JP3715578B2 - PTC material using ester compound - Google Patents

PTC material using ester compound Download PDF

Info

Publication number
JP3715578B2
JP3715578B2 JP2002044390A JP2002044390A JP3715578B2 JP 3715578 B2 JP3715578 B2 JP 3715578B2 JP 2002044390 A JP2002044390 A JP 2002044390A JP 2002044390 A JP2002044390 A JP 2002044390A JP 3715578 B2 JP3715578 B2 JP 3715578B2
Authority
JP
Japan
Prior art keywords
ester compound
ptc
temperature
ptc material
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002044390A
Other languages
Japanese (ja)
Other versions
JP2003243206A (en
Inventor
優二 堤
和敏 池永
Original Assignee
株式会社ツツミ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ツツミ filed Critical 株式会社ツツミ
Priority to JP2002044390A priority Critical patent/JP3715578B2/en
Publication of JP2003243206A publication Critical patent/JP2003243206A/en
Application granted granted Critical
Publication of JP3715578B2 publication Critical patent/JP3715578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ヒーター等に用いられ得る新規なPTC材料に関する。
【0002】
【従来の技術とその課題】
PTC材料は、抵抗値が温度に対して正特性、すなわち、温度上昇に伴い抵抗値が大きくなる(Positive Thermo Conductivity)特性を有する材料であり、近年、自らの温度を制御できるヒーター(発熱体)としての他、温度コントローラーや電流調節器等への応用が試みられている。
【0003】
従来のPTC材料は、無機系の材質から成るものが多く、重くて薄膜化することが困難であるので、軽量、薄型でフレキシブルなヒーターなどを作製するには不適当であった。これらの難点を克服し得るものとして、有機系材質から成るPTC材料も案出されており、例えば、パラフィンを用いる有機系PTC材料が提示されているが、製膜性等の点で充分ではない。
本発明の目的は、小型軽量で、パネル状など自由な形状に製作することができる、ヒーター等に利用できる新しいタイプのPTC材料を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、上記のごとき目的を達成し得るものとして、エステル構造を有する高分子または低分子の有機化合物と導電性粒子とを含有することを特徴とするPTC材料を提供するものである。
本発明のPTC材料の好ましい態様においては、エステル構造を有する有機化合物は高分子エステル化合物であり、例えば、高級脂肪酸ビニルのポリマーである。
【0005】
【発明の実施の形態】
本発明において用いられるエステル構造を有する有機化合物とは、一般的に下記の式(1)または(2)で表わされるようなエステル結合−C(O)O−を有する有機化合物(低分子エステル化合物)またはそのポリマー(高分子エステル化合物)であり、エステル結合は複数個存在してもかまわない。RおよびR’は芳香族または脂肪族の置換基であり、同一または異なる置換基であってもよい。好ましい芳香族置換基としては、ベンゼン環、ナフタレン環などが挙げられ、ヘテロ環を有することもある。好ましい脂肪族置換基としてはメチル基、エチル基等のアルキル基が挙げられ、酸素、窒素、硫黄等の炭素以外の原子が含まれていてもよい。式(2)で表わされるように、環状エステル化合物でもよい。
【0006】
【化1】

Figure 0003715578
【0007】
【化2】
Figure 0003715578
【0008】
低分子エステル化合物の具体例としては、エチレングリコールジベンゾエート、1,3−プロパンジオールジベンゾエート、1,4−ブタンジオールジベンゾエート、1,6−ヘキサンジオールジベンゾエート、グリセリントリベンゾエート、パンタエリスリトールテトラベンゾエート、トリメチロールプロパントリベンゾエートなどが挙げられ、他にはリン酸エステル、ケイ酸エステル、炭酸エステル、チオエステルなどがある。高分子エステル化合物としては、エステル基がポリマー側鎖に存在するタイプのポリ酢酸ビニル、ポリピバリン酸ビニル、ポリ安息香酸ビニル、ポリシクロヘキサンカルボン酸ビニル、ポリステアリン酸ビニル等のビニルエステル系が挙げられる。他にはアクリル酸系、メタクリル酸系等がある。さらに、エステル基がポリマー主鎖に存在するタイプのフタル酸、アジピン酸、フマル酸等のジカルボン酸とジオールからなる直鎖型ポリエステル化合物も挙げられる。このように、種々のエステル化合物を例示することができるが、これらに限られるものではない。図1には、本発明のPTC材料において用いられ得るこのようなエステル化合物の幾つかの化学構造式を示している。
【0009】
本発明のPTC材料は、如上のエステル化合物中に導電性粒子が分散されて構成される。すなわち、低温ではエステル化合物中に導電性粒子(例えば、カーボン)が密な状態にあるため導電性が高い(抵抗値が小さい)が、温度上昇とともに導電性粒子間の接触が悪くなり抵抗値が上昇するPTC特性が発現されるものと理解される。理想的なPTC材料においては、温度上昇−冷却を繰り返してもこのような状態変化が完全に可逆的に起こる。
【0010】
この点において、本発明において用いられるエステル化合物としては、一般的に、低分子エステル化合物よりも高分子エステル化合物の方が好ましい。すなわち、低分子エステル化合物の系においては、結晶性はあるが、低分子化合物であるので、分子間の自由度が大きく、温度上昇−冷却過程で導電性粒子が密な状態と導電性粒子の接触が悪くなる状態とを可逆的に繰り返すことができない場合がある。これに対して、高分子エステル化合物においては、その構造上の自由度と結晶性を制御することが可能であり、温度上昇−冷却の繰り返しによるPTC特性を発現し得る可逆的な状態変化の達成が容易となる。例えば、高級脂肪酸ビニルのポリマー、すなわち、側鎖に長鎖アルキル基を持つポリビニル化合物〔例えば、ポリ(ステアリン酸ビニル)〕のように、分子の末端が連結されている分子構造の高分子エステル化合物を使用することにより、PTC特性の繰り返し発現性の優れた系を得ることができる。
【0011】
本発明のPTC材料において、上記のごとき高分子または低分子のエステル化合物とともに用いられる導電性粒子として好ましい例は、カーボンブラックに代表されるカーボン微粒子(炭素微粒子)である。その他に、金属微粒子、剛性樹脂の微粒子表面を炭素または金属で表面処理した導電性微粒子なども使用することができる。
【0012】
高分子または低分子のエステル化合物と導電性粒子とから成る本発明のPTC材料は、適度の粘性を有する液状物(溶液)として適用することができるので、各種の形状の適当な基材の上に、スクリーン印刷などにより印刷したり、あるいはラミネート加工などの方法により薄膜として供することができ、軽量・薄型でフレキシブルなヒーター等が容易に製作できる。
【0013】
低分子のエステル化合物の系の場合には、一般に、ベースとして市販の導電ペースト(例えば、徳力化学研究所製R−806)を用い、これと低分子のエステル化合物とを適当な溶媒(例えば、THF)中に溶解することにより、所望の粘度の液状物(溶液)が得られる。高分子のエステル化合物を用いる系においては、高分子のエステル化合物と導電性粒子とを適当な溶媒に溶解するだけでよい場合もあるが、これだけでは使用に適した粘度の溶液が調製できないような場合には、低分子エステル化合物の場合と同様に導電ペーストを用いる。低分子または高分子のエステル化合物と導電性粒子の割合は、用いるエステル化合物と導電性粒子の種類にもよるが、一般的に、エステル化合物に対して導電性粒子が10〜20重量%程度である。
【0014】
【実施例】
以下に、本発明の特徴をさらに具体的に明らかにするた実施例を示すが、これらの実施例は、本発明に従うPTC材料を例示するものにすぎず、本発明を限定するためのものではない。
なお、本明細書および図面に示す化学構造式においては慣用的表現に従い、炭素原子および水素原子を省略していることがある。
実施例1:高分子エステル化合物を用いるPTC材料
高分子エステル化合物として図1に示すポリステアリン酸ビニル(以下PVSと略称する)を用いてPTC材料を作製し、その特性を測定した。
【0015】
重合体の調製
重合する前にクーゲルロール蒸留装置を用いてモノマーから重合禁止剤を蒸留により除去した。還流冷却機、攪拌子を備えた1リットルの丸底フラスコにモノマー(0.2モル、70ml)、分散剤(PVA:重合度=1500)の1.7%水溶液(6.0g、360ml)、炭酸カルシウム(2.0g)と過酸化ベンゾイル(0.36g)を入れた。10時間加熱還流後、徐々に室温まで冷却した。1リットルのビーカーに反応混合物を移し温水(0.4リットル)を加えて、微粒子を含んだ上澄み水溶液を捨てた。これを2回行い、球状重合物を47.6g得た。デシケーター中で乾燥して、乳鉢を用いて粉末化してTHF(0.4リットル)を用いて均一溶液とした。THF−水を用いた再沈澱法(水溶性物質の除去)とTHF−エタノールを用いた再沈澱法(低分子化合物の除去)を行い精製した。乳鉢を用いて粉末化し乾燥して目的の重合体を38.5g得た。得られた重合体は直径5mm程度の真球状であった。
【0016】
PTC特性測定
コンパウンドの作製:サンプル管に上記のように調製したPVS(2.0g)に対して15%量のカーボン(旭カーボン製旭HS−500)を秤取りTHF(6.0ml)を用いて溶液にした。スパーテルで攪拌を行い、ある程度均一になった所で、超音波洗浄器にて30分の超音波照射を行って混合した。
スクリーン印刷:上記のように作製したコンパウンドを、スクリーン(幅2mm×長さ50mm×厚さ20μm、126本)(図2照)を用いてPETフィルムにスクリーン印刷して、1日常温にて放置し常温乾燥した。用いたスクリーン印刷装置は、九栄スクリーン製スクリーン印刷器である。
PTC特性測定:上記のようにして得られた薄膜にアルミ鉄箔テープ(住友スリーエム製:FE−20CX)を電極に使用して発熱面を並列回路に接続し抵抗値を測定した。すなわち、電極を取り付けた薄膜にテスターで初期抵抗値を測定し、次に、電極を取り付けた薄膜にコンピュータとセットになっている計測器に接続し、外部から加温して抵抗値の経時変化を測定した。一度抵抗値の経時変化を測定した薄膜について、もう一度同じ抵抗値の経時変化について測定した。使用した抵抗測定装置は日置/デジタルテスター3256、温度・電力・抵抗計測システム器である。
また、上記のように作製したコンパウンドについてDSC測定(示差走査熱量測定)を行った。
抵抗値の繰り返し測定の結果を図3、また、DSC測定の結果を図4示す。図3に示されるように50℃付近から抵抗値の急激な上昇がありPTC特性の発現が認められた。このことは、DSC測定で47.9℃に吸熱ピークが観測され融点が45℃に観測されることからも裏付けられる。そして、このPTC特性は繰り返し出現した。
【0017】
ヒーターユニットの試作と耐久試験
既述のPVSとカーボンの組成比を有するコンパウンド使用してスクリーン印刷により薄膜を作製して耐久試験用のヒーターユニットの試作品を作製した。下記の2つの方法で温度分布測定を行い、耐久試験も実施した。
オープン試験:断熱材(熱伝導率λ=0.042W/m・K)の上に薄膜を置き温度測定用熱電対をセットして定格電圧100Vを印加後の温度分布を測定した。
全面閉塞試験:断熱材(熱伝導率λ=0.042W/m・K)の上に薄膜を置き温度測定用熱電対をヒータにセットして、その上にもう一枚の断熱材で前面閉塞し、定格電圧100Vを印加し温度分布を測定した。使用した温度測定装置は、日置電気、温度ハイテスタ(3441)/短時間測定用、温度・電力・抵抗計測システム器である。
全面閉塞の場合:断熱材(熱伝導率λ=0.042W/m・K)の上にヒータを置き温度測定用熱電対をヒータにセットし、その上にもう一枚の断熱材で全面閉塞し定格電圧100Vを印加し、ヒータの設定温度(ヒーター最高温度)と常温との繰り返しの方法で72回行った。
オープン試験の場合:断熱材(熱伝導率λ=0.042W/m・K)の上にヒータを置き、温度測定用熱電対をヒータにてセットし定格電圧100Vを印加しオープンで最高温度と常温との繰り返しの方法で40回行った。
オープン試験および全面閉塞試験の両方において、薄膜の温度はベース(PVS)の融点以下で平衡を保った。全面閉塞試験では、保温した状態であるので、PTC特性が完全でないと一定温度を保てずに温度が上昇して、最終的には薄膜が破壊される。オープン試験および全面閉塞試験の結果の1例を図5に示す。PVSを用いたヒーターユニットは、温度上昇−冷却の繰り返しが無限に可能であることが分かった。
【0018】
実施例2:低分子エステル化合物を用いるPTC材料
低分子エステル化合物として、図1に示す1,6−ヘキサンジオールジベンゾエート(以下、DBC6と略称する)およびペンタエリスリトールテトラアセテート(以下、PTAと略称する)を用いてPTC材料を作製し、そのPTC特性測定(抵抗測定)を行った。
【0019】
エステル化合物の合成
DBC6は以下のように合成した:還流冷却機、滴下ロート、三方コック、攪拌子を備えた2リットルの三口丸底フラスコを充分に窒素置換した。ドラフト内で窒素気流中、フラスコに1,6−ヘキサンジオール(0.5モル59g)とトリエチルアミン(2モル139g)とヘキサン(0.3リットル)を入れた。氷浴で冷却しながら塩化ベンゾイルのヘキサン溶液をゆっくりと滴下した。この時反応で生じるトリエチルアミンの塩酸塩の生成が確認できた。2時間かけて滴下し、さらに2時間室温で攪拌した。反応終了後、溶液を氷水(1リットル)に注意して注ぎ、過剰の塩化ベンゾイルを分解した。クロロホルム(0.5リットル)加えて、目的物を抽出した。さらにクロロホルム(0.2リットル)を用いて抽出操作を2回行った。有機層を併せて無水硫酸マグネシウムで乾燥して、減圧下で濃縮した。目的物が固体で150g得られた。クローゲルロール蒸留装置を用いて蒸留し、次いでヘキサンを用いて再結晶を行った。PTAも同様の操作により合成した。
【0020】
PTC特性測定
コンパウンドの作製:ベース材料〔導電ペースト材料〔導電ペースト(R806:徳力化学研究所)〕と低分子エステル化合物を所定の量〔DBC6またはPTA(1.5g)+R−806(6.0g)〕をサンプル管に秤取りTHFを用いて溶液にした。スパーテルで攪拌を行い、ある程度均一になったところで、超音波洗浄器にて30分の超音波照射を行って混合した。
手動印刷による薄膜の作製:PETフィルムに幅20mm×長さ200mm×厚さ20μmを等間隔に7本塗布できるようにテープ(20mm)を貼りつけ、上記のように作製したコンパウンドをヘラで均一に塗布し、室温一昼夜乾燥させた。
PTC特性測定:実施例1で使用した装置と測定法を用いて、上記のように作製した薄膜の抵抗測定を行いPTC特性を評価した。また、上記のように作製したコンパウンドについて、DSC測定を行った。
DBC6の抵抗測定の結果の図6、DSC測定の結果を図7また、PTAの抵抗測定の結果を図8、DSC測定の結果を図9に、それぞれ示す。DBC6については、55℃付近、また、PTAについては80℃付近に抵抗値の急激な変化が見られ、DSC測定によりそれぞれに対応する温度における吸熱ピークが観測された。これらの結果から、これらの低分子エステル化合物と導電性ペーストから調製された組成物がPTC特性を発現することが確認された。
【0021】
【発明の効果】
以上の説明から明らかなように、本発明のPTC材料は、スクリーン印刷などの手法により薄膜として供することができるので、形状が自由な軽量小型のヒーター等が容易に製作できる。そして、このようにして得られるヒーターは、従来の化石燃料等を用いる暖房設備や加熱手段に比べて、省エネルギー型で環境にやさしいヒーターユニットとして、例えば、ビニールハウスの育苗用ヒーター、浴室、洗面所、トイレ用の防水ヒーター、畳用ヒーター、電気敷毛布、ホットカーペットへ、医療用保温器具等の広範な用途を有する。
【図面の簡単な説明】
【図1】本発明のPTC材料に用いられるエステル化合物を例示する。
【図2】実施例に示す本発明のPTC材料を作製するのに用いられたスクリーン印刷パターンである。
【図3】エステル化合物としてPVSを用いて作製された本発明のPTC材料の繰り返し抵抗値測定結果を示すグラフである。
【図4】エステル化合物としてPVSを用いて作製された本発明のPTC材料のDSC測定結果を示す。
【図5】エステル化合物としてPVSを用いて作製された本発明のPTC材料のオープン試験および全面閉塞試験の結果の1例を示す。
【図6】エステル化合物としてDBC6を用いて作製された本発明のPTC材料の抵抗値測定結果を示すグラフである。
【図7】エステル化合物としてDBC6を用いて作製された本発明のPTC材料のDSC測定結果を示す。
【図8】エステル化合物としてPTAを用いて作製された本発明のPTC材料の抵抗値測定結果を示すグラフである。
【図9】エステル化合物としてPTAを用いて作製された本発明のPTC材料のDSC測定結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel PTC material that can be used in a heater or the like.
[0002]
[Prior art and its problems]
A PTC material is a material whose resistance value is positive with respect to temperature, that is, a material whose resistance value increases with increasing temperature (Positive Thermo Conductivity). In recent years, a heater (heating element) that can control its own temperature. In addition, the application to a temperature controller, a current regulator, etc. has been attempted.
[0003]
Conventional PTC materials are often made of inorganic materials and are heavy and difficult to be thinned, making them unsuitable for making lightweight, thin and flexible heaters. In order to overcome these difficulties, PTC materials made of organic materials have been devised. For example, organic PTC materials using paraffin have been proposed, but they are not sufficient in terms of film-forming properties. .
An object of the present invention is to provide a new type of PTC material that can be used for a heater or the like that is small and light and can be manufactured in a free shape such as a panel shape.
[0004]
[Means for Solving the Problems]
The present invention provides a PTC material characterized by containing a polymer or low-molecular organic compound having an ester structure and conductive particles, which can achieve the object as described above.
In a preferred embodiment of the PTC material of the present invention, the organic compound having an ester structure is a polymer ester compound, for example, a polymer of higher fatty acid vinyl.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The organic compound having an ester structure used in the present invention is generally an organic compound having a ester bond —C (O) O— as represented by the following formula (1) or (2) (low molecular ester compound) ) Or a polymer thereof (polymer ester compound), and a plurality of ester bonds may exist. R and R ′ are aromatic or aliphatic substituents, and may be the same or different substituents. Preferable aromatic substituents include a benzene ring and a naphthalene ring, and may have a hetero ring. Preferred aliphatic substituents include alkyl groups such as a methyl group and an ethyl group, and may contain atoms other than carbon such as oxygen, nitrogen, and sulfur. As represented by the formula (2), a cyclic ester compound may be used.
[0006]
[Chemical 1]
Figure 0003715578
[0007]
[Chemical formula 2]
Figure 0003715578
[0008]
Specific examples of the low molecular weight ester compound include ethylene glycol dibenzoate, 1,3-propanediol dibenzoate, 1,4-butanediol dibenzoate, 1,6-hexanediol dibenzoate, glycerin tribenzoate, and pantaerythritol tetrabenzoate. , Trimethylolpropane tribenzoate and the like, and other examples include phosphate ester, silicate ester, carbonate ester, and thioester. Examples of the polymer ester compound include vinyl ester types such as polyvinyl acetate, vinyl polypivalate, vinyl polybenzoate, vinyl polycyclohexanecarboxylate, and vinyl stearate in which an ester group is present in the polymer side chain. Others include acrylic acid and methacrylic acid. Furthermore, the linear polyester compound which consists of dicarboxylic acid and diol, such as a phthalic acid, adipic acid, and fumaric acid of the type in which an ester group exists in a polymer principal chain, is also mentioned. Thus, although various ester compounds can be illustrated, it is not restricted to these. FIG. 1 shows several chemical structural formulas of such ester compounds that can be used in the PTC materials of the present invention.
[0009]
The PTC material of the present invention is constituted by dispersing conductive particles in the above ester compound. That is, the conductive particles (for example, carbon) are dense in the ester compound at a low temperature, so that the conductivity is high (resistance value is small), but the contact between the conductive particles becomes worse as the temperature rises, and the resistance value is low. It is understood that increasing PTC properties are manifested. In an ideal PTC material, such a state change occurs completely reversibly even if the temperature rise and cooling are repeated.
[0010]
In this respect, the ester compound used in the present invention is generally preferably a polymer ester compound rather than a low molecular ester compound. That is, in the low molecular weight ester compound system, there is crystallinity, but since it is a low molecular weight compound, there is a large degree of freedom between the molecules, and the conductive particles are in a dense state in the temperature rising-cooling process. There are cases where the state of poor contact cannot be reversibly repeated. On the other hand, in the polymer ester compound, it is possible to control the structural freedom and crystallinity, and achieve a reversible state change that can exhibit PTC characteristics by repeated temperature rise and cooling. Becomes easy. For example, a polymer of higher fatty acid vinyl, that is, a polymer ester compound having a molecular structure in which molecular ends are linked, such as a polyvinyl compound having a long-chain alkyl group in a side chain [for example, poly (vinyl stearate)] By using this, it is possible to obtain a system having excellent repeatability of PTC characteristics.
[0011]
In the PTC material of the present invention, carbon particles represented by carbon black (carbon particles) are preferable examples of the conductive particles used together with the above-described polymer or low-molecular ester compound. In addition, metallic fine particles, conductive fine particles obtained by treating the surface of rigid resin fine particles with carbon or metal, and the like can also be used.
[0012]
Since the PTC material of the present invention comprising a polymer or low-molecular ester compound and conductive particles can be applied as a liquid material (solution) having an appropriate viscosity, it can be used on various types of suitable substrates. In addition, it can be printed by screen printing or the like, or provided as a thin film by a method such as laminating, and a lightweight, thin and flexible heater can be easily manufactured.
[0013]
In the case of a low molecular weight ester compound system, generally, a commercially available conductive paste (for example, R-806 manufactured by Tokuru Chemical Laboratory) is used as a base, and this and a low molecular weight ester compound are combined with an appropriate solvent (for example, By dissolving in (THF), a liquid (solution) having a desired viscosity is obtained. In a system using a polymer ester compound, it may be sufficient to dissolve the polymer ester compound and the conductive particles in an appropriate solvent. However, it is not possible to prepare a solution having a viscosity suitable for use alone. In such a case, a conductive paste is used as in the case of the low molecular weight ester compound. The ratio of the low-molecular or high-molecular ester compound and the conductive particles depends on the type of the ester compound and conductive particles used, but generally the conductive particles are about 10 to 20% by weight with respect to the ester compound. is there.
[0014]
【Example】
In the following, examples that further clarify the features of the present invention will be shown. However, these examples are merely illustrative of PTC materials according to the present invention, and are not intended to limit the present invention. Absent.
In the chemical structural formulas shown in the present specification and drawings, carbon atoms and hydrogen atoms may be omitted in accordance with conventional expressions.
Example 1: PTC material using a polymer ester compound A PTC material was produced using the polyvinyl stearate (hereinafter abbreviated as PVS) shown in Fig. 1 as the polymer ester compound, and the properties thereof were measured. .
[0015]
A polymerization inhibitor from the monomer using a Kugelrohr distillation apparatus before preparing <br/> polymerization of the polymer was removed by distillation. In a 1 liter round bottom flask equipped with a reflux condenser and a stirrer, a 1.7% aqueous solution (6.0 g, 360 ml) of a monomer (0.2 mol, 70 ml), a dispersant (PVA: degree of polymerization = 1500), calcium carbonate (2.0 g) ) And benzoyl peroxide (0.36 g). After heating to reflux for 10 hours, the mixture was gradually cooled to room temperature. The reaction mixture was transferred to a 1 liter beaker, warm water (0.4 liter) was added, and the supernatant aqueous solution containing fine particles was discarded. This was performed twice to obtain 47.6 g of a spherical polymer. It was dried in a desiccator, pulverized using a mortar, and made into a uniform solution using THF (0.4 liter). Purification was performed by reprecipitation using THF-water (removal of water-soluble substances) and reprecipitation using THF-ethanol (removal of low molecular weight compounds). It was pulverized using a mortar and dried to obtain 38.5 g of the desired polymer. The obtained polymer was a true sphere having a diameter of about 5 mm.
[0016]
Measurement of PTC characteristics Preparation of compound: 15% of carbon (Asahi HS-500 manufactured by Asahi Carbon Co., Ltd.) was weighed in a sample tube with respect to PVS (2.0 g) prepared as described above, and THF (6.0 ml) To make a solution. The mixture was stirred with a spatula, and when it became uniform to some extent, it was mixed by ultrasonic irradiation for 30 minutes with an ultrasonic cleaner.
Screen printing: The compound produced as described above is screen-printed on PET film using a screen (width 2 mm x length 50 mm x thickness 20 μm, 126 pieces) (see Fig. 2) and left at room temperature for one day. And dried at room temperature. The screen printer used was a Kuei screen screen printer.
PTC characteristic measurement: An aluminum iron foil tape (manufactured by Sumitomo 3M: FE-20CX) was used as an electrode for the thin film obtained as described above, and the heating surface was connected to a parallel circuit to measure the resistance value. That is, the initial resistance value is measured with a tester on the thin film with the electrode attached, and then the resistance value is changed over time by connecting the thin film with the electrode attached to a measuring instrument set with the computer and heating from the outside. Was measured. About the thin film which once measured the temporal change of the resistance value, the temporal change of the same resistance value was measured once again. The resistance measuring device used was a Hioki / Digital Tester 3256, a temperature / power / resistance measuring system.
Further, DSC measurement (differential scanning calorimetry) was performed on the compound produced as described above.
FIG. 3 shows the result of repeated measurement of the resistance value, and FIG. 4 shows the result of DSC measurement. As shown in FIG. 3, the resistance value increased rapidly from around 50 ° C., and the expression of PTC characteristics was observed. This is supported by the fact that an endothermic peak is observed at 47.9 ° C. and a melting point is observed at 45 ° C. by DSC measurement. And this PTC characteristic appeared repeatedly.
[0017]
Prototype of heater unit and durability test A thin film was prepared by screen printing using the compound having the composition ratio of PVS and carbon described above, and a prototype of the heater unit for durability test was prepared. The temperature distribution was measured by the following two methods, and an endurance test was also conducted.
Open test: A thin film was placed on a heat insulating material (thermal conductivity λ = 0.042 W / m · K), a thermocouple for temperature measurement was set, and the temperature distribution after applying a rated voltage of 100 V was measured.
Whole surface blocking test: A thin film is placed on a heat insulating material (thermal conductivity λ = 0.042 W / m · K), a thermocouple for temperature measurement is set in the heater, and the front surface is blocked with another heat insulating material. The temperature distribution was measured by applying a rated voltage of 100V. The temperature measuring device used was Hioki Denki, Temperature Hitester (3441) / for short-time measurement, temperature / power / resistance measuring system.
In the case of full blockage: A heater is placed on a heat insulating material (thermal conductivity λ = 0.042 W / m · K), a thermocouple for temperature measurement is set in the heater, and the whole surface is blocked with another heat insulating material. A rated voltage of 100 V was applied, and the test was performed 72 times by repeating the setting temperature of the heater (heater maximum temperature) and normal temperature.
For the open test: Place the heater on a heat insulating material (thermal conductivity λ = 0.042 W / m · K), set the thermocouple for temperature measurement with the heater, apply the rated voltage of 100 V, and open the maximum temperature and room temperature. And repeated 40 times.
In both the open and full occlusion tests, the temperature of the thin film was equilibrated below the melting point of the base (PVS). In the full blockage test, since the temperature is kept, if the PTC characteristics are not perfect, the temperature rises without maintaining a constant temperature, and eventually the thin film is destroyed. An example of the results of the open test and the full occlusion test is shown in FIG. The heater unit using PVS has been found to be capable of infinitely repeating temperature rise and cooling.
[0018]
Example 2: PTC material using a low molecular ester compound As a low molecular ester compound, 1,6-hexanediol dibenzoate (hereinafter abbreviated as DBC6) and pentaerythritol tetraacetate (hereinafter referred to as DBC6) shown in FIG. A PTC material was prepared using abbreviated as PTA, and the PTC characteristics were measured (resistance measurement).
[0019]
Synthesis of ester compound DBC6 was synthesized as follows: A 2-liter three-necked round bottom flask equipped with a reflux condenser, a dropping funnel, a three-way cock, and a stirrer was thoroughly purged with nitrogen. 1,6-Hexanediol (0.5 mol 59 g), triethylamine (2 mol 139 g) and hexane (0.3 liter) were placed in a flask in a nitrogen stream in a fume hood. While cooling in an ice bath, hexane solution of benzoyl chloride was slowly added dropwise. At this time, it was confirmed that triethylamine hydrochloride formed by the reaction was formed. The solution was added dropwise over 2 hours, and the mixture was further stirred at room temperature for 2 hours. After completion of the reaction, the solution was carefully poured into ice water (1 liter) to decompose excess benzoyl chloride. Chloroform (0.5 liter) was added to extract the target product. Furthermore, extraction operation was performed twice using chloroform (0.2 liter). The organic layers were combined, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. 150 g of the target product was obtained as a solid. Distillation was performed using a Krugel roll distillation apparatus, followed by recrystallization using hexane. PTA was synthesized by the same operation.
[0020]
Measurement of PTC characteristics Preparation of compound: Base material [conductive paste material [conductive paste (R806: Tokiki Chemical Laboratories)] and a low-molecular-weight ester compound [DBC6 or PTA (1.5 g) + R-806 ( 6.0 g)] was weighed into a sample tube and made into a solution using THF. After stirring with a spatula and becoming uniform to some extent, mixing was performed by ultrasonic irradiation for 30 minutes with an ultrasonic cleaner.
Preparation of thin film by manual printing: Tape (20mm) is affixed to PET film so that seven pieces of 20mm width x 200mm length x 20μm thickness can be applied at regular intervals, and the compound produced as described above is uniformly applied with a spatula It was applied and dried at room temperature overnight.
PTC characteristic measurement: Using the apparatus and measurement method used in Example 1, the resistance of the thin film produced as described above was measured to evaluate the PTC characteristic. Moreover, DSC measurement was performed about the compound produced as mentioned above.
FIG. 6 shows the results of resistance measurement of DBC6, FIG. 7 shows the results of DSC measurement, FIG. 8 shows the results of resistance measurement of PTA, and FIG. 9 shows the results of DSC measurement. For DBC6, a sudden change in resistance value was observed at around 55 ° C., and for PTA around 80 ° C., and endothermic peaks were observed at corresponding temperatures by DSC measurement. From these results, it was confirmed that the composition prepared from these low molecular weight ester compounds and the conductive paste exhibited PTC characteristics.
[0021]
【The invention's effect】
As is clear from the above description, the PTC material of the present invention can be provided as a thin film by a technique such as screen printing, so that a lightweight and small heater having a free shape can be easily manufactured. The heater obtained in this way is an energy-saving and environmentally friendly heater unit as compared with conventional heating equipment and heating means using fossil fuels, for example, a nursery for a nursery for a greenhouse, a bathroom, and a bathroom. It has a wide range of uses such as waterproof heaters for toilets, heaters for tatami mats, electric blankets, hot carpets, and medical warming devices.
[Brief description of the drawings]
FIG. 1 illustrates an ester compound used in the PTC material of the present invention.
FIG. 2 is a screen printing pattern used to produce the PTC material of the present invention shown in the examples.
FIG. 3 is a graph showing measurement results of repeated resistance values of the PTC material of the present invention produced using PVS as an ester compound.
FIG. 4 shows DSC measurement results of the PTC material of the present invention produced using PVS as an ester compound.
FIG. 5 shows an example of the results of an open test and a full blockage test of a PTC material of the present invention produced using PVS as an ester compound.
FIG. 6 is a graph showing resistance measurement results of the PTC material of the present invention produced using DBC6 as the ester compound.
FIG. 7 shows DSC measurement results of the PTC material of the present invention produced using DBC6 as the ester compound.
FIG. 8 is a graph showing resistance measurement results of the PTC material of the present invention produced using PTA as an ester compound.
FIG. 9 shows a DSC measurement result of the PTC material of the present invention produced using PTA as an ester compound.

Claims (1)

エステル構造を有する低分子の有機化合物であって、下記の式(A)で表わされる1,6−ヘキサンジオールベンゾエートまたは式(B)で表わされるペンタエリスリトールテトラアセテートから選ばれる有機化合物と、導電性粒子とを含有することを特徴とするPTC材料。
Figure 0003715578
A low molecular organic compound having an ester structure, which is selected from 1,6-hexanediol benzoate represented by the following formula (A) or pentaerythritol tetraacetate represented by the following formula (B); A PTC material containing particles.
Figure 0003715578
JP2002044390A 2002-02-21 2002-02-21 PTC material using ester compound Expired - Lifetime JP3715578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002044390A JP3715578B2 (en) 2002-02-21 2002-02-21 PTC material using ester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044390A JP3715578B2 (en) 2002-02-21 2002-02-21 PTC material using ester compound

Publications (2)

Publication Number Publication Date
JP2003243206A JP2003243206A (en) 2003-08-29
JP3715578B2 true JP3715578B2 (en) 2005-11-09

Family

ID=27783791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044390A Expired - Lifetime JP3715578B2 (en) 2002-02-21 2002-02-21 PTC material using ester compound

Country Status (1)

Country Link
JP (1) JP3715578B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536496B2 (en) * 2004-09-15 2013-09-17 Watlow Electric Manufacturing Company Adaptable layered heater system
CN108503940B (en) * 2018-03-27 2019-11-15 华南理工大学 A kind of low Curie point PTC organic composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2003243206A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
US3412358A (en) Self-regulating heating element
TW412756B (en) Electrical device containing positive temperature coefficient resistor composition and method of manufacturing the device
US5198639A (en) Self-regulating heated mirror and method of forming same
JPS62169849A (en) Novel polymer composition
JPH02172179A (en) Self temp. adjusting heat-emitting body and flexible surface-shaped heat emitting body using same
CN103547644A (en) Thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing same, and electronic device
Sundararajan et al. Crosslinked polymer networks of poly (ethylene glycol)(PEG) and hydroxyl terminated poly (dimethyl siloxane)(HTPDMS) as polymeric phase change material for thermal energy storage
CN103108906A (en) Conductive polymer composition for ptc element with decreased ntc characteristics, using carbon nanotube
TW201120088A (en) Liquid-crystal polymer and molded articles
JP3715578B2 (en) PTC material using ester compound
WO2000006533A2 (en) Monomers and network polymers obtained therefrom
Kunanuruksapong et al. Poly (p-phenylene) and acrylic elastomer blends for electroactive application
CN108164901A (en) Multi-walled carbon nanotube covalent bond enhancing self-healing polymers conductive material and preparation method thereof
Abeysekera et al. Discotic liquid crystalline triblock copolymers: interplay of liquid crystal architecture with microphase separation
Koide et al. Synthesis and properties of polythiophene containing mesogenic group at 3-position of thiophene ring
CN107236099A (en) Acrylate urethane copolymer resins and the conductive silver paste containing the resin
JP6195811B2 (en) Method for producing polymer compound for conductive polymer
JPH0590009A (en) Ptc composition
JP2004027182A (en) Polymer and polymeric composition of which shape and peak position of absorption/emission spectrum change reversibly
JPS5918804B2 (en) heat sensitive element
Charoonrak et al. Poly (p-phenylene)/crosslinked poly (ε-caprolactone) blends as highly electroactive materials
JP2007207797A (en) Ptc material using cholesterol compound
Amanuma et al. Thermal Response Behavior of a Photo-Crosslinked Liquid Crystalline Polymer and a Side Chain Liquid Crystalline Polymer
KR20150088951A (en) Self-assembled brush block copolymers with fluorocarbon for memory device, preparation thereof and products comprising the polymer
JP2004256690A (en) Polymer capable of reversibly changing in shape and peak position of extinction or emission spectrum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050512

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Ref document number: 3715578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term