JP3718141B2 - Ground fault detection method and apparatus - Google Patents

Ground fault detection method and apparatus Download PDF

Info

Publication number
JP3718141B2
JP3718141B2 JP2001153719A JP2001153719A JP3718141B2 JP 3718141 B2 JP3718141 B2 JP 3718141B2 JP 2001153719 A JP2001153719 A JP 2001153719A JP 2001153719 A JP2001153719 A JP 2001153719A JP 3718141 B2 JP3718141 B2 JP 3718141B2
Authority
JP
Japan
Prior art keywords
ground fault
circuit
distribution line
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001153719A
Other languages
Japanese (ja)
Other versions
JP2002354655A (en
Inventor
直輝 川村
実 叶井
康信 藤田
易蔵 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001153719A priority Critical patent/JP3718141B2/en
Priority to TW091108578A priority patent/TW555978B/en
Priority to KR1020020028393A priority patent/KR20020090146A/en
Publication of JP2002354655A publication Critical patent/JP2002354655A/en
Application granted granted Critical
Publication of JP3718141B2 publication Critical patent/JP3718141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/262Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of switching or blocking orders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は地絡検出方法及びその装置に係り、特に受電設備における地絡事故により発生する地絡電流を検出するのに好適な地絡検出方法及びその装置に関するものである。
【0002】
【従来の技術】
図2は従来の非接地系統における地絡検出装置の回路を示す構成図であ。図において、1は3相非接地系統の母線であり、2はこの3相母線1に接続された地絡検出対象となる配電線である。3は配電線の途中に設けられた3相母線1と配電線2を分離する遮断器、4は配電線2に流れる地絡電流を検出する零相変流器、5は配電線2に流れる電流を2次出力する3相分の変流器である。10は3相非接地系統の3相母線1に接続された接地形計器用変圧器であり、この接地形計器用変圧器10は、1次回路10a、2次回路10b、3次オープンデルタ回路10cの構成となっている。11は3次オープンデルタ回路10cと並列に接続された抵抗、12は抵抗と並列に接続され、地絡電圧を検出する地絡過電圧継電器、13は変流器5からの過電圧を検出する過電流継電器、14は3相分の変流器5の2次回路,15は3相分の変流器5の2次残留回路、16は地絡電圧と地絡電流が入力される地絡検出継電器である。
【0003】
次に、上述した地絡検出装置における動作について説明する。地絡事故点6で地絡が発生すると、3相母線1には地絡電圧が発生する。この地絡電圧は接地形計器用変圧器10の3次オープンデルタ回路10cを介して地絡過電圧継電器12で検出される。一方,電路には接地形計器用変圧器10の3次オープンデルタ回路10cが接続され、この3次オープンデルタ回路10と並列に接続されている抵抗11で制限された地絡電流i1は零相変流器4の2次出力により検出される。
【0004】
以上のように検出された接地形計器用変圧器10による地絡電圧と零相変流器4による地絡電流は地絡検出継電器16に入力され、この地絡検出継電器16で地絡故障を判定し、遮断器3に遮断指令を与えることで、地絡対象の配電線2を切り離すものである。
【0005】
一方、配電線2には短絡故障に備えた過電圧継電器13が具備されており、これは上記の零相変流器4とは別に3相の変流器5の2次回路14に接続されている。また、接地形計器用変圧器10の3次オープンデルタ回路10cには,電路地絡時に発生する地絡電圧を検出する地絡過電圧継電器12が接続されている。
【0006】
【発明が解決しようとする課題】
以上のように従来の地絡検出装置では、非接地系統の地絡検出装置16が、接地形計器用変圧器10の3次オープンデルタ回路10cの出力と配電線2の零相変流器2の2次出力を用いて検出しており、しかも、配電線2には、このほかに過電圧継電器13に対応した3相の変流器5が具備されている。このため、配電線2には3相の変流器5と零相変流器4の2種類を具備する必要があり、地絡検出装置が大型化することは勿論、ひいてはこれを収納する配電盤大型化することは避けられなかった。
【0007】
また、地絡時の地絡電流を変流器5の2次残留回路15で検出するには、地絡時の接地形計器用変圧器10の3次オープンデルタ回路10cに接続されている抵抗11で制限された地絡電流しか流れないために、短絡時の過電流に備えて変流比を大きくしてあるため、変流器5の2次残留回路15に流れる地絡電流は電流値が小さく検出が難しい問題があった。
【0008】
本発明の目的は、装置の小型化が図れることは勿論、地絡時の検出が簡単に行える地絡検出方法及びその装置を提供することにある。
【0009】
【課題を解決するための手段】
この目的を達成するために、本発明では接地形計器用変圧器の3次オープンデルタ回路に接続された制限抵抗及び地絡過電圧継電器により地絡電圧を検出することで切替回路を閉じて低インピーダンス回路を形成し、これにより配電線に流れる地絡電流の電流値を大きくし、これを変流器で検出するようにして従来の零相変流器を省略したことを特徴とする。
【0010】
【発明の実施の形態】
本発明の実施の形態を図1に示す地絡検出装置により説明する。
【0011】
図において、1は3相非接地系統の3相母線であり、2はこの3相母線1に接続された地絡対象となる配電線である。3は配電線2の途中に設けられた3相母線1と配電線2を分離する遮断器、5は配電線2に流れる電流を2次出力する3相分の変流器である。10は3相母線1に接続された接地形計器用変圧器であり、この接地形計器用変圧器10は、1次回路10a、2次回路10b、3次オープンデルタ回路10cの構成となっている。11は3次オープンデルタ回路10cと並列に接続された抵抗、17Aは抵抗11と並列接続された制限抵抗、18は制限抵抗17と直列接続され、地絡電圧を検出する地絡過電圧継電器12の動作により閉じる切替回路である。切替回路18が閉じると制限抵抗17とで低インピーダンス回路17を形成する。15は3相分の変流器5の2次残留回路、16は地絡電圧と地絡電流が入力される地絡検出継電器である。地絡検出継電器16は地絡電流i1が方向性つまり接地E1方向に流れるか否かをみているので、一種の方向性継電器と云える。
【0012】
次に、本実施例における地絡検出装置の動作について説明する。地絡事故点6で地絡が発生すると、配電線3に生じた地絡事故点6の地絡電流i1が、接地E1から接地形計器用変圧器10の接地Eと3相母線1及び3相配電線2を介して接地E1に循環して流れる。
【0013】
この時、3相母線1には地絡電圧が発生する。この地絡電圧は、接地形計器用変圧器10の3次オープンデルタ回路10cに接続された地絡過電圧継電器12により検出される。地絡電圧を検出することで地絡過電圧継電器12が動作すると抵抗11と並列に接続された限抵抗17A及び切替回路18が動作する。
【0014】
地絡過電圧継電器12動作により切替回路18が動作、つまり閉じると低インピーダンス回路17を形成するために、切替回路18の動作前よりも地絡電流i1は損失が少なくなり増加することになる。増加した地絡電流i1は、変流器5の2次残留回路15により検出される。
【0015】
この結果、地絡過電圧継電器12の地絡電圧と変流器5の2次残留回路15による地絡電流i1とを地絡検出継電器16に入力し、この地絡検出継電器16で地絡故障を判定し、遮断器3に遮断指令を与えることで開放し、地絡対象の配電線2を切り離すことができる。
【0016】
このように本実施例によれば、変流器5により地絡電流i1を検出できることで従来の零相変流器が省略できることにより、地絡検出装置及び地絡検出装置を使用した配電盤を小型化することができる。また従来の零相変流器は、環状鉄心内に3相の配電線を挿入していたため、この挿入作業が容易でなかったが、零相変流器が省略できることで、配電盤の組立て作業が容易になり、組立て作業の効率が大幅に向上した。
【0017】
【発明の効果】
以上のように、本発明によれば、零相変流器を省略した分、地絡検出装置及び地絡検出装置を使用した配電盤を小型化することができ
【図面の簡単な説明】
【図1】本発明の実施例として示した地絡検出装置の回路図。
【図2】従来の地絡検出装置の回路図。
【符号の説明】
1…3相母線、2…配電線、3…遮断器、4…零相変流器、5…変流器、6…地絡事故点、10…接地形計器用変圧器、10a…1次回路、10b…2次回路、10c…3次オープンデルタ回路、11…抵抗、12…地絡過電圧継電器、13…過電流継電器、14…変流器の2次回路、15…変流器(3相)の2次残留回路、16…地絡検出継電器、17…低インピーダンス回路、17A…限抵抗、18…切替回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground fault detection method and apparatus, and more particularly to a ground fault detection method and apparatus suitable for detecting a ground fault current generated by a ground fault in a power receiving facility.
[0002]
[Prior art]
Figure 2 is Ru configuration diagram illustrating a circuit of a ground fault detecting device of the conventional non-grounding system. In FIG, 1 is a generatrix of the three-phase ungrounded system, 2 is a distribution line of interest out connected to earth fault on the three-phase bus 1. 3 is a circuit breaker for separating the three-phase bus 1 and the distribution line 2 provided in the middle of the distribution line, 4 is a zero-phase current transformer for detecting a ground fault current flowing in the distribution line 2, and 5 is flowing in the distribution line 2 This is a three-phase current transformer for secondary output of current . Reference numeral 10 denotes a grounded instrument transformer connected to the three-phase bus 1 of the three-phase ungrounded system. The grounded instrument transformer 10 includes a primary circuit 10a, a secondary circuit 10b, and a tertiary open delta circuit. The configuration is 10c. 11 is a resistor connected in parallel with the third order open delta circuit 10c , 12 is connected in parallel with the resistor and detects a ground fault overvoltage relay that detects a ground fault voltage, and 13 is an overcurrent that detects an overvoltage from the current transformer 5. 14 is a secondary circuit of the current transformer 5 for three phases, 15 is a secondary residual circuit of the current transformer 5 for three phases, and 16 is a ground fault detection relay to which a ground fault voltage and a ground fault current are input. It is.
[0003]
Next, the operation of the above-described ground fault detection device will be described. When a ground fault occurs at the ground fault point 6, a ground fault voltage is generated on the three-phase bus 1. This ground fault voltage is detected by the ground fault overvoltage relay 12 through the third open delta circuit 10 c of the grounded-type instrument transformer 10. On the other hand, a third-order open delta circuit 10c of a grounded-type instrument transformer 10 is connected to the electric circuit, and a ground fault current i1 limited by a resistor 11 connected in parallel with the third-order open delta circuit 10 is zero-phase. It is detected by the secondary output of the current transformer 4.
[0004]
The ground fault voltage detected by the grounded instrument transformer 10 and the ground fault current generated by the zero-phase current transformer 4 are input to the ground fault detection relay 16, and the ground fault detection relay 16 detects a ground fault. determination to, by giving a cutoff command to the circuit breaker 3, while separating the distribution line 2 of ground target.
[0005]
On the other hand, the distribution line 2 is provided with an overvoltage relay 13 for short-circuit failure, which is connected to the secondary circuit 14 of the three-phase current transformer 5 separately from the zero-phase current transformer 4 described above. Yes. Further, a ground fault overvoltage relay 12 for detecting a ground fault voltage generated at the time of a ground fault is connected to the tertiary open delta circuit 10c of the grounded-type instrument transformer 10.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional ground fault detection device, the ground fault detection device 16 of the non-grounded system includes the output of the tertiary open delta circuit 10 c of the grounded instrument transformer 10 and the zero-phase current transformer 2 of the distribution line 2. In addition, the distribution line 2 is provided with a three-phase current transformer 5 corresponding to the overvoltage relay 13. For this reason, the distribution line 2 needs to be provided with two types of a three-phase current transformer 5 and a zero-phase current transformer 4, and the ground fault detection device is of course increased in size, and in turn the distribution board for storing it. but it was inevitable to increase the size of.
[0007]
In addition, in order to detect the ground fault current at the time of the ground fault by the secondary residual circuit 15 of the current transformer 5, the resistor connected to the tertiary open delta circuit 10c of the grounded instrument transformer 10 at the time of the ground fault 11, since only the ground fault current limited by 11 flows, the current transformation ratio is increased in preparation for an overcurrent at the time of a short circuit. Therefore, the ground fault current flowing through the secondary residual circuit 15 of the current transformer 5 is a current value. There was a problem that was small and difficult to detect.
[0008]
It is an object of the present invention to provide a ground fault detection method and apparatus capable of easily detecting a ground fault as well as downsizing the apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the present invention closes the switching circuit by detecting a ground fault voltage by a limiting resistor and a ground fault overvoltage relay connected to the third open delta circuit of a grounded instrument transformer, thereby reducing the impedance. forming a circuit, thereby increasing the current value of the ground fault current flowing through the distribution line, characterized in that this was omitted conventional ZCT be detected by current transformer.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to a ground fault detection apparatus shown in FIG.
[0011]
In FIG, 1 is a three-phase busbar of a three-phase ungrounded system, 2 is a power distribution line to be ground target that is connected to the 3-phase busbar 1. 3 is a circuit breaker for separating the three-phase bus 1 and the distribution line 2 provided in the middle of the distribution line 2, and 5 is a three-phase current transformer for secondary output of the current flowing through the distribution line 2 . Reference numeral 10 denotes a grounding-type instrument transformer connected to the three-phase bus 1. The grounding-type instrument transformer 10 has a primary circuit 10a, a secondary circuit 10b, and a tertiary open delta circuit 10c. Yes. 11 is a resistor connected in parallel with the third-order open delta circuit 10c , 17A is a limiting resistor connected in parallel with the resistor 11 , 18 is connected in series with the limiting resistor 17, and the ground fault overvoltage relay 12 detects the ground fault voltage. It is a switching circuit that closes by operation. When the switching circuit 18 is closed, a low impedance circuit 17 is formed by the limiting resistor 17. 15 is a secondary residual circuit of the current transformer 5 for three phases, and 16 is a ground fault detection relay to which a ground fault voltage and a ground fault current are inputted. The ground fault detection relay 16 can be said to be a kind of directional relay because the ground fault current i1 checks whether or not the ground fault current i1 flows in the direction , that is, the direction of the ground E1.
[0012]
Next, the operation of the ground fault detection apparatus in the present embodiment will be described. When a ground fault occurs at the ground fault point 6, the ground fault current i1 at the ground fault point 6 generated in the distribution line 3 is changed from the ground E1 to the ground E of the grounded-type instrument transformer 10 and the three-phase buses 1 and 3 It circulates and flows to the ground E1 through the phase distribution line 2.
[0013]
At this time, a ground fault voltage is generated in the three-phase bus 1. This ground fault voltage is detected by the ground fault overvoltage relay 12 connected to the third open delta circuit 10c of the grounded-type instrument transformer 10. Limit resistor 17A and the switching circuit 18 to the ground fault over-voltage relay 12 is connected in parallel with the work and the resistor 11 by detecting a ground fault voltage to operate.
[0014]
When the switching circuit 18 is operated by the operation of the ground fault overvoltage relay 12, that is, when the switching circuit 18 is closed, the low impedance circuit 17 is formed. Therefore, the ground fault current i1 is less loss and increases than before the operation of the switching circuit 18. The increased ground fault current i1 is detected by the secondary residual circuit 15 of the current transformer 5.
[0015]
As a result, enter the ground fault current i1 by ground voltage and the secondary residual circuit 15 of current transformer 5 of the earth fault over voltage relay 12 to ground fault detecting relay 16, a ground fault in the earth fault detection relay 16 determination to, open by giving a cutoff command to the circuit breaker 3, it is possible to disconnect the power line 2 of ground target.
[0016]
Thus , according to the present embodiment, the ground fault current i1 can be detected by the current transformer 5 , and the conventional zero-phase current transformer can be omitted, so that the ground fault detection device and the switchboard using the ground fault detection device can be provided. It can be downsized. In addition, the conventional zero-phase current transformer had a three-phase distribution line inserted in the annular core, so this insertion work was not easy, but the zero-phase current transformer could be omitted , and the switchboard assembly work As a result, the efficiency of assembly work has been greatly improved.
[0017]
【The invention's effect】
As described above, according to the present invention, minute is omitted zero-phase current transformer, Ru can be miniaturized switchboard using ground fault detecting device and ground detector.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a ground fault detection apparatus shown as an embodiment of the present invention.
FIG. 2 is a circuit diagram of a conventional ground fault detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Three-phase bus-line, 2 ... Distribution line, 3 ... Circuit breaker, 4 ... Zero phase current transformer, 5 ... Current transformer, 6 ... Ground fault accident point, 10 ... Grounding type instrument transformer, 10a ... Primary Circuit: 10b: Secondary circuit, 10c: Third open delta circuit, 11: Resistance, 12: Ground fault overvoltage relay, 13 ... Overcurrent relay, 14 ... Secondary circuit of current transformer, 15 ... Current transformer (3 secondary residual circuit phase), 16 ... ground detection relay, 17 ... low-impedance circuit, 17A ... limit resistor, 18 ... switching circuit.

Claims (6)

3相母線に3次オープンデルタ回路を有する接地形計器用変圧器及び3相配電線が接続され、前記3相配電線には、該3相配電線を前記3相母線と分離する遮断器及び配電線に流れる電流を2次出力する3相分の変流器を備えており、A grounding-type instrument transformer having a tertiary open delta circuit and a three-phase distribution line are connected to the three-phase bus, and the three-phase distribution line includes a circuit breaker and a distribution line for separating the three-phase distribution line from the three-phase bus It has a three-phase current transformer that outputs the flowing current as a secondary output.
前記3相配電線に生じた地絡事故点からの地絡電流により前記3相母線に生じた地絡電圧を、前記3次オープンデルタ回路に接続された地絡過電圧継電器により検出し、この地絡過電圧継電器が動作することで前記3次オープンデルタ回路に接続されている低インピーダンス回路を動作させ、該低インピーダンス回路が動作することにより増加する地絡電流を前記変流器で検出すると共に、前記地絡過電圧継電器で検出した地絡電圧と前記変流器で検出した地絡電流とを地絡検出継電器に入力することで該地絡検出継電器で地絡故障を判定し、該地絡検出継電器からの指令に基いて前記遮断器を開放して地絡対象の前記配電線を3相母線から切り離すことを特徴とする地絡検出方法。A ground fault voltage generated in the three-phase bus due to a ground fault current from the ground fault point generated in the three-phase distribution line is detected by a ground fault overvoltage relay connected to the third open delta circuit. The low voltage circuit connected to the third open delta circuit is operated by operating the overvoltage relay, the ground fault current that is increased by the operation of the low impedance circuit is detected by the current transformer, and A ground fault is detected by the ground fault detection relay by inputting the ground fault voltage detected by the ground fault overvoltage relay and the ground fault current detected by the current transformer to the ground fault detection relay, and the ground fault detection relay The ground fault detection method characterized by opening the said circuit breaker based on the command from, and disconnecting the said distribution line of a ground fault from a three-phase bus.
3相母線に3次オープンデルタ回路を有する接地形計器用変圧器及び3相配電線が接続され、前記3相配電線には、該3相配電線を前記3相母線と分離する遮断器及び配電線に流れる電流を2次出力する3相分の変流器を備えており、
前記3相配電線に生じた地絡事故点からの地絡電流により前記3相母線に生じた地絡電圧を、前記3次オープンデルタ回路に接続された地絡過電圧継電器により検出し、この地絡過電圧継電器が動作することで前記3次オープンデルタ回路に接続されている制限抵抗と切替回路を動作させ、該切替回路が動作することにより増加する地絡電流を前記変流器で検出すると共に、前記地絡過電圧継電器で検出した地絡電圧と前記変流器で検出した地絡電流とを地絡検出継電器に入力することで該地絡検出継電器で地絡故障を判定し、該地絡検出継電器からの指令に基いて前記遮断器を開放して地絡対象の前記配電線を3相母線から切り離すことを特徴とする地絡検出方法。
A grounding-type instrument transformer having a tertiary open delta circuit and a three-phase distribution line are connected to the three-phase bus, and the three-phase distribution line includes a circuit breaker and a distribution line for separating the three-phase distribution line from the three-phase bus It has a three-phase current transformer that outputs the flowing current as a secondary output.
A ground fault voltage generated in the three-phase bus due to a ground fault current from the ground fault point generated in the three-phase distribution line is detected by a ground fault overvoltage relay connected to the third open delta circuit. When the overvoltage relay is operated, the limiting resistor and the switching circuit connected to the tertiary open delta circuit are operated, and the ground fault current that is increased by the operation of the switching circuit is detected by the current transformer, By detecting the ground fault detected by the ground fault detection relay by inputting the ground fault voltage detected by the ground fault overvoltage relay and the ground fault current detected by the current transformer to the ground fault detection relay, the ground fault detection A ground fault detection method, wherein the circuit breaker is opened based on a command from a relay to disconnect the distribution line subject to ground fault from a three-phase bus.
3相母線に3次オープンデルタ回路を有する接地形計器用変圧器及び3相配電線が接続され、前記3相配電線には、該3相配電線を前記3相母線と分離する遮断器及び配電線に流れる電流を2次出力する3相分の変流器を備えており、前記3相配電線に生じた地絡事故点からの地絡電流が、前記接地形計器用変圧器と前記3相母線及び3相配電線を介して循環し、その時の地絡電流と前記3次オープンデルタ回路の地絡過電圧継電器により検出した地絡電圧とを地絡検出継電器に入力し、該地絡検出継電器からの指令により前記遮断器を開放して地絡対象の前記配電線を3相母線から切り離す地絡検出方法において、
前記3次オープンデルタ回路に接続された制限抵抗と前記地絡過電圧継電器により地絡電圧を検出すると閉じる切替回路とで低インピーダンス回路を形成し、これにより増加する地絡電流を前記変流器で検出して地絡過電圧継電器に入力することを特徴とする地絡検出方法。
A grounding-type instrument transformer having a tertiary open delta circuit and a three-phase distribution line are connected to the three-phase bus, and the three-phase distribution line includes a circuit breaker and a distribution line for separating the three-phase distribution line from the three-phase bus A three-phase current transformer for secondary output of the flowing current, and the ground fault current from the ground fault point generated in the three-phase distribution line is the ground-type instrument transformer, the three-phase bus, It circulates through the three-phase distribution line, inputs the ground fault current at that time and the ground fault voltage detected by the ground fault overvoltage relay of the third open delta circuit to the ground fault detection relay, and commands from the ground fault detection relay In the ground fault detection method of opening the circuit breaker and separating the distribution line subject to ground fault from the three-phase bus,
A low-impedance circuit is formed by a limiting resistor connected to the third open delta circuit and a switching circuit that closes when a ground fault voltage is detected by the ground fault overvoltage relay, and an increased ground fault current is generated by the current transformer. A ground fault detection method comprising detecting and inputting to a ground fault overvoltage relay.
3相母線に接続された3次オープンデルタ回路を有する接地形計器用変圧器及び3相配電線と、該3相配電線の途中に設けられ、該3相配電線を前記3相母線と分離する遮断器と、前記3相母線に生じた地絡事故点、接地形計器用変圧器、3相母線及び3相配電線の間を循環する地絡電流を検出する変流器と、前記3次オープンデルタ回路に接続され、該3次オープンデルタ回路の地絡電圧を検出する地絡過電圧検出回路と、該地絡過電圧検出回路が動作することにより地絡電流を増加させる前記3次オープンデルタ回路に接続された低インピーダンス回路と、前記地絡過電圧検出回路で検出された地絡電圧と前記変流器で検出された前記低インピーダンス回路で増加された地絡電流とが入力されて地絡故障を判定し前記遮断器に遮断指令を出力する地絡検出継電器とを備えていることを特徴とする地絡検出装置。A grounding-type instrument transformer having a tertiary open delta circuit connected to a three-phase bus and a three-phase distribution line, and a circuit breaker provided in the middle of the three-phase distribution line and separating the three-phase distribution line from the three-phase bus And a current transformer that detects a ground fault occurring in the three-phase bus, a grounded instrument transformer, a three-phase bus, and a ground fault current circulating between three-phase distribution lines, and the third open delta circuit. Connected to a ground fault overvoltage detection circuit for detecting a ground fault voltage of the tertiary open delta circuit, and to the third open delta circuit for increasing a ground fault current by operating the ground fault over voltage detection circuit. A ground fault detected by the low-impedance circuit, a ground fault voltage detected by the ground fault overvoltage detection circuit, and a ground fault current increased by the low impedance circuit detected by the current transformer are input to determine a ground fault. A break command is given to the breaker. Ground detector according to claim that a ground fault detecting relay to force. 前記低インピーダンス回路は、制限抵抗と、該制限抵抗と直列接続され、前記地絡過電圧継電器からの入力信号により閉じる切替回路とから成ることを特徴とする請求項4記載の地絡検出装置。5. The ground fault detection device according to claim 4, wherein the low impedance circuit includes a limiting resistor and a switching circuit connected in series with the limiting resistor and closed by an input signal from the ground fault overvoltage relay. 前記変流器の3相分で2次残留回路を形成し、この3変流器の2次残留回路による地絡電流を前記地絡検出継電器に入力することを特徴とする請求項4又は5記載の地絡検出装置。6. A secondary residual circuit is formed by three phases of the current transformer, and a ground fault current due to the secondary residual circuit of the three current transformers is input to the ground fault detection relay. The ground fault detection apparatus of description.
JP2001153719A 2001-05-23 2001-05-23 Ground fault detection method and apparatus Expired - Fee Related JP3718141B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001153719A JP3718141B2 (en) 2001-05-23 2001-05-23 Ground fault detection method and apparatus
TW091108578A TW555978B (en) 2001-05-23 2002-04-25 Detection method o fault grounding and the apparatus of the same
KR1020020028393A KR20020090146A (en) 2001-05-23 2002-05-22 Method and device for detecting ground fault

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153719A JP3718141B2 (en) 2001-05-23 2001-05-23 Ground fault detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2002354655A JP2002354655A (en) 2002-12-06
JP3718141B2 true JP3718141B2 (en) 2005-11-16

Family

ID=18998194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153719A Expired - Fee Related JP3718141B2 (en) 2001-05-23 2001-05-23 Ground fault detection method and apparatus

Country Status (3)

Country Link
JP (1) JP3718141B2 (en)
KR (1) KR20020090146A (en)
TW (1) TW555978B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102762A1 (en) * 2003-04-29 2004-11-25 Li Hung Calog Ting Cheng Safety device for electric equipments
CN103018525B (en) * 2012-11-29 2015-09-09 广东电网公司电力科学研究院 Transformer station's internal short-circuit distribution of current is carried out to the apparatus and method of synchro measure
CN104076238A (en) * 2014-06-25 2014-10-01 国家电网公司 Night low-voltage fault detection visual device of distribution transformer
TWI564575B (en) * 2014-10-09 2017-01-01 台達電子工業股份有限公司 Detecting apparatus and detecting method
KR101648512B1 (en) * 2015-04-29 2016-08-17 삼화디에스피주식회사 Motor protection relay for detecting resistive ground fault current

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576131A (en) * 1991-09-13 1993-03-26 Hitachi Ltd Faint ground fault detector
JPH0894683A (en) * 1994-09-26 1996-04-12 Tokyo Gas Co Ltd System for monitoring insulation of low voltage non-grounded system
KR19990030861U (en) * 1997-12-30 1999-07-26 추호석 Ground fault detection system of power system
JP2000333359A (en) * 1999-05-21 2000-11-30 Meidensha Corp Grounding fault-detecting device for mechanically/ electrically integrated system
KR20010000555A (en) * 2000-10-06 2001-01-05 조효상 Ground relay of engine driven generator

Also Published As

Publication number Publication date
JP2002354655A (en) 2002-12-06
KR20020090146A (en) 2002-11-30
TW555978B (en) 2003-10-01

Similar Documents

Publication Publication Date Title
TWI230491B (en) Control system for canceling load unbalance of three-phase circuit
CN101540501B (en) Ground electrode circuit protective system and device of high-voltage DC transmission system
JP5726047B2 (en) Operation test apparatus and operation test method for high-voltage system protection equipment
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
CN104539043A (en) Automatic-switching device system and method of standby power source
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
JP3718141B2 (en) Ground fault detection method and apparatus
CN112968423B (en) Overcurrent protection method for protecting turn-to-turn short circuit fault of low-voltage winding of grounding transformer
JP2019165569A (en) Failure determination device and protective relay device
CN112526389A (en) Single-phase earth fault line selection device and multidimensional determination method
JP4114929B2 (en) Distribution system ground fault detector
KR101648512B1 (en) Motor protection relay for detecting resistive ground fault current
CN106526298A (en) Zero-sequence current measurement device and wiring method therefor
CN203850813U (en) Overvoltage-inhibiting integrated protection device suitable for 12-45kV electrical networks
CN105977914B (en) The method and device of transformer zero-sequencedirectional protection under interior bridge mode
JP2008295144A (en) Ground distance relay
JP4006138B2 (en) Lock coordination control circuit and protective relay device
CN112087048B (en) High-voltage plant branch zero-sequence protection configuration system and method
CN112886562B (en) Transfer resistance adjustable active intervention arc extinction device and application
CN211266474U (en) Arc extinguishing system
CN112230161B (en) Detection method for single-phase earth fault line selection function
JP2705219B2 (en) Ground fault detection protection device
JP2705198B2 (en) Ground fault detector
JPH0548139Y2 (en)
JP2003018739A (en) Protective relay, and test method and test cable therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees