JP3715286B2 - Fixed point positioning method such as vertical reference point and fixed point position information recording system - Google Patents

Fixed point positioning method such as vertical reference point and fixed point position information recording system Download PDF

Info

Publication number
JP3715286B2
JP3715286B2 JP2003053838A JP2003053838A JP3715286B2 JP 3715286 B2 JP3715286 B2 JP 3715286B2 JP 2003053838 A JP2003053838 A JP 2003053838A JP 2003053838 A JP2003053838 A JP 2003053838A JP 3715286 B2 JP3715286 B2 JP 3715286B2
Authority
JP
Japan
Prior art keywords
positioning
position information
signal
fixed point
measurement points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003053838A
Other languages
Japanese (ja)
Other versions
JP2004264120A (en
Inventor
卓美 藤井
明 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003053838A priority Critical patent/JP3715286B2/en
Publication of JP2004264120A publication Critical patent/JP2004264120A/en
Application granted granted Critical
Publication of JP3715286B2 publication Critical patent/JP3715286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の利用分野】
本発明は、いわゆるGPS(人工衛星からの測位用信号を用いてその受信点の位置を測定する全地球測位システム)を利用して建築物の鉛直基準点等の定点を測位する方法、及び該定点の位置情報の記録システムに関する。
【0002】
尚、本明細書において、「定点」とは、後述のSTATIC測位が可能な程度の所要時間一定の場所に位置している点、特に建築物や地盤に対して固定された点をいい、その建築物の傾きや地盤沈下等により観測基点に対して準静的に変位する点を含むものとする。
【0003】
【従来の技術】
建築途中の高層ビルの鉛直基準点などの定点の位置乃至その変位を正確に測定するため、次の通り上記GPSを利用した方法が提案されている。
▲1▼地上の基点と建物屋上の一つの測点とにおいて受信した、人工衛星からの信号を解析し、基点に対して測点を測位する方法(特許文献1及び特許文献2)。
▲2▼測定時及び過去の基準時において、同一配置・同一組合せの複数の人工衛星から受信した信号を解析して測点の座標を算出し、測定時座標から基準時座標を引算して、測点の位置の変位を測定する方法(特許文献3及び特許文献4)。
【0004】
尚、GPSの測位手法としては、1秒から1分程度の短時間で得た観測データを直ちに解析して解析結果を出力するRTK測位(リアルタイム動的干渉測位)と、数十分から数時間の長い観測時間に亘って得た観測データの記録を解析して、より精密に測位するSTATIC測位(静的干渉測位)とが知られている(例えば特許文献3の段落「0003」参照)。
【0005】
【特許文献1】
特許第3207060号公報
【特許文献2】
特許第3280812号公報
【特許文献3】
特許第2959555号公報
【特許文献4】
特許第3055680号公報
【0006】
【発明の解決しようとする課題】
GPS測位の結果には、観測された信号を発信した複数の人工衛星の相対的な位置関係や、サイクルスリップ(人工衛星と受信装置との間の電波遮断による動作不良)、アンテナ周辺の環境不良(電波反射物の有無等)、電離層の状態の不良などといった外乱により周期的に或いは不規則に誤差が生ずる。図7は、RTK測位の測定誤差の経時的変化を示しているが、時刻7:30:08〜09:00:16の時間帯において大きな2つの外乱による誤差が認められる。
【0007】
上述の▲1▼の方法は、上記外乱等の影響に対して精度確保のための特別の手段を備えていないため、精度を上げるためには外乱の大きさに応じた長い観測時間を必要とするが、この方法にSTATIC測位を用いる場合、該STATIC測位ではデータ計測を完了して解析をするまで測定結果の精度が判らないので、測定時間の不足により測定をやり直したり、又、再度の測定を回避するために必要以上に長く測定を行なうなどの不都合を生じ易い。他方、RTK測位を用いた場合、計測時点での外乱の状況は判るが、人工衛星からの受信信号が記録されないので、観測時間のうち外乱の大きい部分を除いて再度解析を行なうことができず、解析精度の向上が困難である。
【0008】
又、上述の▲2▼の方法は、人工衛星の配置条件が同一になるように測定時刻を選択することで測点の変位を高精度に測定することを提案しているが、この方法は測点の周辺の状況が同一であることが条件となる。既述の鉛直基準点のように施工の進捗に伴い上方へ盛りかえられ、計測時における周囲の環境条件が変化する場合には、計測時刻を合わせても精度向上は期待できない。
【0009】
本発明は、STATIC測位とRTK測位とを併用して、建築物の鉛直基準点等の定点を測位する方法であって、STATIC測位の観測の途中で精度の良否を判断することができ、周囲の環境に左右されずに短時間で良好な観測結果を得ることが可能な方法、及び、その定点測位用位置情報を記録することができるシステムを提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の第1の手段は、鉛直基準点等の定点測位方法であり、
人工衛星からの電波信号を2地点で受信し、その受信記録を解析して両点の相対的位置を決定するSTATIC測位と、上記信号の受信と同時に2地点の相対的位置を測るRTK測位とを併用した測位方法であって、
不動点A及び第1、第2計測点B,Cで受信した信号をSTATIC測位用位置情報記録装置4に記録
該記録行程と並行して該記録装置に記録された第1、第2計測点B,Cでの受信信号と同一の信号だけを用いて、RTK測位により各計測点B、Cをそれぞれ反復して測位し、
この測位結果より両計測点B,C間の相対的位置乃至相対的距離を算出し、
この相対的位置乃至相対的距離が一定の範囲に収斂するまで上記不動点Aと両計測点B,Cとの位置情報を上記記録装置4に蓄積した後にその記録を解析し、不動点Aに対する各計測点B,Cの相対的位置を決定している。
【0011】
第2の手段は、上記第1の手段を有し、かつ上記第1、第2計測点B,C間の距離を予め既知方法で測定し、この測定距離と上記RTK測位により測定した第1、第2計測点B,C間の距離の平均値との差が一定値以下となったときにRTK測位による計測距離が収斂したものとしている。
【0012】
第3の手段は、上記第1の手段又は第2の手段を有し、かつ上記第1、第2計測点B,Cを、人工衛星からの電波信号を受信可能な建物上層階に、かつ上記不動点Aを地上にとっている。
【0013】
第4の手段は、上記第1の手段、第2の手段、又は第3の手段を有し、かつ上記STATIC測位用の位置情報の記録から、RTK測位用の信号の解析により外乱が大きいと判断される時間帯の位置情報を除いて、解析を行なうこととしている。
【0014】
第5の手段は、上記第1の手段、第2の手段、又は第3の手段を有し、かつ上記STATIC測位用の位置情報の記録から、RTK測位用の信号の解析により、サイクルスリップの発生頻度の大きいと判断される人工衛星からの信号を除いて、解析を行なうこととしている。
【0015】
第6の手段は、第1の手段乃至第5の手段の何れかに記載された定点測位方法に使用する定点の位置情報記録システムであり、
人工衛星からの電波信号を受信するために、不動点A及び第1、第2計測点B,Cにそれぞれ配置された信号受信機2…と、
これら信号受信機から送信された信号を記録するSTATIC測位用位置情報記録装置4と、
上記第1、第2計測点B,Cに設置された信号受信機2と上記STATIC測位用位置情報記録装置4との間の信号伝達経路の途中にそれぞれ設けられた信号分配器3と、
これら信号分配器3により分岐された信号を解析して、第1、第2計測点の相対的位置をRTK測位により決定するRTK測位用データ解析装置6と、
上記両計測点B,C間の相対的位置乃至相対的距離をリアルタイムで表示するモニター7とを具備し、
上記STATIC測位用位置情報記録装置4…への位置情報の記録と並行して、上記信号分配器3,3により分岐された信号を上記RTK測位用データ解析装置6で解析して、第1、第2計測点B,Cの相対的位置乃至相対距離を計測するものとしている。
【0016】
【発明の実施の形態】
図1乃至図3は、本発明に係る定点位置情報記録システム1を示している。
【0017】
この定点位置情報記録システムは、人工衛星からの電波信号を受信する信号受信機2…と、信号分配器3,3と、STATIC測位用の位置情報記録装置4…と、RTK測位用位置情報記録装置5,5と、RTK測位用データ解析装置6と、モニター7とで構成されている。
【0018】
信号受信機2…は、地上の不動点Aと、構築途中の構造物Eの屋上の2箇所の第1、第2計測点B,Cとにそれぞれ配置されている。この信号受信機2…は、公知のものであり、図2に示す如く三脚11の上に整準台12を介してGPS信号受信アンテナ13を配置している。
【0019】
信号分配器3,3は、上記両計測点B,Cに位置した信号受信機2,2からの信号をSTATIC測位用及びRTK測位用の同一の信号に分岐する。
【0020】
STATIC測位用の位置情報記録装置4…は、上記信号受信機2からの信号を、位置情報として蓄積記録するためのもので、該信号受信機に対して、不動点Aでは直接に、又、上記両計測点B,Cでは上記信号分配器3,3を介してそれぞれ接続されている。
【0021】
RTK測位用位置情報記録装置5,5は、上記信号分配器3,3に接続され、該信号分配器から送られた分岐信号を一時的に保存するとともに、無線でRTK測位用データ解析装置6へ転送するように構成されている。尚、RTK位置情報記録装置5とRTK測位用データ解析装置6とは有線で接続しても良い。
【0022】
RTK測位用データ解析装置6は、第1、第2計測点B,Cで受信した信号をRTK測位で解析して、その結果をリアルタイムでモニター7へ出力する。尚、図示例では上記解析装置6を不動点A付近に設置しているが、その設置場所はRTK位置情報記録装置5からの信号を受信可能であれば何処でもよい。
【0023】
次に本発明による定点測位方法を説明する。
▲1▼信号受信機の設定
構造物E周囲の座標既知の場所を、STATIC測位の基点となる不動点Aに、又、構造物E屋上の一点を、RTK測位用の基点となる第1計測点Bに、更に構造物Eの屋上の鉛直基準点を第2計測点Cにそれぞれ選択して信号受信機2…を設置する。第1、第2計測点の間には適当な距離をとる。
▲2▼第1、第2計測点間の測定
これら両計測点間の距離を適当な手段で精密に測定し、その測定した距離(以下「標準距離」という)を上記RTK測位用データ解析装置6に記録しておく。測定の方法としては、巻尺、レーザー距離計などの一般的な測距手段の他、GPS測位を用いることもできる。
▲3▼STATIC測位用位置情報の記録
上記不動点A及び第1、第2計測点B,Cにおいて、人工衛星からの電波信号を、上記信号受信機2…で受信し、かつこれらの信号をそれぞれSTATIC測位用位置情報記録装置4へ送信して記録する。
▲4▼RTK測位用位置情報の分配
上記▲3▼の記録過程と並行して、上記両計測点B、Cの信号受信機2から送信された信号を信号分配器3で分岐し、該信号をRTK測位位置情報記録装置5を介してRTK測位用データ解析装置6へ逐次送信する。尚、送信データを上記RTK測位用位置情報記録装置5へ一時保存することを省略して、信号分配器3から分岐した信号をRTK測位用データ解析装置6へ直ちに送信することもできる。▲5▼RTK測位用位置情報の解析
上記RTK測位用データ解析装置6は、RTK測位法により、適当な単位時間帯ごとに、上記第2計測点Cに対する第1計測点Bの三次元座標と、両計測点間の相対距離とを計測するとともに、この計測距離と予め既知方法で測定した上記標準距離との誤差を計算し、この計測及び計測操作を反復継続しながら、各単位時間帯毎の両計測点の相対座標、相対距離、及び標準距離との誤差などの計測値をリアルタイムでモニター7へ出力して経時的に表示する。更に各上記単位時間帯の計測値の平均値を併せてモニター7に表示することが望ましい。
▲6▼RTK測位の解析結果の処理
上記モニター7を観察して、ある時間帯(例えば後述の図6のデータでは、時刻12:00付近の時間帯)に上記両計測点間の解析距離のデータが他の時間帯のものに比較して特に突出しているときには、その時間帯には特に外乱が大きいものと判断して、その時間帯を記録しておく。
【0024】
上記RTK測位により算出した第1計測点Bの三次元座標全てに大きな経時的変化が見られなくなり、かつRTK測位による両計測点B,C間の計測距離と上記標準距離との誤差が一定以下となったとき、STATIC測位を行なうのに十分な観測データが蓄積されたものと判定して、人工衛星からの信号の受信を停止する。
▲7▼STATIC測位
信号の受信を停止した後、図3に示す如く不動点A及び第1、第2計測点B,Cに設置した各STATIC測位用位置情報記録装置4…に記録されたデータを取り出し、外部に設置したSTATIC測位用のデータ解析装置31に読み込ませる。
【0025】
そして上記不動点Aを観測基点、鉛直基準点に対応する第2計測点Cを測点として、これら両点についてSTATIC測位用位置情報記録装置4に記録した位置情報をSTATIC測位法で解析すれば、第1計測点の座標を正確に求めることができる。
【0026】
その際、上記行程▲6▼で記録した外乱の大きい時間帯の位置情報や、既述サイクルスリップの発生の頻度が多い人工衛星からの信号を解析対象から除外すれば、第1計測点の座標の精度は更に高まる。
【0027】
又、同様の手順で、不動点Aを観測基点、第1計測点Bを測点として該第1計測点の座標を求め、これから第1、第2計測点間の相対的距離を算出し、上記標準距離と比較して、その誤差が所要量以下であることを確認すれば、第2計測点の座標解析に対する信頼度が更に高まる。
【0028】
尚、建物屋上の2箇所に設置した信号受信機2,2の位置から第2計測点Cに対する第1計測点の方位も決定することができる。
【0029】
又、以上の行程において、上記行程▲2▼(既知の方法による第1、第2計測点間の距離の測定)を省略して、RTK測位による第1、第2計測点間の相対座標及び相対距離の経時的変化を示す観測データのみで該データの収斂の具合を判断しても良い。
【0030】
【実施例】
図4乃至図6は、第1計測点のX、Y,Z座標を、2時間に亘って1秒毎にRTK測位したときの計測波形を示す。X、Y、Z座標ともに、短周期と長周期との変動が見られる。
【0031】
下記の表1は、図4乃至図6に示す第2計測点CのX,Y,Z座標の各解析対象時間帯ごとの平均値(CX,CY,CZ)、第2、第1計測点間の距離BC、及び、これら各時間帯ごとの座標乃至距離の測定値と46時間STATIC測位をしたときの対応する測定値との誤差などを示したものである。
【0032】
【表1】

Figure 0003715286
表1左欄に示す最初の時間帯(11:30〜11:45)では、上記両計測点間の距離の誤差BC−BC(46hr)が0.36mmと小さいので、既に高精度の観測データが得られているように見えるが、第2計測点のz座標の誤差CZ−CZ(46hr)が5mmもあり、又、この時間帯のRTK計測の結果を図4〜図6で観察すると、特にX座標及びY座標が無視することのできない増減の傾向を示しているので、計測を継続するべきと判断する。
【0033】
時刻12:15まで計測を継続すると、第1、第2計測点B,C間の距離の誤差BC−BC(46hr)が0.63mmと十分小さく、又、X,Y,Z座標の誤差CX −CX(46hr)…も1mm以下で十分小さいので、観測時間が所要時間に達したと判断できる。念のため、時刻13:30まで観測を継続したが計測誤差はほぼ一定で十分に収束している。
【0034】
表2は、表1と同じ解析対象を、同一アンテナから受信した同一信号に基づいて、STATIC測位により解析した結果を示している。表中の記号の意味は表1のそれと同じである。
【0035】
【表2】
Figure 0003715286
表2は、表1とよく一致した結果を示しており、時刻12:15分までの計測結果から第1、第2計測点間距離、X,Y,Z座標の誤差のいずれも1mm以下となっている。尚、Z座標の誤差はその後やや増加しているが、これはRTK測位とSTATIC測位との解析方法の差と考えられ、基準点の誤差としては実用上十分小さい。
【0036】
又、表1と表2とが良く一致していることから、距離の実測値と比較しなくとも、RTK測位から求めた2点間距離の収斂状況から計測精度を把握することができることが判る。
【0037】
【発明の効果】
本発明は上記構成のものであり、請求項1の発明によれば次の効果を奏する。
○不動点に対する第1、第2計測点の座標情報をSTATIC測位で記録しながら、第1、第2計測点の相対的距離をRTK測位で測定し、該RTK測位による測定距離が一定範囲に収斂するまでSTATIC測位用の位置データを蓄積するから、所要の精度でSTATIC測位を行うために必要なデータを測定できたか否かをRTK測位によりリアルタイムで判断することができ、STATIC測位の計測を終了した後に解析の結果、精度不足が判明することがない。
○上記の如くSTATIC測位用の測定の精度がその測定中に判るから、建設作業の妨げることなく必要最小限の時間で高精度の測位を行うことができる。
○更に上記STATIC測位とRTK測位とを並行して行うだけなので、特別の解析技術やノウハウを用いなくても、高精度な基準点計測が可能である。
○GSPを用いるので、従来の測量方法では不可能であった夜間、雨天でも高精度に基準点測量が可能である。
【0038】
請求項2の発明によれば、上記第1、第2計測点B,C間の距離を予め既知方法で測定し、この測定距離と上記RTK測位により測定した第1、第2計測点B,C間の計測距離の平均値とを対比して該計測距離の収斂の状況を判断するから、より確実に収斂状況を把握である。
【0039】
請求項3の発明によれば、上記第1、第2計測点B,Cを、人工衛星からの電波信号を受信可能な建物の上層階にとったから、予め両計測点の間の距離を測定する場合に計測点の一方を地上にとったときと比較して、その測定が容易である。
【0040】
請求項4の発明によれば、上記STATIC測位用の位置情報の記録から、RTK測位用の信号の解析により外乱が大きいと判断される時間帯の位置情報を除いて解析を行なうから、更に定点の測位の精度を向上させることができる。
【0041】
請求項5の発明によれば、上記STATIC測位用の位置情報の記録から、RTK測位用の信号の解析により、サイクルスリップの発生頻度の大きいと判断される人工衛星からの信号を除いて解析を行なうから、定点の測位精度を向上させることができる。
【0042】
請求項6によれば、第1、第2計測点の信号受信機2,2と上記STATIC測位用位置情報記録装置4との間の信号伝達経路の途中に設けた信号分配器3,3で信号を分岐するように設けたから、簡単な構成で同一信号をSTATIC測位用及びRTK測位用に分離することができる。
【図面の簡単な説明】
【図1】 本発明に係る定点位置情報記録システムの説明図である。
【図2】 同システムに使用される信号受信機の正面図である。
【図3】 同システムの概念図である。
【図4】 同システムでRTK測位をした測点のX座標の時間変化である。
【図5】 同システムでRTK測位をした測点のY座標の時間変化である。
【図6】 同システムでRTK測位をした測点のZ座標の時間変化である。
【図7】 従来のRTK測位法による観測結果である。
【符号の説明】
1…STATIC測位用位置情報記録システム
2…信号受信機 3…信号分配器
4…STATIC測位用位置情報記録装置
5…RTK測位用位置情報記録装置
6…RTK測位用データ解析装置 7…モニター
A…不動点 B…第1計測点 C…第2計測点 E…構造物[0001]
[Field of the Invention]
The present invention relates to a method of positioning a fixed point such as a vertical reference point of a building using a so-called GPS (global positioning system that measures the position of a receiving point using a positioning signal from an artificial satellite), and The present invention relates to a fixed point position information recording system.
[0002]
In the present specification, the “fixed point” means a point that is located at a fixed place for a time required for the STATIC positioning described later, particularly a point fixed to a building or the ground. It shall include points that are quasi-statically displaced with respect to the observation base point due to the inclination of the building or land subsidence.
[0003]
[Prior art]
In order to accurately measure the position of a fixed point such as a vertical reference point of a high-rise building in the middle of construction or the displacement thereof, a method using the GPS has been proposed as follows.
(1) A method of analyzing a signal from an artificial satellite received at a base point on the ground and a single point on the building roof, and positioning the point with respect to the base point (Patent Document 1 and Patent Document 2).
(2) At the time of measurement and past reference time, analyze the signals received from multiple artificial satellites of the same arrangement and the same combination to calculate the coordinates of the measurement points, and subtract the reference time coordinates from the measurement time coordinates. A method of measuring the displacement of the position of the measuring point (Patent Document 3 and Patent Document 4).
[0004]
As GPS positioning methods, RTK positioning (real-time dynamic interference positioning) that immediately analyzes observation data obtained in a short time of about 1 second to 1 minute and outputs the analysis result, tens of minutes to several hours It is known that STATIC positioning (static interference positioning) is performed by analyzing a record of observation data obtained over a long observation time (see paragraph “0003” of Patent Document 3, for example).
[0005]
[Patent Document 1]
Japanese Patent No. 3207060 [Patent Document 2]
Japanese Patent No. 3280812 [Patent Document 3]
Japanese Patent No. 2995955 [Patent Document 4]
Japanese Patent No. 3055680 [0006]
[Problem to be Solved by the Invention]
The results of GPS positioning include the relative positional relationship of multiple satellites that transmitted the observed signals, cycle slips (malfunctions due to radio wave blocking between the satellites and the receiver), and poor environmental conditions around the antenna. Errors occur periodically or irregularly due to disturbances such as the presence or absence of radio wave reflectors and poor ionospheric conditions. FIG. 7 shows the change over time in the measurement error of RTK positioning, but errors due to two large disturbances are recognized in the time zone from 7:30:08 to 09:00:16.
[0007]
The above method (1) does not include any special means for ensuring accuracy against the influence of the above disturbances, etc., and therefore requires a long observation time according to the magnitude of the disturbance in order to increase the accuracy. However, when STATIC positioning is used for this method, the accuracy of the measurement result is not known until the data measurement is completed and analyzed in the STATIC positioning. Inconveniences such as making measurements longer than necessary to avoid this are likely to occur. On the other hand, when RTK positioning is used, the state of disturbance at the time of measurement is known, but since the received signal from the artificial satellite is not recorded, the analysis cannot be performed again except for the part where the disturbance is large in the observation time. It is difficult to improve the analysis accuracy.
[0008]
The method (2) described above proposes to measure the displacement of the measuring point with high accuracy by selecting the measurement time so that the arrangement conditions of the artificial satellites are the same. The condition is that the situation around the station is the same. If the surrounding environmental conditions at the time of measurement change as the vertical reference point described above moves up with the progress of construction, accuracy improvement cannot be expected even if the measurement time is adjusted.
[0009]
The present invention is a method for positioning a fixed point such as a vertical reference point of a building by using both STATIC positioning and RTK positioning, and can determine whether the accuracy is good or not during the STATIC positioning observation. It is an object of the present invention to provide a method capable of obtaining a good observation result in a short time without being influenced by the environment and a system capable of recording position information for fixed point positioning.
[0010]
[Means for Solving the Problems]
The first means of the present invention is a fixed point positioning method such as a vertical reference point,
STATIC positioning that receives radio signals from artificial satellites at two points, analyzes the received records and determines the relative positions of both points, and RTK positioning that measures the relative positions of the two points simultaneously with the reception of the above signals. A positioning method using both
The signals received at the fixed point A and the first and second measurement points B and C are recorded in the STATIC positioning position information recording device 4,
In parallel with the recording process, each measurement point B and C is repeated by RTK positioning using only the same signal as the received signal at the first and second measurement points B and C recorded in the recording device. Positioning,
The relative position thru | or the relative distance between both measurement points B and C are calculated from this positioning result,
The positional information of the fixed point A and the measurement points B and C is accumulated in the recording device 4 until the relative position or the relative distance is converged within a certain range, and then the recording is analyzed. The relative positions of the measurement points B and C are determined.
[0011]
The second means includes the first means, and the distance between the first and second measurement points B and C is previously measured by a known method, and the first measured by the measurement distance and the RTK positioning is used. The distance measured by the RTK positioning is converged when the difference from the average value of the distances between the second measurement points B and C becomes a certain value or less.
[0012]
A third means includes the first means or the second means, and the first and second measurement points B and C are located on an upper floor of a building capable of receiving a radio signal from an artificial satellite, and The fixed point A is on the ground.
[0013]
The fourth means includes the first means, the second means, or the third means, and from the recording of the position information for the STATIC positioning, if the disturbance is large due to the analysis of the signal for the RTK positioning The analysis is performed excluding the position information of the determined time zone.
[0014]
The fifth means includes the first means, the second means, or the third means, and from the recording of the position information for the STATIC positioning, the analysis of the signal for the RTK positioning allows the cycle slip to be detected. Analysis is performed with the exception of signals from artificial satellites that are judged to have a high frequency of occurrence.
[0015]
The sixth means is a fixed point position information recording system used in the fixed point positioning method described in any of the first to fifth means ,
In order to receive a radio wave signal from an artificial satellite, signal receivers 2... Arranged at the fixed point A and the first and second measurement points B and C, respectively,
STATIC positioning position information recording device 4 for recording signals transmitted from these signal receivers;
A signal distributor 3 provided in the middle of a signal transmission path between the signal receiver 2 installed at the first and second measurement points B and C and the STATIC positioning position information recording device 4;
An RTK positioning data analysis device 6 for analyzing the signals branched by the signal distributor 3 and determining the relative positions of the first and second measurement points by RTK positioning;
A monitor 7 for displaying the relative position or relative distance between the two measurement points B and C in real time ;
In parallel with the recording of the position information in the STATIC positioning position information recording devices 4..., The signals branched by the signal distributors 3 and 3 are analyzed by the RTK positioning data analyzing device 6, and the first, The relative positions or relative distances of the second measurement points B and C are measured.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show a fixed point position information recording system 1 according to the present invention.
[0017]
This fixed point position information recording system includes a signal receiver 2 that receives radio signals from an artificial satellite, signal distributors 3 and 3, a position information recording device 4 for STATIC positioning, and a position information recording for RTK positioning. It comprises devices 5 and 5, an RTK positioning data analysis device 6, and a monitor 7.
[0018]
The signal receivers 2 are arranged at a fixed point A on the ground and two first and second measurement points B and C on the roof of the structure E being built. The signal receivers 2 are known, and a GPS signal receiving antenna 13 is disposed on a tripod 11 via a leveling table 12 as shown in FIG.
[0019]
The signal distributors 3 and 3 branch the signals from the signal receivers 2 and 2 located at both measurement points B and C into the same signals for STATIC positioning and RTK positioning.
[0020]
The position information recording device 4 for STATIC positioning is for accumulating and recording the signal from the signal receiver 2 as position information, and directly to the signal receiver at a fixed point A, or Both the measurement points B and C are connected via the signal distributors 3 and 3, respectively.
[0021]
The RTK positioning position information recording devices 5 and 5 are connected to the signal distributors 3 and 3 to temporarily store the branch signals sent from the signal distributors and wirelessly RTK positioning data analysis devices 6. Configured to forward to. The RTK position information recording device 5 and the RTK positioning data analysis device 6 may be connected by wire.
[0022]
The RTK positioning data analysis device 6 analyzes the signals received at the first and second measurement points B and C by RTK positioning, and outputs the result to the monitor 7 in real time. In the illustrated example, the analysis device 6 is installed near the fixed point A. However, the installation location may be anywhere as long as a signal from the RTK position information recording device 5 can be received.
[0023]
Next, the fixed point positioning method according to the present invention will be described.
(1) Setting of signal receiver The first measurement that is the fixed point A around the structure E is the fixed point A, which is the base point for STATIC positioning, and one point on the roof of the structure E is the base point for RTK positioning. At the point B, the vertical reference point on the roof of the structure E is further selected as the second measurement point C, and the signal receivers 2 are installed. An appropriate distance is taken between the first and second measurement points.
(2) Measurement between the first and second measurement points The distance between these two measurement points is precisely measured by an appropriate means, and the measured distance (hereinafter referred to as “standard distance”) is used for the RTK positioning data analysis apparatus. Record in 6. As a measuring method, in addition to general distance measuring means such as a tape measure and a laser distance meter, GPS positioning can also be used.
(3) Recording of STATIC positioning position information At the fixed point A and the first and second measurement points B and C, radio signals from artificial satellites are received by the signal receiver 2... And these signals are received. Each is transmitted to the STATIC positioning position information recording device 4 and recorded.
(4) Distribution of position information for RTK positioning In parallel with the recording process of (3) above, the signals transmitted from the signal receivers 2 at both measurement points B and C are branched by the signal distributor 3, Are sequentially transmitted to the RTK positioning data analysis device 6 via the RTK positioning position information recording device 5. It is also possible to omit the temporary storage of the transmission data in the RTK positioning position information recording device 5 and to immediately transmit the signal branched from the signal distributor 3 to the RTK positioning data analysis device 6. (5) Analysis of RTK positioning position information The RTK positioning data analysis apparatus 6 uses the RTK positioning method to calculate the three-dimensional coordinates of the first measurement point B with respect to the second measurement point C for each appropriate unit time zone. Measure the relative distance between the two measurement points, calculate the error between this measurement distance and the standard distance measured in advance by a known method, and repeat this measurement and measurement operation for each unit time zone. Measurement values such as the relative coordinates of the two measurement points, the relative distance, and the error from the standard distance are output to the monitor 7 in real time and displayed over time. Furthermore, it is desirable to display the average value of the measured values in each unit time zone on the monitor 7 together.
(6) Processing of analysis results of RTK positioning Observe the monitor 7 and analyze the analysis distance between the two measurement points in a certain time zone (for example, the time zone around 12:00 in the data shown in FIG. 6 described later). When the data is particularly prominent as compared with that in other time zones, it is determined that the disturbance is particularly large in that time zone, and the time zone is recorded.
[0024]
All three-dimensional coordinates of the first measurement point B calculated by the above RTK positioning no longer change significantly, and the error between the measurement distance between the two measurement points B and C by the RTK positioning and the standard distance is below a certain level. At that time, it is determined that enough observation data has been accumulated to perform STATIC positioning, and reception of signals from the satellite is stopped.
(7) After the reception of the STATIC positioning signal is stopped, the data recorded in each STATIC positioning position information recording device 4 installed at the fixed point A and the first and second measuring points B and C as shown in FIG. Is taken out and read by the data analysis apparatus 31 for STATIC positioning installed outside.
[0025]
Then, with the fixed point A as the observation base point and the second measurement point C corresponding to the vertical reference point as the measurement point, the position information recorded in the STATIC positioning position information recording device 4 at both points is analyzed by the STATIC positioning method. The coordinates of the first measurement point can be accurately obtained.
[0026]
At that time, if the position information in the time zone with a large disturbance recorded in the above step (6) and the signal from the artificial satellite with the frequent occurrence of the cycle slip described above are excluded from the analysis target, the coordinates of the first measurement point The accuracy of is further increased.
[0027]
The same procedure is used to obtain the coordinates of the first measurement point with the fixed point A as the observation base point and the first measurement point B as the measurement point, and from this, the relative distance between the first and second measurement points is calculated. If it is confirmed that the error is equal to or less than the required amount compared to the standard distance, the reliability of the second measurement point with respect to the coordinate analysis is further increased.
[0028]
The direction of the first measurement point relative to the second measurement point C can also be determined from the positions of the signal receivers 2 and 2 installed at two locations on the building roof.
[0029]
In the above process, the above process (2) (measurement of the distance between the first and second measurement points by a known method) is omitted, and the relative coordinates between the first and second measurement points by the RTK positioning are The degree of convergence of the data may be determined based only on the observation data indicating the change over time in the relative distance.
[0030]
【Example】
4 to 6 show measurement waveforms when the X, Y, and Z coordinates of the first measurement point are RTK-positioned every second for 2 hours. For both the X, Y, and Z coordinates, there are fluctuations between the short period and the long period.
[0031]
Table 1 below shows the average values (C X , C Y , C Z ), X, Y, Z coordinates of the second measurement point C shown in FIGS. It shows the distance BC between one measurement point and the error between the measured value of the coordinate or distance for each time zone and the corresponding measured value when 46-hour STATIC positioning is performed.
[0032]
[Table 1]
Figure 0003715286
In the first time zone shown in the left column of Table 1 (11: 30-11: 45), the error BC-BC (46hr) of the distance between the two measurement points is as small as 0.36mm. Although it seems to have been obtained, the error C Z -C Z (46hr) of the z coordinate of the second measurement point is 5 mm, and the RTK measurement results in this time zone are observed in FIGS. In particular, since the X coordinate and Y coordinate indicate a tendency to increase or decrease that cannot be ignored, it is determined that the measurement should be continued.
[0033]
If measurement is continued until time 12:15, the error BC-BC (46hr) of the distance between the first and second measurement points B and C is as small as 0.63 mm, and the error C X of the X, Y and Z coordinates. -C X (46hr) ... is also sufficiently small at 1 mm or less, so it can be determined that the observation time has reached the required time. As a precaution, the observation was continued until 13:30, but the measurement error was almost constant and converged sufficiently.
[0034]
Table 2 shows the result of analyzing the same analysis target as in Table 1 by STATIC positioning based on the same signal received from the same antenna. The meaning of the symbols in the table is the same as that in Table 1.
[0035]
[Table 2]
Figure 0003715286
Table 2 shows a result that is in good agreement with Table 1. From the measurement results up to 12:15 minutes, the distance between the first and second measurement points and the error in the X, Y, and Z coordinates are all 1 mm or less. It has become. Although the error of the Z coordinate has slightly increased since then, this is considered to be a difference in the analysis method between the RTK positioning and the STATIC positioning, and the reference point error is sufficiently small in practice.
[0036]
Moreover, since Table 1 and Table 2 are in good agreement, it can be understood that the measurement accuracy can be grasped from the convergence state of the distance between the two points obtained from the RTK positioning without comparing with the measured value of the distance. .
[0037]
【The invention's effect】
The present invention is configured as described above. According to the first aspect of the present invention, the following effects can be obtained.
○ While recording the coordinate information of the first and second measurement points with respect to the fixed point by STATIC positioning, measure the relative distance of the first and second measurement points by RTK positioning, and the measurement distance by the RTK positioning is within a certain range Since position data for STATIC positioning is accumulated until convergence, it is possible to determine in real time whether or not the data necessary for STATIC positioning can be measured with the required accuracy by RTK positioning. As a result of the analysis after the completion, the lack of accuracy is not found.
As described above, since the accuracy of measurement for STATIC positioning is known during the measurement, high-accuracy positioning can be performed in the minimum necessary time without interfering with construction work.
○ Furthermore, since the STATIC positioning and RTK positioning are only performed in parallel, high-precision reference point measurement is possible without using special analysis techniques or know-how.
○ Because GSP is used, reference point surveying is possible with high accuracy even at night and in the rain, which was impossible with conventional surveying methods.
[0038]
According to the invention of claim 2, the distance between the first and second measurement points B and C is measured in advance by a known method, and the first and second measurement points B and C measured by the measurement distance and the RTK positioning are used. Since the state of convergence of the measurement distance is judged by comparing with the average value of the measurement distance between C, it is possible to grasp the convergence state more reliably.
[0039]
According to the invention of claim 3, since the first and second measurement points B and C are taken on the upper floor of the building capable of receiving the radio signal from the artificial satellite, the distance between the two measurement points is measured in advance. This is easier to measure than when one of the measurement points is on the ground.
[0040]
According to the invention of claim 4, since the analysis is performed by excluding the position information in the time zone in which the disturbance is determined to be large by the analysis of the signal for RTK positioning from the recording of the position information for STATIC positioning, a fixed point is further obtained. The accuracy of positioning can be improved.
[0041]
According to the fifth aspect of the present invention, analysis is performed by excluding signals from artificial satellites that are determined to have a high frequency of cycle slips by analyzing RTK positioning signals from the recording of position information for STATIC positioning. Since this is done, the positioning accuracy of the fixed point can be improved.
[0042]
According to claim 6, the signal distributors 3, 3 provided in the middle of the signal transmission path between the signal receivers 2, 2 at the first and second measurement points and the position information recording device 4 for STATIC positioning are provided. Since the signals are provided to be branched, the same signal can be separated for STATIC positioning and RTK positioning with a simple configuration.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a fixed point position information recording system according to the present invention.
FIG. 2 is a front view of a signal receiver used in the system.
FIG. 3 is a conceptual diagram of the system.
FIG. 4 is a time change of the X coordinate of a measurement point obtained by RTK positioning in the same system.
FIG. 5 is a time change of a Y coordinate of a measurement point obtained by RTK positioning in the same system.
FIG. 6 is a time change of the Z coordinate of a measurement point obtained by RTK positioning in the same system.
FIG. 7 is an observation result by a conventional RTK positioning method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... STATIC positioning position information recording system 2 ... Signal receiver 3 ... Signal distributor 4 ... STATIC positioning position information recording device 5 ... RTK positioning position information recording device 6 ... RTK positioning data analysis device 7 ... Monitor A ... Fixed point B ... First measurement point C ... Second measurement point E ... Structure

Claims (6)

人工衛星からの電波信号を2地点で受信し、その受信記録を解析して両点の相対的位置を決定するSTATIC測位と、上記信号の受信と同時に2地点の相対的位置を測るRTK測位とを併用した測位方法であって、
不動点A及び第1、第2計測点B,Cで受信した信号をSTATIC測位用位置情報記録装置4に記録
該記録行程と並行して該記録装置に記録された第1、第2計測点B,Cでの受信信号と同一の信号だけを用いて、RTK測位により各計測点B、Cをそれぞれ反復して測位し、
この測位結果より両計測点B,C間の相対的位置乃至相対的距離を算出し、
この相対的位置乃至相対的距離が一定の範囲に収斂するまで上記不動点Aと両計測点B,Cとの位置情報を上記記録装置4に蓄積した後にその記録を解析し、不動点Aに対する各計測点B,Cの相対的位置を決定することを特徴とする、鉛直基準点等の定点測位方法。
STATIC positioning that receives radio signals from artificial satellites at two points, analyzes the received records and determines the relative positions of both points, and RTK positioning that measures the relative positions of the two points simultaneously with the reception of the above signals. A positioning method using both
The signals received at the fixed point A and the first and second measurement points B and C are recorded in the STATIC positioning position information recording device 4,
In parallel with the recording process, each measurement point B and C is repeated by RTK positioning using only the same signal as the received signal at the first and second measurement points B and C recorded in the recording device. Positioning,
The relative position thru | or the relative distance between both measurement points B and C are calculated from this positioning result,
The positional information of the fixed point A and the measurement points B and C is accumulated in the recording device 4 until the relative position or the relative distance is converged within a certain range, and then the recording is analyzed. A fixed-point positioning method such as a vertical reference point, wherein the relative positions of the measurement points B and C are determined.
上記第1、第2計測点B,C間の距離を予め既知方法で測定し、この測定距離と上記RTK測位により測定した第1、第2計測点B,C間の距離の平均値との差が一定値以下となったときにRTK測位による計測距離が収斂したものとすることを特徴とする、請求項1記載の定点測位方法。The distance between the first and second measurement points B and C is previously measured by a known method, and the measured distance and the average value of the distance between the first and second measurement points B and C measured by the RTK positioning are calculated. The fixed point positioning method according to claim 1, wherein the distance measured by RTK positioning is converged when the difference becomes a certain value or less. 上記第1、第2計測点B,Cを、人工衛星からの電波信号を受信可能な建物上層階に、かつ上記不動点Aを地上にとったことを特徴とする、請求項1又は請求項2記載の定点測位方法。The first or second measurement point B or C is set on the upper floor of a building capable of receiving radio signals from an artificial satellite, and the fixed point A is set on the ground. Fixed point positioning method according to 2. 上記STATIC測位用の位置情報の記録から、RTK測位用の信号の解析により外乱が大きいと判断される時間帯の位置情報を除いて、解析を行なうことを特徴とする請求項1、請求項2又は請求項3記載の定点測位方法。3. The analysis is performed by excluding position information in a time zone in which a disturbance is determined to be large by analysis of a signal for RTK positioning from the recording of the position information for STATIC positioning. Or the fixed point positioning method of Claim 3. 上記STATIC測位用の位置情報の記録から、RTK測位用の信号の解析により、サイクルスリップの発生頻度の大きいと判断される人工衛星からの信号を除いて、解析を行なうことを特徴とする請求項1、請求項2又は請求項3記載の定点測位方法。The analysis is performed by excluding a signal from an artificial satellite which is determined to have a high frequency of occurrence of cycle slip by analysis of a signal for RTK positioning from the recording of position information for STATIC positioning. The fixed point positioning method according to claim 1, claim 2 or claim 3. 請求項1乃至請求項5の何れかに記載された定点測位方法に使用する定点の位置情報記録システムであって
人工衛星からの電波信号を受信するために、不動点A及び第1、第2計測点B,Cにそれぞれ配置された信号受信機2…と、
これら信号受信機から送信された信号を記録するSTATIC測位用位置情報記録装置4と、
上記第1、第2計測点B,Cに設置された信号受信機2と上記STATIC測位用位置情報記録装置4との間の信号伝達経路の途中にそれぞれ設けられた信号分配器3と、
これら信号分配器3により分岐された信号を解析して、第1、第2計測点の相対的位置をRTK測位により決定するRTK測位用データ解析装置6と、
上記両計測点B,C間の相対的位置乃至相対的距離をリアルタイムで表示するモニター7とを具備し、
上記STATIC測位用位置情報記録装置4…への位置情報の記録と並行して、上記信号分配器3,3により分岐された信号を上記RTK測位用データ解析装置6で解析して、第1、第2計測点B,Cの相対的位置乃至相対距離を計測することが可能に設けたことを特徴とする、定点の位置情報記録システム。
A fixed point position information recording system for use in the fixed point positioning method according to any one of claims 1 to 5 ,
In order to receive a radio wave signal from an artificial satellite, signal receivers 2... Arranged at the fixed point A and the first and second measurement points B and C, respectively,
STATIC positioning position information recording device 4 for recording signals transmitted from these signal receivers;
A signal distributor 3 provided in the middle of a signal transmission path between the signal receiver 2 installed at the first and second measurement points B and C and the STATIC positioning position information recording device 4;
An RTK positioning data analysis device 6 for analyzing the signals branched by the signal distributor 3 and determining the relative positions of the first and second measurement points by RTK positioning;
A monitor 7 for displaying the relative position or relative distance between the two measurement points B and C in real time ;
In parallel with the recording of the position information in the STATIC positioning position information recording devices 4..., The signals branched by the signal distributors 3 and 3 are analyzed by the RTK positioning data analyzing device 6, and the first, A fixed point position information recording system provided to be able to measure a relative position or a relative distance between the second measurement points B and C.
JP2003053838A 2003-02-28 2003-02-28 Fixed point positioning method such as vertical reference point and fixed point position information recording system Expired - Fee Related JP3715286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053838A JP3715286B2 (en) 2003-02-28 2003-02-28 Fixed point positioning method such as vertical reference point and fixed point position information recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053838A JP3715286B2 (en) 2003-02-28 2003-02-28 Fixed point positioning method such as vertical reference point and fixed point position information recording system

Publications (2)

Publication Number Publication Date
JP2004264120A JP2004264120A (en) 2004-09-24
JP3715286B2 true JP3715286B2 (en) 2005-11-09

Family

ID=33118335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053838A Expired - Fee Related JP3715286B2 (en) 2003-02-28 2003-02-28 Fixed point positioning method such as vertical reference point and fixed point position information recording system

Country Status (1)

Country Link
JP (1) JP3715286B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159088B2 (en) * 2006-11-13 2013-03-06 株式会社東芝 Array antenna system
JP5616702B2 (en) * 2010-07-02 2014-10-29 古野電気株式会社 GNSS analysis system, GNSS analysis apparatus, and GNSS analysis program
EP2511658A1 (en) 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Measuring system and method for new point determination
JP2014048075A (en) * 2012-08-30 2014-03-17 Hitachi Zosen Corp Gnss-based position finding apparatus
US9970757B2 (en) 2014-01-08 2018-05-15 Qualcomm Incorporated Method and apparatus for positioning with always on barometer
JP6438746B2 (en) * 2014-11-14 2018-12-19 株式会社熊谷組 Estimation method for inter-building displacement
CN104764434B (en) * 2015-03-31 2017-06-06 徐州市市政设计院有限公司 A kind of quick resolving system of shield attitude and method
JP2017133895A (en) * 2016-01-27 2017-08-03 ソニー株式会社 Positioning apparatus, positioning method, positioning system
CN113029118A (en) * 2021-04-23 2021-06-25 中国建筑第八工程局有限公司 Engineering arc pay-off device and pay-off method thereof

Also Published As

Publication number Publication date
JP2004264120A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4920079B2 (en) Seismic measurement system with GPS receiver
Xi et al. Bridge monitoring using BDS-RTK and GPS-RTK techniques
US5929807A (en) Method and apparatus for precision location of GPS survey tilt pole
US20090109081A1 (en) Positioning correction system and method for single and multi-channel ground penetrating radar
US20050010364A1 (en) Method for improving GPS integrity and detecting multipath interference using inertial navigation sensors and a network of mobile receivers
NO330443B1 (en) Method and apparatus for determining the location for the specificity of a pipeline
CN108132013A (en) A kind of bridge deformation multifrequency dynamic analysing method based on combination difference GNSS
JP3715286B2 (en) Fixed point positioning method such as vertical reference point and fixed point position information recording system
WO2017195649A1 (en) Observation system
EP3524931A1 (en) Method for verifying accuracy of rtk tilt compensation measurement
Lemmon et al. The Influence of the Number of Satellites on the Accuracy of RTK GPS Positions
Gueriot et al. The patch test: a comprehensive calibration tool for multibeam echosounders
CN205748307U (en) A kind of area measuring equipment based on laser mapping
EP2071281A1 (en) Varying snow depth monitoring system and method
CN104199056A (en) Positioning detector
US8855967B1 (en) Surface data measurement system and method
CN107478209B (en) The detection method of Super High axial control network
Meisina et al. Choice of surveying methods for landslides monitoring
KR200303737Y1 (en) Mobile GPS mesuring systen
US4575829A (en) Method and apparatus for sound level determination
JP2003185732A (en) Method and instrument for measuring displacement by gps
Collier Deformation monitoring using the global positioning system
JP3760238B2 (en) Verification method and verification system for satellite positioning terminal receiver
CN114167461A (en) Engineering measurement method and CORS system
RU2662246C1 (en) Measurement method of length of underground pipeline

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees