JP3714394B2 - Supercritical reactor for high temperature - Google Patents

Supercritical reactor for high temperature Download PDF

Info

Publication number
JP3714394B2
JP3714394B2 JP35124299A JP35124299A JP3714394B2 JP 3714394 B2 JP3714394 B2 JP 3714394B2 JP 35124299 A JP35124299 A JP 35124299A JP 35124299 A JP35124299 A JP 35124299A JP 3714394 B2 JP3714394 B2 JP 3714394B2
Authority
JP
Japan
Prior art keywords
reactor
supercritical
reaction
cylinder
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35124299A
Other languages
Japanese (ja)
Other versions
JP2001162155A (en
Inventor
和明 太田
皓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP35124299A priority Critical patent/JP3714394B2/en
Publication of JP2001162155A publication Critical patent/JP2001162155A/en
Application granted granted Critical
Publication of JP3714394B2 publication Critical patent/JP3714394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界流体を用いて高温高圧領域を形成し、物質を反応させる装置に関するものである。
【0002】
【従来の技術】
超臨界流体を用いた種々の反応プロセスが検討されているが、例えば超臨界水を用いる場合、水の超臨界点が温度374℃、圧力22.4MPaであることから、この温度、圧力に耐え得る材質で作られた反応器が必要である。この水の超臨界点以上で物質の反応を行わせようとする場合、従来の外部加熱方式では、チューブラー型、或いはベッセル型反応管が用いられていた。
【0003】
【発明が解決しようとする課題】
しかしながら、この加熱方式で用いられるチューブラー型、或いはベッセル型反応管は反応が行われるときに直接高温、高圧にさらされるため、反応管の破損やひび割れ等のおそれがあった。また反応管に高価な耐熱材料を用いても耐熱限界は650℃程度であるため、反応管を用いて650℃を越える温度で高い効率で反応を行うことができない問題があった。そこで反応管の材質には高温で高圧に耐えうる強度を有する高価な耐熱材料を選定する必要があり、装置が大型化、重量化する傾向があった。
【0004】
本発明の目的は、従来の反応装置では得られない高温高圧の超臨界反応領域を比較的簡便に作り出し、従来よりも安価な高温用超臨界反応装置を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、図2に示すように、両端が封止され500℃の温度と30MPaの圧力に耐え得る管状の耐熱耐圧製反応器10と、反応器10の外周に設けられ反応器10を保温又は加熱するヒータ11と、反応器10の内部に反応器10と同心状にかつ反応器10の一端に密着し反応器10の他端と離間して設けられた熱遮蔽用筒体12と、反応器10の一端に設けられ反応器10の内面と筒体12の外面で囲まれる領域に超臨界流体を導入するための第1導入口16と、反応器10の一端に設けられ筒体12内に超臨界流体を導入するための第2導入口17と、筒体12の内部に反応器10の両端と離間して設けられ反応器10の一端側の先端が封止され反応器10の他端側の先端が開口された燃焼用反応筒18と、反応器10の外部から筒体12の内部と反応筒18の内部と筒体12の内部をこの順に通って反応器10の外部に導くように設けられ高温で反応する被処理液21が流れる高温用超臨界反応管19と、被処理液21を反応管19に超臨界流体と同圧で圧送する被処理液用ポンプ24と、反応筒18内の高温用超臨界反応管19を加熱するための燃料27又はこの燃料27と超臨界流体を反応筒18内に供給するように設けられた燃料供給パイプ28と、燃料27の燃焼を助ける助燃材29を反応筒18内に供給するように設けられた助燃材供給パイプ31と、反応筒18の反応器10の一端側の先端に接続され反応筒18内で超臨界反応管19を加熱した超臨界流体を反応器10の外部に導くように設けられた排出管33とを備えた高温用超臨界反応装置である。
請求項1に係る発明では、反応筒18内部に超臨界反応管19を通し、この反応筒18の内部の超臨界流体中で燃料を燃焼させることにより高温領域を形成したので反応管19内に高温高圧での超臨界反応領域を形成できる。
【0006】
請求項2に係る発明は、請求項1に係る発明であって、請求項6に係る発明は、請求項5に係る発明であって、高温用超臨界反応管19が、反応器10の一端から筒体12内面と反応筒18外面の間の領域を通って反応筒18の反応器10の他端側の先端まで形成された導入用超臨界反応管19aと、導入用超臨界反応管19aに接続され反応筒18内に設けられた反応用超臨界反応管19bと、反応用超臨界反応管19bに接続され筒体12の内部を通って反応器10の一端に接続された排出用超臨界反応管19cとを備えた高温用超臨界反応装置である。
請求項2及び請求項6に係る発明では、超臨界流体が導入された反応器内に同圧に保たれた高温用超臨界反応管が配置されており、反応管の内圧と外圧が等しく圧力差を生じないので反応管は高耐圧製である必要がない。
【0007】
請求項3に係る発明は、請求項2に係る発明であって、請求項7に係る発明は、請求項6に係る発明であって、導入用超臨界反応管19a、排出管33及び排出用超臨界反応管19cが互いに熱交換するように構成された高温用超臨界反応装置である。
請求項3及び請求項7に係る発明では、導入用超臨界反応管、排出管及び排出用超臨界反応管は隣接して設けられているので温度差の異なる配管間で熱交換が行われ、反応に消費される熱エネルギーが少なくて済む。
【0008】
請求項4に係る発明は、請求項2に係る発明であって、第2導入口17より熱遮蔽用筒体12の内面と反応筒18の外面で囲まれる領域に導入された超臨界流体と排出管33及び排出用超臨界反応管19cとが互いに熱交換するように構成された高温用超臨界反応装置である。
請求項4に係る発明では、上記領域に導入された超臨界流体と排出管及び排出用超臨界反応管は接しているので熱交換が行われ、反応に消費される熱エネルギーが少なくて済む。
【0009】
請求項5に係る発明は、図3に示すように、両端が封止され500℃の温度と30MPaの圧力に耐え得る管状の耐熱耐圧製反応器10と、反応器10の外周に設けられ反応器10を保温又は加熱するヒータ11と、反応器10の内部に反応器10と同心状にかつ反応器10の一端に密着し反応器10の他端と離間して設けられた熱遮蔽用筒体12と、反応器10の一端に設けられ筒体12内に超臨界流体を導入するための第3導入口49と、反応器10の一端に設けられ反応器10の内面と筒体12の外面で囲まれる領域に加熱用燃料27と超臨界流体を導入するための第4導入口51と、筒体12の内部に反応器10の両端と離間して設けられ反応器10の一端側の先端が封止され反応器10の他端側の先端が開口された燃焼用反応筒18と、反応筒18の反応器10の他端側の先端に反応器10の他端に密着するように設けられた円筒状の多孔質隔壁52と、反応器10の外部から筒体12の内部と多孔質隔壁52と反応筒18の内部と筒体12の内部をこの順に通って反応器10の外部に導くように設けられ高温で反応する被処理液21が流れる高温用超臨界反応管19と、被処理液21を反応管19に超臨界流体と同圧で圧送する被処理液用ポンプ24と、第4導入口51から導入された加熱用燃料27の反応筒18内での燃焼を助ける助燃材29を反応筒18内に供給するように設けられた助燃材供給パイプ31と、反応筒18の反応器10の一端側の先端に接続され反応筒18内で超臨界反応管19を加熱した超臨界流体を反応器10の外部に導くように設けられた排出管33とを備えた高温用超臨界反応装置である。
請求項5に係る発明では、請求項1に係る発明と比較して多孔質隔壁52を反応筒18の端部に備え、加熱用燃料27を反応器10の一端に設けられた第4導入口51より導入するようにしたので、加熱用燃料27が多孔質隔壁52を通って燃焼し、これにより反応用超臨界反応管19bが均等に加熱され反応効率が高まる。
【0010】
請求項8に係る発明は、請求項6に係る発明であって、第3導入口49より熱遮蔽用筒体12の内面と反応筒18の外面で囲まれる領域に導入された超臨界流体と排出管33及び排出用超臨界反応管19cとが互いに熱交換するように構成された高温用超臨界反応装置である。
請求項8に係る発明では、上記領域に導入された超臨界流体と排出管及び排出用超臨界反応管は接しているので熱交換が行われ、反応に消費される熱エネルギーが少なくて済む。
【0011】
【発明の実施の形態】
本発明の超臨界流体としては、超臨界水、超臨界二酸化炭素、可燃性の超臨界メタン、超臨界アンモニア、超臨界メタノール等が挙げられる。
本発明の第1の実施の形態を図面に基づいて詳しく説明する。
本発明の反応装置は、図1及び図2に示すように、耐熱耐圧製反応器10は両端が封止され少なくとも500℃の温度と30MPaの圧力に耐え得る管状に形成される。反応器10の外周部には保温又は加熱のためのヒータ11が設けられる。反応器10の内部には反応器10と同心状にかつ反応器10の一端に密着し反応器10の他端の内壁とは間隔を開けて熱遮蔽用筒体12が設けられる。この間隔は反応器10の内面と筒体12の外面で囲まれる領域と筒体12内とを連通する連通部13を構成する。反応器10の一端には反応器10の内面と筒体12の外面で囲まれる領域に超臨界流体として超臨界水を導入する第1導入口16と、筒体12内に超臨界流体として超臨界水を導入する第2導入口17がそれぞれ設けられる。筒体12の内部には反応器10の両端と離間して反応器10の一端側の先端が封止され反応器10の他端側の先端が開口された燃焼用反応筒18が設けられる。この筒体12及び反応筒18は高温にさらされ、腐食が大きくなるおそれがあるため、熱良導体からなる耐熱金属、例えばNi−Crの耐熱合金等から形成され、筒体12及び反応筒18は交換可能に構成される。
【0012】
反応器10内には高温用超臨界反応管19が反応器10の外部から筒体12の内部と反応筒18の内部と筒体12の内部をこの順に通って反応器10の外部に導くように設けられる。この反応管19は高温で反応する被処理液21が流れるよう構成される。この実施の形態では被処理液21はフェノールと水とを混合した水溶液である。高温用超臨界反応管19は、導入用超臨界反応管19aと反応用超臨界反応管19bと排出用超臨界反応管19cからなる。導入用超臨界反応管19aは反応器10の一端から筒体12内面と反応筒18外面の領域を通って反応筒18の反応器10の他端側の先端の高さ位置まで設けられる。反応用超臨界反応管19bは一方が導入用超臨界反応管19aに接続されて反応筒18内に設けられる。排出用超臨界反応管19cは一方が反応用超臨界反応管19bに接続されて筒体12の内部を通って他方が反応器10の一端に接続される。
【0013】
反応器10の一端には筒体12内に通じる被処理液21を導入する被処理液用導入口22が設けられ、高温用超臨界反応管19の一端に接続される。被処理液用導入口22には、被処理液21を貯えるタンク23が被処理液用ポンプ24、予熱器26及び管路25を介して接続される。また反応器10の他端には反応用超臨界反応管19bを加熱するための加熱用燃料27を反応筒18内に導入するための燃料供給パイプ28が貫通し、反応筒18の端部から僅かに反応筒18内部に入った領域まで延びて設けられる。加熱用燃料27としてはメタノール、エタノール、プロパノール、ブタノールなどのアルコール類、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテルなどのエーテル類、メタン、エタン、プロパン、ブタンなどのパラフィン系炭化水素などが挙げられる。また反応器10の他端には加熱用燃料27の燃焼を助ける助燃材29を反応筒18内に供給するように助燃材供給パイプ31が貫通し、反応筒18の端部から僅かに反応筒18内部に入った領域まで延びて設けられる。助燃材29としては酸素、過酸化水素などが挙げられる。
【0014】
反応器10の一端には高温用超臨界反応管19で反応した反応生成物を排出する反応生成物用排出口32が設けられる。反応筒18の先端に接続され反応筒18内で高温用超臨界反応管19を加熱した超臨界水を反応器10の外部に導くように排出管33が設けられる。更に反応器10の一端には反応筒18の先端に接続され、排出管33を介して高温用超臨界反応管19を加熱した超臨界水を反応器10の外部に排出する超臨界水用排出口33aが設けられる。第1導入口16及び第2導入口17には、水14を貯えるタンク14aがポンプ14b、予熱器14c及び管路15を介して接続される。燃料供給パイプ28には、加熱用燃料27を貯えるタンク34がポンプ36、予熱器37及び管路35を介して接続される。助燃材供給パイプ31には、助燃材29を貯えるタンク38がポンプ39、予熱器41及び管路40を介して接続される。反応生成物用排出口32及び超臨界水用排出口33aにはそれぞれ管路42、43を介して冷却器44、46、減圧弁47、48が接続される。
【0015】
このように構成された装置では、図1に示すように、フェノール水溶液からなる被処理液21はタンク23から被処理液用ポンプ24で圧力を、予熱器26で熱を付与されて管路25、被処理液用導入口22を介して高温用超臨界反応管19に導入される。また水はタンク14aからポンプ14bで圧力を、予熱器14cで熱を付与されて管路15を介して第1導入口16及び第2導入口17に導入される。また加熱用燃料27はタンク34からポンプ36で圧力を、予熱器37で熱を付与されて管路35を介して燃料供給パイプ28から反応筒18内に供給される。更に助燃材29はタンク38からポンプ39で圧力を、予熱器41で熱を付与されて管路40を介して助燃材供給パイプ31から反応筒18内に供給される。
【0016】
図2に示すように、先ず第1導入口16及び第2導入口17から導入された水は反応器10の内部で超臨界水となり、反応器10全体に満たす。即ち、第1導入口16から供給された水は反応器10の内面と筒体12の外面で囲まれる領域から連通部13を通って反応筒18内に至る。一方、第2導入口17から供給された水は筒体12内から反応筒18内へ行渡り第1導入口16より導入された水と合流し、超臨界水となる。
【0017】
超臨界水が反応器10内全体に行渡った状態で被処理液用導入口22から高温用超臨界反応管19に被処理液21を導入する。被処理液21が反応管19内に行渡った状態で、燃料供給パイプ28より加熱用燃料27を、助燃材供給パイプ31より助燃材29をそれぞれ反応筒18内に供給して反応筒18内の超臨界水中で燃焼させる。この燃焼熱は超臨界水中を介して間接的に反応用超臨界反応管19bを加熱して被処理液21を反応管19の内部で水の超臨界状態にする。この状態で被処理液21であるフェノール水溶液は分解反応を起こし、メタン、水素を主成分とする反応生成物になる。反応後の生成物は排出用超臨界反応管19cから反応生成物用排出口32を通って反応器10の外部の管路42に導かれる。管路42に導かれた反応生成物は冷却器44で冷却され、減圧弁47で減圧されて可燃性ガスとして利用される。超臨界水及び燃焼した廃ガスは反応筒18の先端に接続された排出管33から超臨界水用排出口33aを通って反応器10の外部の管路43に導かれる。管路43に導かれた超臨界水と廃ガスは冷却器46で冷却され、減圧弁48で減圧されて水と廃ガスとなる。
【0018】
反応筒18内で加熱された超臨界水及び反応した生成物は排出管33及び排出用超臨界反応管19cにおいて、第2導入口17より導入された水及び被処理液用導入口22より導入された被処理液21と熱交換し冷却される。また、第1導入口16より導入され、反応器10の内面と筒体12の外面で囲まれる領域を通る水は反応器10の過熱を防止するための冷却水の役目を果たす。
【0019】
被処理液21は超臨界水と同圧で反応管19内に圧送されているので反応管19における内圧と外圧の差がない。このため直接加熱方式に比べ、反応領域である反応管が直接高温高圧にさらされることがないため、反応管内において従来以上の高温高圧状態を形成することができる。
【0020】
本発明の第2の実施の形態を図3に基づいて説明する。図3において、図2と同一符号は同一構成要素を示す。この実施の形態の製造装置は、次の点が第1の実施の形態と相違する。即ち、反応器10の一端には筒体12内に超臨界水を導入する第3導入口49が設けられる。反応器10の一端には反応器10の内面と筒体12の外面で囲まれる領域に加熱用燃料27と超臨界水を導入する第4導入口51が設けられる。燃焼用反応筒18の反応器10の他端側の先端には反応器10の他端に密着するように円筒状の多孔質隔壁52が設けられる。上記以外の構成は第1の実施の形態と同様である。
第1の実施の形態と比較して、第2の実施の形態では多孔質隔壁を設けることにより加熱された熱の分散を防ぐことができる。
【0021】
なお、本第2の実施の形態では、高温用超臨界反応管19は反応器10の外部から筒体12の内部と多孔質隔壁52と反応筒18の内部と筒体12の内部をこの順に通って前記反応器10の外部に導くように設けられた例を示したが、反応器10の外部から筒体12の内部と多孔質隔壁52と反応筒18の内部と多孔質隔壁52と筒体12の内部の順に通って反応器10の外部に導くように設けても良い。また、本第2の実施の形態では、反応筒の基端に多孔質隔壁を設けているが本第1の実施の形態でも多孔質隔壁を設けても良い。また、本実施の形態では、反応管をチューブラー型としたがベッセル型でも良い。更に、本実施の形態では、500℃、30MPaに耐え得る耐熱耐圧製反応器10としたが、より高強度な材料を用いた場合には、この条件に限定されるものではない。
【0022】
【発明の効果】
以上述べたように、管状の耐熱耐圧製反応器内に封入された超臨界流体中に高温用超臨界反応管を設け、被処理液を通るように形成し、反応管を加熱用燃料で加熱するよう構成したので従来の反応装置では得られない高温高圧の超臨界反応領域を作り出し、高効率で反応を行うことができる高温用超臨界反応装置を提供することができる。
【図面の簡単な説明】
【図1】本第1の実施の形態の高温用超臨界反応装置の構成図。
【図2】図1の装置の要部である反応器の断面構成図。
【図3】本第2の実施の形態の反応器の断面構成図。
【符号の説明】
10 耐熱耐圧製反応器
11 ヒータ
12 熱遮蔽用筒体
14 水
16 第1導入口
17 第2導入口
18 燃焼用反応筒
19 高温用超臨界反応管
19a 導入用超臨界反応管
19b 反応用超臨界反応管
19c 排出用超臨界反応管
21 被処理液
24 被処理液用ポンプ
27 加熱用燃料
28 燃料供給パイプ
29 助燃材
31 助燃材供給パイプ
33 排出管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for forming a high-temperature and high-pressure region using a supercritical fluid and reacting substances.
[0002]
[Prior art]
Various reaction processes using a supercritical fluid have been studied. For example, when supercritical water is used, the supercritical point of water is 374 ° C. and the pressure is 22.4 MPa. A reactor made of the material to be obtained is required. In order to cause a reaction of a substance at a supercritical point of water or higher, a tubular type or vessel type reaction tube has been used in the conventional external heating method.
[0003]
[Problems to be solved by the invention]
However, the tubular type or vessel type reaction tube used in this heating method is directly exposed to high temperature and high pressure when the reaction is carried out, and there is a risk of damage or cracking of the reaction tube. Further, even if an expensive heat-resistant material is used for the reaction tube, the heat-resistant limit is about 650 ° C., so that there is a problem that the reaction cannot be performed at a temperature exceeding 650 ° C. with high efficiency. Therefore, it is necessary to select an expensive heat-resistant material having a strength capable of withstanding a high pressure at a high temperature as the material of the reaction tube, and there has been a tendency for the apparatus to be increased in size and weight.
[0004]
An object of the present invention is to provide a high temperature and high pressure supercritical reaction device which is not easily obtained by a conventional reaction device, and which is relatively easy to produce, and which is less expensive than the prior art.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 includes a tubular heat-resistant pressure-resistant reactor 10 that is sealed at both ends and can withstand a temperature of 500 ° C. and a pressure of 30 MPa, and a reaction provided on the outer periphery of the reactor 10 as shown in FIG. A heater 11 that keeps or heats the reactor 10, and a heat shielding cylinder that is concentrically provided inside the reactor 10, concentrically attached to one end of the reactor 10, and spaced apart from the other end of the reactor 10. A body 12, a first inlet 16 for introducing a supercritical fluid into a region provided at one end of the reactor 10 and surrounded by the inner surface of the reactor 10 and the outer surface of the cylinder 12, and provided at one end of the reactor 10. A second introduction port 17 for introducing a supercritical fluid into the cylindrical body 12, and provided at a distance from both ends of the reactor 10 inside the cylindrical body 12, and the tip on one end side of the reactor 10 is sealed. and the reactor 10 at the other end of the tip combustion reaction tube 18 which is open, the reactor 10 A supercritical reaction for high temperature through which the liquid to be treated 21 is provided so as to be guided to the outside of the reactor 10 through the inside of the cylinder 12, the inside of the reaction cylinder 18, and the inside of the cylinder 12 from the outside in this order. A pipe 19, a liquid 24 to be treated that pumps the liquid 21 to be treated to the reaction pipe 19 at the same pressure as the supercritical fluid, and a fuel 27 for heating the high-temperature supercritical reaction pipe 19 in the reaction cylinder 18 or A fuel supply pipe 28 provided to supply the fuel 27 and the supercritical fluid into the reaction cylinder 18, and an auxiliary combustion material 29 provided to supply an auxiliary combustion material 29 that assists the combustion of the fuel 27 into the reaction cylinder 18. A supply pipe 31 and a discharge provided so as to guide the supercritical fluid that is connected to the tip of one end of the reactor 10 of the reaction cylinder 18 and heats the supercritical reaction tube 19 in the reaction cylinder 18 to the outside of the reactor 10. High temperature supercritical reactor equipped with tube 33 It is.
In the invention according to claim 1, the supercritical reaction tube 19 is passed through the reaction tube 18, and the high temperature region is formed by burning fuel in the supercritical fluid inside the reaction tube 18. Supercritical reaction zone at high temperature and high pressure can be formed.
[0006]
The invention according to claim 2 is the invention according to claim 1, the invention according to claim 6 is the invention according to claim 5, and the high-temperature supercritical reaction tube 19 is connected to one end of the reactor 10. Through the region between the inner surface of the cylinder 12 and the outer surface of the reaction tube 18 to the tip of the reaction tube 18 at the other end of the reactor 10, and the introduction supercritical reaction tube 19a. The reaction supercritical reaction tube 19b provided in the reaction cylinder 18 and connected to the reaction supercritical reaction tube 19b and connected to one end of the reactor 10 through the inside of the cylinder 12 This is a supercritical reactor for high temperature equipped with a critical reaction tube 19c.
In the inventions according to claims 2 and 6, the supercritical reaction tube for high temperature maintained at the same pressure is disposed in the reactor into which the supercritical fluid is introduced, and the internal pressure and the external pressure of the reaction tube are equal to each other. Since there is no difference, the reaction tube does not need to be made of high pressure.
[0007]
The invention according to claim 3 is the invention according to claim 2, and the invention according to claim 7 is the invention according to claim 6, wherein the supercritical reaction tube 19a for introduction, the discharge tube 33, and the discharge The supercritical reaction tube 19c is a high-temperature supercritical reaction device configured to exchange heat with each other.
In the inventions according to claim 3 and claim 7, since the introduction supercritical reaction tube, the discharge tube and the discharge supercritical reaction tube are provided adjacent to each other, heat exchange is performed between pipes having different temperature differences, Less heat energy is consumed in the reaction.
[0008]
The invention according to claim 4 is the invention according to claim 2, wherein the supercritical fluid introduced into the region surrounded by the inner surface of the heat shielding cylinder 12 and the outer surface of the reaction cylinder 18 from the second introduction port 17; This is a high-temperature supercritical reaction device configured to exchange heat between the discharge pipe 33 and the discharge supercritical reaction pipe 19c.
In the invention according to claim 4, since the supercritical fluid introduced into the region is in contact with the discharge pipe and the discharge supercritical reaction pipe, heat exchange is performed, so that less heat energy is consumed for the reaction.
[0009]
As shown in FIG. 3, the invention according to claim 5 includes a tubular heat-resistant pressure-resistant reactor 10 that is sealed at both ends and can withstand a temperature of 500 ° C. and a pressure of 30 MPa, and a reaction provided on the outer periphery of the reactor 10. A heater 11 that keeps or heats the reactor 10, and a heat shielding cylinder that is concentrically provided inside the reactor 10, concentrically attached to one end of the reactor 10, and spaced apart from the other end of the reactor 10. Body 12, a third inlet 49 provided at one end of reactor 10 for introducing a supercritical fluid into cylinder 12, an inner surface of reactor 10 provided at one end of reactor 10, and cylinder 12 A fourth introduction port 51 for introducing the heating fuel 27 and the supercritical fluid into a region surrounded by the outer surface, and a tube 12 provided inside the cylinder 12 at a distance from both ends of the reactor 10. tip is sealed reactor 10 the other end of the tip combustion reaction tube was opened 1 When the interior of the reaction tube 18 reactor 10 and cylindrical porous partition 52 provided as the other side tip in close contact with the other end of the reactor 10, the cylindrical body 12 from the outside of the reactor 10 of the The high-temperature supercritical reaction tube 19 is provided so as to flow through the porous partition wall 52, the inside of the reaction cylinder 18, and the inside of the cylinder 12 in this order to the outside of the reactor 10. A liquid 24 to be processed that pumps the liquid 21 to be processed to the reaction tube 19 with the same pressure as the supercritical fluid, and combustion of the fuel 27 for heating introduced from the fourth inlet 51 in the reaction tube 18. An auxiliary combustion material supply pipe 31 provided so as to supply an auxiliary combustion material 29 to assist the reaction cylinder 18 and a tip of one end of the reactor 10 of the reaction cylinder 18 connected to the supercritical reaction tube 19 in the reaction cylinder 18. Provided to guide the heated supercritical fluid to the outside of the reactor 10 It is a high temperature for a supercritical reactor having a decane 33.
In the invention according to claim 5, as compared with the invention according to claim 1, a fourth inlet provided with a porous partition wall 52 at the end of the reaction tube 18 and a heating fuel 27 provided at one end of the reactor 10. Therefore, the heating fuel 27 is burned through the porous partition wall 52, whereby the reaction supercritical reaction tube 19b is evenly heated and the reaction efficiency is increased.
[0010]
The invention according to claim 8 is the invention according to claim 6, wherein the supercritical fluid introduced into a region surrounded by the inner surface of the heat shielding cylinder 12 and the outer surface of the reaction cylinder 18 from the third introduction port 49 This is a high-temperature supercritical reaction device configured to exchange heat between the discharge pipe 33 and the discharge supercritical reaction pipe 19c.
In the invention according to claim 8, since the supercritical fluid introduced into the region is in contact with the discharge pipe and the discharge supercritical reaction pipe, heat exchange is performed, so that less heat energy is consumed for the reaction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the supercritical fluid of the present invention include supercritical water, supercritical carbon dioxide, flammable supercritical methane, supercritical ammonia, and supercritical methanol.
A first embodiment of the present invention will be described in detail with reference to the drawings.
In the reaction apparatus of the present invention, as shown in FIGS. 1 and 2, the heat-resistant pressure-resistant reactor 10 is sealed at both ends and is formed in a tubular shape capable of withstanding a temperature of at least 500 ° C. and a pressure of 30 MPa. A heater 11 for heat insulation or heating is provided on the outer periphery of the reactor 10. Inside the reactor 10, a heat shielding cylinder 12 is provided concentrically with the reactor 10 and in close contact with one end of the reactor 10 and spaced from the inner wall of the other end of the reactor 10. This interval constitutes a communication portion 13 that communicates the region surrounded by the inner surface of the reactor 10 and the outer surface of the cylinder 12 and the inside of the cylinder 12. At one end of the reactor 10, a first inlet 16 for introducing supercritical water as a supercritical fluid into a region surrounded by the inner surface of the reactor 10 and the outer surface of the cylinder 12, and a supercritical fluid as a supercritical fluid in the cylinder 12. A second introduction port 17 for introducing critical water is provided. Inside the cylinder 12, there is provided a combustion reaction cylinder 18 that is spaced from both ends of the reactor 10 and sealed at one end of the reactor 10 and opened at the other end of the reactor 10 . Since the cylindrical body 12 and the reaction cylinder 18 are exposed to high temperatures and corrosion may be increased, the cylindrical body 12 and the reaction cylinder 18 are formed of a heat-resistant metal made of a good heat conductor, such as a Ni-Cr heat-resistant alloy. Configured to be interchangeable.
[0012]
In the reactor 10, a supercritical reaction tube 19 for high temperature is led from the outside of the reactor 10 to the outside of the reactor 10 through the inside of the cylinder 12, the inside of the reaction cylinder 18, and the inside of the cylinder 12 in this order. Is provided. The reaction tube 19 is configured such that a liquid 21 to be processed that reacts at a high temperature flows. In this embodiment, the liquid 21 is an aqueous solution in which phenol and water are mixed. The high temperature supercritical reaction tube 19 includes an introduction supercritical reaction tube 19a, a reaction supercritical reaction tube 19b, and a discharge supercritical reaction tube 19c. The introduction supercritical reaction tube 19a is provided from one end of the reactor 10 through the inner surface of the cylinder 12 and the outer surface of the reaction tube 18 to the height of the tip of the reaction tube 18 on the other end side of the reactor 10 . One of the reaction supercritical reaction tubes 19 b is connected to the introduction supercritical reaction tube 19 a and is provided in the reaction tube 18. One of the discharge supercritical reaction tubes 19 c is connected to the reaction supercritical reaction tube 19 b, passes through the inside of the cylindrical body 12 , and the other is connected to one end of the reactor 10.
[0013]
One end of the reactor 10 is provided with an inlet 22 for the liquid to be processed for introducing the liquid 21 to be processed into the cylinder 12, and is connected to one end of the high-temperature supercritical reaction tube 19. A tank 23 for storing the liquid 21 to be processed is connected to the liquid inlet 22 via a liquid pump 24, a preheater 26 and a pipe 25. A fuel supply pipe 28 for introducing a heating fuel 27 for heating the reaction supercritical reaction tube 19 b into the reaction cylinder 18 passes through the other end of the reactor 10, and extends from the end of the reaction cylinder 18. It is provided so as to extend slightly to the area inside the reaction tube 18. Examples of the heating fuel 27 include alcohols such as methanol, ethanol, propanol and butanol, ethers such as dimethyl ether, diethyl ether and methyl ethyl ether, and paraffinic hydrocarbons such as methane, ethane, propane and butane. Further, an auxiliary combustion material supply pipe 31 passes through the other end of the reactor 10 so as to supply an auxiliary combustion material 29 that assists the combustion of the heating fuel 27 into the reaction cylinder 18, and the reaction cylinder slightly extends from the end of the reaction cylinder 18. 18 is provided so as to extend to the area inside. Examples of the auxiliary material 29 include oxygen and hydrogen peroxide.
[0014]
One end of the reactor 10 is provided with a reaction product outlet 32 for discharging the reaction product reacted in the high temperature supercritical reaction tube 19. A discharge pipe 33 is provided so as to guide supercritical water connected to the tip of the reaction cylinder 18 and heating the supercritical reaction pipe 19 for high temperature in the reaction cylinder 18 to the outside of the reactor 10. Further, one end of the reactor 10 is connected to the tip of the reaction cylinder 18, and the supercritical water discharge for discharging the supercritical water heated in the high-temperature supercritical reaction tube 19 to the outside of the reactor 10 through the discharge pipe 33. An outlet 33a is provided. A tank 14 a for storing water 14 is connected to the first introduction port 16 and the second introduction port 17 through a pump 14 b, a preheater 14 c and a pipe line 15. A tank 34 for storing heating fuel 27 is connected to the fuel supply pipe 28 via a pump 36, a preheater 37 and a pipe line 35. A tank 38 for storing the auxiliary combustion material 29 is connected to the auxiliary combustion material supply pipe 31 via a pump 39, a preheater 41 and a pipe line 40. Coolers 44 and 46 and pressure reducing valves 47 and 48 are connected to the reaction product discharge port 32 and the supercritical water discharge port 33a through pipes 42 and 43, respectively.
[0015]
In the apparatus configured as described above, as shown in FIG. 1, the liquid 21 to be processed, which is an aqueous phenol solution, is given pressure from a tank 23 by a pump 24 for liquid to be processed and heat is applied by a preheater 26, and a pipe 25 Then, it is introduced into the supercritical reaction tube 19 for high temperature through the inlet 22 for the liquid to be treated. The water is supplied with pressure from the tank 14 a by the pump 14 b and heat by the preheater 14 c and is introduced into the first introduction port 16 and the second introduction port 17 through the pipe line 15. The heating fuel 27 is supplied with pressure from a tank 34 by a pump 36 and heat by a preheater 37, and is supplied into the reaction cylinder 18 from a fuel supply pipe 28 via a pipe 35. Further, the auxiliary combustion material 29 is supplied with pressure from the tank 38 by the pump 39 and heated by the preheater 41, and is supplied from the auxiliary combustion material supply pipe 31 into the reaction cylinder 18 through the conduit 40.
[0016]
As shown in FIG. 2, first, water introduced from the first inlet 16 and the second inlet 17 becomes supercritical water inside the reactor 10 and fills the entire reactor 10. That is, the water supplied from the first introduction port 16 reaches the inside of the reaction cylinder 18 through the communication portion 13 from a region surrounded by the inner surface of the reactor 10 and the outer surface of the cylinder body 12. On the other hand, the water supplied from the second introduction port 17 moves from the inside of the cylinder 12 into the reaction tube 18 and merges with the water introduced from the first introduction port 16 to become supercritical water.
[0017]
In a state where supercritical water has spread throughout the reactor 10, the liquid 21 to be treated is introduced into the supercritical reaction tube 19 for high temperature from the inlet 22 for liquid to be treated. In a state where the liquid 21 to be treated has been distributed in the reaction tube 19, the heating fuel 27 is supplied from the fuel supply pipe 28, and the auxiliary combustion material 29 is supplied from the auxiliary combustion material supply pipe 31 to the reaction cylinder 18. Burn in supercritical water. This combustion heat indirectly heats the reaction supercritical reaction tube 19b through the supercritical water, thereby bringing the liquid 21 to be treated into a supercritical state of water inside the reaction tube 19. In this state, the aqueous phenol solution that is the liquid to be treated 21 undergoes a decomposition reaction to become a reaction product mainly composed of methane and hydrogen. The product after the reaction is led from the supercritical reaction tube 19c for discharge through the reaction product discharge port 32 to the conduit 42 outside the reactor 10. The reaction product guided to the pipe line 42 is cooled by the cooler 44 and is decompressed by the pressure reducing valve 47 to be used as a combustible gas. The supercritical water and the burned waste gas are led from the discharge pipe 33 connected to the tip of the reaction cylinder 18 to the pipe line 43 outside the reactor 10 through the supercritical water discharge port 33a. The supercritical water and waste gas guided to the pipe line 43 are cooled by the cooler 46 and reduced in pressure by the pressure reducing valve 48 to become water and waste gas.
[0018]
The supercritical water heated in the reaction tube 18 and the reacted product are introduced into the water introduced from the second inlet 17 and the inlet 22 for the liquid to be treated in the discharge pipe 33 and the discharge supercritical reaction pipe 19c. It is cooled by exchanging heat with the liquid 21 to be treated. Further, the water introduced from the first introduction port 16 and passing through the region surrounded by the inner surface of the reactor 10 and the outer surface of the cylindrical body 12 serves as cooling water for preventing the reactor 10 from overheating.
[0019]
Since the liquid 21 to be treated is pumped into the reaction tube 19 at the same pressure as the supercritical water, there is no difference between the internal pressure and the external pressure in the reaction tube 19. For this reason, compared with the direct heating method, the reaction tube which is a reaction region is not directly exposed to high temperature and high pressure, and therefore, a higher temperature and high pressure state than in the past can be formed in the reaction tube.
[0020]
A second embodiment of the present invention will be described with reference to FIG. 3, the same reference numerals as those in FIG. 2 denote the same components. The manufacturing apparatus of this embodiment is different from the first embodiment in the following points. That is, a third inlet 49 for introducing supercritical water into the cylinder 12 is provided at one end of the reactor 10. One end of the reactor 10 is provided with a fourth inlet 51 for introducing the heating fuel 27 and supercritical water into a region surrounded by the inner surface of the reactor 10 and the outer surface of the cylinder 12. A cylindrical porous partition wall 52 is provided at the tip of the other end of the reactor 10 of the combustion reaction cylinder 18 so as to be in close contact with the other end of the reactor 10. The configuration other than the above is the same as that of the first embodiment.
Compared to the first embodiment, in the second embodiment, it is possible to prevent the dispersion of heated heat by providing the porous partition walls.
[0021]
In the second embodiment, the high-temperature supercritical reaction tube 19 is arranged in this order from the outside of the reactor 10 to the inside of the cylindrical body 12, the porous partition wall 52, the inside of the reaction cylinder 18, and the inside of the cylindrical body 12. Although an example is provided so as to lead to the outside of the reactor 10 through the inside, the inside of the cylindrical body 12, the porous partition wall 52, the inside of the reaction tube 18, the porous partition wall 52 and the tube are provided from the outside of the reactor 10. You may provide so that it may lead to the exterior of the reactor 10 through the inside of the body 12 in order. In the second embodiment, a porous partition wall is provided at the base end of the reaction tube. However, a porous partition wall may be provided in the first embodiment. Moreover, in this Embodiment, although the reaction tube was made into the tubular type, a vessel type may be sufficient. Further, in the present embodiment, the heat resistant and pressure resistant reactor 10 capable of withstanding 500 ° C. and 30 MPa is used. However, when a higher strength material is used, it is not limited to this condition.
[0022]
【The invention's effect】
As described above, a supercritical reaction tube for high temperature is provided in a supercritical fluid sealed in a tubular heat and pressure resistant reactor, formed so as to pass the liquid to be treated, and the reaction tube is heated with fuel for heating. Therefore, it is possible to provide a high-temperature supercritical reaction apparatus that can produce a high-temperature and high-pressure supercritical reaction region that cannot be obtained by a conventional reaction apparatus and can perform a reaction with high efficiency.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a high-temperature supercritical reaction apparatus according to a first embodiment.
2 is a cross-sectional configuration diagram of a reactor that is a main part of the apparatus of FIG. 1;
FIG. 3 is a cross-sectional configuration diagram of a reactor according to a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Heat-resistant pressure-resistant reactor 11 Heater 12 Heat shielding cylinder 14 Water 16 1st introduction port 17 2nd introduction port 18 Combustion reaction tube 19 High temperature supercritical reaction tube 19a Introduction supercritical reaction tube 19b Reaction supercritical Reaction tube 19c Supercritical reaction tube for discharge 21 Liquid to be treated 24 Pump for liquid to be treated 27 Fuel for heating 28 Fuel supply pipe 29 Auxiliary material 31 Auxiliary material supply pipe 33 Discharge tube

Claims (8)

両端が封止され500℃の温度と30MPaの圧力に耐え得る管状の耐熱耐圧製反応器(10)と、
前記反応器(10)の外周に設けられ前記反応器(10)を保温又は加熱するヒータ(11)と、
前記反応器(10)の内部に前記反応器(10)と同心状にかつ前記反応器(10)の一端に密着し前記反応器(10)の他端と離間して設けられた熱遮蔽用筒体(12)と、
前記反応器(10)の一端に設けられ前記反応器(10)の内面と前記筒体(12)の外面で囲まれる領域に超臨界流体を導入するための第1導入口(16)と、
前記反応器(10)の一端に設けられ前記筒体(12)内に超臨界流体を導入するための第2導入口(17)と、
前記筒体(12)の内部に前記反応器(10)の両端と離間して設けられ前記反応器(10)の一端側の先端が封止され前記反応器 (10) の他端側の先端が開口された燃焼用反応筒(18)と、
前記反応器(10)の外部から前記筒体(12)の内部と前記反応筒(18)の内部と前記筒体(12)の内部をこの順に通って前記反応器(10)の外部に導くように設けられ高温で反応する被処理液(21)が流れる高温用超臨界反応管(19)と、
前記被処理液(21)を前記反応管(19)に前記超臨界流体と同圧で圧送する被処理液用ポンプ(24)と、
前記反応筒(18)内の高温用超臨界反応管(19)を加熱するための燃料(27)又はこの燃料(27)と超臨界流体を前記反応筒(18)内に供給するように設けられた燃料供給パイプ(28)と、
前記燃料(27)の燃焼を助ける助燃材(29)を前記反応筒(18)内に供給するように設けられた助燃材供給パイプ(31)と、
前記反応筒(18)の前記反応器 (10) の一端側の先端に接続され前記反応筒(18)内で前記超臨界反応管(19)を加熱した超臨界流体を前記反応器(10)の外部に導くように設けられた排出管(33)と
を備えた高温用超臨界反応装置。
A tubular heat and pressure resistant reactor (10) that is sealed at both ends and can withstand a temperature of 500 ° C. and a pressure of 30 MPa,
A heater (11) provided on the outer periphery of the reactor (10) for keeping or heating the reactor (10);
Inside the reactor (10) for heat shielding provided concentrically with the reactor (10) and in close contact with one end of the reactor (10) and spaced apart from the other end of the reactor (10) A cylinder (12),
A first inlet (16) for introducing a supercritical fluid into a region provided at one end of the reactor (10) and surrounded by an inner surface of the reactor (10) and an outer surface of the cylindrical body (12);
A second inlet (17) provided at one end of the reactor (10) for introducing a supercritical fluid into the cylinder (12);
Provided inside the cylindrical body (12) and spaced from both ends of the reactor (10), the tip on one end side of the reactor (10) is sealed , and the tip on the other end side of the reactor (10) A combustion reaction cylinder (18) having an opening ,
From the outside of the reactor (10), the inside of the cylinder (12), the inside of the reaction cylinder (18), and the inside of the cylinder (12) are led to the outside of the reactor (10) in this order. A supercritical reaction tube (19) for high temperature through which a liquid to be treated (21) which is provided and reacts at high temperature flows,
A pump for liquid to be processed (24) for pumping the liquid to be processed (21) to the reaction tube (19) at the same pressure as the supercritical fluid;
A fuel (27) for heating the high-temperature supercritical reaction tube (19) in the reaction cylinder (18) or the fuel (27) and a supercritical fluid are provided so as to be supplied into the reaction cylinder (18). Fuel supply pipe (28),
An auxiliary combustion material supply pipe (31) provided so as to supply an auxiliary combustion material (29) that helps combustion of the fuel (27) into the reaction tube (18);
A supercritical fluid connected to the tip of one end of the reactor (10) of the reaction cylinder (18) and heating the supercritical reaction tube (19) in the reaction cylinder (18) is used as the reactor (10). A supercritical reactor for high temperature, comprising a discharge pipe (33) provided so as to be led outside.
高温用超臨界反応管(19)が、反応器(10)の一端から筒体(12)内面と反応筒(18)外面の間の領域を通って前記反応筒(18)の前記反応器 (10) の他端側の先端まで形成された導入用超臨界反応管(19a)と、前記導入用超臨界反応管(19a)に接続され前記反応筒(18)内に設けられた反応用超臨界反応管(19b)と、前記反応用超臨界反応管(19b)に接続され前記筒体(12)の内部を通って前記反応器(10)の一端に接続された排出用超臨界反応管(19c)とを備えた請求項1記載の高温用超臨界反応装置。High temperature supercritical reaction tube (19), the reactor from one end cylindrical body of the reactor (10) (12) inner surface and the reaction tube (18) wherein the reaction tube through the area between the outer surface (18) ( 10) the introduction supercritical reaction tube (19a) formed up to the tip on the other end side, and the reaction superstructure provided in the reaction cylinder (18) connected to the introduction supercritical reaction tube (19a). A critical reaction tube (19b) and a supercritical reaction tube for discharge connected to the reaction supercritical reaction tube (19b) and connected to one end of the reactor (10) through the inside of the cylindrical body (12) The high-temperature supercritical reaction apparatus according to claim 1, further comprising (19c). 導入用超臨界反応管(19a)、排出管(33)及び排出用超臨界反応管(19c)が互いに熱交換するように構成された請求項2記載の高温用超臨界反応装置。  The high-temperature supercritical reaction apparatus according to claim 2, wherein the introduction supercritical reaction tube (19a), the discharge tube (33), and the discharge supercritical reaction tube (19c) are configured to exchange heat with each other. 第2導入口(17)より熱遮蔽用筒体(12)の内面と反応筒(18)の外面で囲まれる領域に導入された超臨界流体と排出管(33)及び排出用超臨界反応管(19c)とが互いに熱交換するように構成された請求項2記載の高温用超臨界反応装置。  Supercritical fluid and discharge pipe (33) introduced into the area surrounded by the inner surface of the heat shielding cylinder (12) and the outer surface of the reaction cylinder (18) from the second introduction port (17) and the supercritical reaction pipe for discharge The supercritical reaction apparatus for high temperature according to claim 2, wherein the (19c) is configured to exchange heat with each other. 両端が封止され500℃の温度と30MPaの圧力に耐え得る管状の耐熱耐圧製反応器(10)と、
前記反応器(10)の外周に設けられ前記反応器(10)を保温又は加熱するヒータ(11)と、
前記反応器(10)の内部に前記反応器(10)と同心状にかつ前記反応器(10)の一端に密着し前記反応器(10)の他端と離間して設けられた熱遮蔽用筒体(12)と、
前記反応器(10)の一端に設けられ前記筒体(12)内に超臨界流体を導入するための第3導入口(49)と、
前記反応器(10)の一端に設けられ前記反応器(10)の内面と前記筒体(12)の外面で囲まれる領域に加熱用燃料(27)と超臨界流体を導入するための第4導入口(51)と、
前記筒体(12)の内部に前記反応器(10)の両端と離間して設けられ前記反応器(10)の一端側の先端が封止され前記反応器 (10) の他端側の先端が開口された燃焼用反応筒(18)と、
前記反応筒(18)の前記反応器 (10) の他端側の先端に反応器(10)の他端に密着するように設けられた円筒状の多孔質隔壁(52)と、
前記反応器(10)の外部から前記筒体(12)の内部と前記多孔質隔壁(52)と前記反応筒(18)の内部と前記筒体(12)の内部をこの順に通って前記反応器(10)の外部に導くように設けられ高温で反応する被処理液(21)が流れる高温用超臨界反応管(19)と、
前記被処理液(21)を前記反応管(19)に前記超臨界流体と同圧で圧送する被処理液用ポンプ(24)と、
前記第4導入口(51)から導入された加熱用燃料(27)の前記反応筒(18)内での燃焼を助ける助燃材(29)を前記反応筒(18)内に供給するように設けられた助燃材供給パイプ(31)と、
前記反応筒(18)の前記反応器 (10) の一端側の先端に接続され前記反応筒(18)内で前記超臨界反応管(19)を加熱した超臨界流体を前記反応器(10)の外部に導くように設けられた排出管(33)と
を備えた高温用超臨界反応装置。
A tubular heat and pressure resistant reactor (10) that is sealed at both ends and can withstand a temperature of 500 ° C. and a pressure of 30 MPa,
A heater (11) provided on the outer periphery of the reactor (10) for keeping or heating the reactor (10);
Inside the reactor (10) for heat shielding provided concentrically with the reactor (10) and in close contact with one end of the reactor (10) and spaced apart from the other end of the reactor (10) A cylinder (12),
A third inlet (49) provided at one end of the reactor (10) for introducing a supercritical fluid into the cylinder (12);
A fourth fuel for introducing a heating fuel (27) and a supercritical fluid into a region provided at one end of the reactor (10) and surrounded by an inner surface of the reactor (10) and an outer surface of the cylinder (12). Inlet (51),
Provided inside the cylindrical body (12) and spaced from both ends of the reactor (10), the tip on one end side of the reactor (10) is sealed , and the tip on the other end side of the reactor (10) A combustion reaction cylinder (18) having an opening ,
The reaction tube (18) the reactor (10) at the other end of the reactor to the tip (10) cylindrical porous partition walls disposed so as to be in close contact with the other end of the (52),
The reaction passes from the outside of the reactor (10) through the inside of the cylinder (12), the porous partition wall (52), the inside of the reaction cylinder (18), and the inside of the cylinder (12) in this order. A supercritical reaction tube (19) for high temperature through which a liquid to be treated (21) that is provided so as to lead to the outside of the vessel (10) and that reacts at high temperature flows,
A pump for liquid to be processed (24) for pumping the liquid to be processed (21) to the reaction tube (19) at the same pressure as the supercritical fluid;
An auxiliary combustion material (29) for assisting combustion of the heating fuel (27) introduced from the fourth introduction port (51) in the reaction cylinder (18) is supplied to the reaction cylinder (18). An auxiliary combustion material supply pipe (31),
A supercritical fluid connected to the tip of one end of the reactor (10) of the reaction cylinder (18) and heating the supercritical reaction tube (19) in the reaction cylinder (18) is used as the reactor (10). A supercritical reactor for high temperature, comprising a discharge pipe (33) provided so as to be led outside.
高温用超臨界反応管(19)が、反応器(10)の一端から筒体(12)内面と反応筒(18)外面の間の領域を通って前記反応筒(18)の前記反応器 (10) の他端側の先端まで形成された導入用超臨界反応管(19a)と、前記導入用超臨界反応管(19a)に接続され前記反応筒(18)内に設けられた反応用超臨界反応管(19b)と、前記反応用超臨界反応管(19b)に接続され前記筒体(12)の内部を通って前記反応器(10)の一端に接続された排出用超臨界反応管(19c)とを備えた請求項5記載の高温用超臨界反応装置。High temperature supercritical reaction tube (19), the reactor from one end cylindrical body of the reactor (10) (12) inner surface and the reaction tube (18) wherein the reaction tube through the area between the outer surface (18) ( 10) the introduction supercritical reaction tube (19a) formed up to the tip on the other end side, and the reaction superstructure provided in the reaction cylinder (18) connected to the introduction supercritical reaction tube (19a). A critical reaction tube (19b) and a supercritical reaction tube for discharge connected to the reaction supercritical reaction tube (19b) and connected to one end of the reactor (10) through the inside of the cylindrical body (12) The high-temperature supercritical reaction apparatus according to claim 5, comprising (19c). 導入用超臨界反応管(19a)、排出管(33)及び排出用超臨界反応管(19c)が互いに熱交換するように構成された請求項6記載の高温用超臨界反応装置。  The supercritical reactor for high temperature according to claim 6, wherein the introduction supercritical reaction tube (19a), the discharge tube (33) and the discharge supercritical reaction tube (19c) are configured to exchange heat with each other. 第3導入口(49)より熱遮蔽用筒体(12)の内面と反応筒(18)の外面で囲まれる領域に導入された超臨界流体と排出管(33)及び排出用超臨界反応管(19c)とが互いに熱交換するように構成された請求項6記載の高温用超臨界反応装置。  Supercritical fluid and discharge pipe (33) introduced from the third inlet (49) to the area surrounded by the inner surface of the heat shielding cylinder (12) and the outer surface of the reaction cylinder (18), and the supercritical reaction tube for discharge The high-temperature supercritical reaction apparatus according to claim 6, configured to exchange heat with each other.
JP35124299A 1999-12-10 1999-12-10 Supercritical reactor for high temperature Expired - Fee Related JP3714394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35124299A JP3714394B2 (en) 1999-12-10 1999-12-10 Supercritical reactor for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35124299A JP3714394B2 (en) 1999-12-10 1999-12-10 Supercritical reactor for high temperature

Publications (2)

Publication Number Publication Date
JP2001162155A JP2001162155A (en) 2001-06-19
JP3714394B2 true JP3714394B2 (en) 2005-11-09

Family

ID=18416019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35124299A Expired - Fee Related JP3714394B2 (en) 1999-12-10 1999-12-10 Supercritical reactor for high temperature

Country Status (1)

Country Link
JP (1) JP3714394B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911108B (en) * 2018-08-13 2023-09-08 成都九翼环保科技有限公司 Tubular supercritical water oxidation reactor and application thereof
CN113685159B (en) * 2021-08-31 2022-06-21 西安交通大学 Supercritical hydrothermal combustion type multi-element thermal fluid generating device and method with safety guarantee
CN114778649B (en) * 2022-05-09 2024-01-09 西安交通大学 Electrochemical testing device suitable for subcritical/supercritical water system
CN115353909B (en) * 2022-08-17 2024-03-26 西安交通大学 Supercritical water porous medium hydrogen oxidation exothermic reactor and working method thereof

Also Published As

Publication number Publication date
JP2001162155A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
RU2411075C2 (en) Compact reforming reactor
CN100594330C (en) Once-through boiler
EP2105601B1 (en) Engine system
CA2521292A1 (en) Method and apparatus for rapid heating of fuel reforming reactants
RU2008102375A (en) COMPACT REFORM REDUCER
US8133445B2 (en) Reaction chamber promoting heat exchange between the reagents and the gases that are produced
CN110357037A (en) Tail gas heating formula hydrogen from methyl alcohol reformer
JP3714394B2 (en) Supercritical reactor for high temperature
CN208952133U (en) A kind of processing low concentration petroleum refining industry VOCS nonstationary state catalytic combustion system
CN101239893B (en) Formaldehyde oxidation reactor
KR970704252A (en) Fuel cell power plant furnace
CN209602275U (en) Supercritical water oxidation device
CN108913859B (en) DX atmosphere heat treatment furnace and application of high isothermal alloy steel and high carbon steel heat treatment
KR20150035995A (en) Device and apparatus for carrying out chemical dissociation reactions at elevated temperatures
US9114985B2 (en) Fuel processor and method for generating hydrogen rich gas
US11940228B2 (en) High-temperature fluid transporting pipeline with heat exchange apparatus installed therein, suitable heat exchange apparatus and heat exchange method
CN210635722U (en) Small-size methyl alcohol hydrogen plant
CN214936047U (en) Hydrogen production device
CN210656144U (en) Tail gas heating type reformer for producing hydrogen from methanol
CN210920946U (en) Liquid ammonia circulating water vaporizing device for producing nitrogen
CN217650902U (en) Instant hydrogen production rapid heating system
RU2301939C2 (en) Autonomous apparatus for regasification
JP6393028B2 (en) Underwater combustion type vaporizer
CN217843811U (en) Steam generator applied to tail of organic heat carrier furnace
CN214681736U (en) Heating structure of reaction kettle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees