JP3714834B2 - Air nozzle for glass plate forming and bending method using the air nozzle - Google Patents

Air nozzle for glass plate forming and bending method using the air nozzle Download PDF

Info

Publication number
JP3714834B2
JP3714834B2 JP33989899A JP33989899A JP3714834B2 JP 3714834 B2 JP3714834 B2 JP 3714834B2 JP 33989899 A JP33989899 A JP 33989899A JP 33989899 A JP33989899 A JP 33989899A JP 3714834 B2 JP3714834 B2 JP 3714834B2
Authority
JP
Japan
Prior art keywords
air
glass plate
diameter
nozzle
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33989899A
Other languages
Japanese (ja)
Other versions
JP2001158630A (en
Inventor
弘二 玉井
充広 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP33989899A priority Critical patent/JP3714834B2/en
Publication of JP2001158630A publication Critical patent/JP2001158630A/en
Application granted granted Critical
Publication of JP3714834B2 publication Critical patent/JP3714834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加熱したガラス板の下面に高温のジェットエア流を吹き付けて浮上させ、曲げ型下面に押しつけてガラス板を曲げ成形させるエアノズル、および該エアノズルを用いてガラス板を曲げ成形する方法に関するものである。
【0002】
【従来の技術】
車両用の窓ガラスは車体形状とのマッチングを図るために湾曲していることが多く、一般的にはこの様な窓ガラスを成形する方法としては、曲率を有した耐火物上を搬送しながら曲げるガスハース法や、ガラス板を吊り具により支持して軟化温度付近まで加熱後プレス型で成形するプレス法、或いは加熱炉内で軟化させたガラス板をジェットエアーによって浮上させ、曲げ型に押しつけて曲げ成形するクイックサグベンド法と呼ばれている方法等が知られている。
【0003】
上記各種方法の内、クイックサグベンド法は、後部窓ガラスやサイド窓ガラスを製造する場合に良く用いられ、さらに詳述すれば、加熱炉内を搬送ロールによってガラス板を搬送しながら加熱軟化させ、加熱炉内の上部の曲げ型のある所定位置で停止させたフラットなガラス板を、搬送ロールの下方に配したエアノズルより上方に向けて噴射する高温のジェットエアーによって浮上させて、軟化したガラス板をその上部に配した曲げ型の下面の湾曲面に押しつけて曲げ成形させる方法である。
【0004】
ガラス板を浮上させる上記エアノズルとしては、従来より直噴型ノズルやアスピレータ型ノズルと呼ばれるエアノズルが良く用いられていた。
【0005】
前記直噴型ノズルは円筒状の先端がテーパー状に細くなっており、その中心からジェットエアを噴射させるものである。
【0006】
また、アスピレータ型ノズルは、図7に示すように、外形形状として先端側をテーパー形状とした小径テーパー部41の雌ねじ部42aと大径円柱部43の中央突起部44の外周に設けた雄ねじ部44aを螺合させたものであり、該大径円柱部43の外周の端部に設けた円筒状の外周突起部47の内周面と、前記小径テーパー部41の外周面間の円形状の隙間を大径円柱部43内のエア導入路45とエア連通孔46を介して連通させたノズル40である。
【0007】
【発明が解決しようとする課題】
クイックサグベンド法によってガラス板を曲げ成形する場合、エアノズルから上方に向けて噴射されるジェットエアによって、ガラス板を曲げ型の下面に押し付けた時に、ガラス板とエアノズル間にはガラス板を搬送するための複数本の搬送ロールが設けられているために、搬送ロールの下方に設けたノズルから噴射したジェットエアによってガラス板を浮上かつ曲げ型に押し付けようとすれば、必然的にジェットエアは搬送ロール間をすり抜けて上方に噴射されることになる。
【0008】
この場合に、ガラス板の下面に噴射されるジェットエアーの圧力分布は、ガラス板の周端辺の一部の辺が搬送ロールと交差するような位置関係となる場合に、その搬送ロールと交差するガラス板の端辺近傍において、搬送ロールによってジェットエアのガラス面への噴射圧力がばらつき、均一とならない場合があり、ガラス板を比較的所望の形状近くに曲げ成形できるものの、該ガラス板の周辺と搬送ロールの長手方向とが交差する部分に若干光学歪み等の発生する場合が見受けられた。
【0009】
一方、車両用の後部窓ガラス等を曲げ成形する場合は、通常、図8に示されるように、略台形状の該ガラス板1の上辺と下辺が搬送ロール5の長手方向と交差することになり、ガラス板1の両翼のウイングと呼ばれる部分の曲げ深さが深いので、曲げ型に沿って該ガラス板1の両翼部分が湾曲するに従ってエアノズルから遠ざかり、遠ざかった状態でもジェットエアが充分にガラス面に分布するように、ガラス板の両翼部分の搬送ロール5を1本程度取り外し、さらにエアノズル40、40・・の間隔を狭めて本数を増やす等の対策を行っていた。
【0010】
しかし、前記のガラス板1の上辺と下辺については前記したように搬送ロール5と交差する位置関係となるので、上辺と下辺を曲げ成形するエアノズル40は搬送ロール5、5間に設けざるを得ず、炉内の条件等を調整しても光学歪みの発生を完全に除去するのは困難であった。
【0011】
さらに、クイックサグベンド法において、ガラス板面に局部的に高温のジェットエアーを吹き付けると、軟化したガラス板が変形して波打ち状の光学歪みが発生しやすいという問題点があり、ロールとロールとの間隔が数十ミリと狭く、その隙間からガラス面に均一なエアーを吹き付けることは困難であった。
【0012】
【課題を解決するための手段】
本発明は、上記問題点の解決を図る、すなわちクイックサグベンド法による車両用窓ガラスの製造時に、搬送ロールと交差するガラス板の周辺部に高温のジェットエアを均一に吹き付けることができ、光学歪みの発生も防止できることを目的としたものである。
【0013】
すなわち、本発明は、加熱により軟化したガラス板を高温のジェットエア流によって下方より圧力をかけて浮上させ、上方に設けた曲げ型の下面に押しつけて曲げ成形するノズルにおいて、該エアノズルの外形形状を小径円柱部と大径円柱部を螺合させた段付の円柱状とし、該大径円柱部の外周端部に設けた円筒状突起部の内周面と、該小径円柱部の外周面間に形成される隙間を大径円柱部内のエア導入路と連通させて、該隙間より小径円柱部の外周面に沿ってジェットエアを噴射させてガラス板面への圧力分布を均一化させたガラス板成形用エアノズルである。
【0014】
あるいは、本発明は、前記大径円柱部と小径円柱部の螺合する長さを調整することにより螺合部に設けたエア連通孔の流路が制限され、前記隙間から噴射されるジェットエアの流量が調節可能となる上述のガラス板成形用エアノズルである。
【0015】
あるいはまた、本発明は、前記大径円柱部の外周端部に設けた円筒状突起部を小径円柱部の外周面先端まで延ばした形状とした上述のガラス板成形用エアノズルである。
【0016】
あるいはまた、本発明は、前記大径円柱部の外周端部に設けた円筒状突起部の側面に炉内ガスを隙間に吸引可能な炉内エア取入孔を設けるようにした上述のガラス板成形用エアノズルである。
【0017】
そして、本発明は、加熱したガラス板を高温のジェットエア流によって下方より圧力をかけて浮上させ、上方に設けた曲げ型の下面に押しつけて曲げ成形する方法において、上述のエアノズルを搬送ロール間に複数本設け、前記エアノズルより噴出されたジェットエア流に、炉内の高温ガスを巻き込みながらガラス板の下面に向けて拡散させ、ガラス板下面に噴射したジェットエア流の圧力分布が均一化されるようにしたガラス板の曲げ成形方法である。
【0018】
【発明の実施の形態】
本発明は、図1に示すように、外形形状を小径円柱部21と大径円柱部23を螺合させた段付の円柱状とし、該大径円柱部23の外周端部に設けた円筒状突起部27の内周面と、前記小径円柱部21の外周面間に形成される円形状の隙間S1を大径円柱部23内のエア導入路25と連通させた円柱型ノズル20である。
【0019】
前記小径円柱部21は、小径円柱部21の中心を軸として、同心円状に内径が異なる段付き穿孔部22を設けた。また、該段付き穿孔部22は、下部側の開口側から上端側に向かって段階的に内径が小となっており、中間部分と上端側のそれぞれの内径には螺刻部を設け、雌ねじ部22aを形成した。
【0020】
一方、前記大径円柱部23は、その上端側に中央突起部24を設け、該中央突起部24の外周に螺刻部を設けた雄ねじ部24aとした。
【0021】
また、前記大径円柱部23の上端の外周側には円筒状の外周突起部27を設け、さらに、大径円柱部23の中心にはエア導入路25を下端開口部から中央突起部24の内部まで設け、該エア導入路25より中央突起部24の外周側に通じるエア連通孔26を中央突起部24に設けた。
【0022】
前記小径円柱部21の雌ねじ部22aと大径円柱部23の雄ねじ部24aを螺合させ、前記大径円柱部23の外周突起部27の円筒状の内面と、前記小径円柱部21の下端側外周面との間に隙間S1を設けた。
【0023】
また、大径円柱部23の中央突起部24と外周突起部27間に形成される凹部と、前記小径円柱部21の下端との間には隙間S2が形成され、エア連通孔26からのエアは該隙間S2を通り抜け、前記隙間S1に連通しており、該隙間S1と前記エア導入路25とはエア連通孔26および隙間S2によって連通されている。
【0024】
該隙間S2については、必ずしもなくても良いが、無くす場合は小径円柱部21の下端側に隙間S1と連通できる孔をいくつか設けるようにすればよい。
【0025】
小径円柱部21の段付き穿孔部22の頂部側開口部にはボルト28を螺合させ、上端開口部を閉塞すると共に、ボルト28の先端を大径円柱部23の中央突起部24に当接させて、大径円柱部23と小径円柱部21の螺合部分が緩まないようにした。
【0026】
また、前記エアノズル20の大径円柱部23と小径円柱部21の螺合する長さを調整することにより、前記大径円柱部23の雄ねじ部24aからエア導入孔25にかけて設けたエア連通孔26の流路を螺合する小径円柱部21の雌ねじ部22aによって全開から部分的に塞ぐ等の調節ができるため、流量を変化させることになり、エア導入路25からの供給エアaの流量を調整でき、前記隙間S1から噴出されるジェットエア圧力を調節可能にしたものである。
【0027】
このようなガラス板成形用の円柱型ノズル20によれば、大径円柱部の中心に設けたエア導入路25に送り込まれた高温の供給エアaは、エア連通孔26と隙間S2を経由して大径円柱部23の外周の端部に設けた円筒状突起部27の内周面と、前記小径円柱部21の外周面間の隙間S1よりジェットエアとして噴射される。
【0028】
該ジェットエアは、小径円柱部21の円筒状の外面に沿って小径円柱部21の先端まで直進する過程で炉内のガスbを巻き込み、ジェットエアとして小径円柱部21の先端より拡散することによって、ガラス板面へ噴射されるエアの圧力分布を均一化させることができる。
【0029】
また、図2に示す変形実施例においては、前記大径円柱部23の外周端部に設けた円筒状の外周突起部27を小径円柱部21の先端まで延ばした形状とし、前記大径円柱部23の円筒状の外周突起部27の側面に炉内エア取入孔29を設けるようにした。
【0030】
このような円柱型ノズル20によれば、大径円柱部23の中心に設けたエア導入路25に送り込まれた高温の供給エアaは、エア連通孔26と隙間S2’を経由して、大径円柱部23の外周の端部に設けた円筒状突起部27の内周面と、前記小径円柱部21の外周面間の隙間S1’よりジェットエアとして噴射される。
【0031】
噴射される該ジェットエアは小径円柱部21の円筒状の外面と大径円柱部23の外周端部に設けた円筒状の外周突起部27間に沿って小径円柱部21の先端まで直進する過程で、外周突起部27の側面に設けた炉内エア取入孔29から炉内ガスbを巻き込み、ジェットエアとして小径円柱部21の先端より噴射され拡散することによって、ガラス板面へ噴射されるエアの圧力分布を均一化させることができる。
【0032】
続いて、図3に示す変形実施例においては、小径円柱部31の中央部に中央突起部32を設け、その外周に雄ねじ部32aを設け、大径円柱部35に前記雄ねじ部32aと螺合する雌ねじ部36aを設けるようにした円柱型ノズル30としても良い。この場合、大径円柱部35の雌ねじ部36aと小径円柱部31の雄ねじ部32aとの螺合時の緩み防止策として、大径円柱部35の側面より小径円柱部の中央突起部をボルト38によって締付固定しても良い。
【0033】
この場合の円柱型ノズル30においても、大径円柱部35の中心に設けたエア導入路33に送り込まれた高温の供給エアaは、小径円柱部31の中央突起部32に設けたエア連通孔34および隙間S2”を経由して、大径円柱部35の外周の端部に設けた円筒状突起部37の内周面と、前記小径円柱部31の外周面間の隙間S1”よりジェットエアとして噴射される。
【0034】
噴射される該ジェットエアは小径円柱部31の円筒状の外面に沿って小径円柱部31の先端まで直進する過程で炉内ガスbを巻き込み、ジェットエアとして小径円柱部31の先端より拡散することによって、ガラス板面へ噴射されるエアの圧力分布を均一化させることができる。
【0035】
以上好適な実施の形態について述べたが、本発明はこれに限定されるものではなく種々の応用が考えられるものである。
【0036】
続いて以下に、本発明の使用方法を説明する。
図5に示すように、搬送ロール5によって加熱曲げ炉内を搬送しながら軟化点温度に達したフラットなガラス板1を所定位置で停止させ、ガラス板の下方に配置し、上方に噴射する複数のエアノズルによって高温のジェット流を噴射させて該ガラス板1を浮上させ、浮上した該ガラス板1の上方に配置され下方に凸状に湾曲した曲げ型(モールド)4の下面にガラス板1を押しつけて、前記曲げ型4の下面形状に合わせた湾曲ガラス1を製造する。
【0037】
前記曲げ型4の下面には図示しないが複数の吸引孔が設けられ、別途設けられた図示しない吸引装置に連通しており、ガラス板1を曲げ型4の下面に吸着させるものである。
【0038】
また、前記複数のエアノズルは、図4に示すように、ガラス板1の下面のほぼ全域に亘ってジェット流を上方に噴射する複数のエアノズルが設けられているが、特に搬送ロールによって取付本数に制約を受ける位置、つまり搬送ロールの長手方向と交差する上辺と下辺に設けるエアノズルについては、図1乃至図3に示すような本発明の円柱型ノズル20を配置させ、その他の位置については図7に示すような従来型のアスピレータ型ノズル40を配置し、それぞれのエアノズル20、40に高温のジェットエアーを供給した。
【0039】
前記加熱により軟化したフラットなガラス板1は、複数の円柱型ノズル20、およびアスピレータ型ノズル40によって上方に噴出されるジェットエアーにより浮上し、曲げ型4の下面に押しつけられるが、自動車用後部窓ガラスのようなガラス板1の両翼部周辺は湾曲度が大きいので、曲がるに従ってエアノズルから遠ざかるため、エアノズルから噴出されるジェットエアの噴出圧力も強くする必要があり、エアノズル間のピッチも狭くして本数を増やしたアスピレータ型ノズル40を用いる。
【0040】
一方、搬送ロール5によって搬送されるガラス板1が、搬送ロール5と交差する上辺と下辺に向けて噴射させるエアノズルについては、搬送ロール5、5間に設けざるを得ないため本数も制限され、エアの噴出圧力が局部的に強いと、該部分の圧力分布が高くなり、エアの当たらない部分との差が大きくなって、凹み状の光学歪みとなり易い。
【0041】
このため、ガラス板1の上辺エッジと下辺エッジ近傍に本発明の円柱型ノズル20を設け、拡散型のエアノズルとしたことによって、圧力分布の強いところと弱いところが減少し、ガラス板1面に噴出されるエア圧力が分散して均一に分布するようにした。
【0042】
該フラットなガラス板1は、下方からのジェットエアによって上方に設けた曲げ型4の凸面形状の下面に押しつけると共に、曲げ型4の下面に設けた複数の吸引孔によって曲げ型4の下面に吸着保持されるが、ガラス板1は軟化しているので曲げ型4の下面の湾曲面形状に沿って湾曲化する。
【0043】
このようにしてガラス板1を曲げ型4の下面に密着させ、一定時間経過により所望の形状に曲げると、曲げ型4に吸着保持されたガラス板1の下部に側方部よりコールドリングとよばれる湾曲した高温のガラス板1の受取枠を挿入し、受取枠の挿入直後曲げ型4の吸引解除と下方からのジェットエアの停止によって曲げ成形されたガラス板1は、コールドリング上に落下し、コールドリングと共に次工程である急冷強化工程に搬送され、急冷強化され、所望の形状に湾曲した強化ガラスが得られる。
【0044】
図6に示す図は、従来の直噴型ノズルとアスピレータ型ノズル40、および本発明の円柱型ノズル20について、エアノズルの先端からガラス板面までの距離15mm、30mm、60mm、120mmのそれぞれに応じて噴射されるエアの圧力分布について、比較した結果を示したものである。
【0045】
従来の直噴型ノズルの場合は、エアノズルの先端の中心部分よりジェットエアが噴出されるものであり、ガラス板面までの距離が60mmの場合に、小範囲で局部的に高いエア圧力となっているが、その周辺部については非常に低い圧力分布となっている。
【0046】
また、アスピレータ型ノズル40の場合は、直噴型よりやや広がりを持っているが、圧力分布はやや低くなっている。
【0047】
さらに、本発明の円柱型ノズル20の場合は、従来のエアノズルに比べて、大きな広がりを持って比較的均一に圧力が分布しているが、圧力はやや低くなっているのが分かる。
【0048】
これらのエアノズルについて、エアの拡散性についてまとめると、
本発明の円柱型ノズル > アスピレータ型ノズル > 直噴型ノズル
の順に良いが、到達圧力はエアー拡散性が良いほど小さいことが判る。
【0049】
また、エアノズルからガラス面までの距離を約70mmとした場合、直噴型ノズルとアスピレータ型ノズルでは薄板ガラスにおいて凹み状の光学歪みが発生する可能性が高い。
【0050】
これらのエアノズルを用いて成形したガラス板の曲率および反射像比較を行ったところ、本発明のエアノズルをガラス板の上辺と下辺に用いて成形したガラス板は、従来のエアノズルを用いた場合に比べて、大きな逆反り状の光学歪み、鍋底状光学歪みもなく良好であった。
【0051】
【発明の効果】
本発明は、自動車用窓ガラスを曲げ成形するときに、ガラス板を搬送する搬送ロールと交差するガラス板の端辺、特に後部用窓ガラスについていえば上辺と下辺について、搬送ロールによって配置が充分できなくても、該ガラス板面部分に噴射されるエアーの圧力分布を均一とさせることができ、ガラス板の該部分の成形時の光学歪みの発生を防止できる。
【図面の簡単な説明】
【図1】本発明の円柱型ノズルの縦断面図。
【図2】本発明の円柱型ノズルの変形例の縦断面図。
【図3】本発明の円柱型ノズルの別の変形例の縦断面図。
【図4】本発明の円柱型ノズルを配置したリフトジェット枠の平面図。
【図5】本発明の円柱型ノズルの周辺を示した側面図。
【図6】本発明の円柱型ノズルと従来のエアノズルのガラス面への圧力分布を説明する図。
【図7】従来のアスピレータ型ノズルの縦断面図。
【図8】従来のアスピレータ型ノズルを配置したリフトジェット枠の平面図。
【符号の説明】
a 供給エア
b 炉内ガス
1 ガラス板
4 曲げ型(モールド)
5 搬送ロール
10 リフトジェット枠
20 円柱型ノズル
21 小径円柱部
22 段付き穿孔部
22a 雌ねじ部
23 大径円柱部
24 中央突起部
24a 雄ねじ部
25 エア導入路
26 エア連通孔
27 外周突起部
29 炉内エア取入孔
30 円柱型ノズル
31 小径円柱部
32 中央突起部
32a 雄ねじ部
33 エア導入路
34 エア連通孔
35 大径円柱部
36 穿孔部
36a 雌ねじ部
37 外周突起部
40 アスピレータ型ノズル
41 小径テーパー部
42 段付き穿孔部
42a 雌ねじ部
43 大径円柱部
44 中央突起部
44a 雄ねじ部
45 エア導入路
46 エア連通孔
47 外周突起部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air nozzle that blows a high-temperature jet air stream on the lower surface of a heated glass plate to float it, presses it against the lower surface of a bending die to bend the glass plate, and a method for bending the glass plate using the air nozzle. Is.
[0002]
[Prior art]
The window glass for vehicles is often curved to match the shape of the vehicle body. In general, as a method of forming such a window glass, it is carried on a refractory having a curvature. A gas hearth method for bending, a pressing method in which a glass plate is supported by a lifting tool and heated to near the softening temperature and then molded with a press die, or a glass plate softened in a heating furnace is floated by jet air and pressed against the bending die. A method called a quick sag bend method for bending is known.
[0003]
Of the various methods described above, the quick sag bend method is often used when manufacturing rear window glass and side window glass, and more specifically, heating and softening while transporting a glass plate with a transport roll in a heating furnace. A glass plate softened by floating a flat glass plate stopped at a predetermined position of the upper bending mold in the heating furnace with high-temperature jet air sprayed upward from an air nozzle disposed below the transport roll. This is a method in which a plate is pressed against the curved surface of the lower surface of a bending die disposed on the upper portion thereof and bent.
[0004]
As the air nozzle that floats the glass plate, an air nozzle called a direct injection type nozzle or an aspirator type nozzle has been often used.
[0005]
The direct-injection type nozzle has a cylindrical tip that is tapered, and jet air is injected from the center thereof.
[0006]
Further, as shown in FIG. 7, the aspirator type nozzle has an external thread portion provided on the outer periphery of the internal thread portion 42 a of the small diameter tapered portion 41 and the central projection portion 44 of the large diameter cylindrical portion 43 having a tapered end on the outer shape. 44a, and a circular shape between the inner peripheral surface of the cylindrical outer peripheral projection 47 provided at the outer peripheral end of the large-diameter cylindrical portion 43 and the outer peripheral surface of the small-diameter tapered portion 41. This is the nozzle 40 in which the gap is communicated with the air introduction path 45 in the large-diameter cylindrical portion 43 via the air communication hole 46.
[0007]
[Problems to be solved by the invention]
When a glass plate is bent by the quick sag bend method, the glass plate is conveyed between the glass plate and the air nozzle when the glass plate is pressed against the lower surface of the bending die by jet air jetted upward from the air nozzle. Since a plurality of transport rolls are provided, if the glass plate is floated and pressed against the bending mold by jet air jetted from the nozzles provided below the transport roll, the jet air is inevitably transported. It passes through the rolls and is jetted upward.
[0008]
In this case, the pressure distribution of the jet air sprayed on the lower surface of the glass plate intersects with the transport roll when a part of the peripheral edge of the glass plate intersects the transport roll. In the vicinity of the edge of the glass plate, the jet pressure of the jet air on the glass surface varies depending on the transport roll, and may not be uniform, and although the glass plate can be bent to a relatively desired shape, There was a case where slight optical distortion or the like occurred at a portion where the periphery and the longitudinal direction of the transport roll intersect.
[0009]
On the other hand, when bending a rear window glass for a vehicle or the like, normally, the upper side and the lower side of the substantially trapezoidal glass plate 1 intersect the longitudinal direction of the transport roll 5 as shown in FIG. Since the bending depth of the portion called the wings of the two wings of the glass plate 1 is deep, the jet air is sufficiently glass even in a state where the wing portions of the glass plate 1 are bent away from the air nozzle along the bending mold. In order to distribute the surface, measures such as removing about one transport roll 5 at both blade portions of the glass plate and further increasing the number by reducing the distance between the air nozzles 40, 40,.
[0010]
However, since the upper side and the lower side of the glass plate 1 intersect with the transport roll 5 as described above, the air nozzle 40 for bending the upper side and the lower side must be provided between the transport rolls 5 and 5. In addition, it was difficult to completely eliminate the occurrence of optical distortion even if the conditions in the furnace were adjusted.
[0011]
Furthermore, in the quick sag bend method, when high-temperature jet air is blown locally on the glass plate surface, there is a problem that the softened glass plate is easily deformed and wavy optical distortion is likely to occur. The distance between them was as narrow as several tens of millimeters, and it was difficult to blow uniform air onto the glass surface from the gap.
[0012]
[Means for Solving the Problems]
The present invention aims to solve the above problems, that is, when manufacturing vehicle window glass by the quick sag bend method, high-temperature jet air can be uniformly blown to the periphery of the glass plate intersecting with the transport roll, and the optical The purpose is to prevent the occurrence of distortion.
[0013]
That is, the present invention relates to an outer shape of the air nozzle in a nozzle that floats by applying pressure from below to a glass plate softened by heating and pressing it against the lower surface of a bending die provided above. Is a stepped columnar shape in which a small-diameter cylindrical portion and a large-diameter cylindrical portion are screwed together, and an inner peripheral surface of a cylindrical projection provided at an outer peripheral end of the large-diameter cylindrical portion, and an outer peripheral surface of the small-diameter cylindrical portion The gap formed between them is communicated with the air introduction path in the large-diameter cylindrical portion, and jet air is sprayed along the outer peripheral surface of the small-diameter cylindrical portion from the gap to make the pressure distribution on the glass plate surface uniform. It is an air nozzle for glass plate forming.
[0014]
Alternatively, according to the present invention, the flow of the air communication hole provided in the screwing portion is restricted by adjusting the length of the large diameter cylindrical portion and the small diameter cylindrical portion to be screwed together, and jet air injected from the gap It is the above-mentioned air nozzle for glass plate shaping | molding which can adjust the flow volume of this.
[0015]
Alternatively, the present invention is the above-described air nozzle for forming a glass plate having a shape in which a cylindrical protrusion provided at the outer peripheral end of the large-diameter columnar part extends to the outer peripheral end of the small-diameter columnar part.
[0016]
Alternatively, according to the present invention, the above glass plate is provided with an in-furnace air intake hole capable of sucking the in-furnace gas into the gap on the side surface of the cylindrical projection provided at the outer peripheral end of the large-diameter columnar part. This is a molding air nozzle.
[0017]
The present invention also relates to a method in which a heated glass plate is floated by applying pressure from below with a high-temperature jet air flow and pressed against the lower surface of a bending die provided above to bend the air nozzle between the transport rolls. A plurality of nozzles are provided, and the jet air flow ejected from the air nozzle is diffused toward the lower surface of the glass plate while entraining the hot gas in the furnace, and the pressure distribution of the jet air flow injected to the lower surface of the glass plate is made uniform. This is a method of bending a glass plate.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as shown in FIG. 1, the outer shape is a stepped columnar shape in which a small-diameter columnar portion 21 and a large-diameter columnar portion 23 are screwed together, and a cylinder provided at the outer peripheral end of the large-diameter columnar portion 23. A cylindrical nozzle 20 in which a circular gap S 1 formed between the inner peripheral surface of the projection 27 and the outer peripheral surface of the small-diameter cylindrical portion 21 is communicated with the air introduction path 25 in the large-diameter cylindrical portion 23. is there.
[0019]
The small-diameter cylindrical part 21 is provided with a stepped perforated part 22 having concentrically different inner diameters with the center of the small-diameter cylindrical part 21 as an axis. Further, the stepped perforated portion 22 has an inner diameter that gradually decreases from the lower opening side toward the upper end side, and a threaded portion is provided on each inner diameter of the intermediate portion and the upper end side. Part 22a was formed.
[0020]
On the other hand, the large-diameter cylindrical portion 23 is a male threaded portion 24 a in which a central protrusion 24 is provided on the upper end side and a threaded portion is provided on the outer periphery of the central protrusion 24.
[0021]
In addition, a cylindrical outer peripheral projection 27 is provided on the outer peripheral side of the upper end of the large diameter cylindrical portion 23, and an air introduction path 25 is provided at the center of the large diameter cylindrical portion 23 from the lower end opening to the central protrusion 24. An air communication hole 26 that extends to the inside and communicates from the air introduction path 25 to the outer peripheral side of the central protrusion 24 is provided in the central protrusion 24.
[0022]
The internal thread part 22a of the small diameter cylindrical part 21 and the external thread part 24a of the large diameter cylindrical part 23 are screwed together, and the cylindrical inner surface of the outer peripheral projection part 27 of the large diameter cylindrical part 23 and the lower end side of the small diameter cylindrical part 21 A gap S 1 was provided between the outer peripheral surface and the outer peripheral surface.
[0023]
In addition, a gap S 2 is formed between the recess formed between the central projection 24 and the outer peripheral projection 27 of the large-diameter cylindrical portion 23 and the lower end of the small-diameter cylindrical portion 21. air passes through the the clearance S 2, communicates with the gap S 1, are connected with each other by the air communication hole 26 and the gap S 2 and the air introduction path 25 and the clearance S 1.
[0024]
The gap S 2 does not necessarily have to be provided, but if it is to be eliminated, some holes that can communicate with the gap S 1 may be provided on the lower end side of the small diameter cylindrical portion 21.
[0025]
A bolt 28 is screwed into the top side opening of the stepped perforated portion 22 of the small diameter cylindrical portion 21 to close the upper end opening, and the tip of the bolt 28 is brought into contact with the central protrusion 24 of the large diameter cylindrical portion 23. Thus, the threaded portion of the large-diameter cylindrical portion 23 and the small-diameter cylindrical portion 21 is not loosened.
[0026]
Further, an air communication hole 26 provided from the male threaded portion 24 a of the large-diameter columnar portion 23 to the air introduction hole 25 by adjusting the screwing length of the large-diameter columnar portion 23 and the small-diameter columnar portion 21 of the air nozzle 20. Since it is possible to adjust the flow rate of the supply air a from the air introduction path 25, the internal thread portion 22a of the small-diameter cylindrical portion 21 that is screwed into the flow path can be adjusted to be partially blocked from being fully opened. The jet air pressure ejected from the gap S 1 can be adjusted.
[0027]
According to such a glass plate forming columnar nozzle 20, the high-temperature supply air a fed into the air introduction path 25 provided at the center of the large-diameter columnar portion passes through the air communication hole 26 and the gap S 2 . Then, jet air is injected from a gap S 1 between the inner peripheral surface of the cylindrical projection 27 provided at the outer peripheral end of the large-diameter column portion 23 and the outer peripheral surface of the small-diameter column portion 21.
[0028]
The jet air entrains the gas b in the furnace along the cylindrical outer surface of the small-diameter column portion 21 and travels straight to the tip of the small-diameter column portion 21, and diffuses as jet air from the tip of the small-diameter column portion 21. The pressure distribution of the air injected onto the glass plate surface can be made uniform.
[0029]
Further, in the modified embodiment shown in FIG. 2, the cylindrical outer peripheral projection 27 provided at the outer peripheral end of the large diameter cylindrical portion 23 is extended to the tip of the small diameter cylindrical portion 21, and the large diameter cylindrical portion is formed. In-furnace air intake holes 29 are provided on the side surfaces of the cylindrical outer peripheral projections 27.
[0030]
According to such a cylindrical nozzle 20, the high-temperature supply air a sent to the air introduction path 25 provided at the center of the large-diameter cylindrical portion 23 passes through the air communication hole 26 and the gap S 2 ′, Jet air is injected from a gap S 1 ′ between the inner peripheral surface of the cylindrical projection 27 provided at the outer peripheral end of the large-diameter column portion 23 and the outer peripheral surface of the small-diameter column portion 21.
[0031]
The jet air to be jetted travels straight to the tip of the small-diameter column portion 21 along the cylindrical outer surface of the small-diameter column portion 21 and the cylindrical outer peripheral projection 27 provided on the outer peripheral end portion of the large-diameter column portion 23. Then, the furnace gas b is entrained from the furnace air intake hole 29 provided on the side surface of the outer peripheral projection 27, and is jetted from the tip of the small-diameter cylindrical part 21 and diffused as jet air to be sprayed onto the glass plate surface. The air pressure distribution can be made uniform.
[0032]
Subsequently, in the modified embodiment shown in FIG. 3, a central protrusion 32 is provided at the center of the small diameter cylindrical portion 31, a male screw portion 32 a is provided on the outer periphery thereof, and the male screw portion 32 a is screwed onto the large diameter cylindrical portion 35. Alternatively, the cylindrical nozzle 30 may be provided with a female thread portion 36a. In this case, as a measure for preventing loosening when the internal threaded portion 36a of the large-diameter cylindrical portion 35 and the externally threaded portion 32a of the small-diameter cylindrical portion 31 are screwed together, the central protrusion of the small-diameter cylindrical portion is connected to the bolt 38 from the side surface of the large-diameter cylindrical portion 35. It may be fixed by tightening.
[0033]
Also in the cylindrical nozzle 30 in this case, the high-temperature supply air a sent to the air introduction passage 33 provided at the center of the large-diameter cylindrical portion 35 is provided in the air communication hole provided in the central protrusion 32 of the small-diameter cylindrical portion 31. 34 and a clearance S 2 ″ between the inner peripheral surface of the cylindrical protrusion 37 provided at the outer peripheral end of the large-diameter column portion 35 and the outer peripheral surface of the small-diameter column portion 31 via the gap S 2 ″. Jetted as jet air.
[0034]
The jet air to be injected entrains the in-furnace gas b along the cylindrical outer surface of the small-diameter column portion 31 to the tip of the small-diameter column portion 31 and diffuses from the tip of the small-diameter column portion 31 as jet air. Thus, the pressure distribution of the air injected onto the glass plate surface can be made uniform.
[0035]
Although the preferred embodiment has been described above, the present invention is not limited to this, and various applications can be considered.
[0036]
Subsequently, a method of using the present invention will be described below.
As shown in FIG. 5, a plurality of flat glass plates 1 that have reached the softening point temperature while being transported in a heating and bending furnace by transport rolls 5 are stopped at predetermined positions, arranged below the glass plates, and sprayed upward. The glass plate 1 is levitated by spraying a high-temperature jet stream from the air nozzle, and the glass plate 1 is placed on the lower surface of a bending die (mold) 4 that is arranged above the levitated glass plate 1 and curved downward. The curved glass 1 matched to the shape of the lower surface of the bending die 4 is manufactured by pressing.
[0037]
A plurality of suction holes (not shown) are provided on the lower surface of the bending die 4 and communicated with a suction device (not shown) provided separately to adsorb the glass plate 1 to the lower surface of the bending die 4.
[0038]
Further, as shown in FIG. 4, the plurality of air nozzles are provided with a plurality of air nozzles for injecting a jet flow upward almost over the entire lower surface of the glass plate 1, but the number of the air nozzles is particularly limited by the transport rolls. As for the air nozzles provided at the restricted positions, that is, the upper and lower sides intersecting the longitudinal direction of the transport roll, the cylindrical nozzle 20 of the present invention as shown in FIGS. 1 to 3 is arranged, and the other positions are shown in FIG. A conventional aspirator-type nozzle 40 as shown in FIG. 1 was arranged, and high-temperature jet air was supplied to each of the air nozzles 20, 40.
[0039]
The flat glass plate 1 softened by heating floats by jet air jetted upward by a plurality of columnar nozzles 20 and aspirator nozzles 40 and is pressed against the lower surface of the bending die 4. Since both the wings around the glass plate 1 such as glass have a large degree of curvature, the air nozzles move away from the air nozzle as it bends. Therefore, it is necessary to increase the jet pressure of the jet air ejected from the air nozzle, and the pitch between the air nozzles is reduced. An aspirator type nozzle 40 having an increased number is used.
[0040]
On the other hand, about the air nozzle which the glass plate 1 conveyed by the conveyance roll 5 injects toward the upper side and lower side which cross | intersect the conveyance roll 5, since it must be provided between the conveyance rolls 5 and 5, the number is also limited, When the air ejection pressure is locally strong, the pressure distribution in the portion becomes high, and the difference from the portion where the air does not hit increases, so that a concave optical distortion is likely to occur.
[0041]
For this reason, by providing the cylindrical nozzle 20 of the present invention in the vicinity of the upper edge and the lower edge of the glass plate 1 and making it a diffusion type air nozzle, the places where the pressure distribution is strong and weak are reduced, and the glass plate 1 is ejected onto the surface. The distributed air pressure was dispersed and distributed uniformly.
[0042]
The flat glass plate 1 is pressed against the lower surface of the convex shape of the bending die 4 provided above by jet air from below and is adsorbed on the lower surface of the bending die 4 by a plurality of suction holes provided on the lower surface of the bending die 4. Although it is held, the glass plate 1 is softened, so that it is curved along the curved surface shape of the lower surface of the bending die 4.
[0043]
When the glass plate 1 is brought into close contact with the lower surface of the bending die 4 in this way and bent into a desired shape after a lapse of a certain time, a cold ring is called from the side portion on the lower portion of the glass plate 1 held by the bending die 4. The glass plate 1 bent and inserted by releasing the suction of the bending die 4 and stopping jet air from below immediately after inserting the receiving frame of the curved high-temperature glass plate 1 falls on the cold ring. Then, it is conveyed to a quenching strengthening process, which is the next process, together with the cold ring, and is quenched and strengthened to obtain a tempered glass curved into a desired shape.
[0044]
6 shows the conventional direct injection type nozzle, aspirator type nozzle 40, and cylindrical type nozzle 20 of the present invention according to the distances from the tip of the air nozzle to the glass plate surface of 15 mm, 30 mm, 60 mm, and 120 mm, respectively. The results of the comparison of the pressure distribution of the injected air are shown.
[0045]
In the case of the conventional direct injection type nozzle, jet air is ejected from the central portion of the tip of the air nozzle, and when the distance to the glass plate surface is 60 mm, the air pressure is locally high in a small range. However, the pressure distribution in the periphery is very low.
[0046]
In addition, the aspirator type nozzle 40 is slightly wider than the direct injection type, but the pressure distribution is slightly lower.
[0047]
Furthermore, in the case of the cylindrical nozzle 20 of the present invention, the pressure is distributed relatively uniformly with a large spread as compared with the conventional air nozzle, but it can be seen that the pressure is slightly lower.
[0048]
For these air nozzles, the air diffusivity can be summarized as follows:
The cylindrical nozzle of the present invention> aspirator type nozzle> direct injection type nozzle is good in this order, but it can be seen that the ultimate pressure is smaller as the air diffusibility is better.
[0049]
Further, when the distance from the air nozzle to the glass surface is about 70 mm, the direct injection type nozzle and the aspirator type nozzle have a high possibility of generating a concave optical distortion in the thin glass.
[0050]
When the curvature and reflection image comparison of the glass plate formed using these air nozzles were performed, the glass plate formed using the air nozzle of the present invention on the upper and lower sides of the glass plate was compared with the case where the conventional air nozzle was used. In addition, it was good without large reverse warping optical distortion and pan-bottom optical distortion.
[0051]
【The invention's effect】
In the present invention, when bending a window glass for an automobile, the end of the glass plate intersecting with the conveying roll for conveying the glass plate, particularly the upper side and the lower side for the rear window glass, is sufficiently arranged by the conveying roll. Even if it is not possible, the pressure distribution of the air sprayed onto the glass plate surface portion can be made uniform, and the occurrence of optical distortion during molding of the portion of the glass plate can be prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical nozzle of the present invention.
FIG. 2 is a longitudinal sectional view of a modified example of the cylindrical nozzle of the present invention.
FIG. 3 is a longitudinal sectional view of another modified example of the cylindrical nozzle of the present invention.
FIG. 4 is a plan view of a lift jet frame in which a cylindrical nozzle of the present invention is arranged.
FIG. 5 is a side view showing the periphery of a cylindrical nozzle of the present invention.
FIG. 6 is a diagram for explaining pressure distribution on a glass surface of a cylindrical nozzle of the present invention and a conventional air nozzle.
FIG. 7 is a longitudinal sectional view of a conventional aspirator type nozzle.
FIG. 8 is a plan view of a lift jet frame in which a conventional aspirator type nozzle is arranged.
[Explanation of symbols]
a Supply air b Furnace gas 1 Glass plate 4 Bending mold (mold)
5 Transport roll 10 Lift jet frame 20 Cylindrical nozzle 21 Small diameter cylindrical portion 22 Stepped perforated portion 22a Female threaded portion 23 Large diameter cylindrical portion 24 Central protruding portion 24a Male threaded portion 25 Air introduction path 26 Air communication hole 27 Outer peripheral protruding portion 29 Air intake hole 30 Cylindrical nozzle 31 Small diameter cylindrical part 32 Central protrusion 32a Male thread part 33 Air introduction path 34 Air communication hole 35 Large diameter cylindrical part 36 Perforated part 36a Female thread part 37 Outer peripheral protrusion part 40 Aspirator type nozzle 41 Small diameter taper part 42 Stepped perforated part 42a Female threaded part 43 Large diameter cylindrical part 44 Central protruding part 44a Male threaded part 45 Air introduction path 46 Air communication hole 47 Outer peripheral protruding part

Claims (5)

加熱により軟化したガラス板を高温のジェットエア流によって下方より圧力をかけて浮上させ、上方に設けた曲げ型の下面に押しつけて曲げ成形するエアノズルにおいて、該エアノズルの外形形状を小径円柱部と大径円柱部を螺合させた段付の円柱状とし、該大径円柱部の外周端部に設けた円筒状突起部の内周面と、該小径円柱部の外周面間に形成される隙間を大径円柱部内のエア導入路と連通させて、該隙間より小径円柱部の外周面に沿ってジェットエアを噴射させてガラス板面への圧力分布を均一化させたことを特徴とするガラス板成形用エアノズル。In an air nozzle that floats a glass plate softened by heating by applying pressure from below with a high-temperature jet air flow and presses it against the lower surface of a bending die provided above, the outer shape of the air nozzle is larger than that of a small-diameter cylindrical portion. A gap formed between the inner peripheral surface of the cylindrical projection provided on the outer peripheral end of the large-diameter column and the outer peripheral surface of the small-diameter column with a stepped column formed by screwing the diameter column Is made to communicate with the air introduction path in the large-diameter cylindrical portion, and jet air is sprayed along the outer peripheral surface of the small-diameter cylindrical portion through the gap to make the pressure distribution on the glass plate surface uniform. Air nozzle for plate forming. 前記大径円柱部と小径円柱部の螺合する長さを調整することにより螺合部に設けたエア連通孔の流路が制限され、前記隙間から噴射されるジェットエアの流量が調節可能となることを特徴とする請求項1記載のガラス板成形用エアノズル。By adjusting the screwing length of the large-diameter cylindrical part and the small-diameter cylindrical part, the flow path of the air communication hole provided in the screwing part is limited, and the flow rate of jet air injected from the gap can be adjusted. The air nozzle for forming a glass sheet according to claim 1, wherein 前記大径円柱部の外周端部に設けた円筒状突起部を小径円柱部の外周面先端まで延ばした形状としたことを特徴とする請求項1乃至2記載のガラス板成形用エアノズル。The glass nozzle forming air nozzle according to claim 1 or 2, wherein a cylindrical protrusion provided at an outer peripheral end of the large-diameter column portion is extended to the outer peripheral end of the small-diameter column portion. 前記大径円柱部の外周端部に設けた円筒状突起部の側面に炉内ガスを隙間に吸引可能な炉内エア取入孔を設けるようにしたことを特徴とする請求項3記載のガラス板成形用エアノズル。4. The glass according to claim 3, wherein a furnace air intake hole is provided on a side surface of a cylindrical projection provided at an outer peripheral end of the large-diameter column part so that a furnace gas can be sucked into a gap. Air nozzle for plate forming. 加熱したガラス板を高温のジェットエア流によって下方より圧力をかけて浮上させ、上方に設けた曲げ型の下面に押しつけて曲げ成形する方法において、請求項1乃至4記載のエアノズルを搬送ロール間に複数本設け、前記エアノズルより噴出されたジェットエア流に、炉内の高温ガスを巻き込みながらガラス板の下面に向けて拡散させ、ガラス板下面に噴射したジェットエア流の圧力分布が均一化されるようにしたことを特徴とするガラス板の曲げ成形方法。5. A method in which a heated glass plate is floated by applying pressure from below under a high-temperature jet air flow and pressed against the lower surface of a bending die provided above, and the air nozzle according to claim 1 is interposed between conveying rolls. A plurality of jet air flows jetted from the air nozzle are diffused toward the lower surface of the glass plate while entraining the hot gas in the furnace, and the pressure distribution of the jet air flow injected to the lower surface of the glass plate is made uniform A method of bending a glass plate, characterized in that
JP33989899A 1999-11-30 1999-11-30 Air nozzle for glass plate forming and bending method using the air nozzle Expired - Fee Related JP3714834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33989899A JP3714834B2 (en) 1999-11-30 1999-11-30 Air nozzle for glass plate forming and bending method using the air nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33989899A JP3714834B2 (en) 1999-11-30 1999-11-30 Air nozzle for glass plate forming and bending method using the air nozzle

Publications (2)

Publication Number Publication Date
JP2001158630A JP2001158630A (en) 2001-06-12
JP3714834B2 true JP3714834B2 (en) 2005-11-09

Family

ID=18331849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33989899A Expired - Fee Related JP3714834B2 (en) 1999-11-30 1999-11-30 Air nozzle for glass plate forming and bending method using the air nozzle

Country Status (1)

Country Link
JP (1) JP3714834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107500515B (en) * 2017-09-30 2019-12-03 重庆市顺华安全玻璃有限公司 Windshield pane bending apparatus

Also Published As

Publication number Publication date
JP2001158630A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US9573833B2 (en) Method and lift jet floatation system for shaping thin glass
CA1297678C (en) Glass sheet processing system including topside transfer apparatus
JP6438487B2 (en) Forming station and method for forming hot glass sheet with longitudinal and transverse curvature
EP0882681B1 (en) Method for manufacturing bent and tempered glass sheets and apparatus for manufacturing the same
JPH04224123A (en) Curve-forming of sheet glass to compliacted shape and its device
CN102143920A (en) Air-cool intensifying apparatus for glass plate, and air-cool intensifying method
US4578102A (en) Quenching or tempering by means of a two-phase jet
CN108349771B (en) Lifting device for glass processing system
JPS60145921A (en) Glass enhancement and device therefor
JP3714834B2 (en) Air nozzle for glass plate forming and bending method using the air nozzle
RU2299184C1 (en) Device for strengthening lower surface of float-glass band
US6032489A (en) Method for manufacturing tempered glass sheet and apparatus for manufacturing the same
JP3717339B2 (en) Glass plate bending equipment
CN205398452U (en) Internal hot air -out device of tempering furnace heating furnace
JP5259955B2 (en) Strengthening of bent glass plate
JP4785731B2 (en) Gas cushion generator
JP2001158631A (en) Method for curving and molding glass plate
JP2005206458A (en) Method and apparatus for bending glass plate
JP2711000B2 (en) Sheet glass bending method
JP5670446B2 (en) Improved glass tempering method and apparatus
JPH0613224Y2 (en) Flat glass press mold
JP5757229B2 (en) Air nozzle and method of manufacturing the air nozzle
JP3135539U (en) Lens non-contact transfer device
JP4220877B2 (en) Substrate cooling method, substrate cooling apparatus, and film forming apparatus
JP2004051404A (en) Bend-forming apparatus for glass plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees