JP3716890B2 - Cooling device for vacuum motor - Google Patents

Cooling device for vacuum motor Download PDF

Info

Publication number
JP3716890B2
JP3716890B2 JP05696197A JP5696197A JP3716890B2 JP 3716890 B2 JP3716890 B2 JP 3716890B2 JP 05696197 A JP05696197 A JP 05696197A JP 5696197 A JP5696197 A JP 5696197A JP 3716890 B2 JP3716890 B2 JP 3716890B2
Authority
JP
Japan
Prior art keywords
rotating shaft
vacuum motor
base
heat
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05696197A
Other languages
Japanese (ja)
Other versions
JPH10243609A (en
Inventor
光昭 萩尾
健生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP05696197A priority Critical patent/JP3716890B2/en
Publication of JPH10243609A publication Critical patent/JPH10243609A/en
Application granted granted Critical
Publication of JP3716890B2 publication Critical patent/JP3716890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空チャンバ内において、半導体製造装置や液晶製造装置などの試料搬送やハンドリングを行うアクチュエータに用いる真空用モータに係り、特に真空用モータの冷却装置に関する。
【0002】
【従来の技術】
従来、例えば真空環境中での半導体製造工程において、ウェハ搬送用の動力伝達装置に用いられる真空用モータは、固定子鉄心に巻装された電機子巻線の発熱による温度上昇が大気中に比べて激しいため、真空環境を汚すことなく十分な冷却が行われることが要求されている。
従来の回転形の真空用モータの冷却装置について説明する。図3は第1の従来例を示す同装置の断面図である。真空用モータ1は、円筒形状をしたフレーム2と、フレーム2の内側に設けた電機子巻線31を有する固定子鉄心3と、フレーム2の内側に軸受6を介して支持され一端に負荷11を接続した回転軸5と、この回転軸5の外側に嵌着され固定子鉄心3と空隙を介して設けた回転子4とで構成されている。また、真空用モータ1は、図示しない真空排気装置と接続された真空チャンバ8内に置かれ、真空チャンバ8の内周壁面上に水平に固定された熱伝導部材からなるベ−スを介して設置されている。このような構成の真空用モータ1は固定子鉄心3に巻装された電機子巻線31や軸受6などで発生した熱がフレーム2へ伝わり、フレーム2に取り付けであるベース7を介して真空チャンバ8の外周壁面へ伝熱して冷却されるものである。
また、第2の従来例として、真空チャンバの外の大気側に接続しているパイプをフレーム部に設けた水冷ジャケットに埋設して、そのパイプ中に水などの液体を流すことにより、モータの電機子巻線から発生した熱を液体を媒介とし、その液体をチラー等で循環させることで熱伝達により放熱する冷却装置が提案されている。
また、第3の従来例として、フレーム部内に作動流体を封入して、モータの電機子巻線での発生熱を作動流体の蒸発により離れた位置にある凝縮部まで運び、凝縮部で蒸発潜熱を外部へ放出する冷却装置が提案されている(例えば、特開平7ー236256号公報)。
図4は第3の従来例を示す真空用モータの冷却装置の断面図である。図において、第1の従来例と異なる点を説明する。発熱する固定子鉄心3の周囲を囲むフレーム2の内部に作動流体が蒸発する蒸発部となる環状の空洞部12を形成しており、フレーム2には、その上下に間隔を置いて蒸気通路用パイプ13及び液流通路用パイプ14の一端部を接続し、空洞部12と連通する。蒸気通路用パイプ13及び液通路用パイプ14の他端部は真空チャンバ8の外壁部を貫通して外部まで延び、外部において凝縮部15に連通しており、接続具16、17により凝縮部15と着脱自在に接続されている。また、空洞部12、蒸気通路用パイプ13及び液通路用パイプ14、凝縮部15内に水やフロン等の作動流体を封入する。なお、空洞部12の内周壁には毛細管作用を行う金網等からなるウイック12aが張設されている。ここで、13a、14aはそれぞれモータ側の蒸気通路用、液通路用パイプで、13b、14bはそれぞれ凝縮部側の蒸気通路用、液通路用パイプである。
このような構成において、真空用モータ1の作動により電機子巻線31が発熱すると、この熱はフレーム2の内壁部を介して空洞部12に伝達され、空洞部12内でウイック12aの作動流体の蒸発によって取り去られる。この作動流体の蒸発により、空洞部12内の気圧が凝縮部15内の気圧よりも高くなり、両部間で圧力差が生じ、上記の蒸発した作動流体の蒸気は、フレーム2の空洞部12から蒸気通路用パイプ13を経て凝縮部15内へ移動せしめられ、凝縮部15を通じて蒸発潜熱が外部へ放出されて凝縮し、それから凝縮により液化した作動流体は液通路用パイプ14を経て空洞部12へ戻るようにしてある。
【0003】
【発明が解決しようとする課題】
ところが、第1の従来例の真空用モータの冷却装置において、回転軸端部に負荷11を取り付けた真空用モータ1を回転させると、真空用モータ1の主要な発熱部位である電機子巻線31のジュール熱や軸受の摩擦熱などの影響を受けて、その熱がフレーム2が固定されているベース7を介して真空チャンバ8の外周壁面から放熱されるが、この伝熱経路以外には、電機子巻線31あるいは固定子鉄心3からの輻射熱として、固定子鉄心3と空隙を介している回転子4、回転子4を嵌合する回転軸5に伝熱される経路がある。このような伝熱経路を通った熱で回転子4および回転軸5の温度が上昇して変形を起こしたり、回転軸5の温度上昇に伴ってその接触要素である軸受6が変形を生じて破損を起こすという問題があった。
また、第2の従来例および第3の従来例に示した冷却装置では、固定子鉄心3側の熱を真空チャンバ8の外部へ強制的に熱伝達し放熱することができるが、電機子巻線31あるいは固定子鉄心3の輻射熱により回転子4へ伝熱したり、あるいは回転軸5の負荷11により発生する熱が回転軸5に伝わったりして、回転子4および回転軸5の温度上昇する問題があった。
また、第3の従来例は冷却用配管で接続されているため熱輸送経路が長くなり構造が複雑化し、メンテナンス等の分解、組立時においてモータ本体に接続する冷却用配管を真空チャンバ8から取り外して作業を行わなくてはならず作業性が悪く、コストがかかるという問題もあった。
そこで、本発明は第1の目的は、真空中において、電機子巻線や軸受で発生した熱を効率良く真空チャンバ外へ放熱し、回転軸の変形あるいは軸受の破損などの問題を解消することのできる真空用モータの冷却装置を提供することにある。
また、第2の目的は、冷却装置のメンテナンス等の分解、組立時の作業を解消し、作業コストのかからない構造が簡単な真空用モータの冷却装置を提供することにある。
【0004】
【課題を解決するための手段】
上記問題を解決するために、本発明は真空チャンバと、この真空チャンバの内周壁面上に固定されたベ−スと、このベ−スを介して設置された真空用モータと、を備え、前記真空用モータが、前記ベ−スと垂直方向に設けたフレームと、このフレームの内側に設けた電機子巻線を有する固定子鉄心と、前記フレームの内側に軸受を介して支持され一端に負荷を接続した回転軸と、この回転軸の外側に嵌着され前記固定子鉄心と空隙を介して設けた回転子とで構成される真空用モータの冷却装置において、前記回転軸は、反負荷側から負荷側に向かって穿設された中空部を有するカップ状に形成されたものからなり、前記フレームは、反負荷側の端面に前記回転軸の軸径より大きな穴部を有するベ−ス取付け面が形成されるとともに、前記ベ−スの上面には、前記ベ−ス取付け面の間に設けた穴部から前記中空部の負荷側の端面に向かって前記回転軸と僅かな空隙を介して同軸状の伝熱用固定軸を設けたものである。
また、前記伝熱用固定軸は、冷却流体を流通させる冷却用通路を配設してあるものである。
【0005】
【発明の実施の形態】
本発明を図に示す実施例について説明する。
図1は本発明の第1の実施例を示す真空用モータの断面図である。従来例と同じ構成要素については同一符号を付し、その説明は省略する。
真空用モータ1が真空チャンバ8内のベース7に固定された構成は第1の従来例と同じである。従来例と異なる点は、真空用モータ1において、回転軸5が、反負荷側から負荷側に向かって穿設された中空部51を有するカップ状のものからなり、フレーム2は、反負荷側の端面に回転軸5の軸径より大きな穴部21を有するベ−ス取付け面22が形成されるとともに、ベ−ス7の上面には、ベ−ス取付け面22の間に設けた穴部21から中空部51の負荷側の端面に向かって回転軸5と僅かな空隙を介して同軸状の伝熱用固定軸9を設けたものである。なお、伝熱用固定軸9は高熱伝導性の材料からなるものである。
このような構成において、動作について説明する。
真空チャンバ8の内部で回転軸端部に負荷11を取り付けた真空用モータ1を回転させると、電機子巻線31や軸受6からの発生熱がフレーム2へ伝熱し、フレーム2からベース7を介して真空チャンバ8の外周壁面から放熱されることになる。また、電機子巻線31あるいは固定子鉄心3からの輻射熱として固定子鉄心3と空隙を介している回転子4に熱が伝わる。この回転子4に伝わった熱は、回転子4の内周を嵌着している回転軸5に熱伝導し、回転軸5と僅かな空隙を介して設けた伝熱用固定軸9へ輻射により伝熱した後、伝熱用固定軸9からベース7、真空チャンバ8の外周壁面へと熱を伝える。真空チャンバ8は真空用モータ1に比べて熱容量が大きいうえ、真空チャンバ8の外周壁面は、大気に接しているため自然対流により放熱がおこなわれ、真空用モータ1の温度上昇は抑制される。
したがって、真空用モータ1の運転による電機子巻線31等からの発熱は、固定子鉄心3のフレーム2から真空チャンバ8へと伝熱する以外に、回転軸5の内側から伝熱用固定軸9へ輻射熱により伝熱されるため、回転子4および回転軸5ならびに軸受6で発生した熱を効率良く真空チャンバ8外へ放熱し、さらに回転軸4の温度上昇に伴う変形あるいは軸受6の破損などの問題を解消することもできる。
【0006】
図2は第2の実施例を示す真空用モータの断面図である。第1の実施例と異なる点は、伝熱用固定軸9の内部に冷却用通路10を配設したものである。冷却用通路10の両端口は、図示していないチラーへと接続されている。
このような構成において、チラー(図示せず)から冷却用通路10に冷却水を流通させることによって伝熱用固定軸9の内部に冷却水が循環するので、真空用モータ1の電機子巻線からの発熱で回転軸に伝熱された熱は伝熱用固定軸9の内部に循環する冷却水と熱交換されるようにしてある。
したがって、回転子4および回転軸5ならびに軸受6で発生した熱による温度上昇をさらに抑制することができ、効率良く真空チャンバ8外へ放熱することができる。
また、ベース7に固定した伝熱用固定軸9の内部に冷却用通路10を配設した簡単な構造のため、冷却装置としてのメンテナンス等の分解、組立時の作業をなくし、作業コストがかからない真空用モータの冷却装置を得る効果がある。
【0007】
【発明の効果】
以上述べたように、本発明によれば、真空用モータの運転で発生した熱を従来のようにフレームなどの固定側から熱伝導をおこなう以外に、中空部を有する回転軸の内側から僅かな空隙を介して設置している伝熱用固定軸へ、輻射熱として伝熱する経路を考慮した構成を設けてあるため、真空中において、電機子巻線や軸受で発生した熱を効率良く真空チャンバ外へ放熱することのできる真空用モータの冷却装置を得る効果がある。これにより回転軸の変形あるいは軸受の破損の問題も解消することができる。
また、冷却装置のメンテナンス等の分解、組立時の作業をなくすことができるため、作業コストがかからず、構造を簡単にできる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例を示す真空用モータの冷却装置の断面図である。
【図2】 本発明の第2の実施例を示す真空用モータの冷却装置の断面図である。
【図3】 第1の従来例を示す真空用モータの冷却装置の断面図である。
【図4】 第3の従来例を示す真空用モータの冷却装置の断面図である。
【符号の説明】
1: 真空用モータ
2:フレーム
21:穴部
22:フレ−ム取付け面
3:固定子鉄心
31:電機子巻線
4:回転子
5:回転軸
51:中空部
6:軸受
7:ベース
8:真空チャンバ
9:伝熱用固定軸
10:冷却用通路
11:負荷
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum motor used in an actuator for carrying and handling a sample such as a semiconductor manufacturing apparatus and a liquid crystal manufacturing apparatus in a vacuum chamber, and more particularly to a cooling apparatus for a vacuum motor.
[0002]
[Prior art]
Conventionally, for example, in a semiconductor manufacturing process in a vacuum environment, a vacuum motor used in a power transmission device for wafer transfer has a temperature rise due to heat generated by an armature winding wound around a stator core compared to the atmosphere. Therefore, sufficient cooling is required without polluting the vacuum environment.
A conventional cooling device for a rotary type vacuum motor will be described. FIG. 3 is a sectional view of the same apparatus showing a first conventional example. The vacuum motor 1 includes a cylindrical frame 2, a stator core 3 having an armature winding 31 provided inside the frame 2, and a load 11 at one end supported by a bearing 6 inside the frame 2. And a rotor 4 fitted on the outside of the rotary shaft 5 and provided via a gap. The vacuum motor 1 is placed in a vacuum chamber 8 connected to an evacuation device (not shown), and a base made of a heat conducting member fixed horizontally on the inner peripheral wall surface of the vacuum chamber 8. is set up. In the vacuum motor 1 having such a configuration, heat generated in the armature winding 31 and the bearing 6 wound around the stator core 3 is transmitted to the frame 2 and is vacuumed via the base 7 attached to the frame 2. Heat is transferred to the outer peripheral wall surface of the chamber 8 to be cooled.
Further, as a second conventional example, a pipe connected to the atmosphere side outside the vacuum chamber is embedded in a water cooling jacket provided in the frame portion, and a liquid such as water is allowed to flow through the pipe, thereby There has been proposed a cooling device that dissipates heat by heat transfer by circulating the liquid generated by the armature winding through a liquid and circulating the liquid through a chiller or the like.
As a third conventional example, working fluid is enclosed in a frame part, and heat generated in the armature winding of the motor is carried to a condensing part at a position separated by evaporation of the working fluid. Has been proposed (for example, JP-A-7-236256).
FIG. 4 is a sectional view of a cooling device for a vacuum motor showing a third conventional example. In the figure, differences from the first conventional example will be described. An annular cavity 12 is formed in the frame 2 that surrounds the periphery of the stator core 3 that generates heat. The annular cavity 12 serves as an evaporating portion for evaporating the working fluid. One end of the pipe 13 and the liquid flow passage pipe 14 are connected to communicate with the cavity 12. The other end portions of the steam passage pipe 13 and the liquid passage pipe 14 extend to the outside through the outer wall portion of the vacuum chamber 8, and communicate with the condensing portion 15 on the outside. And is detachably connected. Further, working fluid such as water or chlorofluorocarbon is sealed in the cavity portion 12, the steam passage pipe 13, the liquid passage pipe 14, and the condensing portion 15. A wick 12 a made of a wire mesh or the like that performs capillary action is stretched on the inner peripheral wall of the cavity portion 12. Here, 13a and 14a are a steam passage and a liquid passage pipe on the motor side, respectively, and 13b and 14b are a steam passage and a liquid passage pipe on the condenser side, respectively.
In such a configuration, when the armature winding 31 generates heat due to the operation of the vacuum motor 1, this heat is transmitted to the cavity portion 12 via the inner wall portion of the frame 2, and the working fluid of the wick 12 a in the cavity portion 12. Is removed by evaporation. Due to the evaporation of the working fluid, the air pressure in the cavity portion 12 becomes higher than the air pressure in the condensing portion 15, and a pressure difference is generated between the two portions. Then, it is moved into the condensing part 15 through the steam passage pipe 13, and the latent heat of evaporation is discharged to the outside through the condensing part 15 to condense. It is trying to return to.
[0003]
[Problems to be solved by the invention]
However, in the vacuum motor cooling apparatus of the first conventional example, when the vacuum motor 1 with the load 11 attached to the end of the rotary shaft is rotated, the armature winding that is the main heat generating part of the vacuum motor 1 The heat is radiated from the outer peripheral wall surface of the vacuum chamber 8 through the base 7 to which the frame 2 is fixed under the influence of the Joule heat of 31 and the frictional heat of the bearing. As the radiant heat from the armature winding 31 or the stator core 3, there is a path of heat transfer to the stator core 3 and the rotor 4 through the gap and the rotating shaft 5 that fits the rotor 4. The heat of the heat transfer path causes the temperature of the rotor 4 and the rotating shaft 5 to rise and cause deformation, or the temperature of the rotating shaft 5 causes the bearing 6 that is a contact element to deform. There was a problem of causing damage.
In the cooling devices shown in the second conventional example and the third conventional example, the heat on the stator core 3 side can be forcibly transferred to the outside of the vacuum chamber 8 to dissipate heat. Heat is transmitted to the rotor 4 by the radiant heat of the wire 31 or the stator core 3, or heat generated by the load 11 of the rotating shaft 5 is transmitted to the rotating shaft 5, and the temperature of the rotor 4 and the rotating shaft 5 rises. There was a problem.
In addition, since the third conventional example is connected by a cooling pipe, the heat transport path becomes long and the structure becomes complicated, and the cooling pipe connected to the motor body is removed from the vacuum chamber 8 at the time of disassembling and assembling maintenance. There is also a problem that work must be performed and the workability is poor and the cost is high.
Accordingly, the first object of the present invention is to efficiently dissipate the heat generated in the armature winding and the bearing to the outside of the vacuum chamber in a vacuum, thereby solving problems such as deformation of the rotating shaft or damage to the bearing. An object of the present invention is to provide a cooling device for a vacuum motor that can be used.
A second object of the present invention is to provide a cooling device for a vacuum motor that eliminates the work of disassembly and assembly such as maintenance of the cooling device and has a simple structure that does not require work costs.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, the present invention includes a vacuum chamber, a base fixed on the inner peripheral wall surface of the vacuum chamber, and a vacuum motor installed through the base, The vacuum motor is supported at one end by a frame provided in a direction perpendicular to the base, a stator core having an armature winding provided on the inside of the frame, and a bearing on the inside of the frame. In a cooling device for a vacuum motor, which includes a rotating shaft connected to a load, and a rotor that is fitted outside the rotating shaft and provided via the stator core and a gap, the rotating shaft is anti-load The frame is formed in a cup shape having a hollow portion drilled from the side toward the load side, and the frame has a base having a hole portion larger than the shaft diameter of the rotating shaft on the end surface on the non-load side. A mounting surface is formed and the base A coaxial fixed shaft for heat transfer is provided on the upper surface of the base plate through a slight gap from the hole provided between the base mounting surfaces toward the end surface on the load side of the hollow portion. It is a thing.
The fixed shaft for heat transfer is provided with a cooling passage through which a cooling fluid flows.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described with reference to the embodiments shown in the drawings.
FIG. 1 is a sectional view of a vacuum motor showing a first embodiment of the present invention. The same components as those in the conventional example are denoted by the same reference numerals, and the description thereof is omitted.
The configuration in which the vacuum motor 1 is fixed to the base 7 in the vacuum chamber 8 is the same as that of the first conventional example. The difference from the conventional example is that in the vacuum motor 1, the rotating shaft 5 is made of a cup having a hollow portion 51 drilled from the anti-load side toward the load side. A base mounting surface 22 having a hole 21 larger than the shaft diameter of the rotary shaft 5 is formed on the end surface of the base 7, and a hole provided between the base mounting surfaces 22 is formed on the upper surface of the base 7. A coaxial heat transfer fixed shaft 9 is provided from 21 to the end surface on the load side of the hollow portion 51 via a rotating shaft 5 and a slight gap. The fixed shaft 9 for heat transfer is made of a highly heat conductive material.
The operation in such a configuration will be described.
When the vacuum motor 1 with the load 11 attached to the end of the rotary shaft is rotated inside the vacuum chamber 8, the heat generated from the armature winding 31 and the bearing 6 is transferred to the frame 2, and the base 7 is moved from the frame 2 to the base 7. Then, heat is radiated from the outer peripheral wall surface of the vacuum chamber 8. Further, heat is transmitted to the rotor 4 through the stator core 3 and the air gap as radiant heat from the armature winding 31 or the stator core 3. The heat transmitted to the rotor 4 conducts heat to the rotating shaft 5 fitted to the inner periphery of the rotor 4, and radiates to the fixed shaft 9 for heat transfer provided through the rotating shaft 5 and a slight gap. Then, the heat is transferred from the fixed heat transfer shaft 9 to the base 7 and the outer peripheral wall surface of the vacuum chamber 8. The vacuum chamber 8 has a larger heat capacity than the vacuum motor 1, and the outer peripheral wall surface of the vacuum chamber 8 is in contact with the atmosphere, so that heat is radiated by natural convection and the temperature increase of the vacuum motor 1 is suppressed.
Therefore, the heat generated from the armature winding 31 and the like due to the operation of the vacuum motor 1 is transferred from the frame 2 of the stator core 3 to the vacuum chamber 8, and from the inside of the rotary shaft 5, the fixed shaft for heat transfer. Since the heat is transferred to the rotor 9 by radiant heat, the heat generated in the rotor 4, the rotating shaft 5 and the bearing 6 is efficiently radiated to the outside of the vacuum chamber 8, and further, deformation due to a temperature rise of the rotating shaft 4 or damage to the bearing 6. The problem can be solved.
[0006]
FIG. 2 is a sectional view of a vacuum motor showing a second embodiment. The difference from the first embodiment is that a cooling passage 10 is arranged inside the fixed shaft 9 for heat transfer. Both ends of the cooling passage 10 are connected to a chiller (not shown).
In such a configuration, since the cooling water circulates inside the heat transfer fixed shaft 9 by circulating the cooling water from the chiller (not shown) to the cooling passage 10, the armature winding of the vacuum motor 1 The heat transferred to the rotating shaft by the heat generated from the heat is exchanged with the cooling water circulating in the fixed shaft 9 for heat transfer.
Therefore, the temperature rise due to the heat generated in the rotor 4, the rotating shaft 5, and the bearing 6 can be further suppressed, and heat can be efficiently radiated to the outside of the vacuum chamber 8.
In addition, because of the simple structure in which the cooling passage 10 is disposed inside the heat transfer fixed shaft 9 fixed to the base 7, disassembly such as maintenance as a cooling device and work at the time of assembly are eliminated, and work costs are not incurred. There is an effect of obtaining a cooling device for a vacuum motor.
[0007]
【The invention's effect】
As described above, according to the present invention, the heat generated by the operation of the vacuum motor is not conducted from the fixed side of the frame or the like as in the prior art, but a little from the inside of the rotary shaft having the hollow portion. Since the heat transfer fixed shaft installed via the air gap is configured to take into account the heat transfer path as radiant heat, the vacuum chamber can efficiently transfer the heat generated by the armature windings and bearings in a vacuum. There is an effect of obtaining a cooling device for a vacuum motor that can radiate heat to the outside. Thereby, the problem of the deformation of the rotating shaft or the breakage of the bearing can be solved.
In addition, since work such as maintenance and cooling of the cooling device can be eliminated, work costs are not required, and the structure can be simplified.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cooling device for a vacuum motor showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a cooling device for a vacuum motor showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of a cooling device for a vacuum motor showing a first conventional example.
FIG. 4 is a cross-sectional view of a cooling device for a vacuum motor showing a third conventional example.
[Explanation of symbols]
1: Vacuum motor 2: Frame 21: Hole 22: Frame mounting surface 3: Stator core 31: Armature winding 4: Rotor 5: Rotating shaft 51: Hollow portion 6: Bearing 7: Base 8: Vacuum chamber 9: Heat transfer fixed shaft 10: Cooling passage 11: Load

Claims (2)

真空チャンバと、この真空チャンバの内周壁面上に固定されたベ−スと、このベ−スを介して設置された真空用モータとを備え、前記真空用モータが、前記ベ−スと垂直方向に設けたフレームと、このフレームの内側に設けた電機子巻線を有する固定子鉄心と、前記フレームの内側に軸受を介して支持され一端に負荷を接続した回転軸と、この回転軸の外側に嵌着され前記固定子鉄心と空隙を介して設けた回転子とで構成される真空用モータの冷却装置において、
前記回転軸は、反負荷側から負荷側に向かって穿設された中空部を有するカップ状に形成されたものからなり、前記フレームは、反負荷側の端面に前記回転軸の軸径より大きな穴部を有するベ−ス取付け面が形成されるとともに、前記ベ−スの上面には、前記ベ−ス取付け面の間に設けた穴部から前記中空部の負荷側の端面に向かって前記回転軸と僅かな空隙を介して同軸状の伝熱用固定軸を設けたことを特徴とする真空用モータの冷却装置。
A vacuum chamber, a base fixed on the inner peripheral wall surface of the vacuum chamber, and a vacuum motor installed through the base, the vacuum motor being perpendicular to the base A frame provided in a direction, a stator core having an armature winding provided inside the frame, a rotating shaft supported via a bearing inside the frame and connected to a load, and a rotating shaft of the rotating shaft In a cooling device for a vacuum motor, which is configured by a rotor that is fitted on the outside and provided with a stator core and a rotor provided through a gap,
The rotating shaft is formed in a cup shape having a hollow portion drilled from the anti-load side toward the load side, and the frame has an end surface on the anti-load side larger than the shaft diameter of the rotating shaft. A base mounting surface having a hole is formed, and an upper surface of the base is formed on a top surface of the base from a hole formed between the base mounting surfaces toward an end surface on the load side of the hollow portion. A cooling device for a vacuum motor, characterized in that a fixed shaft for heat transfer is provided coaxially with a rotating shaft and a slight gap.
前記伝熱用固定軸は、冷却流体を流通させる冷却用通路を配設してある請求項1に記載の真空用モータの冷却装置。The cooling device for a vacuum motor according to claim 1, wherein the fixed shaft for heat transfer is provided with a cooling passage through which a cooling fluid flows.
JP05696197A 1997-02-24 1997-02-24 Cooling device for vacuum motor Expired - Fee Related JP3716890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05696197A JP3716890B2 (en) 1997-02-24 1997-02-24 Cooling device for vacuum motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05696197A JP3716890B2 (en) 1997-02-24 1997-02-24 Cooling device for vacuum motor

Publications (2)

Publication Number Publication Date
JPH10243609A JPH10243609A (en) 1998-09-11
JP3716890B2 true JP3716890B2 (en) 2005-11-16

Family

ID=13042142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05696197A Expired - Fee Related JP3716890B2 (en) 1997-02-24 1997-02-24 Cooling device for vacuum motor

Country Status (1)

Country Link
JP (1) JP3716890B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972195B2 (en) 2002-09-13 2007-09-05 株式会社安川電機 Vacuum motor
KR101062703B1 (en) 2009-10-26 2011-09-06 한국전력공사 Heat generation suppression device of rotary machine during vacuum
JP5727823B2 (en) * 2011-03-15 2015-06-03 株式会社アルバック Rotation drive
DE102012203691A1 (en) * 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Cooling device for a rotor of an electrical machine
CN108462318B (en) * 2017-02-22 2022-04-26 蔚来(安徽)控股有限公司 Motor cooling structure, power motor and electric drive system
JP7308773B2 (en) * 2020-01-23 2023-07-14 エドワーズ株式会社 Rotating device and vacuum pump
CN112968574A (en) * 2021-02-05 2021-06-15 安庆师范大学 Radial magnetizing vacuum cleaning motor
CN113572289B (en) * 2021-07-05 2022-05-31 合肥巨一动力系统有限公司 Oil-cooling hollow rotating shaft structure
CN115664119B (en) * 2022-12-09 2023-03-10 大庆市晟威机械制造有限公司 Permanent magnet motor based on heat pipe heat dissipation
CN115682496A (en) * 2022-12-22 2023-02-03 济南汉江光电科技有限公司 Water cooling system for vacuum motion system

Also Published As

Publication number Publication date
JPH10243609A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US5441102A (en) Heat exchanger for electronic equipment
JP3716890B2 (en) Cooling device for vacuum motor
US3914630A (en) Heat removal apparatus for dynamoelectric machines
US2743384A (en) Evaporative cooling systems for electric motors
CN108506225B (en) Power supply integrated vacuum pump
JP3895322B2 (en) Cooling device for at least one of electrical and electronic devices
JP2017085830A (en) Rotary electric machine
JP2021044984A (en) Motor and electric power steering device
JPH0974716A (en) Rotor cooling structure of motor
JPH052574U (en) Motor cooling device
JPH08163826A (en) Electric rotating machine with rotation detector
JP2003314705A (en) Sealing device utilizing magnetic fluid
JP3923203B2 (en) Induction heating roller device
KR100406062B1 (en) Fan Apparatus for Chamber of Handler
JP3347397B2 (en) Wick type heat pipe
JP2617849B2 (en) Canned motor for driving vacuum pump
JPS61160671A (en) Magnetic fluid sealing device
SU675539A1 (en) Electric machine rotor
KR101073100B1 (en) Rotating device
JPS6332392Y2 (en)
JP3273959B2 (en) Motor cooling device
JPS60112297A (en) Rotating anode x-ray tube apparatus
JP2003092857A (en) Microgasturbine generator
JPH02294248A (en) Electric machine with rotor cooling centrifugal heat exchanger tube
JP2005108475A (en) Induction heating roller device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees