JP3716307B2 - MgB2 superconducting wire and manufacturing method thereof - Google Patents

MgB2 superconducting wire and manufacturing method thereof Download PDF

Info

Publication number
JP3716307B2
JP3716307B2 JP2002272878A JP2002272878A JP3716307B2 JP 3716307 B2 JP3716307 B2 JP 3716307B2 JP 2002272878 A JP2002272878 A JP 2002272878A JP 2002272878 A JP2002272878 A JP 2002272878A JP 3716307 B2 JP3716307 B2 JP 3716307B2
Authority
JP
Japan
Prior art keywords
mgb
superconducting
powder
superconducting wire
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002272878A
Other languages
Japanese (ja)
Other versions
JP2004111237A (en
Inventor
明善 松本
浩明 熊倉
仁 北口
一正 戸叶
在雄 高
秀夫 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002272878A priority Critical patent/JP3716307B2/en
Publication of JP2004111237A publication Critical patent/JP2004111237A/en
Application granted granted Critical
Publication of JP3716307B2 publication Critical patent/JP3716307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
この出願の発明は、MgB2超伝導線材とその製造方法に関するものである。さらに詳しくは、この出願の発明は、臨界電流密度(Jc)の高いMgB2超伝導線材とその製造方法に関するものである。
【0002】
【従来の技術とその課題】
従来、MgB2超伝導線材は、シース材である金属管内にMgB2超伝導粉末を充填し、圧延加工することにより得られている。このMgB2超伝導線材の臨界電流密度(Jc)は4.2K、10Tの磁場中で高々100A/cm2程度に過ぎない(たとえば、非特許文献1参照)。
【0003】
この出願の発明は、臨界電流密度(Jc)の高いMgB2超伝導線材とこれを製造可能とする製造方法を提供することを解決すべき課題としている。
【0004】
【非特許文献1】
熊倉、他3名(KUMAKURA H., MATSUMOTO A., FUJII H., TOGANO K.),「ステンレス鋼管と銅−ニッケル管を用いたパウダー・イン・プロセスによるMgB2テープ及び線材の高臨界電流密度(High transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes)」,アプライド・フィジックス・レターズ(Applied Physics Letters),(米国),第79巻,第15号,2001年10月8日,p.2435−2437
【0005】
【課題を解決するための手段】
前述のMgB2超伝導線材の臨界電流密度(Jc)の原因を検討したところ、圧延加工時にMgB2超伝導粉末が硬化し、ステンレス製の金属管との界面が凹凸となり、平滑性が失われているのがその原因ではないかと考えられた。
【0006】
そこでこの出願の発明の発明者らは、圧延加工時にシース材であるステンレス製の金属管からMgB2超伝導粉末に加わる圧縮力を緩和させ、MgB2超伝導粉末が硬化するのを抑制し、ステンレス製の金属管とMgB2超伝導粉末との界面を平滑に保つための方策を鋭意検討した。その結果、ステンレス製の金属管にMgB2超伝導粉末だけでなく、銅、アルミニウム又はこれらの混合物の粉末を添加、混合して充填することにより、添加した銅、アルミニウム又はこれらの混合物の粉末が、圧延加工時のステンレス製の金属管からMgB2超伝導粉末に加わる圧縮力を吸収し、ステンレス製の金属管とMgB2超伝導粉末との界面が平滑となり、Jcが上昇することを見出し、この出願の発明を完成した。
【0007】
すなわち、この出願の発明は、MgB2超伝導粉末がステンレス製の金属管内に充填され、圧延加工されて作製されたMgB2超伝導線材であって、MgB2超伝導粉末とともに銅、アルミニウム又はこれらの混合物の粉末が添加、混合され、圧延加工後のステンレス製の金属管とMgB2との界面が平滑であることを特徴とするMgB2超伝導線材(請求項1)を提供する。
【0009】
またこの出願の発明は、MgB2超伝導粉末と銅、アルミニウム又はこれらの混合物の粉末とを混合し、その混合粉末をステンレス製の金属管内に充填し、圧延加工してMgB2超伝導線材を作製することを特徴とするMgB2超伝導線材の製造方法(請求項)を提供する。
【0011】
以下、実施例を示しつつ、この出願の発明のMgB2超伝導線材とその製造方法についてさらに詳しく説明する。
【0012】
【発明の実施の形態】
この出願の発明のMgB2超伝導線材は、前記のとおり、ステンレス製の金属管内に充填するMgB2超伝導粉末に銅、アルミニウム又はこれらの混合物の粉末が添加、混合され、圧延加工されて作製された線材であり、この線材においてステンレス製の金属管とMgB2との界面は平滑となっている。このようなMgB2超伝導線材を製造する際には、MgB2超伝導粉末と銅、アルミニウム又はこれらの混合物の粉末とを混合し、その混合粉末をステンレス製の金属管内に充填し、圧延加工する。前述のとおり、銅、アルミニウム又はこれらの混合物の粉末を添加、混合せず、MgB2超伝導粉末のみをステンレス製の金属管に充填して圧延加工を行うと、MgB2超伝導粉末は硬化してステンレス製の金属管とMgB2超伝導粉末との界面は凹凸になり、100A/cm2程度のJcしか得られない。しかしながら、この出願の発明のMgB2超伝導線材では、ステンレス製の金属管とMgB2超伝導粉末との界面は平滑であり、Jcは高まる。
【0013】
MgB2超伝導粉末は、ステンレス製の金属管に充填後の加工により充填密度が上がり、大きな塊へと凝集しやすい。一旦固まった塊は加工時に塊として動くことになるため、ひび割れ、ステンレス製の金属管との界面の破損などが生じる。銅、アルミニウム又はこれらの混合物の粉末は、このようなMgB2超伝導粉末の大きな塊への凝集を防ぐとともに、万一塊が生じた場合、その塊を滑らせる(加工滑り)のための潤滑剤的な役割を果たすものと考えられる。
【0014】
以上のMgB2超伝導粉末に添加、混合する銅、アルミニウム又はこれらの混合物の粉末の添加量は5−30vol%が好ましく例示される。これは、界面の平滑性を得るために前述の加工滑りを起こさせることに基づく。5vol%未満では界面の平滑性は次第に得にくくなる。一方、30vol%を超えると、MgB2超伝導粉末に対する比率が多くなりすぎ、たとえ界面の平滑性は得られたとしても超伝導電流が流れにくくなり、その結果、臨界電流密度(Jc) が低下するおそれがある。
【0015】
この出願の発明のMgB2超伝導線材の製造方法では、圧延加工後、熱処理を行うことができる。この圧延加工後の熱処理によりJcはより一層高くなる。熱処理条件はMgB2超伝導線材の超伝導特性を劣化させない限りにおいて特に制限はなく、たとえば300℃で1時間を例示することができる。
【0016】
【実施例】
MgB2超伝導粉末は市販のものを使用した。このMgB2超伝導粉末にアルミニウム(Al)、銅(Cu)、インジウム(In)の粉末をそれぞれ10vol%添加し、混合粉末を作製した。各混合粉末をステンレス(SUS316)製で内径4mmφ、外径8mmφの金属管の内部に充填し、金属管の両端を混合粉末が出ないように圧着した。この混合粉末を充填した金属管を溝ロール圧延機により2mm×2mm角の角材に加工した。さらに、この角材を平ロール圧延機により厚さ0.5mmのテープ状の線材にまで加工した。この線材を適当な長さに切断し、アルゴンガスを流通させた管状型の電気炉内で熱処理した。この熱処理は、試料の隣に熱電対を設置し、温度を計測しながら行い、300℃で1時間とした。
【0017】
以上のようにした作製した線材、非熱処理のもの、熱処理済みのものそれぞれを四端子抵抗法により4.2K、8Tの磁界下で臨界電流密度(Jc)を測定した。
【0018】
図1は、それら線材のJcを添加、混合した金属種との関係でプロットした相関図である。この相関図には従来のMgB2超伝導線材のJcも合わせて示している。
【0019】
非熱処理の線材では、Alを添加、混合したMgB2超伝導線材が最大のJcを示し、400A/cm2となった。従来のMgB2超伝導線材のJcは200A/cm2程度であった。
【0020】
また、従来のMgB2超伝導線材以外は、熱処理によりJcが大幅に上昇した。特に熱処理後のCu添加線材では、無添加線材に比べ3倍程度も高いJcとなった。
【0021】
Cu添加線材の熱処理前後のものと従来のMgB2超伝導線材(同じく熱処理前後のもの)についてその断面を光学顕微鏡により観察した。その断面像を示したのが図2である。
【0022】
図2に確認されるように、従来のMgB2超伝導線材では、金属管とMgB2超伝導粉末との界面に大きな凹凸が発生していた。Cu添加線材の熱処理前後のものでは界面は平滑であった。従来のMgB2超伝導線材では、圧延加工時に加わる圧縮力によりMgB2超伝導粉末が硬化し、硬化したMgB2超伝導粉末が塊となり、圧延加工により金属管の内面を傷つけ、凹凸のある界面になったと考えられる。一方、Cu添加線材は、圧延加工時に加わる圧縮力を軟らかいCu粉末が吸収し、MgB2超伝導粉末の硬化を抑え、また、硬化してもMgB2超伝導粉末を滑りやすくして強加工によっても金属管の内面が傷つけられず、界面は平滑性を保ったと考えられる。
【0024】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、臨界電流密度(Jc)の高いMgB2超伝導線材が得られる。
【図面の簡単な説明】
【図1】実施例で作製した線材及び従来のMgB2超伝導線材のJcを添加、混合した金属種との関係でプロットした相関図である。
【図2】実施例で作製したCu添加線材の熱処理前後のものと従来のMgB2超伝導線材(同じく熱処理前後のもの)についてその断面を光学顕微鏡により観察した断面像である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a MgB 2 superconducting wire and a method for producing the same. More specifically, the invention of this application relates to a MgB 2 superconducting wire having a high critical current density (Jc) and a method for producing the same.
[0002]
[Prior art and its problems]
Conventionally, an MgB 2 superconducting wire is obtained by filling a metal tube, which is a sheath material, with MgB 2 superconducting powder and rolling it. The critical current density (Jc) of this MgB 2 superconducting wire is only about 100 A / cm 2 at most in a magnetic field of 4.2 K and 10 T (for example, see Non-Patent Document 1).
[0003]
The invention of this application has an object to be solved to provide a MgB 2 superconducting wire having a high critical current density (Jc) and a manufacturing method capable of manufacturing the same.
[0004]
[Non-Patent Document 1]
Kumakura and three others (KUMAKURA H., MATSUMOTO A., FUJII H., TOGANO K.), “High critical current density of MgB 2 tape and wire by powder-in process using stainless steel pipe and copper-nickel pipe (High transport critical current density obtained for powder-in-tube-processed MgB 2 tapes and wires using stainless steel and Cu-Ni tubes), Applied Physics Letters, (USA), Vol. 79, No. 15, October 8, 2001, p. 2435-2437
[0005]
[Means for Solving the Problems]
When the cause of the critical current density (Jc) of the MgB 2 superconducting wire described above was examined, the MgB 2 superconducting powder hardened during rolling, and the interface with the stainless steel metal tube became uneven, resulting in loss of smoothness. It was thought that this was the cause.
[0006]
Therefore, the inventors of the invention of this application relaxed the compressive force applied to the MgB 2 superconducting powder from the stainless steel metal tube that is the sheath material during rolling, and suppresses the hardening of the MgB 2 superconducting powder, Measures for keeping the interface between the stainless steel metal tube and the MgB 2 superconducting powder smooth were studied. As a result, by adding not only MgB 2 superconducting powder but also copper, aluminum or a mixture of these powders to a stainless steel metal tube, the added copper, aluminum or a mixture of these powders can be obtained. , The compressive force applied to the MgB 2 superconducting powder from the stainless steel metal tube during the rolling process is absorbed, the interface between the stainless steel metal tube and the MgB 2 superconducting powder becomes smooth, and Jc increases. The invention of this application has been completed.
[0007]
That is, the invention of this application, MgB 2 superconducting powder is filled in a stainless steel metal tube, a MgB 2 superconducting wire produced is rolled, copper with MgB 2 superconducting powder, aluminum or their Thus, a MgB 2 superconducting wire characterized in that the interface between the rolled stainless steel metal tube and MgB 2 is smooth is provided.
[0009]
In addition, the invention of this application is to mix MgB 2 superconducting powder and copper, aluminum or a mixture thereof , fill the mixed powder in a stainless steel metal tube, and perform rolling to obtain an MgB 2 superconducting wire. to provide a method of manufacturing a MgB 2 superconducting wire, characterized in that to produce (claim 2).
[0011]
Hereinafter, the MgB 2 superconducting wire of the invention of this application and the manufacturing method thereof will be described in more detail with reference to examples.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the MgB 2 superconducting wire of the invention of this application is prepared by adding, mixing, and rolling a powder of copper, aluminum, or a mixture thereof to the MgB 2 superconducting powder filled in a stainless steel metal tube. In this wire, the interface between the stainless steel metal tube and MgB 2 is smooth. When manufacturing such a MgB 2 superconducting wire, the MgB 2 superconducting powder and copper, aluminum or a mixture of these powders are mixed, and the mixed powder is filled into a stainless steel metal tube and rolled. To do. As described above, when a powder of copper, aluminum or a mixture thereof is not added or mixed, and only MgB 2 superconducting powder is filled into a stainless steel metal tube and rolled, the MgB 2 superconducting powder is cured. Therefore, the interface between the stainless steel metal tube and the MgB 2 superconducting powder is uneven, and only Jc of about 100 A / cm 2 can be obtained. However, in the MgB 2 superconducting wire of the invention of this application, the interface between the stainless steel metal tube and the MgB 2 superconducting powder is smooth and Jc increases.
[0013]
The MgB 2 superconducting powder has a higher packing density due to processing after being filled into a stainless steel metal tube, and tends to aggregate into a large lump. Since the lump that has once solidified moves as a lump during processing, cracks, damage to the interface with the stainless steel metal tube, and the like occur. The powder of copper, aluminum or a mixture thereof prevents aggregation of such MgB 2 superconducting powder into large lumps, and in the unlikely event that lumps occur, lubrication for sliding the lumps (working slip) It is considered to play a medicinal role.
[0014]
It added to MgB 2 superconducting powder or copper mixed, the addition amount of the powder of aluminum or mixtures thereof 5-30Vol% are preferably exemplified. This is based on causing the aforementioned processing slip to obtain the smoothness of the interface. If it is less than 5 vol%, the smoothness of the interface becomes difficult to obtain gradually. On the other hand, when it exceeds 30 vol%, MgB 2 too much ratio superconducting powder, smoothness of the other example interfaces also hardly superconducting current flows as obtained, as a result, the critical current density (Jc) May decrease.
[0015]
In the manufacturing method of the MgB 2 superconducting wire of the invention of this application, heat treatment can be performed after the rolling process. The heat treatment after the rolling process further increases Jc. The heat treatment conditions are not particularly limited as long as the superconducting properties of the MgB 2 superconducting wire are not deteriorated. For example, one hour can be exemplified at 300 ° C.
[0016]
【Example】
A commercially available MgB 2 superconducting powder was used. A mixed powder was prepared by adding 10 vol% of aluminum (Al), copper (Cu), and indium (In) powders to the MgB 2 superconductive powder. Each mixed powder was filled into a metal tube made of stainless steel (SUS316) having an inner diameter of 4 mmφ and an outer diameter of 8 mmφ, and both ends of the metal tube were pressure-bonded so that the mixed powder did not come out. The metal tube filled with the mixed powder was processed into a 2 mm × 2 mm square by a grooved roll mill. Furthermore, this square was processed into a tape-shaped wire having a thickness of 0.5 mm by a flat roll mill. This wire was cut into an appropriate length and heat-treated in a tubular electric furnace in which argon gas was circulated. This heat treatment was carried out by installing a thermocouple next to the sample and measuring the temperature at 300 ° C. for 1 hour.
[0017]
The critical current density (Jc) was measured under the magnetic field of 4.2 K and 8 T by the four-terminal resistance method for each of the prepared wire, non-heat treated, and heat treated.
[0018]
FIG. 1 is a correlation diagram plotted in relation to the metal species added and mixed with Jc of these wires. This correlation diagram also shows Jc of the conventional MgB 2 superconducting wire.
[0019]
In the non-heat treated wire, the MgB 2 superconducting wire added with Al and mixed showed the maximum Jc, which was 400 A / cm 2 . The conventional MgB 2 superconducting wire has a Jc of about 200 A / cm 2 .
[0020]
In addition to the conventional MgB 2 superconducting wire, Jc significantly increased by heat treatment. In particular, in the Cu-added wire after heat treatment, the Jc was about 3 times higher than that in the non-added wire.
[0021]
The cross sections of the Cu-added wire before and after heat treatment and the conventional MgB 2 superconducting wire (also before and after heat treatment) were observed with an optical microscope. The cross-sectional image is shown in FIG.
[0022]
As can be seen in FIG. 2, in the conventional MgB 2 superconducting wire, large irregularities occurred at the interface between the metal tube and the MgB 2 superconducting powder. The interface was smooth before and after heat treatment of the Cu-added wire. In the conventional MgB 2 superconducting wire, the MgB 2 superconducting powder is cured by the compressive force applied during the rolling process, and the hardened MgB 2 superconducting powder becomes a lump, scratching the inner surface of the metal tube by the rolling process, and an uneven interface It is thought that it became. On the other hand, Cu is added wire material, soft Cu powder compression force applied during rolling is absorbed by suppressing the curing of MgB 2 superconductor powder and by strong working and also slippery MgB 2 superconductor powder was cured However, it is considered that the inner surface of the metal tube was not damaged and the interface was kept smooth.
[0024]
【The invention's effect】
As described above in detail, according to the invention of this application, an MgB 2 superconducting wire having a high critical current density (Jc) can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a correlation diagram plotted in relation to the metal species added and mixed with Jc of a wire produced in an example and a conventional MgB 2 superconducting wire.
FIG. 2 is a cross-sectional image obtained by observing the cross section of a Cu-added wire prepared in an example before and after heat treatment and a conventional MgB 2 superconducting wire (also before and after heat treatment) with an optical microscope.

Claims (2)

MgB2超伝導粉末がステンレス製の金属管内に充填され、圧延加工されて作製されたMgB2超伝導線材であって、MgB2超伝導粉末とともに銅、アルミニウム又はこれらの混合物の粉末が添加、混合され、圧延加工後のステンレス製の金属管とMgB2との界面が平滑であることを特徴とするMgB2超伝導線材。MgB 2 superconducting powder filled in a stainless steel metal tube and rolled to produce MgB 2 superconducting wire, which is added and mixed with MgB 2 superconducting powder and copper, aluminum or a mixture of these powders An MgB 2 superconducting wire characterized by having a smooth interface between the stainless steel metal tube after rolling and MgB 2 . MgB2超伝導粉末と銅、アルミニウム又はこれらの混合物の粉末とを混合し、その混合粉末をステンレス製の金属管内に充填し、圧延加工してMgB2超伝導線材を作製することを特徴とするMgB2超伝導線材の製造方法。The MgB 2 superconducting powder is mixed with copper, aluminum, or a mixture thereof, and the mixed powder is filled into a stainless steel metal tube and rolled to produce a MgB 2 superconducting wire. Manufacturing method of MgB 2 superconducting wire.
JP2002272878A 2002-09-19 2002-09-19 MgB2 superconducting wire and manufacturing method thereof Expired - Lifetime JP3716307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272878A JP3716307B2 (en) 2002-09-19 2002-09-19 MgB2 superconducting wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272878A JP3716307B2 (en) 2002-09-19 2002-09-19 MgB2 superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004111237A JP2004111237A (en) 2004-04-08
JP3716307B2 true JP3716307B2 (en) 2005-11-16

Family

ID=32269787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272878A Expired - Lifetime JP3716307B2 (en) 2002-09-19 2002-09-19 MgB2 superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3716307B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229868B2 (en) * 2005-10-24 2013-07-03 独立行政法人物質・材料研究機構 Method for manufacturing MgB2 superconducting wire

Also Published As

Publication number Publication date
JP2004111237A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
Gajda et al. Significant enhancement of the critical current of MgB2 wires through a reduction of the diameter using HIP method
Park et al. Bend strain tolerance of critical currents for YBa 2 Cu 3 O 7 films deposited on rolled-textured (001) Ni
CA2063281C (en) Method of preparing oxide superconducting wire
Goldacker et al. Axial tensile, transverse compressive and bending strain experiments on Bi (2223)/AgMg single core tapes
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JP3716307B2 (en) MgB2 superconducting wire and manufacturing method thereof
TWI298169B (en) Method for producing oxide superconductive wire material, method for modifying oxide superconductive wire material and an oxide superconductive wire material
Glowacki et al. Influence of the cold deformation procedures on the critical current distribution in Ag‐(Bi, Pb) 2Sr2Ca2Cu3O x tapes
CA2063285C (en) Method of preparing oxide superconducting wire
Tachikawa et al. Structure and critical current of Ni-sheathed PIT MgB2 tapes with In metal powder addition
Goldacker et al. Reduction of AC losses applying novel resistive interfilamentary carbonate barriers in multifilamentary Bi (2223) tapes
JP3876317B2 (en) Method for manufacturing MgB2 superconducting wire
Hao et al. Effect of pre-annealing on microstructure, mechanical properties and current-carrying properties of Bi-2212 wires
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
Wang et al. Influence of bending strain on mono-and multi-filamentary MgB2/Nb/Cu wires and tapes
Ji et al. Interface irregularity and texture evolution of Bi-Sr-Ca-Cu-O superconductor tape processed by PIT method
Guo et al. Improved uniformity of microstructure and electrical properties of Bi-2223/Ag superconducting tapes
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP2002533874A (en) Manufacturing method of superconducting wire
Kim et al. In situ processed MgB2 conductors: Core densification due to mechanical deformation
Ha et al. The effect of thermal cycling and axial strain on the IC degradation of multi-filamentary Bi-2223/Ag tapes
MARKEN et al. ISSUES FOR FABRICATION OF BSCCO-2212 CONDUCTORS
JPH02183918A (en) Manufacture of oxide superconductor
CN116730395A (en) Iron-based superconducting tape core powder and application thereof, and preparation method of iron-based superconducting tape

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Ref document number: 3716307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term