−diAsp(3)テトラメチルエステルを増感剤として用いた薄層クロマトグラムを示す図である。
【図2】NOMe−P−diAsp(1)の紫外吸収スペクトルを示す図である。
【図3】NOMe−P−diAsp(1)の紫外吸収スペクトルを示す図である。
【図4】NOEt−P−diAsp(2)の赤外吸収スペクトルを示す図である。
【符号の説明】
1 ポルフィリン溶液と生理食塩水の混液
(アルブミン濃度0%)
2 ポルフィリン溶液とアルブミン溶液の混液
(アルブミン濃度0.0011%)
3 ポルフィリン溶液とアルブミン溶液の混液
(アルブミン濃度0.0033%)
4 ポルフィリン溶液とアルブミン溶液の混液
(アルブミン濃度0.01%)
5 ポルフィリン溶液とアルブミン溶液の混液
(アルブミン濃度0.03%)
6 ポルフィリン溶液とアルブミン溶液の混液
(アルブミン濃度0.09%)
7 ポルフィリン溶液とアルブミン溶液の混液
(アルブミン濃度0.9%)
8 ポルフィリン溶液とメタノールの混液[0001]
[Industrial application fields]
The present invention relates to a porphyrin derivative and its use, particularly to a photophysical diagnostic and therapeutic sensitizer comprising a novel porphyrin derivative as an active ingredient and / or a drug used for diagnosis and treatment of cancer by photophysical chemistry.
[0002]
[Prior art]
As a new treatment method for cancer, photophysicochemical diagnosis treatment (PDT) is performed. In this method, a certain kind of porphyrin compound is administered by a method such as intravenous injection and held in the cancer tissue, and then the laser beam is irradiated to selectively destroy only the cancer tissue. PDT utilizes the two properties that porphyrin is held in cancer tissue for a longer time than normal tissue and that it has a photosensitizing action. Over the last 15 years, more than 5,000 people worldwide have been treated for malignant tumors by PDT and are becoming established as a cancer treatment. Cancer types for which good therapeutic results have been reported by PDT are diverse, such as retinal cancer, skin cancer, esophageal cancer, superficial bladder cancer, and early lung cancer.
[0003]
The drugs currently used in PDT are mainly hematoporphyrin derivatives (HPD) and photofrin II® (HPD ether and / or ester dimer). HPD is a mixture obtained by treating hematoporphyrin with sulfuric acid in acetic acid and further treating with 0.1N sodium hydroxide. Photofrin II (R) has been clinically applied in Japan since 1995, but mainly contains a highly hydrophobic component of HPD, and is a complex mixture with HPD and the active component is unknown. Moreover, since the component ratio is not constant, the therapeutic effect is extremely unstable.
[0004]
On the other hand, new porphyrin derivatives for PDT are disclosed in JP-A-1-246286, Sho-63-145283, Sho-62-205082, Sho-62-167783, JP-A-62-249986, Sho-62-246580, Sho 62-246579 and Sho 62-205081; F. Evensen et al [Br. J. et al. Cancer, 55, 483 (1987)]. Further, chlorin derivatives are disclosed in JP-A-1-250381, Sho63-290881, Sho62-5986, Sho62-5985, Sho62-5924, Sho62-5912, Sho58-981 and Sho57. -185220, porphyrin dimer derivatives are disclosed in U.S. Pat. No. 4,649,151 (1987), JP-A-62-263586 and JP-A-60-500132, and porphyrin metal complexes are disclosed in JP-A-1-221382, 63-104987 and Sho-A. No. 57-31688. Very recently, porphyrin derivatives such as meta-tetrahydroxyphenyl chlorin (m-THPC) and benzoporphyrin derivative (BPD) having absorption around 670 nm have been developed. We have also studied variously, chlorin derivatives in JP-A-61-2279 and JP-A-60-92287, porphyrin metal complexes in JP-A-2-138280, JP-A-62-174079, JP-B-4-24661, and JP-A-6. Bacteriochlorin derivatives have been disclosed in JP-A 63-196586 in JP-A-15545 and JP-A-7-25563. However, for use as a sensitizer for PDT, it has been difficult to put the above compounds into practical use in terms of synthesis, stability and water solubility. Therefore, further investigation was made, and alkoxyporphyrin amino acid derivatives and chlorin derivatives were disclosed in Japanese Patent Laid-Open No. 5-97857, and showed effectiveness as sensitizers for PDT. However, derivatives with higher therapeutic effects are expected. ing.
[0005]
There is also a problem of tissue permeability of laser light used for PDT. HPD and photofrin II® have a maximum absorption wavelength of 630 nm and a low molar extinction coefficient of 3000. With 630 nm light, tissue permeability is poor, and the therapeutic effect of PDT has been limited to surface cancer of 5 to 10 mm.
[0006]
On the other hand, there is a problem with laser devices. The dye lasers that are most often used at present are poorly stable and difficult to handle in operation. Using a titanium sapphire laser makes it much easier to operate. However, when this laser is used, it is limited to an absorption wavelength of 670 nm or more and 600 nm or less, and cannot be applied to HPD or Ptofrin II <R> having an absorption wavelength near 630 nm. Recently, a semiconductor laser (670 nm) has been developed, and a compound having an absorption at 670 nm has been advantageous.
[0007]
Furthermore, it is known to cause temporary photosensitivity as a side effect of the drug. For this reason, after drug administration, the patient must be kept in a dark place for a long time so that normal tissues such as skin are not destroyed by photosensitization. Since HPD and Ptofrin II® are slow to excrete from normal tissues, photosensitivity may remain for more than 6 weeks when they are long. Currently used drugs have many of these problems, and the development of new drugs to replace HPD and Photofrin II® is strongly desired. Therefore, a compound that is a single compound and has absorption in a longer wavelength region (650 to 800 nm) has been proposed as a second generation drug to overcome the drawbacks of the above-mentioned drugs. Various compounds such as azaporphyrins such as phthalocyanine, porphyrins such as chlorin and bacteriochlorin, and ring-expanded porphyrins such as texaphyrin are currently being studied.
[0008]
[Problems to be solved by the invention]
The inventors of the present invention have a single component, are stable and maintain good accumulation on cancer tissues, have a high discharge rate from normal tissues, reduce phototoxicity, and preferably a titanium sapphire laser (670 nm to 600 nm). In order to provide a photosensitizer suitable for PDT, a variety of studies were repeated in order to search for a vorphyrin derivative capable of using a semiconductor laser (670 nm) as well as the following wavelengths).
[0009]
[Means for solving problems]
As a result, when a certain imino group and an aspartic acid residue are bonded to the side chain of chlorins synthesized and derivatized from blood-derived protoporphyrin in the derivative of the previous application (Japanese Patent Application Laid-Open No. 5-97857), It has been found that a single component has excellent accumulation properties for cancer tissues and quicker discharge than normal tissues, and further has a longest wavelength absorption edge of 670 nm or more and a good PDT effect.
[0010]
Moreover, the present inventors analyzed the ultraviolet absorption (UV) spectrum of a mixture of these chlorin derivatives and albumin as in the derivative of the previous application (Japanese Patent Laid-Open No. 5-97857). It has been found that it leads to affinity for organs, especially cancer.
[0011]
On the other hand, the present inventors can easily evaluate the intensity of reactivity to light by thin layer chromatography (TLC) or high performance liquid chromatography (HPLC) in the same manner as the derivative of the previous application (Japanese Patent Application No. 4-276488). When these chlorin derivatives were evaluated by photosensitized oxidation using a dansylmethionine substrate system, they were found to have strong effects.
[0012]
The present invention has been completed based on the above findings, and its gist is
Formula (I) Formula 1
[In the formula, R 1 Is C 2 H 5 , CH 2 CH (CH 3 ) 2 , CH 2 C 6 H 5 , CH 2 C 6 F 5 And R 2 Is a porphyrin compound represented by the formula 2 (residue obtained by removing hydrogen from aspartic acid)].
[0013]
The porphyrin compound of the present invention can be produced by conventional methods. In the porphyrin compound corresponding to the general formula (I), first, it is derivatized to a compound having an aldehyde group (step a), the residue of aspartic acid is bonded to the obtained chlorin derivative (step b), and various Of the hydroxylamine derivative is condensed (step c). The steps (b) and (c) do not necessarily have to be sequentially reacted, and the order of the steps may be changed as in (c) and (b).
[0014]
The construction step (a) E. By Falk [Porphyrins and Metallophyrins] (published by Elsevier, 1975); This can be done by conventional methods as described by Dolphin [The Porphyrins] (Academic Press, 1978).
[0015]
For example, R corresponding to (I) 1 , R 2 JP-A-61-2279, JP-B-63-13997, JP-B-6-15545, JP-B-7-25563, JP-A-2-138280, JP-A-4-59779 These may be prepared according to the methods described in JP-A-5-97857 and Japanese Patent Application No. 3-323597. That is, in the chlorination step (a), 1-hydroxy-2-formylethylidene-protoporphyrin dimethyl ester (hereinafter referred to as P-Me) obtained by photochemical reaction treatment of protoporphyrin dimethyl ester (hereinafter referred to as PP-Me). (Including 3-hydroxy-4-formylethylidene-protoporphyrin dimethyl ester in which the functional groups of the side chains of the A and B rings of the four tetrapyrrole rings are respectively replaced).
[0016]
Next, it attaches | subjects to the coupling | bonding process (b) of an amino acid residue. That is, R 2 Aspartic acid is reacted with the porphyrin compound (I) in which is a hydroxyl group, and R 2 Produces an aspartic acid-supported porphyrin compound (I). This can be carried out by a conventional method described in Izumiya et al. [Peptide Synthesis Fundamentals and Experiments] (published by Maruzen, 1985) and the like, and disclosed in Japanese Patent Application Laid-Open No. 64-61481 and Japanese Patent Publication No. 7-25563. This may be prepared according to the methods described in JP-A-2-138280 and JP-A-4-59779.
[0017]
In this case, the main point is to introduce an aspartic acid residue into the side chain of the porphyrin compound. 2 The reaction is preferably allowed to proceed between the side chain carboxyl group and the aspartic acid amino group, so that the former carboxyl group and / or the latter amino group can be converted into a conventional reactive group or present in both. It may be considered to appropriately protect functional groups that are not preferred to participate in the reaction. In any case, the use of a reaction accelerator such as a dehydrating agent or a deoxidizing agent or a condensing agent may be considered as appropriate.
[0018]
The chlorin compound constituted as described above is subjected to the condensation step (c). P-Me is reacted with a hydroxylamine derivative to produce a condensate porphyrin compound. This can be carried out by a conventional method described in [Condensation reaction of hydroxylamine and aldehyde compound] in general organic chemistry experiments. In place of artificial synthesis, it may be collected from natural resources such as plants and animals.
[0019]
Hereinafter, the preparation of the porphyrin compound (I) will be described more specifically with reference to typical examples. For example, 1-hydroxy-2-formylethylidene-protoporphyrin (hereinafter referred to as P) obtained by hydrolysis of P-Me is prepared (however, the side chains of the A and B rings of the four tetrapyrrole rings) Also included is 3-hydroxy-4-formylethylidene-protoporphyrin, each with a functional group interchanged. This is reacted with methyl aspartate in a solvent using a condensing agent [for example, dicyclohexylcarbodiimide (DCC) or water-soluble carpositimide (WSC)], and R 2 To obtain a porphyrin compound (I) having an aspartic acid residue bonded to the side chain thereof. Next, a hydroxylamine derivative (for example, O-methylhydroxylamine, O-ethylhydroxylamine, O-benzylhydroxylamine, etc.) is reacted with a condensing agent (for example, pyridine, piperidine, acid, alkali, etc.) in a solvent, R 1 The porphyrin compound (I) in which these compounds are condensed to the side chain is obtained. Specific examples thereof include the following.
[0020]
(1) 13,17-bispropionylaspartic acid-3-ethenyl-7-hydroxy-8-methoxyiminoethylidene-2,7,12,18-tetramethyl-porphine (hereinafter referred to as NOMe-P-diAsp)
(2) 13,17-bispropionylaspartic acid-3-ethenyl-7-hydroxy-8-ethoxyiminoethylidene-2,7,12,18-tetramethyl-porphine (hereinafter referred to as NOEt-P-diAsp)
(3) 13,17-bispropionylaspartic acid-3-ethenyl-7-hydroxy-8-isobutoxyiminoethylidene-2,7,12,18-tetramethyl-porphine (hereinafter referred to as NOisoBu-P-diAsp)
(4) 13,17-bispropionylaspartic acid-3-ethenyl-7-hydroxy-8-benzyloxyiminoethylidene-2,7,12,18-tetramethyl-porphine (hereinafter referred to as NOCH) 2 C 6 H 5 -P-diAsp)
(5) 13,17-bispropionylaspartic acid-3-ethenyl-7-hydroxy-8-pentafluorobenzyloxyiminoethylidene-2,7,12,18-tetramethyl-porphine (hereinafter referred to as NOCH) 2 C 6 F 5 -P-diAsp)
[0021]
Production of a pharmaceutical preparation of a porphyrin derivative according to the present invention is carried out by a method known per se, and the derivative according to the present invention only needs to be dissolved in an appropriate buffer. Suitable additives such as pharmaceutically acceptable solubilizers (eg organic solvents), pH adjusters (eg acids, bases, buffers), stabilizers (eg ascorbic acid), excipients (eg glucose), etc. A tonicity agent (for example, sodium chloride) or the like may be blended.
[0022]
The drug according to the present invention has the necessary and sufficient properties as a drug for PDT, that is, a long phosphorescence lifetime, an affinity for albumin, a specific accumulation property for a specific organ, particularly cancer, a photocidal effect by dansylmethionine evaluation, an absorption wavelength, water solubility, purity That is enough. The good water solubility of the drug according to the invention makes it possible to produce highly concentrated solutions (50 mg / ml), and the drug according to the invention exhibits a high stability not only in vitro but also in vivo. In general, for application as a PDT drug, it is desirable to administer the drug of the present invention in an amount of 1 mg to 5 mg / kg body weight.
[0023]
[Action]
The porphyrin compound according to the present invention has chemical structural characteristics in that it has an amino acid residue or an aldehyde condensate in the side chain of the porphyrin skeleton, and as a result, exhibits various physiological or pharmacological properties.
[0024]
These porphyrin derivatives accumulate selectively in cancer cells and are slowly excreted from cancer cells. In addition, since it is rapidly excreted from normal organs and cells, they are not damaged. Originally, most porphyrin derivatives have a strong effect on light. According to the present invention, by introducing a polyfunctional compound residue into the side chain of the porphyrin derivative, the excretion from normal tissues is enhanced. Derivatives designed to suppress the occurrence of phototoxicity as much as possible have become possible. Moreover, the depth of the therapeutic effect was able to be measured by converting the porphyrin into a chlorin derivative and the wavelength being red-shifted. Based on these characteristics (cancer affinity, photocidal effect, absorption wavelength, water solubility), the porphyrin derivative of the present invention is useful as a PDT drug for specific organs, particularly cancer and malignant tumors.
[0025]
Hereinafter, examples will be described. In addition, all the yield in an Example is the value calculated | required in conversion from PP-Me which is a starting material.
[0026]
【Example】
Example 1
Synthesis of P
R. K. Dinello et al. [The Porphyrins, Academic Press, Vol. 1, 303 (1978)]. 100 g of PP-Me was dissolved in 10 l of chloroform and reacted for 1 week under light irradiation. (Chlorine derivatization from porphyrin) After the reaction, it was concentrated under reduced pressure to obtain a residue. The obtained residue was purified by silica gel column chromatography (eluent: n-hexane-chloroform) to obtain P-Me. (50.0 g) Subsequently, this was hydrolyzed in a pyridine / methanol mixture to obtain dark green crystalline P. (43.0 g, yield 42.7%)
[0027]
Example 2
Aspartic acid derivatization of porphyrin
P2g obtained in Example 1 was dissolved in tetrahydrofuran, and converted into a P-DCHA salt (2.0 g) with dicyclohexylamine (DCHA) by a conventional method. This DCHA salt was dissolved in 150 ml of chloroform, 2 g of aspartic acid dimethyl ester (AspMe) hydrochloride was added, and 2 g of water-soluble carbodiimide (WSC) was gradually added with stirring to react for 1.5 hours. After the reaction (the end point of the reaction was confirmed by TLC), the reaction solution was washed with water and separated, and the chloroform layer was concentrated under reduced pressure. The obtained concentrate was repeatedly reprecipitated and recrystallized with ethyl acetate-ether-n-hexane to give dark green crystalline photoprotoporphinyl-6,7-bisaspartic acid tetramethyl ester (hereinafter referred to as P-AspMe). Say). (1.2 g, yield 17.3%)
[0028]
Example 3
Synthesis of NOMe-P-diAsp (1)
500 mg of P-AspMe obtained in Example 2 was dissolved in 20 ml of pyridine, 150 mg of O-methylhydroxylamine hydrochloride was added with stirring at room temperature, and the mixture was reacted for 30 minutes. After the reaction, chloroform was added to the reaction solution, and after separation with water, the chloroform layer was concentrated under reduced pressure. The obtained concentrate was reprecipitated with ethyl acetate-n-hexane, and the precipitate was collected by filtration, dried, dissolved in 10 ml of pyridine, and hydrolyzed by adding 10 ml of 1N sodium hydroxide. After neutralizing with 1N hydrochloric acid, the mixture was separated with chloroform, and the chloroform layer was concentrated under reduced pressure. The concentrate was reprecipitated with methanol-ethyl acetate-n-hexane to obtain NOMe-P-diAsp (1) as dark green crystals. (390 mg, 13.9%)
[0029]
Example 4
Synthesis of NOEt-P-diAsp (2)
500 mg of P-AspMe obtained in Example 2 was dissolved in 20 ml of pyridine, and 150 mg of O-ethylhydroxylamine hydrochloride was added with stirring at room temperature and reacted for 30 minutes. After the reaction, chloroform was added to the reaction solution, and after separation with water, the chloroform layer was concentrated under reduced pressure. The obtained concentrate was reprecipitated with ethyl acetate-n-hexane, and the precipitate was collected by filtration, dried, dissolved in 10 ml of pyridine, and hydrolyzed by adding 10 ml of 1N sodium hydroxide. After neutralizing with 1N hydrochloric acid, the mixture was separated with chloroform, and the chloroform layer was concentrated under reduced pressure. The concentrate was reprecipitated with methanol-ethyl acetate-n-hexane to obtain NOEt-P-diAsp (2) as dark green crystals. (420 mg, 14.8%)
[0030]
Example 5
Synthesis of NOisoBu-P-diAsp (3)
500 mg of P-AspMe obtained in Example 2 was dissolved in 20 ml of pyridine, 150 mg of O-isobutylhydroxylamine hydrochloride was added with stirring at room temperature, and the mixture was reacted for 30 minutes. After the reaction, chloroform was added to the reaction solution, and after separation with water, the chloroform layer was concentrated under reduced pressure. The obtained concentrate was reprecipitated with ethyl acetate-n-hexane, and the precipitate was collected by filtration, dried, dissolved in 10 ml of pyridine, and hydrolyzed by adding 10 ml of 1N sodium hydroxide. After neutralizing with 1N hydrochloric acid, the mixture was separated with chloroform, and the chloroform layer was concentrated under reduced pressure. The concentrate was reprecipitated with methanol-ethyl acetate-n-hexane to obtain dark green crystalline NOisoBu-P-diAsp (3). (450 mg, 15.3%)
[0031]
Example 6
NOCH 2 C 6 H 5 -Synthesis of P-diAsp (4)
500 mg of P-AspMe obtained in Example 2 was dissolved in 20 ml of pyridine, and 150 mg of O-benzylhydroxylamine hydrochloride was added with stirring at room temperature and reacted for 60 minutes. After the reaction, chloroform was added to the reaction solution, and after separation with water, the chloroform layer was concentrated under reduced pressure. The obtained concentrate was reprecipitated with ethyl acetate-n-hexane, and the precipitate was collected by filtration, dried, dissolved in 10 ml of pyridine, and hydrolyzed by adding 10 ml of 1N sodium hydroxide. After neutralizing with 1N hydrochloric acid, the mixture was separated with chloroform, and the chloroform layer was concentrated under reduced pressure. The concentrate was reprecipitated with methanol-ethyl acetate-n-hexane, and dark green crystalline NOCH 2 C 6 H 5 -P-diAsp (4) was obtained. (400 mg, 13.1%)
[0032]
Example 7
NOCH 2 C 6 F 5 -Synthesis of P-diAsp (5)
500 mg of P-AspMe obtained in Example 2 was dissolved in 20 ml of pyridine, and 150 mg of O- (pentafluorobenzyl) hydroxylamine hydrochloride was added with stirring at room temperature and reacted for 120 minutes. After the reaction, chloroform was added to the reaction solution, and after separation with water, the chloroform layer was concentrated under reduced pressure. The obtained concentrate was reprecipitated with ethyl acetate-n-hexane, and the precipitate was collected by filtration, dried, dissolved in 10 ml of pyridine, and hydrolyzed by adding 10 ml of 1N sodium hydroxide. After neutralizing with 1N hydrochloric acid, the mixture was separated with chloroform, and the chloroform layer was concentrated under reduced pressure. The concentrate was reprecipitated with methanol-ethyl acetate-n-hexane, and dark green crystalline NOCH 2 C 6 F 5 -P-diAsp (5) was obtained. (390 mg, 11.7%)
[0033]
Example 8
Laser irradiation in the isolated organ (excitation fluorescence spectrum)
After intravenous injection of 5 mg test drug NOMe-P-diAsp (1) diluted with phosphate buffer (1 ml) to golden hamsters (1 group, 5 animals) on days 14 to 21 transplanted with nitrosamine-carcinogenic pancreatic cancer cells , Each organ containing cancer was removed and N 2 -Pulsed laser (N 2 337 nm, 2 ns, 400 to 1000 nm), the excitation fluorescence spectrum was measured, and the wavelength of 600 to 900 nm was examined based on the peak wavelength of NADH of 470 nm. (N 2 -PLS measurement) Table 1 shows the results (cancer / each organ ratio) obtained in the same manner. Table 1 shows the values obtained by measuring the excitation fluorescence spectrum of each organ extracted 3 hours after drug administration and calculating the peak wavelength at 600 to 900 nm with reference to the peak wavelength of 470 nm.
[0034]
[Table 1]
Figure 0003718887
[0035]
Example 9
Evaluation of photosensitized oxidation using dansylmethionine
The substrate (dansylmethionine) 10 μM was dissolved in 1 ml of chloroform, the sensitizer 0.1 μM obtained in the above Example was added, and Cold Spot PICL-SX (Nippon PI Co. Ltd.) (with stirring) was added. Irradiation with a halogen lamp, 150 W, 80,000 Lux). The reaction solution was added to a TLC plate (Kieselgel 60 F) every minute of light irradiation. 254 ) And developed with chloroform-methanol (3: 2), and dansylmethionine and its oxidation product (dansylmethionine sulfoxide) were confirmed with a UV lamp (254 nm). The time at which dansylmethionine completely disappeared on the TLC plate was defined as the reaction end time, and the strength of the photooxidation reaction of each sensitizer was compared. The results are shown in FIG. In FIG. 1, the vertical axis represents Rf, the horizontal axis represents time (minutes), Rf value 0.79 is a dansylmethionine sulfoxide spot, and 0.43 is a dansylmethionine sulfoxide spot. The numerical values in Table 2 indicate the reaction completion time in minutes, and the smaller this value (minute), the stronger the photooxidation reaction.
[0036]
[Table 2]
Figure 0003718887
[0037]
Example 10
UV absorption spectrum analysis (albumin test)
Porphyrin compounds are known to form dimonomers or multimers in albumin solutions. This property can be understood by the movement of the maximum absorption value or the fluctuation of the extinction coefficient by analyzing the albumin concentration in various ways. Therefore, it is a simple screening test to examine the affinity with cancer cells. 54 mg of albumin is dissolved in 3 ml of physiological saline to a concentration of 1.8%. Next, this solution was diluted 10 times to 0.18% and diluted with a common ratio of 3 to obtain each albumin concentration (1.8, 0.18, 0.06, 0.02, 0.0066, 0.0022). %) Solution was prepared. On the other hand, 1 mg of the porphyrin derivative was dissolved in 1 ml of a phosphate buffer (pH 8.0) and made up to 100 ml with physiological saline. Then, 2 ml of the diluted albumin solution and 2 ml of the porphyrin solution were mixed, and the final concentration of albumin in the mixed solution was 0.9, 0.09, 0.03, 0.01, 0.0033, 0.0011%, and ultraviolet absorption spectrum measurement (350 ~ 900 nm). Moreover, it measured similarly also in the physiological saline and the methanol solution instead of the albumin dilution liquid. These measurement results are shown in Table 3. As a typical example, the ultraviolet absorption spectrum of NOMe-P-diAsp (1) is shown in FIGS.
[0038]
[Table 3]
Figure 0003718887
[0039]
Example 11
Infrared absorption spectrum analysis
The infrared absorption spectrum of this derivative was measured by the KBr tablet method using an infrared spectrophotometer. As a typical example, an infrared absorption spectrum of NOEt-P-diAsp (2) is shown in FIG.
[0040]
【The invention's effect】
Since the porphyrin derivative of the present invention has accumulation properties in cancer cells, reactivity to external energy, and destruction of cancer cells, and does not exhibit toxicity to normal cells, it is a therapeutic agent for cancer or a diagnostic agent for cancer. It is useful as a research.
[Brief description of the drawings]
FIG. 1 is a diagram showing a thin layer chromatogram using NOisoBu-P-diAsp (3) tetramethyl ester as a sensitizer.
FIG. 2 is a diagram showing an ultraviolet absorption spectrum of NOMe-P-diAsp (1).
FIG. 3 is a diagram showing an ultraviolet absorption spectrum of NOMe-P-diAsp (1).
FIG. 4 is an infrared absorption spectrum of NOEt-P-diAsp (2).
[Explanation of symbols]
1 Mixture of porphyrin solution and physiological saline
(Albumin concentration 0%)
2 Mixture of porphyrin solution and albumin solution
(Albumin concentration 0.0011%)
3 Mixture of porphyrin solution and albumin solution
(Albumin concentration 0.0033%)
4 Mixture of porphyrin solution and albumin solution
(Albumin concentration 0.01%)
5 Mixture of porphyrin solution and albumin solution
(Albumin concentration 0.03%)
6 Mixture of porphyrin solution and albumin solution
(Albumin concentration 0.09%)
7 Mixture of porphyrin solution and albumin solution
(Albumin concentration 0.9%)
8 Mixture of porphyrin solution and methanol

Claims (3)

一般式(I)化1
〔式中、RはC,CHCH(CH,CH,CHを表わし、Rは化2(アスパラギン酸から水素を除いた残基)〕で示されるポルフィリン化合物。
Figure 0003718887
Figure 0003718887
Formula (I) Formula 1
[Wherein R 1 represents C 2 H 5 , CH 2 CH (CH 3 ) 2 , CH 2 C 6 H 5 , CH 2 C 6 F 5 , R 2 represents chemical formula 2 (hydrogen is removed from aspartic acid) Porphyrin compounds represented by the residue)].
Figure 0003718887
Figure 0003718887
請求項1記載のポルフィリン化合物からなる光物理化学的診断用および/または治療用増感剤。A photophysicochemical diagnostic and / or therapeutic sensitizer comprising the porphyrin compound according to claim 1. 癌の診断および/または治療に使用される請求項2記載の光物理化学用増感剤。The sensitizer for photophysical chemistry according to claim 2, which is used for diagnosis and / or treatment of cancer.
JP31571095A 1995-10-30 1995-10-30 Porphyrin derivatives and their uses Expired - Fee Related JP3718887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31571095A JP3718887B2 (en) 1995-10-30 1995-10-30 Porphyrin derivatives and their uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31571095A JP3718887B2 (en) 1995-10-30 1995-10-30 Porphyrin derivatives and their uses

Publications (2)

Publication Number Publication Date
JPH09124652A JPH09124652A (en) 1997-05-13
JP3718887B2 true JP3718887B2 (en) 2005-11-24

Family

ID=18068613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31571095A Expired - Fee Related JP3718887B2 (en) 1995-10-30 1995-10-30 Porphyrin derivatives and their uses

Country Status (1)

Country Link
JP (1) JP3718887B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0945454T3 (en) * 1996-10-01 2003-10-27 Wyeth Lederle Japan Ltd Iminochlorin aspartic acid derivatives
KR100748908B1 (en) * 1999-11-30 2007-08-13 가부시키가이샤 히까리케미카루겡뀨쇼 Porphyrin compound
JP4394334B2 (en) * 2002-06-25 2010-01-06 浜松ホトニクス株式会社 Photophysical chemical diagnosis and treatment for vascular disease
DE60328496D1 (en) * 2002-06-27 2009-09-03 Health Research Inc Fluorinierte chlorin und bacteriochlorin photosensitizer für fotodynamische therapie

Also Published As

Publication number Publication date
JPH09124652A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
DK167769B1 (en) FLUORESCING MONO, DI OR POLYAMIDES OF AN AMINODICARBOXYLIC ACID AND A TETRAPYRROL COMPOUND CONTAINING THREE CARBOXYL GROUPS AND PROCEDURES FOR PREPARING THEREOF
EP1517684B1 (en) Fluorinated chlorin and bacteriochlorin photosensitizers for photodynamic therapy
JP5226317B2 (en) Novel porphyrin derivatives, especially chlorin and / or bacteriochlorin, and their application in photodynamic therapy
CA2268968C (en) Iminochlorin aspartic acid derivatives
JPS625985A (en) Novel tetrapyrrole compound
JPS6183186A (en) Novel tetrapyrrole medical composition
NO166284B (en) PROCEDURE FOR THE PREPARATION OF A SUBSTANCE MIXTURE EFFECTIVE FOR LOCALIZATION AND / OR DESTRUCTION OF TUMORS.
KR100358273B1 (en) Photosensitizer
DK168690B1 (en) Pharmaceutical compositions for the detection and / or treatment of mammalian tumors
JP3191223B2 (en) Porphyrin derivatives and their uses
EP0350948B1 (en) Porphyrin derivatives
AU773261B2 (en) Porphyrin compound
JP3718887B2 (en) Porphyrin derivatives and their uses
JPH0680671A (en) Porphyrin dimer and its use
JP2021528482A (en) Oxazine compounds and their use
WO2000044742A1 (en) Improved sensitizers for use in photodynamic therapy
JPH0551613B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees