JP3718723B2 - Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof - Google Patents

Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof Download PDF

Info

Publication number
JP3718723B2
JP3718723B2 JP2002050515A JP2002050515A JP3718723B2 JP 3718723 B2 JP3718723 B2 JP 3718723B2 JP 2002050515 A JP2002050515 A JP 2002050515A JP 2002050515 A JP2002050515 A JP 2002050515A JP 3718723 B2 JP3718723 B2 JP 3718723B2
Authority
JP
Japan
Prior art keywords
bone
abcp
bmp
calcium phosphate
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002050515A
Other languages
Japanese (ja)
Other versions
JP2003210567A (en
Inventor
敏之 赤澤
勝 村田
眞 有末
亨 菅野
正義 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
Original Assignee
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture filed Critical Hokkaido Prefecture
Priority to JP2002050515A priority Critical patent/JP3718723B2/en
Publication of JP2003210567A publication Critical patent/JP2003210567A/en
Application granted granted Critical
Publication of JP3718723B2 publication Critical patent/JP3718723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、医療関連産業分野において、家畜焼成骨を高度有効活用した生体機能性材料の作製方法に関し、最先端の再生医療、組織工学の技術分野で必要不可欠な生体親和性・適合性、吸収性、骨誘導性及び強度を有する生体組織由来吸収性傾斜機能複合材料の作製方法を提供するものである。
【0002】
【従来の技術】
近年、高齢化社会の到来や交通事故の多発に伴う骨再建や骨再生医療を目的として、多種多様な生体硬組織代替材料が開発されている。顎裂等の骨欠損部では、歯牙移動や埋入材料植立のために、母骨と均質な骨置換が必要である。生体内非吸収性材料は生涯異物(非自己)として生体内に残存するため、歯牙移動を妨げたり、組織再生を阻害することが指摘されている。
【0003】
水酸アパタイト(HAp:Hydroxyapatite;Ca10(PO(OH))やβ−リン酸三カルシウム(TCP:Tricalcium phosphate;Ca(PO)のようなリン酸カルシウムは、優れた組織親和性と骨伝導性を有するため、生体硬組織代替材料として臨床応用されている。
【0004】
しかしながら、市販の試薬合成HApは生体内吸収能力が低く、既存骨と均質な置換は困難であり、骨形成能が長期的に必ずしも有効な材料ではない。また、市販の吸収性β−TCPやポリ乳酸−グリコ−ル酸共重合体は吸収速度が極めて遅く、臨床的治癒後も1〜3年間、生体内に残存する。最近の骨治療では、骨新生・骨再生に伴い2〜3ヶ月で骨組織に置換吸収され、2次手術の必要がない生体材料の開発が期待されている。
【0005】
BMPを使用した骨誘導・再生研究では、細胞親和性の優れた生体吸収材料として、生体由来成分を含有した生体組織類似の微細構造を有するコラ−ゲンが注目されている。しかしながら、医療用の抵抗原性アテロコラ−ゲンは異種蛋白質であり、狂牛病(牛海綿状脳症)の原因物質である異常プリオン蛋白質が抽出・精製時に混入される可能性があるため、100%安全な材料ではない。リコンビナントヒトコラ−ゲンは架橋結合等の設計が困難であるため、培養系では成功例が見られないのが現状である。
【0006】
生体骨を利用したリン酸カルシウムの材料開発では、WO96/37433骨炭(動物骨を乾留したもの)の処理方法及び生成物、生骨、骨灰からアパタイトを抽出する方法、特許番号第2785245号天然ヒドロキシアパタイト等及びその製造方法において、焼成により比表面積の小さいアパタイト、または、溶解析出調製により低結晶性アパタイトの作製法が提案されている。また、特開平10−102288リン酸化合物のコ−ティング方法では、噴霧乾燥法により試薬アパタイトとセラミックスの複合粒子の作製法が示されている。これらの材料は、生体吸収性が低いため、臨床医学・歯学領域の応用に適当なバイオミメテック材料ではない。
【0007】
【発明が解決しょうとする課題】
臨床医学および歯学領域では、手術後の治癒に伴い速やかに吸収、母組織に置換され、組織再生を妨げないような早期生体内崩壊吸収性リン酸カルシウム材料の開発が強く要望されている。
【0008】
畜産物の加工処理過程で産出される牛骨、豚骨、馬骨、羊骨、鹿骨及び鶏骨等のような家畜の生体骨は、環境循環型社会の創生には重要な未利用資源である。特に、牛骨は全国で年間約45万トンの大量廃棄処分されているため、最近の狂牛病対策処理技術の視点でも、その有効活用と機能性開発が期待されている。
【0009】
生体骨を原料としたリン酸カルシウム傾斜機能マテリアルは、生体由来の微量金属イオン含有低結晶性HApであり、熱処理条件に依存して粒子の比表面積や表面形態が変化するため、細孔構造の他、BMP等の生体高分子や細胞に対する異種吸着サイトの比率と性質の制御が可能である。
【0010】
【課題を解決するための手段】
本発明の請求項1は、海面骨及び緻密骨を773〜1473Kの範囲で焼成する工程、pH2以下の無機酸に焼成緻密骨を完全溶解する工程、その溶液に焼成海面骨を部分溶解するまで浸漬する工程、塩基剤を添加しpHを8〜11に保持する工程、濾過する工程、水洗する工程、乾燥する工程により、細胞が構築した海面骨組織由来の微細構造を保持し、比表面積が100m/g以上の活性表面層から深部層へ、再析出したリン酸カルシウムの結晶性が向上し、かつ粒子径が数nmから1μmへ変化する生体組織傾斜構造と、生体組織由来の微量金属イオンに起因する表面性質を特徴とする生体組織由来のリン酸カルシウム傾斜機能材料(AbCP−GM)を示す。
【0011】
その焼成する工程はコラ−ゲン由来有機成分を除去するものであり、773K以下では炭素成分が残留し、1473K以上では海面骨の焼結により生体組織由来の微細構造が消失するため、適当な焼成温度範囲は773〜1473Kである。
【0012】
その完全溶解・部分溶解する工程の酸は、有機酸では有機物が残留するため、無機酸であることが必要である。無機酸は、pH2以上では生体骨の溶解速度が遅いため、pH2以下の強酸であることが必要である。
【0013】
その塩基剤を添加する工程では、pHによって各種リン酸カルシウムの安定領域が異なり、pH8以下では第2リン酸カルシウム(DCPD:Dicalcium Phosphate Dihydrate;CaHPO・2HO)相、オクタリン酸カルシウム(OCP:Octacalcium Phosphate;Ca(PO・5HO)相が、pH8〜9でβ−TCP相が、pH9〜11でHAp相が、pH11以上で水酸化カルシウム(Ca(OH))相が生成されるため、生体硬組織代替材料として適当なHApやβ−TCPが製造されるpH範囲は8〜11である。
【0014】
本発明の請求項2は、AbCP−GMの製造方法を示す。
【0015】
本発明の請求項3は、請求項1の材料を673〜1073Kの範囲で水蒸気雰囲気熱処理する工程により、再析出したリン酸カルシウムの結晶性が向上し、粒子径と機械的強度が増加する生体組織傾斜構造及び優れた生体親和性・適合性等の表面性質を特徴とするリン酸カルシウム傾斜機能複合材料(AbCP−GMH)を示す。
【0016】
その熱処理する工程は、リン酸カルシウムの適当な吸収速度と材料のハンドリング状態を決定するものであり、673K以下ではリン酸カルシウムの結晶性と粒子径、材料の機械的強度が変化せず、1073K以上ではHAp相が部分的に分解することから、適当な熱処理温度範囲は673〜1073Kである。
【0017】
本発明の請求項4は、AbCP−GMHの製造方法を示す。
【0018】
本発明の請求項5は、請求項1、3の材料に、BMPを含浸する工程により、BMPとAbCP−GM、BMPとAbCP−GMHの結合相乗効果を発現させ、従来のリン酸カルシウム材料にない速い吸収性と高い骨誘導能を有する生体組織傾斜機能を特徴とするBMP/リン酸カルシウム傾斜機能複合材料(BMP/AbCP−GM、BMP/AbCP−GMH)を示す。
【0019】
本発明の請求項6は、BMP/AbCP−GM、BMP/AbCP−GMHの製造方法を示す。
【0020】
【発明の具体的構成】
生体組織由来リン酸カルシウムは、試薬合成材料にない生命体の微細構造と性質を有している。本発明は、間葉系細胞が構築した海面骨の母組織構造(気孔径、気孔率及び微量金属イオン)を保持しつつ、それを結晶成長場と利用し、細胞活性表面層の付与、表面層から深部層へ結晶性と粒子径を制御するというバイオミメティックの概念に基づいた新規性の高い生体組織由来吸収性リン酸カルシウム傾斜機能複合材料とその作製方法を提供するものである。
【0021】
すなわち、本発明では、生体海綿骨の母組織構造を利用して、完全溶解、部分溶解、リン酸カルシウムの再析出、熱処理、BMPの含浸工程により、細胞増殖と血管侵入性の優れた活性表面と傾斜機能性を有する生体組織模倣リン酸カルシウム複合材料とその作製方法に関するものである。
【0022】
出発原料として、生体骨を用いた。冷凍保存した生体骨を動物埋入実験時の適当な大きさに切断加工し、コラ−ゲン由来有機成分を除去するため、煮沸洗浄処理、空気中773〜1473Kで焼成(単純焼成もよいが、望ましくは、たとえば、773Kで10時間、1073Kで10時間、1173Kで8時間、1373Kで24時間、1473Kで20時間のように、段階的に昇温焼成)する工程により、生体組織(緻密骨・海綿骨)由来アパタイト(b−HAp)を作製した。この生体骨の高温焼成では、異常プリオン蛋白質等の有機化合物は完全に分解除去され、Na、Mg2+等の微量金属イオン含むリン酸カルシウムのみが残存する。
【0023】
その緻密骨由来b−HApを粉砕後、無機酸に溶解した。その溶液にもう一方の海面骨由来b−HApを部分溶解するまで浸漬し、海綿骨の気孔径、気孔率を保持しながら、粒子表面のエッチングと部分溶解を行った。それに塩基性溶液を添加し、β−TCPやHAp相の安定領域(pH8〜11)で保持する工程により、海面骨由来b−HApと溶解析出アパタイト(r−HAp)の複合化を行った。それを濾過、洗浄、乾燥する工程により、比表面積が100m/g以上の活性表面層から深部層へ、リン酸カルシウムの結晶性が向上し、粒子径が数nmから1μmへ増加する傾斜構造を有する生体組織由来リン酸カルシウム傾斜機能材料(AbCP−GM)を作製した。
【0024】
AbCP−GMを水蒸気雰囲気673〜1073Kで熱処理する工程により、リン酸カルシウムの結晶性、吸収性、崩壊性、強度等を変化させた生体組織由来リン酸カルシウム傾斜機能材料(AbCP−GMH)を作製した。
【0025】
骨誘導能を促進するため、天然骨由来BMPまたは遺伝子工学的に作製したリコンビナントヒトBMP等をAbCP−GM、AbCP−GMHに含浸する工程により、生体組織由来吸収性リン酸カルシウム傾斜機能複合材料(BMP/AbCP−GM、BMP/AbCP−GMH)を作製した。
【0026】
生体骨として、牛骨、豚骨、馬骨、羊骨、鹿骨及び鶏骨等を原料に用いた場合に、同様の緻密骨・海面骨の生体組織構造を利用するので、当然の結果として、同じ工程により、AbCP−GM、AbCP−GMH、BMP/AbCP−GM及びBMP/AbCP−GMHを作製することができる。
【実施例】
以下、本発明の実施例について説明する。
【0027】
【実施例1】
生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GM)の作製。
冷凍保存の牛大腿骨を動物埋入実験時の適当な大きさ(5×3×3mm、12×9×3.5mm)に切断加工、蒸留水による煮沸洗浄処理、空気中773〜1473Kで焼成(773Kで10時間、1073Kで10時間、1173Kで8時間、1373Kで24時間、1473Kで20時間)する工程により、生体組織由来アパタイト(b−HAp)を作製した(図1参照)。その緻密骨由来b−HAp10gを粉砕後、pH1の4.5%硝酸水溶液2000cmに溶解した。その溶液に、もう一方の海面骨由来b−HAp12gを部分溶解するまで24時間浸漬した。それに50%アンモニア水750cmを添加して、pH10.5とし、室温で24時間保持する工程により、海面骨由来b−HApと溶解析出アパタイト(r−HAp)の傾斜機能複合化を行った。それを濾過する工程、蒸留水で洗浄する工程、323〜393Kで24時間乾燥する工程により、生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GM)を作製(図2参照)した。
【0028】
表1と2に、誘導プラズマ発光分光分析(ICP)によるb−HApとr−HApの化学分析値をそれぞれ示す。b−HApとr−HApの中間組成を有するAbCP−GMは、生体由来のMg2+、Naのような微量金属イオンを含有し、Ca/Pのモル比=1.64〜1.66のCa2+欠損型HApであった。
【0029】
図3と図4に、AbCP−GMの深部層と表面層の微小X線回折パタ−ンをそれぞれ示す。両部でHAp単一相が得られ、各結晶面のピ−クが表面層から深部層へ顕著に鋭くなることから、AbCP−GMは、表面近傍から深部へHApの結晶性が向上するリン酸カルシウム傾斜機能材料であることが分かった。
【0030】
図5に、走査型電子顕微鏡(SEM)によるAbCP−GMの表面組織を示す。AbCP−GM粒子は、海綿骨の微細構造を保持しつつ、約1μmのグレインに約10nmの針状微細結晶が多数析出したナノ−ミクロ傾斜機能材料であることが明らかになった。
【0031】
【実施例2】
生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GMH)の作製。
実施例1のAbCP−GMを水蒸気雰囲気673〜1073K、24時間熱処理する工程により、生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GMH)を作製した。熱処理温度の上昇に伴い、AbCP−GMHは、表面層HApの結晶性が向上し、HAp粒子の成長が観察され、AbCP−GMHの機械的強度が増加することが分かった。
【0032】
【実施例3】
生体組織由来吸収性BMP/リン酸カルシウム傾斜機能複合材料(BMP/AbCP−GM及びBMP/AbCP−GMH)の作製。
天然骨由来BMP5μgを蒸留水15μlに溶解した。そのBMP溶液を、滅菌シャ−レに入れた実施例1のAbCP−GM及び実施例2の673K熱処理したAbCP−GMHに含浸する工程により、生体組織由来吸収性リン酸カルシウム傾斜機能複合材料(BMP/AbCP−GM及びBMP/AbCP−GMH)を作製した。
【0033】
表1は、実施例1、2、3で作製した生体組織(海面骨・緻密骨)由来アパタイト(b−HAp)の誘導プラズマ発光分光分析(ICP)による化学分析値である。
【表1】

Figure 0003718723
【0034】
表2は、実施例1、2、3で作製した溶解析出アパタイト(r−HAp)のICP誘導プラズマ発光分光分析による化学分析値である。
【表2】
Figure 0003718723
【0035】
異所性生物検定として、AbCP−GM単独群、BMP/AbCP−GM群、AbCP−GMH単独群、BMP/AbCP−GMH群を設定し、Wistar系ラットを用いて背部皮下組織内に、277Kで冷蔵保存したAbCP−GM、BMP/AbCP−GM、AbCP−GMH、BMP/AbCP−GMHを埋入した。
【0036】
【実施例4】
AbCP−GMの組織形態学的評価。
生物検定試験では、AbCP−GMにリン酸緩衝液を添加した後、それをWistar系ラット背部皮下組織内に埋入した。1、2、3、4、6、8、10週後と経時的に埋入試料を摘出し、ヘマトキシリン−エオジン(H−E)染色を施して、光学顕微鏡(OM)により組織形態学的観察を行った。
【0037】
埋入1週後では、アパタイトの崩壊と巨細胞による吸収像がみられた。
【0038】
図6に、埋入4週後のAbCP−GMについて、脱灰H−E標本のOM写真を示す。アパタイトは著明に減少し、アパタイトの気孔間に線維性結合組織が形成され、形態計測結果による埋入物全体中アパタイトの占有面積は、最大で埋入前の約30%まで減少した。アパタイト表面は波状を呈し、多核巨細胞の出現とアパタイトが吸収した組織液の貯留がみられる。
【0039】
埋入10週後では、アパタイトは完全に吸収され、埋入物の確認・摘出は不可能であった。全観察期間を通して、残留アパタイトの気孔間は線維組織で占められ、円形細胞を主体とする炎症性細胞浸潤は軽度であった。
【0040】
【実施例5】
BMP/AbCP−GMの組織形態学的評価。
生物検定試験では、実施例4と同様にして、BMP/AbCP−GMをWistar系ラット背部皮下組織内に埋入した。1、2、3、4、6、8、10週と経時的に埋入試料を摘出し、H−E染色を施して、OMにより組織形態学的観察を行った。
【0041】
埋入1週後では、アパタイト気孔内に未分化間葉細胞の増殖がみられた。埋入2週後には、アパタイト表面に添加性に形成された誘導骨が確認された。埋入3週後では、幼弱な線維骨と増殖間葉組織が占める部分が拡大した。
【0042】
図7と8に、埋入4週後のBMP/AbCP−GMについて、脱灰H−E標本のOM写真を示す。活発な骨誘導が全体的に認められ、アパタイトは新生骨に被われるとともに崩壊吸収傾向にあることが分かる。
【0043】
図7では、埋入物の初期体積はほぼ維持されながら、アパタイトは著明に減少し、連続した梁状骨の形成が全体的にみられ、造血骨髄組織が観察される。形態計測による埋入物全体中の占有面積は、アパタイトが約29%、骨・骨髄組織が約71%であった。
【0044】
図8では、新生骨に被包化されたアパタイトが認められ、骨−アパタイトは全体的にモザイク状を呈し、波状を呈するアパタイト表面には多核巨細胞が出現し、アパタイト内には組織液の貯留がみられる。骨細胞を多数封入した骨基質内に吸収過程にあるアパタイトの残留も認められる。
【0045】
埋入6週、8週では、骨髄のスペ−スが拡大し、埋入10週後では、アパタイトは吸収され、骨・骨髄組織に置換された。
【0046】
【実施例6】
AbCP−GMH及びBMP/AbCP−GMHの組織形態学的評価。
生物検定試験では、実施例4、5と同様にして、AbCP−GMH(673K熱処理)及びBMP/AbCP−GMH(673K熱処理)をWistar系ラット背部皮下組織内に埋入した。1、2、3、4、8週と経時的に埋入試料を摘出し、H−E染色を施して、OMにより組織形態学的観察を行った。
【0047】
AbCP−GMH(673K熱処理)はAbCP−GMより、BMP/AbCP−GMH(673K熱処理)はBMP/AbCP−GMより、熱処理の工程により機械的強度が大きいため、ラット埋入手術時のハンドリングが比較的容易であった。
【0048】
埋入4〜10週後では、実施例4、5と同様に、アパタイトの吸収と新成骨の形成は認めれるが、AbCP−GMH(673K熱処理)及びBMP/AbCP−GMH(673K熱処理)の方がAbCP−GM及びBMP/AbCP−GMより、アパタイトの崩壊吸収速度は遅くなる傾向であった。
【0049】
【実施例7】
市販アパタイト(Algipore)の組織形態学的評価。
実施例1、2、3の対照用試料として、市販アパタイト(Algipore:FRIATEC社製)を用いて、実施例4、5、6と同様にして、Wistar系ラット背部皮下組織内に埋入した。このアパタイトは、海洋生物サンゴ由来の生態構造を有する1473K焼成の化学合成HApである。1、2、3、4、6、8、10週と経時的に埋入試料を摘出し、H−E染色を施して、OMにより組織形態学的観察を行った。
【0050】
図9に、4週埋入後のAlgiporeについて、脱灰H−E標本のOM写真を示す。アパタイト粒子間は線維性結合組織で占められ、アパタイト表面に多核巨細胞が部分的に出現しているが、明白な崩壊吸収変化は認められず、表面構造は平坦である。細管様の気孔は多数存在しているが、細胞侵入性に劣る構造である。
【0051】
埋入10週後でも、埋入物の体積減少は顕著でなかった。
【0052】
実施例4のAbCP−GM群、実施例5のBMP/AbCP−GM群、実施例6のBMP/AbCP−GMH群のラット埋入試験より、速やかな組織内吸収性とBMP併用による加速的な骨誘導が観察されることから、本発明の材料はサイトカインBMPの作用を阻害しない吸着能を示し、骨芽細胞系列への細胞増殖分化の足場を提供する優れた吸収性リン酸カルシウム材料であることが判明した。
【0053】
【発明の効果】
本発明の材料は、従来の牛焼成骨(TBC:True boneCeramic)と比較して比表面積が200倍大きく、物理的構造、結晶性及び表面性質が生体骨に類似しているため、優れた細胞親和性・適合性と同時に、既存の生体代替材料にない組織再生能、すなわち、世界最速の生体吸収性と骨置換性を有するリン酸カルシウム傾斜機能複合材料を提供するものである。
【0054】
なお、牛由来コラ−ゲン性マテリアルが狂牛病問題で見直されている現在、家畜焼成骨を利用する本発明は、製造過程で異常プリオン蛋白質を完全に分解揮散させることから、安全性に優れた機能性マテリアルと判断される。
【0055】
したがって、本発明の材料は、将来、骨関連蛋白質や細胞吸着能に起因する骨誘導性・生体内吸収特性を制御可能な材料として、臨床治療現場で多用される生体硬組織代替材料のみならず、生理活性物質との結合、ES細胞、体性幹細胞、骨髄間葉系幹細胞の培養担体材料、遺伝子治療のための遺伝子ベクタ−運搬インテリジェントマテリアルへの応用展開が可能である。
【0056】
さらに、本発明は、高齢化社会到来に伴う骨再生や難治療疾患への移植ニ−ズに応えるため、未利用資源(家畜生体骨)の高度有効活用化の観点で、新規ナノ−ミクロ傾斜機能材料として、再生医療、組織工学の分野で多種多様な応用展開が可能であり、社会的・経済的波及効果が期待される。
【図面の簡単な説明】
【図1】実施例1と2に作製した海綿骨由来アパタイト(b−HAp)の外観写真である。
【図2】実施例1と2で作製した生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GM)の外観写真である。
【図3】実施例1と2で作製した生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GM)深部層の微小X線回折パターンである。
【図4】実施例1と2で作製した生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GM)表面層の微小X線回折パターンである。
【図5】実施例1と2で作製した生体組織由来吸収性リン酸カルシウム傾斜機能材料(AbCP−GM)のSEM写真である。
【図6】 実施例4で示したAbCP−GM 埋入4週後の脱灰H−E標本のOM写真(H−E、×3倍)である。
【図7】 実施例5で示したBMP/AbCP−GM 埋入4週後の脱灰H−E標本のOM写真(H−E、×30倍)である。
【図8】 実施例5で示したBMP/AbCP−GM埋入4週後の脱灰H−E標本のOM写真(図7の拡大写真、H−E、×50倍)である。
【図9】 実施例7で示した市販アパタイト(Algipore:FRIATEC社製)埋入4週後の脱灰H−E標本のOM写真(H−E、×25倍)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a biofunctional material that uses highly effective bone-fired bone in the medical-related industrial field, and is indispensable for biocompatibility / compatibility and absorption essential in the technical fields of cutting-edge regenerative medicine and tissue engineering. A method for producing a biotissue-derived resorbable functionally graded composite material having sex, osteoinductivity and strength is provided.
[0002]
[Prior art]
In recent years, a wide variety of bio-hard tissue replacement materials have been developed for the purpose of bone reconstruction and bone regenerative medicine associated with the arrival of an aging society and frequent traffic accidents. Bone defects such as jaw fractures require bone replacement that is homogenous with the mother bone for tooth movement and implantation material implantation. It has been pointed out that the non-absorbable material in the living body remains in the living body as a foreign substance (non-self) throughout the life, preventing tooth movement or inhibiting tissue regeneration.
[0003]
Calcium phosphates such as hydroxyapatite (HAp: Hydroxyapatite; Ca 10 (PO 4 ) 6 (OH) 2 ) and β-tricalcium phosphate (TCP: Tricalcium phosphate; Ca 3 (PO 4 ) 2 ) are excellent tissues. Due to its affinity and osteoconductivity, it is clinically applied as a substitute for living hard tissue.
[0004]
However, commercially available reagent-synthesized HAp has a low ability to absorb in the living body, and it is difficult to replace the bone with the existing bone, so that the ability to form bone is not always effective in the long term. Commercially available absorbable β-TCP and polylactic acid-glycolic acid copolymer have an extremely low absorption rate and remain in the living body for 1 to 3 years after clinical healing. In recent bone treatment, it is expected to develop a biomaterial that is replaced and absorbed into bone tissue in 2 to 3 months with bone renewal and bone regeneration and does not require secondary surgery.
[0005]
In a bone induction / regeneration study using BMP, a collagen having a fine structure similar to a biological tissue containing a biological component is attracting attention as a bioresorbable material having excellent cell affinity. However, medical resistance-resistant atelocollagen is a heterogeneous protein, and abnormal prion protein, which is the causative substance of mad cow disease (bovine spongiform encephalopathy), may be mixed during extraction and purification. It is not a safe material. Recombinant human collagen is difficult to design, such as cross-linking, so that there are no successful examples in the culture system.
[0006]
In the development of calcium phosphate materials using living bone, WO96 / 37433 bone charcoal (animal bone dry-distilled) treatment method and product, raw bone, bone ash extraction method, patent number 2785245 natural hydroxyapatite, etc. In addition, a method for producing apatite having a small specific surface area by firing or a low crystalline apatite by preparing a dissolved precipitate has been proposed. Japanese Patent Application Laid-Open No. 10-102288 describes a method for producing a composite particle of a reagent apatite and ceramics by a spray drying method. Since these materials have low bioabsorbability, they are not suitable biomimetic materials for clinical medicine and dentistry applications.
[0007]
[Problems to be solved by the invention]
In the clinical medicine and dentistry fields, there is a strong demand for the development of an early biodegradable absorbable calcium phosphate material that can be quickly absorbed and replaced by the mother tissue with healing after surgery and does not interfere with tissue regeneration.
[0008]
Live bones of livestock such as cattle bones, pork bones, horse bones, sheep bones, deer bones and chicken bones produced during the processing of livestock products are important unused resources for creating an environmental recycling society. It is. In particular, cow bones are disposed of in a large amount of about 450,000 tons annually nationwide, so that effective utilization and functional development are expected from the viewpoint of recent mad cow disease treatment technology.
[0009]
Calcium phosphate functionally graded material made from living bones is a low-crystallinity HAp containing trace metal ions derived from living bodies, and the specific surface area and surface morphology of the particles change depending on the heat treatment conditions. It is possible to control the ratio and properties of different types of adsorption sites for biopolymers such as BMP and cells.
[0010]
[Means for Solving the Problems]
Claim 1 of the present invention includes a step of firing sea surface bone and dense bone in the range of 773 to 1473K, a step of completely dissolving the fired dense bone in an inorganic acid having a pH of 2 or lower, and until the sea surface bone is partially dissolved in the solution. It retains the fine structure derived from the sea surface bone tissue constructed by the cells by the soaking step, the step of adding a base agent to maintain the pH at 8 to 11, the step of filtering, the step of washing with water, and the step of drying. From the active surface layer of 100 m 2 / g or more to the deep layer, the crystallinity of the re-precipitated calcium phosphate is improved, and the gradient structure of the biological tissue in which the particle diameter changes from several nm to 1 μm, and the trace metal ions derived from the biological tissue Fig. 2 shows a biological tissue-derived calcium phosphate functionally graded material (AbCP-GM) characterized by the resulting surface properties.
[0011]
The step of firing removes the collagen-derived organic component. The carbon component remains at 773K or less, and the microstructure derived from living tissue disappears due to the sintering of sea surface bone at 1473K or more. The temperature range is 773 to 1473K.
[0012]
The organic acid in the process of complete dissolution / partial dissolution needs to be an inorganic acid because an organic substance remains in an organic acid. The inorganic acid needs to be a strong acid having a pH of 2 or less because the dissolution rate of living bone is slow at a pH of 2 or more.
[0013]
In the step of adding the basic agent, different stability regions of various calcium phosphate by pH, in pH8 following dicalcium phosphate (DCPD: Dicalcium Phosphate Dihydrate; CaHPO 4 · 2H 2 O) phase, calcium -octalin acid (OCP: Octacalcium Phosphate; Ca 8 H 2 (PO 4) 6 · 5H 2 O) phase, beta-TCP phase pH8~9 is HAp phase pH9~11 is calcium hydroxide at pH11 or (Ca (OH) 2) phase generating Therefore, the pH range in which HAp and β-TCP suitable as a substitute material for living hard tissue are produced is 8-11.
[0014]
Claim 2 of this invention shows the manufacturing method of AbCP-GM.
[0015]
Claim 3 of the present invention is a biological tissue gradient in which the crystallinity of re-precipitated calcium phosphate is improved and the particle diameter and mechanical strength are increased by the heat treatment in the steam atmosphere in the range of 673-1073 K of the material of Claim 1 1 shows a calcium phosphate functionally graded composite material (AbCP-GMH) characterized by structure and surface properties such as excellent biocompatibility and compatibility.
[0016]
The heat treatment process determines the appropriate absorption rate of calcium phosphate and the handling state of the material. The crystallinity and particle diameter of calcium phosphate and the mechanical strength of the material do not change at 673K or lower, and the HAp phase at 1073K or higher. Is partially decomposed, a suitable heat treatment temperature range is 673-1073K.
[0017]
Claim 4 of this invention shows the manufacturing method of AbCP-GMH.
[0018]
Claim 5 of the present invention expresses the synergistic effect of binding of BMP and AbCP-GM, BMP and AbCP-GMH by the step of impregnating the material of Claims 1 and 3 with BMP, which is not as fast as conventional calcium phosphate materials. 1 shows BMP / calcium phosphate functionally graded composite materials (BMP / AbCP-GM, BMP / AbCP-GMH) characterized by a biological tissue gradient function having resorbability and high osteoinductive ability.
[0019]
Claim 6 of this invention shows the manufacturing method of BMP / AbCP-GM and BMP / AbCP-GMH.
[0020]
Specific Configuration of the Invention
Biological tissue-derived calcium phosphate has the fine structure and properties of living organisms not found in reagent synthesis materials. The present invention retains the matrix structure of the sea surface bone (pore diameter, porosity, and trace metal ions) constructed by mesenchymal cells, and uses it as a crystal growth field to provide a cell active surface layer, surface The present invention provides a highly novel living tissue-derived absorbable calcium phosphate functionally graded composite material based on the biomimetic concept of controlling crystallinity and particle size from a layer to a deep layer and a method for producing the same.
[0021]
That is, in the present invention, an active surface and an inclined surface with excellent cell proliferation and vascular invasion properties are obtained by complete dissolution, partial dissolution, calcium phosphate reprecipitation, heat treatment, and BMP impregnation step using the matrix structure of living cancellous bone. The present invention relates to a biological tissue mimicking calcium phosphate composite material having functionality and a method for producing the same.
[0022]
Living bone was used as a starting material. In order to remove the collagen-derived organic component by cutting the living bone that has been cryopreserved into an appropriate size at the time of animal implantation experiment, it is boiled and washed and baked in air at 773 to 1473K ( Desirably, a living tissue (compact bone and / or dense bone and / or calcination in a stepwise manner, for example, 10 minutes at 773K, 10 hours at 1073K, 8 hours at 1173K, 24 hours at 1373K, and 20 hours at 1473K). Sponge bone) -derived apatite (b-HAp) was produced. In this high-temperature firing of living bone, organic compounds such as abnormal prion protein are completely decomposed and removed, and only calcium phosphate containing trace metal ions such as Na + and Mg 2+ remains.
[0023]
The compact bone-derived b-HAp was pulverized and dissolved in an inorganic acid. The other sea surface bone-derived b-HAp was immersed in the solution until it was partially dissolved, and the particle surface was etched and partially dissolved while maintaining the pore diameter and porosity of the cancellous bone. A basic solution was added thereto, and the composite of sea surface bone-derived b-HAp and dissolved precipitated apatite (r-HAp) was carried out by a step of maintaining in a stable region (pH 8 to 11) of β-TCP and HAp phase. Through the process of filtering, washing and drying, the crystallinity of calcium phosphate is improved from the active surface layer having a specific surface area of 100 m 2 / g or more to the deep layer, and the particle diameter is increased from several nm to 1 μm. A biological tissue-derived calcium phosphate functionally gradient material (AbCP-GM) was produced.
[0024]
A biological tissue-derived calcium phosphate functionally graded material (AbCP-GMH) in which the crystallinity, absorbability, disintegration, strength, etc. of calcium phosphate were changed by a process of heat treating AbCP-GM in a water vapor atmosphere 673-1073K.
[0025]
In order to promote the osteoinductive ability, AbCP-GM and AbCP-GMH are impregnated with natural bone-derived BMP or genetically engineered recombinant human BMP and the like, and the tissue-derived absorbable calcium phosphate gradient functional composite material (BMP / AbCP-GM, BMP / AbCP-GMH) were prepared.
[0026]
As a natural bone, when using bovine bone, pork bone, horse bone, sheep bone, deer bone, chicken bone, etc. as raw materials, since the same tissue structure of dense bone and sea surface bone is used, as a natural result, AbCP-GM, AbCP-GMH, BMP / AbCP-GM and BMP / AbCP-GMH can be produced by the same process.
【Example】
Examples of the present invention will be described below.
[0027]
[Example 1]
Production of biological tissue-derived absorbable calcium phosphate functionally gradient material (AbCP-GM).
Frozen preserved bovine femur is cut to a suitable size (5 x 3 x 3 mm, 12 x 9 x 3.5 mm) for animal implantation experiments, boiled and washed with distilled water, and baked in air at 773 to 1473K A biological tissue-derived apatite (b-HAp) was produced by the steps of (773 K for 10 hours, 1073 K for 10 hours, 1173 K for 8 hours, 1373 K for 24 hours, and 1473 K for 20 hours) (see FIG. 1). The fine bone-derived b-HAp (10 g) was pulverized and dissolved in 2000 cm 3 of a 4.5% nitric acid aqueous solution having a pH of 1. The other sea surface bone-derived b-HAp12g was immersed in the solution for 24 hours until it was partially dissolved. A gradient functional composite of sea surface bone-derived b-HAp and dissolved precipitated apatite (r-HAp) was performed by adding 750 cm 3 of 50% aqueous ammonia to adjust the pH to 10.5 and maintaining it at room temperature for 24 hours. A biological tissue-derived absorbable calcium phosphate gradient functional material (AbCP-GM) was produced by a step of filtering it, a step of washing with distilled water, and a step of drying at 323 to 393 K for 24 hours (see FIG. 2).
[0028]
Tables 1 and 2 show chemical analysis values of b-HAp and r-HAp, respectively, by induction plasma emission spectroscopy (ICP). AbCP-GM having an intermediate composition of b-HAp and r-HAp contains trace metal ions such as Mg 2+ and Na + derived from living bodies, and a molar ratio of Ca / P = 1.64 to 1.66. It was Ca 2+ deficient HAp.
[0029]
3 and 4 show the minute X-ray diffraction patterns of the deep layer and the surface layer of AbCP-GM, respectively. Since the HAp single phase is obtained in both parts, and the peak of each crystal plane sharply sharpens from the surface layer to the deep layer, AbCP-GM is a calcium phosphate that improves the crystallinity of HAp from the vicinity of the surface to the deep part. It was found to be a functionally graded material.
[0030]
In FIG. 5, the surface structure of AbCP-GM by a scanning electron microscope (SEM) is shown. It was revealed that the AbCP-GM particles are nano-micro functionally graded materials in which a large number of needle-like fine crystals of about 10 nm are precipitated in about 1 μm grains while maintaining the cancellous bone microstructure.
[0031]
[Example 2]
Production of biological tissue-derived absorbable calcium phosphate functionally gradient material (AbCP-GMH).
A biological tissue-derived absorbable calcium phosphate functionally gradient material (AbCP-GMH) was produced by heat treating the AbCP-GM of Example 1 for 24 hours in a water vapor atmosphere of 673-1073K. As the heat treatment temperature increased, it was found that AbCP-GMH improved the crystallinity of the surface layer HAp, the growth of HAp particles was observed, and the mechanical strength of AbCP-GMH increased.
[0032]
[Example 3]
Production of biological tissue-derived absorbable BMP / calcium phosphate functionally gradient composite materials (BMP / AbCP-GM and BMP / AbCP-GMH).
5 μg of natural bone-derived BMP was dissolved in 15 μl of distilled water. The BMP solution was impregnated in the AbCP-GM of Example 1 and the 673K heat-treated AbCP-GMH in Example 2 in a sterile dish, and the tissue-derived absorbable calcium phosphate functionally gradient composite material (BMP / AbCP -GM and BMP / AbCP-GMH).
[0033]
Table 1 shows chemical analysis values obtained by induction plasma emission spectroscopy (ICP) of apatite (b-HAp) derived from living tissue (sea surface bone / compact bone) prepared in Examples 1, 2, and 3.
[Table 1]
Figure 0003718723
[0034]
Table 2 shows chemical analysis values by ICP induction plasma emission spectroscopic analysis of the dissolved precipitated apatite (r-HAp) prepared in Examples 1, 2, and 3.
[Table 2]
Figure 0003718723
[0035]
As an ectopic bioassay, an AbCP-GM single group, a BMP / AbCP-GM group, an AbCP-GMH single group, and a BMP / AbCP-GMH group were set, and Wistar rats were used in the dorsal subcutaneous tissue at 277K. Refrigerated AbCP-GM, BMP / AbCP-GM, AbCP-GMH, and BMP / AbCP-GMH were embedded.
[0036]
[Example 4]
Histomorphological evaluation of AbCP-GM.
In the bioassay test, a phosphate buffer was added to AbCP-GM, and then it was implanted into the Wistar rat dorsal subcutaneous tissue. 1, 2, 3, 4, 6, 8, 10 weeks later, the embedded sample was removed over time, stained with hematoxylin-eosin (HE), and histomorphologically observed with an optical microscope (OM) Went.
[0037]
One week after implantation, apatite decay and giant cell absorption were observed.
[0038]
FIG. 6 shows an OM photograph of a decalcified HE specimen for AbCP-GM 4 weeks after implantation. Apatite decreased significantly, fibrous connective tissue was formed between the pores of the apatite, and the occupied area of the apatite in the entire implant as a result of morphometry was reduced to about 30% before implantation. The surface of the apatite is wavy, and the appearance of multinucleated giant cells and the accumulation of tissue fluid absorbed by the apatite are observed.
[0039]
Ten weeks after implantation, the apatite was completely absorbed, and it was impossible to confirm and remove the implant. During the entire observation period, the pores of residual apatite were occupied by fibrous tissue, and inflammatory cell infiltration mainly consisting of round cells was mild.
[0040]
[Example 5]
Histomorphological evaluation of BMP / AbCP-GM.
In the bioassay test, BMP / AbCP-GM was implanted into the Wistar rat dorsal subcutaneous tissue in the same manner as in Example 4. The embedded samples were removed over time at 1, 2, 3, 4, 6, 8, 10 weeks, subjected to HE staining, and histomorphological observation was performed by OM.
[0041]
One week after implantation, proliferation of undifferentiated mesenchymal cells was observed in the apatite pores. Two weeks after implantation, induced bone formed on the surface of the apatite was confirmed. Three weeks after implantation, the area occupied by weak fibrous bones and proliferating mesenchymal tissue expanded.
[0042]
7 and 8 show OM photographs of decalcified HE specimens for BMP / AbCP-GM 4 weeks after implantation. It can be seen that active bone induction is generally observed, and that apatite is covered with new bone and tends to be resorbed.
[0043]
In FIG. 7, the initial volume of the implant is substantially maintained, while the apatite is significantly reduced, and continuous beam-like bone formation is observed as a whole, and hematopoietic bone marrow tissue is observed. The occupied area in the entire implant by morphometry was about 29% for apatite and about 71% for bone / bone marrow tissue.
[0044]
In FIG. 8, apatite encapsulated in the new bone is observed, the bone-apatite has a mosaic shape as a whole, multinucleated giant cells appear on the wavy apatite surface, and tissue fluid is stored in the apatite. Is seen. Apatite residue in the process of resorption is also observed in the bone matrix in which many bone cells are encapsulated.
[0045]
At 6 and 8 weeks of implantation, the bone marrow space expanded, and after 10 weeks of implantation, the apatite was absorbed and replaced with bone and bone marrow tissue.
[0046]
[Example 6]
Histomorphological evaluation of AbCP-GMH and BMP / AbCP-GMH.
In the bioassay test, AbCP-GMH (673K heat treatment) and BMP / AbCP-GMH (673K heat treatment) were embedded in the Wistar rat dorsal subcutaneous tissue in the same manner as in Examples 4 and 5. Implanted samples were removed over time at 1, 2, 3, 4, 8 weeks, subjected to HE staining, and histomorphological observation was performed by OM.
[0047]
AbCP-GMH (673K heat treatment) has a higher mechanical strength than AbCP-GM, and BMP / AbCP-GMH (673K heat treatment) has a higher mechanical strength than BMP / AbCP-GM. It was easy.
[0048]
After 4 to 10 weeks of implantation, as in Examples 4 and 5, apatite resorption and formation of new adult bone were observed, but AbCP-GMH (673K heat treatment) and BMP / AbCP-GMH (673K heat treatment) However, the decay absorption rate of apatite tended to be slower than that of AbCP-GM and BMP / AbCP-GM.
[0049]
[Example 7]
Histological morphological evaluation of commercial apatite (Algipore).
As a control sample of Examples 1, 2, and 3, commercially available apatite (Algipore: manufactured by FRIATEC) was used, and was embedded in the Wistar rat dorsal subcutaneous tissue in the same manner as in Examples 4, 5, and 6. This apatite is a 1473K calcined chemically synthesized HAp having an ecological structure derived from a marine organism coral. The embedded samples were removed over time at 1, 2, 3, 4, 6, 8, 10 weeks, subjected to HE staining, and histomorphological observation was performed by OM.
[0050]
FIG. 9 shows an OM photograph of a decalcified HE specimen for Algipore after 4 weeks of implantation. Between the apatite particles is occupied by fibrous connective tissue, and multinucleated giant cells partially appear on the surface of the apatite, but no obvious decay absorption change is observed, and the surface structure is flat. Many tubule-like pores exist, but the structure is inferior in cell invasiveness.
[0051]
Even after 10 weeks of implantation, the volume reduction of the implant was not significant.
[0052]
Compared with the rat implantation test of the AbCP-GM group of Example 4, the BMP / AbCP-GM group of Example 5, and the BMP / AbCP-GMH group of Example 6, rapid tissue absorption and accelerated by the combined use of BMP Since bone induction is observed, the material of the present invention is an excellent resorbable calcium phosphate material that exhibits an adsorption ability that does not inhibit the action of the cytokine BMP and provides a scaffold for cell proliferation and differentiation into the osteoblast lineage. found.
[0053]
【The invention's effect】
The material of the present invention has a specific surface area that is 200 times larger than that of conventional calf bone (TBC) and has a similar physical structure, crystallinity, and surface properties to living bones. It is intended to provide a calcium phosphate functionally graded composite material having a tissue regeneration ability that is not found in existing biosubstitute materials, that is, the world's fastest bioabsorbability and bone replacement, as well as affinity and compatibility.
[0054]
In addition, since the cattle-derived collagenous material has been reviewed due to the mad cow disease problem, the present invention using livestock calcined bone completely decomposes and volatilizes the abnormal prion protein in the manufacturing process, so it is excellent in safety. Functional material.
[0055]
Therefore, in the future, the material of the present invention is not only a substitute for biohard tissue that is frequently used in clinical treatment as a material capable of controlling osteoinductive and in vivo resorption characteristics due to bone-related proteins and cell adsorption ability. It can be applied to bioactive substance binding, ES cell, somatic stem cell, bone marrow mesenchymal stem cell culture carrier material, gene vector-carrying intelligent material for gene therapy.
[0056]
Furthermore, the present invention provides a novel nano-micro inclination from the viewpoint of highly effective utilization of unused resources (live-living live bones) in order to meet the need for transplantation to bone regeneration and difficult-to-treat diseases accompanying the arrival of an aging society. As functional materials, a wide variety of applications can be developed in the fields of regenerative medicine and tissue engineering, and social and economic ripple effects are expected.
[Brief description of the drawings]
1 is an external photograph of cancellous bone-derived apatite (b-HAp) produced in Examples 1 and 2. FIG.
FIG. 2 is an appearance photograph of the biological tissue-derived absorbable calcium phosphate functionally graded material (AbCP-GM) produced in Examples 1 and 2.
FIG. 3 is a micro X-ray diffraction pattern of a deep layer of a living tissue-derived absorbable calcium phosphate functionally gradient material (AbCP-GM) prepared in Examples 1 and 2.
FIG. 4 is a micro X-ray diffraction pattern of the surface layer of the biological tissue-derived absorbable calcium phosphate functionally graded material (AbCP-GM) prepared in Examples 1 and 2.
FIG. 5 is an SEM photograph of biological tissue-derived absorbable calcium phosphate functionally graded material (AbCP-GM) produced in Examples 1 and 2.
6 is an OM photograph (HE, × 3) of a decalcified HE specimen 4 weeks after the implantation of AbCP-GM shown in Example 4. FIG.
7 is an OM photograph (HE, × 30 magnification) of a decalcified HE specimen 4 weeks after implantation of BMP / AbCP-GM shown in Example 5. FIG.
8 is an OM photograph (enlarged photograph of FIG. 7, HE, × 50 magnification) of a decalcified HE specimen 4 weeks after implantation of BMP / AbCP-GM shown in Example 5. FIG.
FIG. 9 is an OM photograph (HE, × 25) of a decalcified HE specimen 4 weeks after insertion of commercial apatite (Algipore: manufactured by FRIATEC) shown in Example 7;

Claims (6)

海面骨及び緻密骨をそれぞれ773〜1473Kの範囲で焼成する工程、pH2以下の無機酸に焼成緻密骨を完全溶解する工程、その溶液に焼成海面骨を部分溶解するまで浸漬する工程、塩基剤を添加しpHを8〜11に保持する工程、濾過する工程、水洗する工程、乾燥する工程により、製造した材料。  A step of firing sea surface bone and dense bone in the range of 773 to 1473K, a step of completely dissolving the fired dense bone in an inorganic acid having a pH of 2 or less, a step of immersing the fired sea surface bone in the solution until partial dissolution, and a base agent A material produced by adding and maintaining pH at 8 to 11, filtering, washing with water, and drying. 海面骨及び緻密骨をそれぞれ773〜1473Kの範囲で焼成する工程、pH2以下の無機酸に焼成緻密骨を完全溶解する工程、その溶液に焼成海面骨を部分溶解するまで浸漬する工程、塩基剤を添加しpHを8〜11に保持する工程、濾過する工程、水洗する工程、乾燥する工程による、材料の製造方法。  A step of firing sea surface bone and dense bone in the range of 773 to 1473K, a step of completely dissolving the fired dense bone in an inorganic acid having a pH of 2 or less, a step of immersing the fired sea surface bone in the solution until partial dissolution, and a base agent The manufacturing method of material by the process of adding and hold | maintaining pH to 8-11, the process of filtering, the process of washing with water, and the process of drying. 請求項1の材料を673〜1073Kの範囲で水蒸気雰囲気熱処理する工程により、製造した材料。  A material produced by subjecting the material of claim 1 to a heat treatment in a steam atmosphere in the range of 673-1073K. 請求項1の材料を673〜1073Kの範囲で水蒸気雰囲気熱処理する工程による、材料の製造方法。  A method for producing a material, comprising a step of heat-treating the material of claim 1 in a steam atmosphere in a range of 673-1073K. 請求項1、3の材料に、骨形成蛋白質(BMP:Bone morphogenetic protein)を含浸する工程により、製造した材料。  The material manufactured by the process of impregnating the material of Claims 1 and 3 with a bone morphogenetic protein (BMP: Bone morphogenetic protein). 請求項1、3の材料に、骨形成蛋白質(BMP:Bone morphogenetic protein)を含浸する工程による、材料の製造方法。  The manufacturing method of a material by the process of impregnating the material of Claim 1 and 3 with a bone morphogenetic protein (BMP: Bone morphogenic protein).
JP2002050515A 2002-01-21 2002-01-21 Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof Expired - Fee Related JP3718723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050515A JP3718723B2 (en) 2002-01-21 2002-01-21 Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050515A JP3718723B2 (en) 2002-01-21 2002-01-21 Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof

Publications (2)

Publication Number Publication Date
JP2003210567A JP2003210567A (en) 2003-07-29
JP3718723B2 true JP3718723B2 (en) 2005-11-24

Family

ID=27655517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050515A Expired - Fee Related JP3718723B2 (en) 2002-01-21 2002-01-21 Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof

Country Status (1)

Country Link
JP (1) JP3718723B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199653B2 (en) 2003-12-09 2008-12-17 松崎 浩巳 Bone filling material
JP5875034B2 (en) * 2011-02-02 2016-03-02 学校法人日本大学 Porous three-dimensional structure and use thereof
CN104841016B (en) * 2014-12-19 2017-08-11 中国科学院深圳先进技术研究院 A kind of tuna fish-bone powder material and its preparation method and application
WO2019208683A1 (en) * 2018-04-27 2019-10-31 株式会社バイオアパタイト Hydroxyapatite
CN115814160B (en) * 2022-10-21 2024-02-06 深圳兰度生物材料有限公司 Bone repair material and preparation method thereof

Also Published As

Publication number Publication date
JP2003210567A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
Dorozhkin Medical application of calcium orthophosphate bioceramics
Guillemin et al. The use of coral as a bone graft substitute
WO2017219654A1 (en) Degradable, porous, magnesium-containing calcium phosphate-calcium sulfate composite biological stent
EP1858562B1 (en) Cartilaginiform and osteochondral substitute comprising multilayer structure and use thereof
EP0987032B1 (en) Ceramic material for osteoinduction comprising micropores in the surface of macropores
US9066995B2 (en) Bone substitute material
HUT65499A (en) Method for the preparation of bone supplementing material with fgf
Barone et al. Bone‐guided regeneration: from inert biomaterials to bioactive polymer (nano) composites
WO2003045455A1 (en) Implant, method of making the same and use thereof for the treating of bones defects
EP3338818A1 (en) Bone repair reusable composite material based on acellular biological tissue matrix material and preparation method therefor
Luna-Domínguez et al. Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration
Dorozhkin Calcium orthophosphate bioceramics
Ingole et al. Bioactive ceramic composite material stability, characterization
KR101885896B1 (en) Natural bone regeneration material containing minerals derived from human bone
WO2003070290A1 (en) Composite biomaterial containing phospholine
JP3718723B2 (en) Biological tissue-derived absorbable calcium phosphate functionally graded composite material and production method thereof
Pang et al. In vitro and in vivo evaluation of biomimetic hydroxyapatite/whitlockite inorganic scaffolds for bone tissue regeneration
Mansouri et al. The role of cuttlebone and cuttlebone derived hydroxyapatite with platelet rich plasma on tibial bone defect healing in rabbit: An experimental study
JPH08276003A (en) Head tissue restorative dental material and imbedded medical appliance
JPH10151188A (en) Implant for ossification
Xu et al. Development, in-vitro characterization and in-vivo osteoinductive efficacy of a novel biomimetically-precipitated nanocrystalline calcium phosphate with internally-incorporated bone morphogenetic protein-2
Goel et al. Role of tricalcium phosphate implant in bridging the large osteoperiosteal gaps in rabbits
Elghazel et al. TCP-fluorapatite composite scaffolds: mechanical characterization and in vitro/in vivo testing
Amemiya et al. Effect of porosity of titanium web on cortical bone response
Zhang et al. Osseointegration enhancement by controlling dispersion state of carbonate apatite in polylactic acid implant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees