JP3717013B2 - Magnetic bearing device - Google Patents

Magnetic bearing device Download PDF

Info

Publication number
JP3717013B2
JP3717013B2 JP16904096A JP16904096A JP3717013B2 JP 3717013 B2 JP3717013 B2 JP 3717013B2 JP 16904096 A JP16904096 A JP 16904096A JP 16904096 A JP16904096 A JP 16904096A JP 3717013 B2 JP3717013 B2 JP 3717013B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
abnormality
control system
electromagnet
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16904096A
Other languages
Japanese (ja)
Other versions
JPH109266A (en
Inventor
均 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16904096A priority Critical patent/JP3717013B2/en
Publication of JPH109266A publication Critical patent/JPH109266A/en
Application granted granted Critical
Publication of JP3717013B2 publication Critical patent/JP3717013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気軸受装置に関し、特にターボ分子ポンプや工作機械等に使用する高速回転機器に用いる磁気軸受装置に関する。
【0002】
【従来の技術】
ターボ分子ポンプをはじめとする真空ポンプ等の高速回転機器では、良好な真空を得るためにオイルフリーであることが要求される。また、工作機械等における高速回転機器では、接触による減速や摩擦熱が少ないことが要求される。このような要求から、従来の油潤滑を利用した軸受に代えて磁気軸受装置が開発されている。磁気軸受装置は回転軸等の被支持体を真空空間に完全に非接触で磁気浮上させて回転させるため、高速回転機器に適した軸受とすることができる。
【0003】
通常、磁気軸受装置は回転体である被支持体のラジアル方向を支持するラジアル磁気軸受と、軸方向を支持するアキシャル磁気軸受を備えている。各磁気軸受は被支持体を磁気浮上させるための電磁石と、被支持体の位置を検出するための変位センサを備え、変位センサの位置信号を帰還させてフィードバック制御系を構成し、各電磁石に流れる電流を調節して電磁石の吸引力を調節し、被支持体が中心位置となるよう制御を行っている。
【0004】
図8は従来の磁気軸受装置を説明するための概略ブロック図である。図8において、被支持体20は電磁石6a,6bによって磁気浮上されて支持され、図示していない駆動部によって回転される。被支持体20の位置制御を行うフィードバック制御系は、被支持体20の位置を検出する変位センサ2,センサ回路3と、被支持体の支持目標値Aと変位出力Bとの偏差に基づいて電磁石の電流を制御する制御信号を出力する磁気軸受制御回路4と、制御信号に基づいて電磁石6a,6bに駆動電流を供給する電磁石電流アンプ5a,5bと、被支持体20に吸引力を付与する電磁石6a,6bを備えている。なお、図8は、アキシャル磁気軸受を省略して示し、さらに複数のラジアル磁気軸受の一部のみを示している。
【0005】
前記フィードバック制御系は、被支持体が支持目標値Aとなるように、変位センサ2が検出した変位出力Bを帰還させながら電磁石6a,6bの吸引力の調節を行う。
【0006】
【発明が解決しようとする課題】
被支持体の高速回転中に、磁気軸受装置の制御系に異常が発生すると、電磁石に過大な電磁石電流が流れる場合がある。磁気軸受装置の制御系に発生する異常としては、例えば変位センサの故障,変位センサ信号線の断線,支持目標値とフィードバック信号との偏差を求める加算器の故障等がある。例えば、変位センサ信号線が断線すると、磁気軸受制御回路4は被支持体20が所定位置にないと判断し、電磁石に供給する電磁石電流を増大させる。電磁石に過大な電磁石電流が流れると、被支持体20は高速回転しながら補助ベアリング21に強く押しつけられ、補助ベアリング21が破損したり、被支持体20が補助ベアリング21との接触面で焼き付くという問題が発生する。また、被支持体が停止中の場合に電磁石に過大な電磁石電流が流れると、電磁石の発熱によって電磁石が破損するという問題が発生する。
そこで、本発明は前記した従来の磁気軸受装置の問題点を解決し、磁気軸受装置の制御系の異常による電磁石への過大電流の供給を防止することを目的とする。
【0007】
【課題を解決するための手段】
本発明の磁気軸受装置は、被支持体を磁気浮上させる電磁石と、被支持体の変位を検出する変位センサと、変位センサからの変位信号に基づいて電磁石への供給電流を制御する磁気軸受制御回路を含んでループを形成する制御系を構成し、制御系中の異常を検出する異常検出回路と、異常検出回路の信号に基づいて前記ループを遮断する遮断回路とを備えることによって、磁気軸受装置の制御系の異常による電磁石への過大電流の供給を防止する。
【0008】
本発明の磁気軸受装置において、前記した構成の制御系は、変位センサによって検出した被支持体の変位量と目標値との偏差を求め、磁気軸受制御回路はこの偏差量にもとづいて電磁石電流アンプに制御信号を送り、電磁石の吸引力を調節する。本発明の異常検出回路は、この制御系中を監視し、例えば制御系中の各部の信号値を基準値との比較によって異常検出を行う。異常検出回路は、制御系中に異常を検出すると異常検出信号を遮断回路に送信する。遮断回路は制御系を構成するループの一部を遮断する回路であり、異常検出信号を受けて信号の遮断を行う。遮断回路は、例えば磁気軸受制御回路と電磁石電流アンプとの間に設置して電磁石電流アンプへの制御電流の導通を制御して、制御系中の異常発生時に電磁石への電磁石電流の供給を停止する。
遮断回路によって電磁石への電磁石電流の供給が停止すると、被支持体は磁気浮上を継続することができなくなり、補助ベアリングによって支持される。このとき補助ベアリングが受ける圧力は、被支持体の重さのみによるものであって、電磁石電流による過大な押圧力を受けることはなく、補助ベアリングの破損や接触面での焼き付きをさけることができる。
【0009】
本発明の第1の実施態様は、異常検出回路は磁気軸受制御回路の出力を入力し、電磁石電流アンプへの制御信号の異常を検出するものであり、これによって、変位センサの異常や制御系中の突出ノイズや制御系中の断線や電磁石の異常等を検出することができる。
本発明の第2の実施態様は、異常検出回路は変位センサの変位出力の異常を検出するものであり、これによって、変位センサの異常や制御系中の突出ノイズや制御系中の断線等を検出することができる。
本発明の第3の実施態様は、異常検出回路は変位センサの変位出力と支持目標値との偏差の異常を検出するものであり、これによって、変位センサの変位出力と支持目標値との偏差を求める加算器の異常や変位センサの異常や制御系中の突出ノイズや制御系中の断線等を検出することができる。
また、本発明の第4の実施態様は、異常検出回路は第2の実施態様と第3の実施態様とを組み合わせた構成であり、これによって、変位センサの異常と加算器の異常とを区別することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照しながら詳細に説明する。
本発明の実施の形態の構成例について、図1の本発明の磁気軸受装置の一実施形態を説明する概略ブロック図を用いて説明する。図1に示す磁気軸受装置中の制御系は、磁気軸受装置において被支持体20を磁気浮上させる一ラジアル磁気軸受についてのみ概略的に示しており、他のラジアル磁気軸受およびアキシャル磁気軸受についても同様に制御系を構成することができる。
【0011】
図1において、被支持体20は電磁石6a,6bによって磁気浮上されて支持され、図示していない駆動部によって回転される。被支持体20の位置制御を行うフィードバック制御系は、被支持体20の位置を検出する変位センサ2と、該変位センサ2の信号を受けて変位出力を出力するセンサ回路3と、被支持体20の支持目標値Aと変位出力Bとの偏差に基づいて電磁石6の電流を制御する制御信号を出力する磁気軸受制御回路4と、該制御信号に基づいて電磁石6a,6bに駆動電流を供給する電磁石電流アンプ5a,5bと、被支持体20に吸引力を付与する電磁石6a,6bを備え、さらに、前記電磁石と、変位センサと、磁気軸受制御回路を含んでループを形成する制御系中の異常を検出する異常検出回路7aと、該異常検出回路7aの異常検出信号に基づいてループを遮断する遮断回路8とを備えている。
【0012】
なお、図1中に示す電磁石6a,6bは磁気軸受装置が備える電磁石の一例であり、被支持体20を挟んで対向して配置し、電磁石電流アンプ5bの前に配置した反転器によって電磁石6aと電磁石6bとの吸引力の方向を逆方向として互いに被支持体20を吸引する磁力を発生する一対の電磁石を示しておいる。この電磁石は、被支持体20に対して他の位置のラジアル方向に変位センサおよび電磁石の対を配置し、また、軸方向について変位センサおよび電磁石を配置することもできる。
なお、図1に示す構成例では、遮断回路8を磁気軸受制御回路4と電磁石電流アンプ5aの間に設け、異常検出回路7aは磁気軸受制御回路4の出力を入力する構成とし、磁気軸受制御回路4の制御信号を監視することによって制御系の異常検出を行い、電磁石電流アンプ5a,5bへの制御信号を停止することによって電磁石6a,6bによる被支持体20の磁気浮上を停止する。
【0013】
次に、図1の構成例の磁気軸受装置の動作について、図5,6を用いて説明する。図5(a)は磁気軸受装置の制御系が正常に動作しているときのセンサ出力(a1)、偏差信号(a2)、磁気軸受制御回路出力(a3)、異常検出回路の出力(a4)、および電磁石電流(a5)であり、同様に図5(b)は制御系中の出力が突出した場合の異常動作の各部の出力を示し、図5(c)は制御系中で断線した場合の異常動作の各部の出力を示し、図6(a),(b)は電磁石に異常が発生した場合の各部の出力を示している。
図5(a)において、制御系が正常な場合には、変位センサ2は被支持体20の位置を非接触で検出し、被支持体20との距離に対応した信号に変換し、センサ回路3を介して変位出力B(図5(a1))を出力する。制御系中の加算器は、変位出力Bと支持目標値Aとの偏差(A−B)を求める(図5(a2))。磁気軸受制御回路4は偏差に基づいて被支持体20が所定位置からのずれを減少させるに必要な制御信号(図5(a3))を演算し、電磁石電流アンプ5を介して電磁石6によって被支持体20を磁気浮上させ、図中のCで示す可動範囲内となるよう位置制御を行う。可動範囲Cは被支持体20が補助ベアリング21に接触するまでの一方の側での許容範囲である。
【0014】
異常検出回路7aは磁気軸受制御回路の出力(図5(a3))を所定の値(図中の二点鎖線)と比較し、所定値を超えた場合には制御系中に異常が発生したと判定し、遮断回路8を駆動して制御系のループを遮断する。
図5(b)に示すように、制御系内で変位センサ等の出力が突出する異常動作が発生した場合には、変位出力B(図5(b1))および偏差信号(図5(b2))は大きく変動する。通常、磁気軸受制御回路4はPID制御を行っており、この変動に対して微分制御を行う。異常検出回路7aは、磁気軸受制御回路4の出力(図5(b3))を監視し、図中の二点鎖線で示す所定値と比較し、所定値を継続して所定時間T1以上超えている場合には制御系中に異常が発生したと判定し(図5(b4))、遮断回路8を駆動して制御系のループを遮断する(図5(b5))。
【0015】
なお、異常検出回路7aおよび遮断回路8による異常時の制御系の遮断を行わない場合には、電磁石6には図5の(b5)中の破線で示す電磁石電流が流れ、被支持体20と補助ベアリング21とが強く接触することになる。
また、図5(c)に示すように、制御系内で断線が発生した場合には、変位出力B(図5(c1))は無くなり、偏差信号(図5(c2))は大きく目標値に急変する。通常、磁気軸受制御回路4のPID制御は、変動を微分制御した後に積分制御を行って制御信号(図5(c3))を出力する。異常検出回路7aは、磁気軸受制御回路4の出力(図5(c3))を監視し、図中の二点鎖線で示す所定値と比較し、所定値を超えたことよって制御系中に異常が発生したと判定し(図5(c4))、遮断回路8を駆動して制御系のループを遮断する(図5(c5))。
なお、異常検出回路7aおよび遮断回路8による異常時の制御系の遮断を行わない場合には、電磁石6には図5(c5)中の破線で示す電磁石電流が流れ、被支持体20と補助ベアリング21とが強く接触することになる。
【0016】
次に、電磁石に異常が発生した場合について図6を用いて説明する。電磁石6aあるいは電磁石6bに異常が発生し、被支持体20が補助ベアリング21の片側に接触した状態となり、変位センサ2は一定出力を維持することになる。図6(a)と図6(b)は被支持体20の偏りの方向が逆の場合を示しており、制御系は同様の動作を行うため、以下では図6(a)のみについて説明する。
変位センサ2の出力が一定出力(a1)を出し続けると、目標値を一定とすると偏差信号も一定出力(図6(a2))を出し続ける。磁気軸受制御回路4の制御信号(図6(a3))は積分制御によって徐々に増加する。異常検出回路7aは、制御信号(図6(a3))が図中の二点鎖線で示す比較値を超え、超えた状態が所定時間T2以上となることを判定する。異常検出回路7aは、異常が発生したと判定すると(図6(a4))、遮断回路8を駆動して制御系のループを遮断する(図6(a5))。なお、異常検出回路7aおよび遮断回路8による異常時の制御系の遮断を行わない場合には、電磁石6には図6(a5)中の破線で示す電磁石電流が流れ、被支持体20と補助ベアリング21とが強く接触することになる。
従って、図1に示す実施の形態によれば、変位センサの異常や制御系中の突出ノイズや制御系中の断線や電磁石の異常等を検出することができる。
【0017】
次に、図2により本発明の磁気軸受装置の他の実施形態を説明する。図2に示す磁気軸受装置は図1に示す磁気軸受装置とほぼ同様の構成であり、異常検出回路7bに接続の点で相違している。図2の構成では、異常検出回路7bはセンサ回路3の出力を入力する構成とし、センサ回路3の変位出力Bを監視することによって制御系の異常検出を行い、電磁石電流アンプ5a,5bへの制御信号を停止することによって電磁石6a,6bによる被支持体20の磁気浮上を停止する。
図2の構成例の磁気軸受装置の動作について、図7を用いて説明する。図7(a)は磁気軸受装置の制御系が正常に動作しているときのセンサ出力(a1)、偏差信号(a2)、磁気軸受制御回路出力(a3)、異常検出回路の出力(a4)、および電磁石電流(a5)であり、同様に図7(b)は制御系中の出力が突出した場合の異常動作の各部の出力を示し、図7(c)は制御系中で断線した場合の異常動作の各部の出力を示している。
【0018】
制御系が正常な場合の各出力(図7(a))は前記図5(a)とほぼ同様である。図2の構成例では、異常検出回路7bはセンサ回路3の出力(図7(a1))を所定の値と比較し、所定値を継続して所定時間T3以上超えている場合には制御系中に異常が発生したと判定し、遮断回路8を駆動して制御系のループを遮断する。
図7(b)に示すように、制御系内で変位センサ等の出力が突出する異常動作が発生した場合には、変位出力B(図7(b1))は大きく変動する。異常検出回路7bは、センサ回路3の出力(図7(b1))を監視し、図中の二点鎖線で示す所定値と比較し、所定値を超えた状態が所定時間T3を超えている場合に制御系中に異常が発生したと判定し(図7(b4))、遮断回路8を駆動して制御系のループを遮断する(図7(b5))。なお、異常検出回路7aおよび遮断回路8による異常時の制御系の遮断を行わない場合には、電磁石6には図7(b5)中の破線で示す電磁石電流が流れ、被支持体20と補助ベアリング21とが強く接触することになる。
【0019】
また、図7(c)に示すように、制御系内で断線が発生した場合には、変位出力B(図7(c1))は図中の二点鎖線で示す所定値を超えて減少し、制御系中に異常が発生したと判定し(図7(c4))、遮断回路8を駆動して制御系のループを遮断する(図7(c5))。なお、異常検出回路7aおよび遮断回路8による異常時の制御系の遮断を行わない場合には、磁気軸受制御回路4の積分制御によって制御出力(図7(c3))および電磁石電流(図7(c5))は増加し、被支持体20と補助ベアリング21とが強く接触することになる。
従って、図2に示す実施の形態によれば、変位センサの異常や制御系中の突出ノイズや制御系中の断線の異常等を検出することができる。
【0020】
次に、図3により本発明の磁気軸受装置の別の実施形態を説明する。図3に示す磁気軸受装置は図1,図2に示す磁気軸受装置とほぼ同様の構成であり、異常検出回路7cに接続の点で相違している。図3の構成では、異常検出回路7cは変位出力Bと目標値Aとの偏差を求める加算器の出力を入力する構成とし、偏差(A−B)を監視することによって制御系の異常検出を行い、電磁石電流アンプ5a,5bへの制御信号を停止することによって電磁石6a,6bによる被支持体20の磁気浮上を停止する。図3に示す構成例の動作は、前記図2のセンサ回路3の出力を監視する構成例とほぼ同様であるため、詳細な説明は省略する。図3に示す構成例は、図3に示す構成例が検出する制御系の異常検出に加えて、加算器の異常についても検出することができる。
また、図4により本発明の磁気軸受装置のさらに別の実施形態は、図2および図3に示す磁気軸受装置を組み合わせた構成であり、異常検出回路7dに対してセンサ回路3の出力と加算器の出力とを入力する構成とし、これによって、センサ回路3の異常と加算器の異常とを区別して判定することができる。
【0021】
本発明の実施の形態によれば、磁気軸受装置の制御系中に異常が発生した場合においても、過大な電磁石電流による電磁石の大きな吸引力の発生を防止することができるため、被支持体は電磁石で補助ベアリングに強く押しつけられることはなく、被支持体および補助ベアリングへの損傷を防止することができる。また、電磁石に過大な電流を流し続けることもないので、発熱等による電磁石の損傷を防止し、磁気軸受装置の安全性を向上させることができる。
【0022】
【発明の効果】
以上説明したように、磁気軸受装置の制御系の異常による電磁石への過大電流の供給を防止することができる。
【図面の簡単な説明】
【図1】本発明の磁気軸受装置の一実施形態を説明する概略ブロック図である。
【図2】本発明の磁気軸受装置の他の実施形態を説明する概略ブロック図である。
【図3】本発明の磁気軸受装置の他の実施形態を説明する概略ブロック図である。
【図4】本発明の磁気軸受装置の他の実施形態を説明する概略ブロック図である。
【図5】本発明の磁気軸受装置の動作を説明するための図である。
【図6】本発明の磁気軸受装置の動作を説明するための図である。
【図7】本発明の磁気軸受装置の動作を説明するための図である。
【図8】従来の磁気軸受装置を説明するための概略ブロック図である。
【符号の説明】
1…磁気軸受装置、2…変位センサ、3…センサ回路、4…磁気軸受制御回路、5…電磁石電流アンプ、6…電磁石、7…異常検出回路、8…遮断回路、20…被支持体、21…補助ベアリング。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic bearing device, and more particularly to a magnetic bearing device used for a high-speed rotating device used in a turbo molecular pump, a machine tool, or the like.
[0002]
[Prior art]
High-speed rotating equipment such as a vacuum pump such as a turbo molecular pump is required to be oil-free in order to obtain a good vacuum. In addition, a high-speed rotating device such as a machine tool is required to reduce deceleration due to contact and frictional heat. In view of these requirements, magnetic bearing devices have been developed in place of conventional bearings that use oil lubrication. Since the magnetic bearing device rotates the support body such as a rotating shaft by levitation and rotation in a vacuum space completely in a non-contact manner, it can be a bearing suitable for high-speed rotating equipment.
[0003]
Usually, the magnetic bearing device includes a radial magnetic bearing that supports a radial direction of a supported body that is a rotating body, and an axial magnetic bearing that supports an axial direction. Each magnetic bearing includes an electromagnet for magnetically levitating the supported body and a displacement sensor for detecting the position of the supported body. The position signal of the displacement sensor is fed back to form a feedback control system. The current flowing is adjusted to adjust the attractive force of the electromagnet, and control is performed so that the supported body is at the center position.
[0004]
FIG. 8 is a schematic block diagram for explaining a conventional magnetic bearing device. In FIG. 8, the supported body 20 is magnetically levitated and supported by electromagnets 6a and 6b, and is rotated by a driving unit (not shown). The feedback control system for controlling the position of the supported body 20 is based on the deviation between the displacement sensor 2 and the sensor circuit 3 for detecting the position of the supported body 20 and the support target value A and the displacement output B of the supported body. Magnetic bearing control circuit 4 for outputting a control signal for controlling the current of the electromagnet, electromagnet current amplifiers 5a and 5b for supplying a drive current to the electromagnets 6a and 6b based on the control signal, and an attracting force to the supported body 20 Electromagnets 6a and 6b are provided. In FIG. 8, the axial magnetic bearing is omitted and only a part of the plurality of radial magnetic bearings is shown.
[0005]
The feedback control system adjusts the attractive force of the electromagnets 6a and 6b while feeding back the displacement output B detected by the displacement sensor 2 so that the supported body becomes the support target value A.
[0006]
[Problems to be solved by the invention]
If an abnormality occurs in the control system of the magnetic bearing device during high-speed rotation of the supported body, an excessive electromagnet current may flow through the electromagnet. Examples of abnormalities occurring in the control system of the magnetic bearing device include a failure of a displacement sensor, a disconnection of a displacement sensor signal line, a failure of an adder for obtaining a deviation between a support target value and a feedback signal. For example, when the displacement sensor signal line is disconnected, the magnetic bearing control circuit 4 determines that the supported body 20 is not in a predetermined position, and increases the electromagnet current supplied to the electromagnet. When an excessive electromagnet current flows through the electromagnet, the supported body 20 is strongly pressed against the auxiliary bearing 21 while rotating at high speed, and the auxiliary bearing 21 is damaged or the supported body 20 is seized on the contact surface with the auxiliary bearing 21. A problem occurs. In addition, when an excessive electromagnet current flows through the electromagnet when the supported body is stopped, there is a problem that the electromagnet is damaged due to heat generated by the electromagnet.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the problems of the conventional magnetic bearing device described above and to prevent an excessive current from being supplied to the electromagnet due to an abnormality in the control system of the magnetic bearing device.
[0007]
[Means for Solving the Problems]
A magnetic bearing device according to the present invention includes an electromagnet that magnetically levitates a supported body, a displacement sensor that detects displacement of the supported body, and a magnetic bearing control that controls a supply current to the electromagnet based on a displacement signal from the displacement sensor. A magnetic bearing comprising: a control system that includes a circuit to form a loop; an abnormality detection circuit that detects an abnormality in the control system; and a cutoff circuit that interrupts the loop based on a signal from the abnormality detection circuit. Prevents excessive current from being supplied to the electromagnet due to an abnormality in the control system of the device.
[0008]
In the magnetic bearing device of the present invention, the control system having the above-described configuration obtains a deviation between the displacement amount of the supported body detected by the displacement sensor and the target value, and the magnetic bearing control circuit uses the electromagnetic current amplifier based on the deviation amount. A control signal is sent to to adjust the attractive force of the electromagnet. The abnormality detection circuit of the present invention monitors the inside of the control system, and performs abnormality detection by comparing the signal value of each part in the control system with a reference value, for example. When detecting an abnormality in the control system, the abnormality detection circuit transmits an abnormality detection signal to the cutoff circuit. The shut-off circuit is a circuit that shuts off a part of the loop constituting the control system, and shuts off the signal upon receiving an abnormality detection signal. The cutoff circuit is installed between the magnetic bearing control circuit and the electromagnet current amplifier, for example, to control the conduction of the control current to the electromagnet current amplifier, and stop the supply of electromagnet current to the electromagnet when an abnormality occurs in the control system To do.
When the supply of the electromagnet current to the electromagnet is stopped by the interrupting circuit, the supported body cannot continue the magnetic levitation and is supported by the auxiliary bearing. At this time, the pressure received by the auxiliary bearing is only due to the weight of the supported body, and does not receive excessive pressing force due to the electromagnet current, and can prevent damage to the auxiliary bearing and seizure on the contact surface. .
[0009]
In the first embodiment of the present invention, the abnormality detection circuit receives the output of the magnetic bearing control circuit and detects an abnormality of the control signal to the electromagnet current amplifier. It is possible to detect projecting noise in the inside, disconnection in the control system, abnormality of the electromagnet, and the like.
In the second embodiment of the present invention, the abnormality detection circuit detects an abnormality of the displacement output of the displacement sensor, thereby detecting an abnormality of the displacement sensor, a protruding noise in the control system, a disconnection in the control system, and the like. Can be detected.
In the third embodiment of the present invention, the abnormality detection circuit detects an abnormality in the deviation between the displacement output of the displacement sensor and the support target value, whereby the deviation between the displacement output of the displacement sensor and the support target value is detected. It is possible to detect an adder abnormality, a displacement sensor abnormality, protruding noise in the control system, disconnection in the control system, and the like.
In the fourth embodiment of the present invention, the abnormality detection circuit is a combination of the second embodiment and the third embodiment, thereby distinguishing between the abnormality of the displacement sensor and the abnormality of the adder. can do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A configuration example of the embodiment of the present invention will be described with reference to a schematic block diagram illustrating one embodiment of the magnetic bearing device of the present invention shown in FIG. The control system in the magnetic bearing device shown in FIG. 1 schematically shows only one radial magnetic bearing that magnetically levitates the supported body 20 in the magnetic bearing device, and the same applies to other radial magnetic bearings and axial magnetic bearings. A control system can be configured.
[0011]
In FIG. 1, the supported body 20 is supported by being levitated magnetically by electromagnets 6a and 6b, and is rotated by a driving unit (not shown). The feedback control system for controlling the position of the supported body 20 includes a displacement sensor 2 that detects the position of the supported body 20, a sensor circuit 3 that receives a signal from the displacement sensor 2 and outputs a displacement output, and a supported body. A magnetic bearing control circuit 4 that outputs a control signal for controlling the current of the electromagnet 6 based on the deviation between the support target value A of 20 and the displacement output B, and a drive current is supplied to the electromagnets 6a and 6b based on the control signal. A control system that includes electromagnet current amplifiers 5a and 5b that perform electromagnets 6a and 6b that apply an attractive force to the supported body 20, and further includes the electromagnet, a displacement sensor, and a magnetic bearing control circuit. An abnormality detection circuit 7a for detecting the abnormality is provided, and an interruption circuit 8 for breaking the loop based on the abnormality detection signal of the abnormality detection circuit 7a.
[0012]
The electromagnets 6a and 6b shown in FIG. 1 are examples of electromagnets provided in the magnetic bearing device. The electromagnets 6a and 6b are opposed to each other with the supported body 20 interposed therebetween and are disposed in front of the electromagnet current amplifier 5b. A pair of electromagnets that generate a magnetic force that attracts the supported body 20 to each other with the direction of the attraction force between the electromagnet 6b and the electromagnet 6b as opposite directions is shown. The electromagnet may be provided with a pair of a displacement sensor and an electromagnet in a radial direction at another position with respect to the supported body 20, and a displacement sensor and an electromagnet may be arranged in the axial direction.
In the configuration example shown in FIG. 1, the interruption circuit 8 is provided between the magnetic bearing control circuit 4 and the electromagnet current amplifier 5a, and the abnormality detection circuit 7a is configured to input the output of the magnetic bearing control circuit 4, so that the magnetic bearing control is performed. The control signal of the circuit 4 is monitored to detect abnormality of the control system, and the control signal to the electromagnet current amplifiers 5a and 5b is stopped to stop the magnetic levitation of the supported body 20 by the electromagnets 6a and 6b.
[0013]
Next, the operation of the magnetic bearing device having the configuration example of FIG. 1 will be described with reference to FIGS. FIG. 5A shows a sensor output (a1), a deviation signal (a2), a magnetic bearing control circuit output (a3), and an output (a4) of the abnormality detection circuit when the control system of the magnetic bearing device is operating normally. , And the electromagnet current (a5). Similarly, FIG. 5 (b) shows the output of each part of the abnormal operation when the output in the control system protrudes, and FIG. 5 (c) shows the case of disconnection in the control system 6A and 6B show the output of each part when an abnormality occurs in the electromagnet.
In FIG. 5A, when the control system is normal, the displacement sensor 2 detects the position of the supported body 20 in a non-contact manner, converts it to a signal corresponding to the distance from the supported body 20, and a sensor circuit. 3 outputs a displacement output B (FIG. 5 (a1)). The adder in the control system obtains a deviation (AB) between the displacement output B and the support target value A (FIG. 5 (a2)). Based on the deviation, the magnetic bearing control circuit 4 calculates a control signal (FIG. 5 (a3)) necessary for the supported body 20 to reduce the deviation from the predetermined position, and the electromagnet 6 through the electromagnet current amplifier 5 performs the control. The support 20 is magnetically levitated, and the position is controlled so as to be within the movable range indicated by C in the figure. The movable range C is an allowable range on one side until the supported body 20 contacts the auxiliary bearing 21.
[0014]
The abnormality detection circuit 7a compares the output of the magnetic bearing control circuit (FIG. 5 (a3)) with a predetermined value (two-dot chain line in the figure), and if the predetermined value is exceeded, an abnormality has occurred in the control system. And the cutoff circuit 8 is driven to cut off the loop of the control system.
As shown in FIG. 5B, when an abnormal operation in which the output of the displacement sensor or the like protrudes in the control system, the displacement output B (FIG. 5B1) and the deviation signal (FIG. 5B2) ) Varies greatly. Normally, the magnetic bearing control circuit 4 performs PID control, and performs differential control against this variation. The abnormality detection circuit 7a monitors the output of the magnetic bearing control circuit 4 (FIG. 5 (b3)), compares it with a predetermined value indicated by a two-dot chain line in the figure, continues the predetermined value, and exceeds the predetermined time T1 or more. If it is, it is determined that an abnormality has occurred in the control system (FIG. 5 (b4)), and the cutoff circuit 8 is driven to interrupt the control system loop (FIG. 5 (b5)).
[0015]
When the abnormality detection circuit 7a and the interruption circuit 8 do not shut down the control system at the time of abnormality, the electromagnet current indicated by the broken line in FIG. The auxiliary bearing 21 comes into strong contact.
As shown in FIG. 5 (c), when a disconnection occurs in the control system, the displacement output B (FIG. 5 (c1)) disappears, and the deviation signal (FIG. 5 (c2)) becomes a large target value. Suddenly changes. Normally, in the PID control of the magnetic bearing control circuit 4, after differential control is performed, integral control is performed and a control signal (FIG. 5 (c <b> 3)) is output. The abnormality detection circuit 7a monitors the output of the magnetic bearing control circuit 4 (FIG. 5 (c3)), compares it with a predetermined value indicated by a two-dot chain line in the figure, and causes an abnormality in the control system by exceeding the predetermined value. Is generated (FIG. 5 (c4)), and the cutoff circuit 8 is driven to cut off the loop of the control system (FIG. 5 (c5)).
When the abnormality detection circuit 7a and the interruption circuit 8 do not shut off the control system at the time of abnormality, an electromagnet current indicated by a broken line in FIG. The bearing 21 comes into strong contact.
[0016]
Next, a case where an abnormality occurs in the electromagnet will be described with reference to FIG. An abnormality occurs in the electromagnet 6a or the electromagnet 6b, the supported body 20 comes into contact with one side of the auxiliary bearing 21, and the displacement sensor 2 maintains a constant output. 6 (a) and 6 (b) show a case where the direction of the bias of the supported body 20 is opposite, and the control system performs the same operation, so only FIG. 6 (a) will be described below. .
If the output of the displacement sensor 2 continues to output a constant output (a1), the deviation signal also continues to output a constant output (FIG. 6 (a2)) if the target value is constant. The control signal of the magnetic bearing control circuit 4 (FIG. 6 (a3)) gradually increases by integral control. The abnormality detection circuit 7a determines that the control signal (FIG. 6 (a3)) exceeds the comparison value indicated by the two-dot chain line in the figure, and that the exceeding state is equal to or longer than the predetermined time T2. When the abnormality detection circuit 7a determines that an abnormality has occurred (FIG. 6 (a4)), the abnormality detection circuit 7a drives the interruption circuit 8 to interrupt the control system loop (FIG. 6 (a5)). When the abnormality detection circuit 7a and the interruption circuit 8 do not shut down the control system in the event of an abnormality, the electromagnet current indicated by the broken line in FIG. The bearing 21 comes into strong contact.
Therefore, according to the embodiment shown in FIG. 1, it is possible to detect an abnormality of the displacement sensor, a protruding noise in the control system, a disconnection in the control system, an abnormality of the electromagnet, and the like.
[0017]
Next, another embodiment of the magnetic bearing device of the present invention will be described with reference to FIG. The magnetic bearing device shown in FIG. 2 has substantially the same configuration as the magnetic bearing device shown in FIG. 1, and is different in that it is connected to the abnormality detection circuit 7b. In the configuration of FIG. 2, the abnormality detection circuit 7b is configured to input the output of the sensor circuit 3, and the abnormality detection of the control system is detected by monitoring the displacement output B of the sensor circuit 3, and the electromagnetic current amplifiers 5a and 5b By stopping the control signal, the magnetic levitation of the supported body 20 by the electromagnets 6a and 6b is stopped.
The operation of the magnetic bearing device of the configuration example of FIG. 2 will be described with reference to FIG. FIG. 7A shows the sensor output (a1), the deviation signal (a2), the magnetic bearing control circuit output (a3), and the output (a4) of the abnormality detection circuit when the control system of the magnetic bearing device is operating normally. , And the electromagnet current (a5). Similarly, FIG. 7B shows the output of each part of the abnormal operation when the output in the control system protrudes, and FIG. The output of each part of abnormal operation is shown.
[0018]
Each output (FIG. 7A) when the control system is normal is substantially the same as FIG. 5A. In the configuration example of FIG. 2, the abnormality detection circuit 7b compares the output of the sensor circuit 3 (FIG. 7 (a1)) with a predetermined value, and if the predetermined value continues and exceeds the predetermined time T3 or more, the control system It is determined that an abnormality has occurred, and the cutoff circuit 8 is driven to cut off the loop of the control system.
As shown in FIG. 7 (b), when an abnormal operation in which the output of the displacement sensor or the like protrudes in the control system, the displacement output B (FIG. 7 (b1)) varies greatly. The abnormality detection circuit 7b monitors the output of the sensor circuit 3 (FIG. 7 (b1)) and compares it with a predetermined value indicated by a two-dot chain line in the figure, and the state exceeding the predetermined value exceeds the predetermined time T3. In this case, it is determined that an abnormality has occurred in the control system (FIG. 7 (b4)), and the cutoff circuit 8 is driven to interrupt the control system loop (FIG. 7 (b5)). When the abnormality detection circuit 7a and the interruption circuit 8 do not shut off the control system at the time of abnormality, the electromagnet current shown by the broken line in FIG. The bearing 21 comes into strong contact.
[0019]
Further, as shown in FIG. 7C, when a disconnection occurs in the control system, the displacement output B (FIG. 7C1) decreases beyond a predetermined value indicated by a two-dot chain line in the figure. Then, it is determined that an abnormality has occurred in the control system (FIG. 7 (c4)), and the cutoff circuit 8 is driven to interrupt the control system loop (FIG. 7 (c5)). When the abnormality detection circuit 7a and the interruption circuit 8 do not shut off the control system at the time of abnormality, the control output (FIG. 7 (c3)) and the electromagnetic current (FIG. c5)) increases, and the supported body 20 and the auxiliary bearing 21 come into strong contact with each other.
Therefore, according to the embodiment shown in FIG. 2, it is possible to detect an abnormality of the displacement sensor, a protruding noise in the control system, a disconnection abnormality in the control system, and the like.
[0020]
Next, another embodiment of the magnetic bearing device of the present invention will be described with reference to FIG. The magnetic bearing device shown in FIG. 3 has substantially the same configuration as the magnetic bearing device shown in FIGS. 1 and 2, and is different in connection with the abnormality detection circuit 7c. In the configuration of FIG. 3, the abnormality detection circuit 7c is configured to input the output of an adder that obtains the deviation between the displacement output B and the target value A, and detects the abnormality of the control system by monitoring the deviation (AB). The magnetic levitation of the supported body 20 by the electromagnets 6a and 6b is stopped by stopping the control signal to the electromagnet current amplifiers 5a and 5b. The operation of the configuration example shown in FIG. 3 is substantially the same as the configuration example of monitoring the output of the sensor circuit 3 of FIG. The configuration example shown in FIG. 3 can also detect an abnormality of the adder in addition to the detection of the control system abnormality detected by the configuration example shown in FIG.
FIG. 4 shows still another embodiment of the magnetic bearing device of the present invention, which is a combination of the magnetic bearing devices shown in FIGS. 2 and 3, and adds the output of the sensor circuit 3 to the abnormality detection circuit 7d. Therefore, it is possible to distinguish between the abnormality of the sensor circuit 3 and the abnormality of the adder.
[0021]
According to the embodiment of the present invention, even when an abnormality occurs in the control system of the magnetic bearing device, it is possible to prevent the generation of a large attractive force of the electromagnet due to an excessive electromagnet current. The electromagnet is not strongly pressed against the auxiliary bearing, and damage to the supported body and the auxiliary bearing can be prevented. Further, since an excessive current does not continue to flow through the electromagnet, the electromagnet can be prevented from being damaged by heat generation and the safety of the magnetic bearing device can be improved.
[0022]
【The invention's effect】
As described above, it is possible to prevent an excessive current from being supplied to the electromagnet due to an abnormality in the control system of the magnetic bearing device.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram illustrating an embodiment of a magnetic bearing device of the present invention.
FIG. 2 is a schematic block diagram illustrating another embodiment of the magnetic bearing device of the present invention.
FIG. 3 is a schematic block diagram illustrating another embodiment of the magnetic bearing device of the present invention.
FIG. 4 is a schematic block diagram illustrating another embodiment of the magnetic bearing device of the present invention.
FIG. 5 is a view for explaining the operation of the magnetic bearing device of the present invention.
FIG. 6 is a view for explaining the operation of the magnetic bearing device of the present invention.
FIG. 7 is a view for explaining the operation of the magnetic bearing device of the present invention.
FIG. 8 is a schematic block diagram for explaining a conventional magnetic bearing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Magnetic bearing apparatus, 2 ... Displacement sensor, 3 ... Sensor circuit, 4 ... Magnetic bearing control circuit, 5 ... Electromagnet current amplifier, 6 ... Electromagnet, 7 ... Abnormality detection circuit, 8 ... Breaking circuit, 20 ... Supported body, 21 ... Auxiliary bearing.

Claims (3)

被支持体を磁気浮上させる電磁石と、
被支持体の変位を検出する変位センサと、
変位ンサからの変位信号に基づいて電磁石への供給電流を制御する磁気軸受制御回路を含んでループを形成する制御系を備えた磁気軸受装置であって、
前記制御系中の異常を検出する異常検出回路と、
該異常検出回路の信号に基づいて前記ループを遮断する遮断回路とを備え、
前記異常検出回路は前記磁気軸受制御回路の出力を入力することによって、電磁石電流アンプへの制御信号異常を検出することを特徴とする磁気軸受装置。
An electromagnet for magnetically levitating the supported body;
A displacement sensor for detecting the displacement of the supported body;
A magnetic bearing device including a control system that forms a loop including a magnetic bearing control circuit that controls a supply current to an electromagnet based on a displacement signal from a displacement sensor,
An abnormality detection circuit for detecting an abnormality in the control system;
A cutoff circuit that cuts off the loop based on a signal of the abnormality detection circuit,
The magnetic bearing device according to claim 1, wherein the abnormality detection circuit detects an abnormality of a control signal to the electromagnet current amplifier by inputting an output of the magnetic bearing control circuit.
被支持体を磁気浮上させる電磁石と、
被支持体の変位を検出する変位センサと、
変位ンサからの変位信号に基づいて電磁石への供給電流を制御する磁気軸受制御回路を含んでループを形成する制御系を備えた磁気軸受装置であって、
前記制御系中の異常を検出する異常検出回路と、
該異常検出回路の信号に基づいて前記ループを遮断する遮断回路とを備え、
前記異常検出回路は、前記ループにおける変位センサの変位出力と支持目標値との偏差を求める加算器の出力を入力し、変位センサの異常及び加算器の異常を検出することを特徴とする磁気軸受装置。
An electromagnet for magnetically levitating the supported body;
A displacement sensor for detecting the displacement of the supported body;
A magnetic bearing device including a control system that forms a loop including a magnetic bearing control circuit that controls a supply current to an electromagnet based on a displacement signal from a displacement sensor,
An abnormality detection circuit for detecting an abnormality in the control system;
A cutoff circuit that cuts off the loop based on a signal of the abnormality detection circuit,
The abnormality detection circuit receives an output of an adder for obtaining a deviation between a displacement output of a displacement sensor and a support target value in the loop, and detects an abnormality of the displacement sensor and an abnormality of the adder. apparatus.
前記異常検出回路は、前記変位センサの変位出力を入力することによって、変位センサの異常及び加算器の異常を検出することを特徴とする、請求項2に記載の磁気軸受装置。  The magnetic bearing device according to claim 2, wherein the abnormality detection circuit detects an abnormality of the displacement sensor and an abnormality of the adder by inputting a displacement output of the displacement sensor.
JP16904096A 1996-06-28 1996-06-28 Magnetic bearing device Expired - Fee Related JP3717013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16904096A JP3717013B2 (en) 1996-06-28 1996-06-28 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16904096A JP3717013B2 (en) 1996-06-28 1996-06-28 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH109266A JPH109266A (en) 1998-01-13
JP3717013B2 true JP3717013B2 (en) 2005-11-16

Family

ID=15879209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16904096A Expired - Fee Related JP3717013B2 (en) 1996-06-28 1996-06-28 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP3717013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096113B2 (en) * 1998-04-03 2008-06-04 株式会社ジェイテクト Control type magnetic bearing device
JP3215842B2 (en) * 1999-03-29 2001-10-09 セイコーインスツルメンツ株式会社 Magnetic bearing protection device and turbo molecular pump
KR102047876B1 (en) * 2017-10-24 2019-12-02 엘지전자 주식회사 Magnetic bearing control apparatus, control method and high speed rotating motor using the same
CN111442029B (en) * 2020-05-07 2021-11-16 南京邮电大学 Displacement sensor fault-tolerant control system and method for active radial magnetic bearing

Also Published As

Publication number Publication date
JPH109266A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US6617734B2 (en) Magnetic bearing control device
JPH06159362A (en) Magnetic bearing device
JPS61216011A (en) Control system for cooling system of electronic equipment
US6604918B2 (en) Turbomolecular pump
JP3717013B2 (en) Magnetic bearing device
KR20180120719A (en) Wind power generation method and wind power generation system
JP5639061B2 (en) Turbomolecular pump with flexible mounting
JPH0655971B2 (en) Bearings and drive for horizontally arranged open-end spinning rotors
JPH0861290A (en) Friction pump using magnetic bearing
KR20130122885A (en) An active magnetic hybrid bearing system using air hybrid bearing for auxiliary bearing
JP3677826B2 (en) Magnetic bearing device
JP2010064816A (en) Passenger conveyer
JP2714867B2 (en) Magnetic bearing protection device
JPS63239397A (en) Magnetic bearing device for turbomolecular pump
JPH10184586A (en) Turbo-molecular pump
JP2003222096A (en) Magnetic-bearing type turbo-molecular pump
JP3601844B2 (en) Magnetic bearing control device
JPH0433432Y2 (en)
JP3793856B2 (en) Magnetic bearing device
JP3772979B2 (en) Braking control device for rotating machine
JP3414918B2 (en) Rotary electric machine with magnetic bearing
JP2005256856A (en) Linear guide device
JP3624271B2 (en) Magnetic bearing device
JP4483431B2 (en) Turbo molecular pump device
JP2546625Y2 (en) Magnetic bearing control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees