JP3717599B2 - Wireless repeater amplifier - Google Patents

Wireless repeater amplifier Download PDF

Info

Publication number
JP3717599B2
JP3717599B2 JP19276796A JP19276796A JP3717599B2 JP 3717599 B2 JP3717599 B2 JP 3717599B2 JP 19276796 A JP19276796 A JP 19276796A JP 19276796 A JP19276796 A JP 19276796A JP 3717599 B2 JP3717599 B2 JP 3717599B2
Authority
JP
Japan
Prior art keywords
uplink
line
signal
amplifier
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19276796A
Other languages
Japanese (ja)
Other versions
JPH1022895A (en
Inventor
雅樹 須藤
貴 内田
範行 加賀屋
道夫 則近
陽一 大久保
純 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Kokusai Electric Corp
Original Assignee
NTT Docomo Inc
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, Hitachi Kokusai Electric Inc filed Critical NTT Docomo Inc
Priority to JP19276796A priority Critical patent/JP3717599B2/en
Publication of JPH1022895A publication Critical patent/JPH1022895A/en
Application granted granted Critical
Publication of JP3717599B2 publication Critical patent/JP3717599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話等の移動通信システムに用いられる無線中継増幅装置に関するものである。
【0002】
【従来の技術】
近年、携帯電話等の移動通信システムにおいて、基地局からの電波が届かないトンネル,地下街等の不感地帯の対策として、無線中継増幅装置によるサービスが普及しつつある。
【0003】
図1は本発明を適用しようとする無線中継増幅システムの一構成例図である。
基地局1の基地局送受信アンテナ2から送出された下り回線の電波は、無線中継増幅装置3の対基地局アンテナ4で受信され、無線中継増幅装置3で増幅された後、対移動局アンテナ5から移動局6−1〜Nへ送出される。
同様に、移動局6−1〜Nから送出された上り回線の電波は、対移動局アンテナ5で受信され、無線中継増幅装置3で増幅された後、対基地局アンテナ4から基地局1へ送出される。
【0004】
このようなシステムの無線中継増幅装置3は、システム内の多周波の電波を共通に増幅する共通増幅方式が一般的であり、又、無線中継増幅装置3は、装置への入力レベルが高くなったときに、増幅器の半導体を過入力から保護するためと、多周波が入力した際に、その入力レベルによって増幅器で発生する相互変調歪のレベルを抑えて、不要波の出力を防止するために、装置への電波の入力状態によって速やかに利得を低下させる自動利得制御(Automatic Gain Control:AGC)機能を具備しているのが一般的である。
【0005】
図1のシステムにおいて、無線中継増幅装置3のAGC機能が動作していない通常のサービスエリアは7−2であり、このサービスエリア7−2内にある移動局は通話可能であるが、例えば、対移動局アンテナ5の近傍にある移動局6−1が通話を行ったとき、無線中継増幅装置3の入力レベルが非常に高くなり、AGC機能が動作して無線中継増幅装置3の利得が低下するために、このときの無線中継増幅装置3によるサービスエリアは7−1のように狭くなり、このサービスエリア7−1より外側にある移動局6−2〜Nは通話不能となる問題がある。
【0006】
図2に無線中継増幅装置3の従来の一構成例図を示す。図2において、基地局から移動局への下り回線と移動局から基地局への上り回線の構成と動作は、原理的に同じであるので、上り回線について説明する。
【0007】
対移動局アンテナ5から入力した移動局からの電波は、対移動局共用器12を通り上り回線AGC用減衰器14を経て上り回線増幅部16で増幅され、上り回線方向性結合器18を通り、対基地局共用器11を経て対基地局アンテナ4から基地局へ送出される。又、上り回線方向性結合器18により抽出された上り回線の信号は、上り回線AGC制御部20に入力され、上り回線AGC制御部20ではその入力レベルが高くなったときに上り回線AGC用減衰器14の減衰量を増加させるように働き、無線中継増幅装置3の利得を低下させ、送信出力を抑えて、あるレベルを越えないようにする。
上り回線AGC用減衰器14は、上り回線増幅部16の過入力保護と相互変調歪の発生を抑える目的のために、上り回線増幅部16の入力側の位置に設けられているため、AGC機能が動作して上り回線AGC用減衰器14の減衰量が増加することは、無線中継増幅装置3の上り回線の雑音指数がその減衰量の増加分だけ劣化することと同じで、これは、前述したサービスエリアの狭ゾーン化の問題の他に、通話回線品質の劣化という問題も生じる。
【0008】
【発明が解決しようとする課題】
これを解決するには、増幅部の線形性を高めるために飽和出力の高い増幅器を使用して、AGC動作レベルを高くすることによって、AGC機能が動作しにくい増幅部を構成することは一つの方法であるが、無線中継増幅装置3に入力される上り回線数とそのレベルは、常時一定ではなく、設置される場所や時間帯によって回線数が多くなったり少なくなったりし、又、移動局との距離によってレベルが変動するため、上り回線増幅部16は、入力が最も厳しい条件、即ち、入力回線数が最も多い条件と入力レベルが最も高くなる条件をあわせて考慮し、その規模、即ち、飽和出力を決めた場合、消費電力が大きくなり、その時々の回線状況によっては、非常に無駄な電力を消費する装置になるという欠点がある。
【0009】
本発明の目的は、従来技術の問題点のAGC機能動作によるサービスエリアの狭ゾーン化と通話回線品質の劣化を解決し、中継される回線の数やレベル等の状況に応じた経済的な消費電力で不感地帯をサービス可能にできる無線中継増幅装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の無線中継増幅装置は、基地局から移動局に対する下り回線信号及び移動局から基地局に対する上り回線信号を中継増幅する双方向の無線中継増幅装置において、
対基地局アンテナに接続された対基地局共用器と対移動局アンテナに接続された対移動局共用器との間の下り回線及び上り回線のそれぞれに信号入力側から順次に接続されたAGC用減衰器,複数の増幅器が並列又は縦続に多段接続された増幅部及び方向性結合器と,
該方向性結合器と前記AGC用減衰器との間に接続された回線状況検出部及び回線制御部とから構成され、
前記下り回線又は前記上り回線のそれぞれの前記方向性結合器によって抽出された回線信号から前記各回線状況検出部により回線信号数及び信号レベル等の回線状況情報を検出し、該回線状況情報に基づき前記各回線制御部は、前記各増幅部の前記複数の増幅器の接続組み合わせを切り替え飽和出力を変化せしめる制御を行うように構成されたことを特徴とするものである。
【0011】
また、本発明の無線中継増幅装置の前記各回線制御部は、前記回線状況情報に基づき前記AGC用減衰器の減衰量を増減せしめる制御をも行うように構成されたものである。
さらに、本発明の無線中継増幅装置の前記各回線制御部は、前記増幅部の複数の増幅器のうち、接続の組み合わせにより使用しない増幅器の電源を断にするように制御し、消費電力を低減できるように構成されたものである。
【0012】
【発明の実施の形態】
図3は本発明による無線中継増幅装置の一構成例図である。図において、21,22は送受共用器、23,24は減衰器、25,26は増幅部、27,28は方向性結合器である。29,30は本発明によって付加した下り,上り回線の回線状況検出部、31,32は下り,上り回線制御部である。
【0013】
下り回線と上り回線の構成と動作は基本的に同じであるので、上り回線について説明する。
移動局から送出されて無線中継増幅装置に入力した上り回線信号は、対移動局送受共用器22を通り、上り回線AGC用減衰器24を経て上り回線増幅部26で増幅され、上り回線方向性結合器28を通り、対基地局送受共用器21を経て無線中継増幅装置から基地局に対して送出される。
【0014】
又、上り回線方向性結合器28で抽出された上り回線信号は、上り回線状況検出部30に入力され、ここで、上り回線の回線信号数や信号レベル等が検出され、この上り回線の回線状況情報によって、上り回線制御部32が上り回線増幅部26に対して増幅器接続切替信号を送出する。増幅部26は複数(段)の増幅器が並列又は縦続に多段接続されている。上り回線増幅部26は、この切替信号によって個々の増幅器の接続組合せが切替えられ、上り回線増幅部26の飽和出力が変えられる。そして、接続の組合せにより、使用しない増幅器の電源を断として無駄な電力の消費を抑える。
【0015】
上り回線増幅部26の飽和出力が最大のときでも、あるレベル以上の不要波となる相互変調歪が発生するような回線信号数や信号レベルの入力があったときは、上り回線制御部32は上り回線AGC用減衰器24の減衰量を増加させて増幅部26の入力レベルを小さくするように働く。
【0016】
下り回線についても、動作原理は同じであり、図3では上り回線と下り回路は独立してそれぞれの増幅部25,26の飽和出力を変えるように構成されているが、上り回線の回線信号数やレベル等の回線状況情報から、上り回線と下り回線の両方の増幅部の飽和出力を同時に変える構成でもよい。
【0017】
図3で説明した増幅部の中の複数の増幅器の接続組合せの切替えについて、その具体例で説明する。
図4は本発明に用いられる増幅部25,26の詳細回路の一構成例図である。図において、40は第1の実施例を示す増幅部である。33,34,35は増幅器、36,37,38,39は線路切替スイッチである。
【0018】
図4の増幅部40は、飽和出力の異なる3つの増幅器33〜35が飽和出力の順に配置されており、最も飽和出力の高いものが最終段の増幅器35である。このような構成の増幅部40において、通常は、線路切替スイッチ36は接点36−bと接続され、線路切替スイッチ37は接点37−bと接続されている。又、線路切替信号38は、接点38−aに接続され、線路切替スイッチ39は接点39−aに接続されている。
このとき、増幅部40に入力された信号は、線路切替スイッチ36を経て増幅器33で増幅され、線路切替スイッチ37を経て増幅器34で更に増幅され、線路切替スイッチ38,39を経て出力される。このとき、信号の通らない増幅器35は、増幅器接続切替(AMP ON/OFF)信号により電源断としておく。
【0019】
次に、中継される電波の回線信号数や信号レベルにより、増幅部40の飽和出力を上げる必要が生じたときに、AMP ON/OFF信号により増幅器35の電源を入れ、線路切替スイッチ36〜39は、切替信号によりそれぞれ接点36−a,37−a,38−b,39−bに接続され、AMP ON/OFF信号により増幅器33の電源を断とする。
このとき、増幅部40に入力された信号は、線路切替スイッチ36,37を経て増幅器34で増幅され、線路切替スイッチ38を経て、増幅器35で更に増幅され、線路切替スイッチ39を経て出力される。
このようにして、増幅器33〜35の接続組合せを切替えることにより、増幅部40の飽和出力を変化させることができる。
【0020】
図5は本発明に用いられる増幅部25,26の他の実施例を示す一構成例図である。図において、50は第2の実施例の増幅部である。41,42は増幅器、43,44,45,46は線路切替スイッチである。47は分配器、48は合成器である。
【0021】
図5の増幅部50は、飽和出力の等しい増幅器41,42が並列接続して配置されており、通常は、線路切替スイッチ43〜46の接続を、それぞれ、スイッチ43は▲2▼と▲3▼、スイッチ44は▲1▼と▲4▼、スイッチ45は▲2▼と▲3▼、スイッチ46は▲1▼と▲4▼が接続される状態にしておく。
このとき、増幅部50に入力された信号は、線路切替スイッチ43,44を経て増幅器41で増幅され、線路切替スイッチ45,46を経て出力される。このとき、AMP ON/OFF信号により、増幅器41の電源を入れ、増幅器42は電源を断にしておく。
【0022】
次に、中継する電波の回線信号数や信号レベルにより、増幅部50の飽和出力を上げる必要が生じたときに、AMP ON/OFF信号により、増幅器42の電源を入れ、線路切替スイッチ43〜46は切替信号によりそれぞれスイッチ43は▲2▼と▲4▼、スイッチ44は▲2▼と▲4▼、スイッチ45は▲2▼と▲4▼、スイッチ46は▲2▼と▲4▼が接続されるようにする。
このとき、増幅部50に入力された信号は、線路切替スイッチ43を経て、分配器47で分配され、一方は、線路切替スイッチ44を経て増幅器41で増幅され、線路切替スイッチ45を通り合成器48に入力される。もう一方の信号は、増幅器42で増幅され合成器48に入力される。合成器48で合成された両方の信号は、線路切替スイッチ46を通り出力される。
こうして、増幅部50の飽和出力を変化させることができる。
【0023】
図4のような構成と図5のような構成を種々組み合わせて構成した増幅部についても、飽和出力を変化させることができるのは明らかである。
【0024】
【発明の効果】
以上詳細に説明したように、本発明によれば、中継される回線信号数や回線信号レベル等の状況の変化があっても所要サービスエリアと通話回線品質を確保することができ、更に、その回線状況に応じた必要十分な経済的消費電力で不感地帯をサービスできるため実用上の効果は大きい。
【図面の簡単な説明】
【図1】本発明を適用しようとする無線中継増幅装置システムの構成例図である。
【図2】従来の無線中継増幅装置の構成例図である。
【図3】本発明の無線中継増幅装置の構成例図である。
【図4】本発明の増幅部の第1の実施例を示す構成例図である。
【図5】本発明の増幅部の他の実施例を示す構成例図である。
【符号の説明】
1 基地局
2 基地局アンテナ
3 無線中継増幅装置
4 対基地局アンテナ
5 対移動局アンテナ
6−1〜N 移動局
7−1〜2 サービスエリア
11 対基地局送受共用器
12 対移動局送受共用器
13 下り回線AGC用減衰器
14 上り回線AGC用減衰器
15 下り回線増幅部
16 上り回線増幅部
17 下り回線方向性結合器
18 上り回線方向性結合器
19 下り回線AGC制御部
20 上り回線AGC制御部
21 対基地局送受共用器
22 対移動局送受共用器
23 下り回線AGC用減衰器
24 上り回線AGC用減衰器
25 下り回線増幅部
26 上り回線増幅部
27 下り回線方向性結合器
28 上り回線方向性結合器
29 下り回線回線状況検出部
30 上り回線回線状況検出部
31 下り回線制御部
32 上り回線制御部
33〜35 増幅器
36〜39 線路切替スイッチ
40 増幅部
41,42 増幅器
43〜46 線路切替スイッチ
47 分配器
48 合成器
50 増幅部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio relay amplification apparatus used in a mobile communication system such as a mobile phone.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in mobile communication systems such as mobile phones, services using wireless relay amplification devices are becoming widespread as countermeasures for dead zones such as tunnels and underground malls where radio waves from base stations do not reach.
[0003]
FIG. 1 is a diagram showing a configuration example of a wireless relay amplification system to which the present invention is applied.
The downlink radio wave transmitted from the base station transmission / reception antenna 2 of the base station 1 is received by the base station antenna 4 of the radio relay amplification device 3, amplified by the radio relay amplification device 3, and then the mobile station antenna 5. To the mobile stations 6-1 to N.
Similarly, uplink radio waves transmitted from the mobile stations 6-1 to 6 -N are received by the mobile station antenna 5, amplified by the wireless relay amplification device 3, and then transmitted from the base station antenna 4 to the base station 1. Sent out.
[0004]
The wireless relay amplifying apparatus 3 of such a system generally has a common amplification method for commonly amplifying multi-frequency radio waves in the system, and the wireless relay amplifying apparatus 3 has a high input level to the apparatus. In order to protect the semiconductor of the amplifier from excessive input and to prevent the output of unwanted waves by suppressing the level of intermodulation distortion generated in the amplifier by the input level when multiple frequencies are input In general, an automatic gain control (AGC) function for quickly reducing the gain depending on the state of radio wave input to the apparatus is provided.
[0005]
In the system of FIG. 1, the normal service area where the AGC function of the wireless relay amplification device 3 is not operating is 7-2, and mobile stations within this service area 7-2 can talk, When the mobile station 6-1 in the vicinity of the mobile station antenna 5 makes a call, the input level of the radio relay amplifying device 3 becomes very high, the AGC function operates and the gain of the radio relay amplifying device 3 decreases. Therefore, the service area by the wireless relay amplifying device 3 at this time becomes narrow as 7-1, and there is a problem that the mobile stations 6-2 to N outside the service area 7-1 cannot talk. .
[0006]
FIG. 2 shows an example of a conventional configuration of the wireless relay amplifying device 3. 2, the configuration and operation of the uplink from the base station to the base station from the mobile station and downlink to the mobile station, since in principle the same will be described uplink.
[0007]
Radio waves from the mobile station input from the mobile station antenna 5 pass through the mobile station duplexer 12, pass through the uplink AGC attenuator 14, are amplified by the uplink amplifier 16, and pass through the uplink directional coupler 18. The signal is transmitted from the antenna for base station 4 to the base station via the duplexer for base station 11. Further, the uplink signal extracted by the uplink directional coupler 18 is input to the uplink AGC control unit 20, and the uplink AGC control unit 20 attenuates the uplink AGC when the input level becomes high. It works to increase the attenuation of the device 14, lowers the gain of the radio relay amplifying device 3, suppresses the transmission output, and does not exceed a certain level.
The uplink AGC attenuator 14 is provided at the position on the input side of the uplink amplifying unit 16 for the purpose of protecting the input of the uplink amplifying unit 16 and suppressing the occurrence of intermodulation distortion. And the increase in the amount of attenuation of the uplink AGC attenuator 14 is the same as the deterioration of the uplink noise figure of the radio relay amplifying device 3 by the increase in the amount of attenuation. In addition to the problem of narrowing the service area, there is also a problem of deterioration of communication line quality.
[0008]
[Problems to be solved by the invention]
In order to solve this problem, it is necessary to construct an amplification unit in which the AGC function is difficult to operate by using an amplifier having a high saturation output to increase the linearity of the amplification unit and increasing the AGC operation level. In this method, the number of uplink lines input to the radio relay amplifying apparatus 3 and its level are not always constant, and the number of lines increases or decreases depending on the installation location and time zone. Since the level fluctuates depending on the distance to the uplink amplifier 16, the uplink amplifying unit 16 considers the condition that the input is most severe, that is, the condition that the number of input lines is the largest and the condition that the input level is the highest, When the saturation output is determined, the power consumption becomes large, and depending on the line condition at that time, there is a disadvantage that the apparatus consumes very wasted power.
[0009]
The object of the present invention is to solve the narrowing of the service area and the deterioration of the communication line quality due to the AGC function operation which is a problem of the prior art, and economical consumption according to the situation such as the number and level of relayed lines. An object of the present invention is to provide a wireless relay amplification device that can service a dead zone with electric power.
[0010]
[Means for Solving the Problems]
The radio relay amplification apparatus of the present invention is a bidirectional radio relay amplification apparatus that relays and amplifies a downlink signal from a base station to a mobile station and an uplink signal from the mobile station to the base station.
For AGC sequentially connected from the signal input side to each of the downlink and uplink between the duplexer connected to the base station antenna and the duplexer connected to the mobile station antenna An attenuator, an amplifying unit in which a plurality of amplifiers are connected in parallel or in cascade, and a directional coupler;
A line condition detection unit and a line control unit connected between the directional coupler and the AGC attenuator;
Each line status detection unit detects channel status information such as the number of channel signals and signal level from the channel signal extracted by the directional coupler of each of the downlink and the uplink, and based on the channel status information Each of the line control units is configured to perform control to change a saturation output by switching a connection combination of the plurality of amplifiers of each amplification unit .
[0011]
In addition, each line control unit of the wireless relay amplifying apparatus of the present invention is configured to perform control to increase or decrease the attenuation amount of the AGC attenuator based on the line status information.
Furthermore, each line control unit of the wireless relay amplification device according to the present invention can control power to be turned off for an amplifier that is not used among a plurality of amplifiers of the amplification unit according to a combination of connections, thereby reducing power consumption. It is comprised as follows.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 is a diagram showing an example of the configuration of the wireless relay amplification apparatus according to the present invention. In the figure, 21 and 22 are duplexers, 23 and 24 are attenuators, 25 and 26 are amplifying units, and 27 and 28 are directional couplers. Reference numerals 29 and 30 denote downlink and uplink channel status detection units added according to the present invention, and reference numerals 31 and 32 denote downlink and uplink channel control units.
[0013]
Since the configuration and operation of the downlink and uplink are basically the same, only the uplink will be described.
The uplink signal transmitted from the mobile station and input to the radio relay amplifying apparatus passes through the duplexer 22 for mobile station, is amplified by the uplink amplifying unit 26 via the attenuator 24 for uplink AGC, and is directed to the uplink directionality. The signal is transmitted from the wireless relay amplification device to the base station through the coupler 28 and the base station transmission / reception duplexer 21.
[0014]
The uplink signal extracted by the uplink directional coupler 28 is input to the uplink status detection unit 30, where the number of uplink line signals, signal level, etc. are detected, and this uplink line is detected. Based on the status information, the uplink control unit 32 sends an amplifier connection switching signal to the uplink amplification unit 26. In the amplifying unit 26, a plurality of (stage) amplifiers are connected in multiple stages in parallel or in cascade. The uplink amplifier 26 switches the connection combination of the individual amplifiers by this switching signal, and the saturation output of the uplink amplifier 26 is changed. Then, depending on the combination of connections, the power supply of the amplifier that is not used is cut off to suppress wasteful power consumption.
[0015]
Even when the saturation output of the uplink amplifying unit 26 is maximum, when there is an input of the number of channel signals or signal level that causes intermodulation distortion that becomes an unnecessary wave of a certain level or more, the uplink control unit 32 The amount of attenuation of the uplink AGC attenuator 24 is increased to reduce the input level of the amplifying unit 26.
[0016]
The operation principle is the same for the downlink as well. In FIG. 3, the uplink and downlink circuits are configured to change the saturation outputs of the respective amplifiers 25 and 26 independently. Alternatively, the configuration may be such that the saturation outputs of both the uplink and downlink amplifying units are simultaneously changed based on the channel status information such as level and level.
[0017]
The switching of the connection combination of a plurality of amplifiers in the amplifying unit described with reference to FIG.
FIG. 4 is a structural example of a detailed circuit of the amplifying units 25 and 26 used in the present invention. In the figure, reference numeral 40 denotes an amplifying unit showing the first embodiment. Reference numerals 33, 34, and 35 denote amplifiers, and 36, 37, 38, and 39 denote line changeover switches.
[0018]
In the amplification unit 40 of FIG. 4, three amplifiers 33 to 35 having different saturation outputs are arranged in the order of the saturation output, and the amplifier with the highest saturation output is the amplifier 35 at the final stage. In the amplification unit 40 having such a configuration, the line changeover switch 36 is normally connected to the contact 36-b, and the line changeover switch 37 is connected to the contact 37-b. The line switching signal 38 is connected to the contact 38-a, and the line switching switch 39 is connected to the contact 39-a.
At this time, the signal input to the amplifier 40 is amplified by the amplifier 33 via the line changeover switch 36, further amplified by the amplifier 34 via the line changeover switch 37, and output via the line changeover switches 38 and 39. At this time, the amplifier 35 through which no signal passes is turned off by an amplifier connection switching (AMP ON / OFF) signal.
[0019]
Next, when it becomes necessary to increase the saturation output of the amplifier 40 depending on the number of signal lines and the signal level of the relayed radio wave, the amplifier 35 is turned on by the AMP ON / OFF signal, and the line changeover switches 36-39. Are connected to the contacts 36-a, 37-a, 38-b, 39-b by a switching signal, respectively, and the amplifier 33 is powered off by an AMP ON / OFF signal.
At this time, the signal input to the amplification unit 40 is amplified by the amplifier 34 via the line changeover switches 36 and 37, further amplified by the amplifier 35 via the line changeover switch 38, and output via the line changeover switch 39. .
In this way, the saturation output of the amplifying unit 40 can be changed by switching the connection combination of the amplifiers 33 to 35.
[0020]
FIG. 5 is a structural diagram showing another embodiment of the amplifying units 25 and 26 used in the present invention. In the figure, reference numeral 50 denotes an amplifying unit of the second embodiment. Reference numerals 41 and 42 denote amplifiers, and reference numerals 43, 44, 45, and 46 denote line changeover switches. 47 is a distributor and 48 is a combiner.
[0021]
The amplifier unit 50 shown in FIG. 5 includes amplifiers 41 and 42 having equal saturation outputs connected in parallel. Normally, the line selector switches 43 to 46 are connected to each other, and the switch 43 is connected to (2) and (3), respectively. ▼, switch 44 is connected to (1) and (4), switch 45 is connected to (2) and (3), and switch 46 is connected to (1) and (4).
At this time, the signal input to the amplifying unit 50 is amplified by the amplifier 41 via the line changeover switches 43 and 44 and output via the line changeover switches 45 and 46. At this time, the amplifier 41 is turned on by the AMP ON / OFF signal, and the amplifier 42 is turned off.
[0022]
Next, when it is necessary to increase the saturation output of the amplifier 50 depending on the number of signal lines and the signal level of the relayed radio wave, the amplifier 42 is turned on by the AMP ON / OFF signal, and the line changeover switches 43 to 46 are turned on. The switch 43 is connected to (2) and (4), the switch 44 is connected to (2) and (4), the switch 45 is connected to (2) and (4), and the switch 46 is connected to (2) and (4). To be.
At this time, the signal input to the amplifying unit 50 is distributed by the distributor 47 via the line changeover switch 43, and one of the signals is amplified by the amplifier 41 via the line changeover switch 44 and passes through the line changeover switch 45. 48 is input. The other signal is amplified by the amplifier 42 and input to the synthesizer 48. Both signals synthesized by the synthesizer 48 are output through the line changeover switch 46.
In this way, the saturation output of the amplification unit 50 can be changed.
[0023]
It is clear that the saturation output can be changed also in the amplifying unit configured by variously combining the configuration shown in FIG. 4 and the configuration shown in FIG.
[0024]
【The invention's effect】
As described above in detail, according to the present invention, the required service area and the communication line quality can be ensured even if the number of line signals to be relayed and the line signal level are changed. Since the dead zone can be serviced with necessary and sufficient economic power consumption according to the line conditions, the practical effect is great.
[Brief description of the drawings]
FIG. 1 is a configuration example diagram of a wireless relay amplification apparatus system to which the present invention is applied.
FIG. 2 is a configuration example diagram of a conventional wireless relay amplification apparatus.
FIG. 3 is a configuration example diagram of a wireless relay amplification apparatus according to the present invention.
FIG. 4 is a configuration example diagram showing a first embodiment of an amplifying unit of the present invention;
FIG. 5 is a configuration diagram showing another embodiment of the amplifying unit of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base station 2 Base station antenna 3 Wireless relay amplifier 4 To base station antenna 5 To mobile station antenna 6-1 to N mobile station 7-1 to 2 Service area 11 To base station duplexer 12 To mobile station duplexer 13 Downlink AGC Attenuator 14 Uplink AGC Attenuator 15 Downlink Amplification Unit 16 Uplink Amplification Unit 17 Downlink Directional Coupler 18 Uplink Directional Coupler 19 Downlink AGC Control Unit 20 Uplink AGC Control Unit 21 Duplexer for Base Station 22 Duplexer for Mobile Station 23 Attenuator for Downlink AGC 24 Attenuator for Uplink AGC 25 Downlink Amplifier 26 Uplink Amplifier 27 Downlink Directional Coupler 28 Uplink Directionality combiner 29 downlink channel condition detector 30 uplink line status detecting unit 31 downlink control unit 32 uplink control section 33 to 35 amplification 36-39 line selector switch 40 the amplifying unit 41 amplifier 43 through 46 line selector switch 47 divider 48 synthesizer 50 amplifying section

Claims (3)

基地局から移動局に対する下り回線信号及び移動局から基地局に対する上り回線信号を中継増幅する双方向の無線中継増幅装置において、
対基地局アンテナに接続された対基地局共用器と対移動局アンテナに接続された対移動局共用器との間の下り回線及び上り回線のそれぞれに信号入力側から順次に接続されたAGC用減衰器,複数の増幅器が並列又は縦続に多段接続された増幅部及び方向性結合器と,
該方向性結合器と前記AGC用減衰器との間に接続された回線状況検出部及び回線制御部とから構成され、
前記下り回線又は前記上り回線のそれぞれの前記方向性結合器によって抽出された回線信号から前記各回線状況検出部により回線信号数及び信号レベル等の回線状況情報を検出し、該回線状況情報に基づき前記各回線制御部は、前記各増幅部の前記複数の増幅器の接続組み合わせを切り替え飽和出力を変化せしめる制御を行うように構成されたことを特徴とする無線中継増幅装置。
In a bidirectional radio relay amplification apparatus that relays and amplifies a downlink signal from a base station to a mobile station and an uplink signal from the mobile station to the base station,
For AGC sequentially connected from the signal input side to each of the downlink and uplink between the duplexer connected to the base station antenna and the duplexer connected to the mobile station antenna An attenuator, an amplifying unit in which a plurality of amplifiers are connected in parallel or in cascade, and a directional coupler;
A line condition detection unit and a line control unit connected between the directional coupler and the AGC attenuator;
Each line status detection unit detects channel status information such as the number of channel signals and signal level from the channel signal extracted by the directional coupler of each of the downlink and the uplink, and based on the channel status information Each of the line control units is configured to perform control to change a saturation output by switching a connection combination of the plurality of amplifiers of each of the amplification units.
前記各回線制御部は、前記回線状況情報に基づき前記AGC用減衰器の減衰量を増減せしめる制御をも行うように構成された請求項1に記載の無線中継増幅装置。 2. The radio relay amplifying apparatus according to claim 1, wherein each of the line control units is configured to perform control to increase or decrease an attenuation amount of the AGC attenuator based on the line status information . 前記各回線制御部は、前記増幅部の複数の増幅器のうち、接続の組み合わせにより使用しない増幅器の電源を断にするように制御し、消費電力を低減できるように構成された請求項1又は2に記載の無線中継増幅装置。 Each of the line control units is configured to be able to reduce power consumption by performing control so that an amplifier that is not used among a plurality of amplifiers of the amplification unit is not used depending on a combination of connections. The wireless relay amplification device according to 1.
JP19276796A 1996-07-04 1996-07-04 Wireless repeater amplifier Expired - Lifetime JP3717599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19276796A JP3717599B2 (en) 1996-07-04 1996-07-04 Wireless repeater amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19276796A JP3717599B2 (en) 1996-07-04 1996-07-04 Wireless repeater amplifier

Publications (2)

Publication Number Publication Date
JPH1022895A JPH1022895A (en) 1998-01-23
JP3717599B2 true JP3717599B2 (en) 2005-11-16

Family

ID=16296704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19276796A Expired - Lifetime JP3717599B2 (en) 1996-07-04 1996-07-04 Wireless repeater amplifier

Country Status (1)

Country Link
JP (1) JP3717599B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010065135A (en) * 1999-12-29 2001-07-11 서평원 Apparatus for amplifier to unite with duplexer in WLL
CN100592816C (en) * 2003-10-02 2010-02-24 富士通株式会社 Repeater
JP4610361B2 (en) * 2005-02-04 2011-01-12 富士通株式会社 Wireless relay device
JP5171529B2 (en) * 2008-05-23 2013-03-27 三菱電機株式会社 Relay transceiver
JP6734209B2 (en) * 2017-02-13 2020-08-05 日本電信電話株式会社 Power amplification device and power amplification control method

Also Published As

Publication number Publication date
JPH1022895A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
CA2087285C (en) Rf repeaters for time division duplex cordless telephone systems
KR20010107015A (en) Apparatus for transmitting/receiving radio signals in pico base station transceiver system
JP3717599B2 (en) Wireless repeater amplifier
KR100363216B1 (en) Multi-path repeating method for wireless communiction system and apparatus thereof
KR100336714B1 (en) Repeater for decreasing a noise
KR100287751B1 (en) CDMA mobile phone special area service system
JP3383145B2 (en) Individually selected relay amplifier
KR20030026698A (en) Device and method for suppressing interference of reverse link in in-building mobile communication system
JPH05259958A (en) Radio repeater
KR100282959B1 (en) Base station using switchable dual path receiver
JP2950676B2 (en) Wireless relay device
JP3466386B2 (en) Relay amplification system
KR100699107B1 (en) Apparatus for exclusive relayng transmitting signal from base station to moble station in the moble communication system
JP3095126B2 (en) Mobile radio frequency selective repeater
JP2000269879A (en) Relay amplifier
JPH1056415A (en) Relay amplifier system for narrow area
JP3338251B2 (en) Wireless relay amplifier
KR100281627B1 (en) Noise Reduction Circuit of Wireless Repeater
KR20060103674A (en) Integrated radio repeater
KR20060104635A (en) Integrated radio repeater
KR100782922B1 (en) Repeater signal complement system
KR200430832Y1 (en) Repeater Signal complement System
JP2000031879A (en) Radio relay amplifier
JPH08163019A (en) Mobile communication system
KR20030010137A (en) RF repeater having a function of interference cancellation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term