JP3714133B2 - Piezoelectric polarization treatment method - Google Patents

Piezoelectric polarization treatment method Download PDF

Info

Publication number
JP3714133B2
JP3714133B2 JP2000242103A JP2000242103A JP3714133B2 JP 3714133 B2 JP3714133 B2 JP 3714133B2 JP 2000242103 A JP2000242103 A JP 2000242103A JP 2000242103 A JP2000242103 A JP 2000242103A JP 3714133 B2 JP3714133 B2 JP 3714133B2
Authority
JP
Japan
Prior art keywords
polarization
degree
voltage
piezoelectric body
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000242103A
Other languages
Japanese (ja)
Other versions
JP2001127356A (en
Inventor
宏 友廣
直樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000242103A priority Critical patent/JP3714133B2/en
Publication of JP2001127356A publication Critical patent/JP2001127356A/en
Application granted granted Critical
Publication of JP3714133B2 publication Critical patent/JP3714133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はセラミックフィルタやセラミック発振子などに使用される圧電体の分極処理方法に関するものである。
【0002】
【従来の技術】
PZTやPT系の圧電セラミック基板(ブロックやユニットなど)の場合、その分極処理は、圧電セラミック基板を焼成した後、圧電セラミック基板の相対面に銀等の両面電極を設け、この圧電セラミック基板の複数枚を60〜100℃の分極液に同時に浸漬し、2〜8kV/mmの電圧を10〜30分間程度印加することにより、所望の分極度を得ていた。
また、後工程の熱処理などによる特性劣化を防ぐために、分極処理後、約150℃の雰囲気中で20〜30分放置(エージング)し、強制的に特性劣化させることにより、圧電体の経時的特性を安定化させている。
【0003】
圧電体の分極処理には、上記のように絶縁性の分極液中で行なう液中分極と、大気中またはガス雰囲気中で行なう気中分極とがあるが、気中分極では電圧が約1kV/mm以上で放電してしまうため、所望の電界強度が得られない。そのため、高い分極度を得るには液中分極を行なうのが一般的である。
【0004】
しかし、液中分極の場合、分極中に圧電体の分極度を測定することができない。なぜなら、液中に配置された圧電体は液体のために振動がダンピングされるので、その周波数特性を測定できないからである。そのため、従来の液中分極では、予め決められた時間だけ分極を行なう定時間分極を行なっていた。その結果、分極度を正確にコントロールできず、圧電体の焼成バラツキや組成バラツキによる分極度のバラツキが生じるという問題があった。
【0005】
特許第2656041号公報では、分極中の圧電定数値(例えば電気機械結合係数K)を測定し、分極停止直後のKと時間経過後の安定値Kとの相関により決まる設定レベルに達した時に、印加を停止する分極方法が提案されている。これによって、材料のバラツキや焼成条件のバラツキなどに起因する分極度のバラツキを小さくし、一定品質の圧電体を得ることができる。
【0006】
【発明が解決しようとする課題】
上記方法の場合、分極中の圧電定数値を測定するので、気中で分極処理を行なう必要があるが、気中分極では電圧が約1kV/mm以上で放電してしまうため、高い電圧をかけることができず、液中分極と同等の分極度を得るために長時間の分極処理が必要となるという問題がある。
また、上記方法では、設定レベルを分極停止直後の値Kと時間経過後の安定値Kとの相関により決定しているが、分極処理後にエージングを行なうと、分極度が変化してしまい、Kの値も変化してしまう。そのため、分極処理後にエージングを行なう場合には、設定レベルを分極停止直後の値Kと時間経過後の安定値Kとの相関からは求めることができない。
【0007】
そこで、本発明の目的は、気中において液中分極と同等の分極度を短時間で得ることができる圧電体の分極処理方法を提供することにある。
他の目的は、各圧電体の分極度バラツキを低減でき、目標とする分極度へ精度よく到達できる圧電体の分極処理方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、気中であって、かつエージング温度以上の温度雰囲気中で、圧電体に直流電圧を印加して分極処理を行なう工程と、圧電体の分極処理を行いながら、その分極度を測定する工程と、測定された分極度が設定レベルに達した時に直流電圧の印加を停止する工程と、電圧印加の停止後、上記エージング温度でエージングを行なう工程と、を有する圧電体の分極処理方法であって、上記設定レベルは、直流電圧の印加を停止する直前の分極度と、印加停止後エージングして常温に戻した後の分極度の安定値との間の相関関係によって求められることを特徴とする圧電体の分極処理方法を提供する。
【0009】
気中で分極処理する場合には、約1kV/mm以上の電圧をかけることができないが、液中分極に比べて高温で分極処理することができるので、低い電圧でも分極が進行し、短時間で所望の分極度を得ることができる。また、分極中に同時にエージングも進むことから、電圧印加停止後のエージング時間も短縮できる。例えば、従来では約150℃の雰囲気中で20〜30分程度のエージング時間を要していたが、本発明では数分程度で済み、エージング時間を約1/10に短縮できる。このように分極時間およびエージング時間を短縮できることから、分極処理に要する全体の時間を短縮できる。
また、比較的低い電圧で分極できるので、圧電体にかかる負荷を軽減でき、分極による割れや欠けなどの問題を解消できる。
気中で分極するので、分極中の圧電体の周波数特性を測定でき、分極度を容易に測定できる。分極度を測定しながら、測定分極度が設定レベルに到達した時に電圧印加を停止し、電圧印加の停止後、エージング温度でエージングを行なうことで、分極度のバラツキを小さくでき、目標とする分極度へ精度よく到達できる。なお、設定レベルとしては、圧電材料に応じて予め決められた値であってもよいし、分極温度や分極電圧などの分極条件に応じて決定された値としてもよい。
【0010】
図1に分極〜エージング〜常温戻しに至るプロセスにおける圧電体の分極度の変化を示す。
図1から明らかなように、分極時には分極度が最大限まで上昇し、エージングによって分極度が低下した後、常温に戻すことによって分極度の一部が復元し、安定する。この分極中における最大分極度Δf1 と、常温戻し後の安定した分極度Δf2 との間には高い相関がある。
なお、ここでは分極度を共振周波数frと反共振周波数faとの周波数差Δfによって求めたが、電気機械結合係数Kや中心周波数その他の圧電定数によって求めてもよい。
【0011】
図2は、分極中における最大分極度Δf1 と常温戻し後の安定した分極度Δf2 との間の相関関係を示す。なお、この相関関係は次の条件で求めた。
圧電体:PZTブロック(厚み8mm)
分極電圧(電極間電圧):8.7kV
分極温度:200℃
エージング温度:200℃
図2から明らかなように、Δf1 とΔf2 との間には高い相関関係があることがわかる。この例では、Δf1 とΔf2 とは比例関係にある。
【0012】
そこで、直流電圧の印加を停止するための設定レベルを、本発明の方法によって決定することができる。すなわち、設定レベルを、直流電圧の印加を停止する直前の分極度と、印加停止後エージングして常温に戻した後の分極度の安定値との間の相関関係によって求める。分極中の分極度と、エージングして常温に戻した後の分極度(残留分極度という)との間には図2のように高い相関があるので、この相関によって目標とする残留分極度から分極中の分極度を逆算し、この分極度になった時点で電圧印加を停止するものである。
この方法により、目標とする分極度へ高精度にコントロールでき、分極バラツキを一層低減できる。
【0013】
請求項に記載の方法は、圧電体の分極処理を行いながら、その分極度を測定し、測定値から分極度の分極時間に対する一次特性式を求め、この特性式により分極度が設定レベルに達する時間を算出し、算出された時間に達した時に直流電圧の印加を停止するものである。すなわち、圧電体の組成が一定の場合、ある程度分極が進んだ後の分極度の挙動はほぼ一定しており、この挙動から分極度が設定レベルに到達するまでの時間を予測することができるので、予測された時間に到達した時点で電圧印加を停止する。
この方法では、分極度の測定、特性式化、設定レベルへの到達時間の算出などは、個々の圧電体について、その分極途中に行なわれる。請求項の方法では、分極終了時点における分極度を測定する請求項の方法と異なり、分極終了付近における分極時間を測定するだけでよいため、測定遅れによる過剰分極を防ぐことができ、高精度に分極コントロールできるという利点がある。
【0014】
ブロックのように厚さの厚い圧電セラミック基板を高温雰囲気中で分極すると、圧電体に流れる電流が時間と共に増加することがある。この電流増加は、分極が進むことにより結晶の内部配向が電界方向へ揃っていくことで、圧電体の絶縁抵抗が時間とともに減少し、この絶縁抵抗の減少で電流値が増加していくからであると考えられる。この分極時の電流増加は、高温である程、顕著に現れる。電流増加によって、圧電体に直列接続されている過電流防止用の電流制限抵抗で電圧降下が発生し、圧電体にかかる電圧が減少する。この電圧の減少で、各圧電体W1 〜Wnの分極速度の低下や、所望の分極度が得られないという問題を生じる。
【0015】
そこで、請求項では、分極時に圧電体に流れる電流が増加する特性を持つものにおいて、直流電圧の印加を、圧電体に流れる電流値から電流制限抵抗での電圧降下分を算出し、この電圧降下分を初期印加電圧に加えることで行なう。
すなわち、次の算出式に基づいて印加電圧を決定する。
印加電圧=初期電圧+電流値×電流制限抵抗
このように、各圧電体に印加される電圧を常に一定の電圧に維持することで、印加電圧のバラツキによる各圧電体間の分極度バラツキを解消できる。この方法では、分極度コントロールの他に、分極条件(電圧)も一定にできるので、分極度のバラツキを一層小さくできる。
【0016】
圧電体の分極処理を行いながら、その分極度を測定する場合、インピーダンス波形を測定し、その最大値となる周波数faと最小値となる周波数frとの差によって分極度Δfを求めるのが一般的である。
しかし、高温気中でかつ高電圧をかけて分極を行うと、分極中のインピーダンス波形がfr,fa付近でブロードになったり、ノイズでピーク値にばらつきが生じる。そのため、Δfの測定バラツキが生じる問題がある。
そこで、請求項では、分極中の圧電体の位相を測定し、位相が0°となる時の周波数(fa,fr)を算出し、周波数(fa,fr)の周波数差Δf(=fa−fr)から分極度を求める方法を用いている。位相0°法では、fr,fa付近の位相特性が、位相0°を含んで直線的に変化しているため、高温気中でかつ高電圧をかけた分極中でも、fr,faの値を安定して求めることができ、Δfの測定ばらつきを低減できるからである。
特に、高温気中では電極などに酸化膜が形成されやすく、接触端子の接触抵抗が変動する。そのため、インピーダンスが変動し、Δfにもバラツキが生じる。これに対し、位相0°法では、接触抵抗によって位相の傾きは変化するが、位相0°を通過する位相波形の位置、つまりfa,frの値には変化がないので、接触抵抗の影響を受けない高精度なΔf測定が可能となる。
このように位相0°法を用いることでΔfを高精度に測定できるので、本発明の分極中の分極度コントロールを精度よく行うことができる。
【0017】
【発明の実施の形態】
図3に本発明にかかる圧電体の分極処理方法を実施する分極処理装置の一例を示す。
1 〜Wnは分極処理を行なうための複数の圧電体、1は圧電体W1 〜Wnを収納し所定温度雰囲気に制御する恒温槽、2は分極用の高電圧直流電源、31 〜3nは複数の圧電体W1 〜Wnの電圧印加を行なう高電圧切換スイッチ、41 〜4nは過電流防止用の電流制限抵抗、51 〜5nは圧電体W1 〜Wnの電荷を放電させる放電切換スイッチ、61 〜6nは放電抵抗、7は分極途中の各圧電体W1 〜Wnの分極度を測定する測定器、81 〜8nおよび91 〜9nは測定用スイッチ、10は分極時の直流高電圧を阻止するためのAC/DC分離回路、11は圧電体に流れる電流を検出するための電流検出回路、12は印加電圧や分極度コントロールを行なうための制御装置である。
【0018】
恒温槽1は、圧電体W1 〜Wnの分極〜エージング〜常温戻しの各処理が行なわれるものであり、制御装置12によりそれぞれの処理に適した温度に制御される。分極温度は、エージング温度以上で、かつ従来の液中分極と同様の分極度が得られる温度に設定される。図4は気中分極における分極温度と常温戻し後の最大分極度Δfとの関係を示す。なお、条件は図2と同様とした。この実施例では、気中分極で常温戻し後の最大分極度Δfの有意差が見られない範囲の温度で、できるだけ高温となる温度を分極温度とした。
【0019】
測定器7は例えばネットワークアナライザ等よりなり、内蔵する交流信号源から各圧電体W1 〜Wnに交流信号を印加し、そのインピーダンス特性から共振周波数frと反共振周波数faとを検出し、その周波数差Δfによって分極度を測定している。なお、後述するように、Δfをインピーダンス特性からではなく、位相特性から求める方法を用いてもよい。さらに、Δf以外に電気機械結合係数Kによって分極度を測定してもよい。
【0020】
電流検出回路11は、検出用抵抗11aと、この抵抗11aの両端の電位差を検出するOPアンプなどの増幅器11bとで構成され、抵抗11aの両端の電位差から各圧電体W1 〜Wnに流れる電流を個別に検出している。検出用抵抗11aと増幅器11bは各圧電体W1 〜Wnに個別に接続されている。
【0021】
測定器7の分極度信号および増幅器11bの電流検出信号は制御装置12へ入力される。制御装置12は、恒温槽1、高電圧直流電源2、高電圧切換スイッチ31 〜3n、放電切換スイッチ51 〜5n、測定用スイッチ81 〜8nおよび91 〜9nなどを制御している。なお、高電圧切換スイッチ31 〜3nをONした後、測定用スイッチ81 〜8nおよび91 〜9nは各圧電体毎に連続的に切換駆動される。測定用スイッチ81 〜8nおよび91 〜9nのうち、互いに接続されたスイッチ(81 と91 ),(82 と92 )・・・(8nと9n)は同時にONとなるよう切り換えられる。また、高電圧切換スイッチ31 〜3nと放電切換スイッチ51 〜5nとは択一的にONされ、分極中は高電圧切換スイッチ31 〜3nがONされ、分極後は放電切換スイッチ51 〜5nがONされる。
【0022】
次に、上記構成よりなる分極処理装置の分極方法について説明する。
まず圧電体W1 〜Wnを恒温槽1に収容し、全ての圧電体がエージング温度以上の所定温度(例えば200℃)になるよう温度制御する。次に、高電圧切換スイッチ31 〜3nをONし、全ての圧電体W1 〜Wnに同時に分極のための直流電圧を印加する。電圧印加開始後、測定用スイッチ81 〜8nおよび91 〜9nをスイッチングすることで、測定器7から分極度を測定するための交流信号が圧電体W1 〜Wnに順に供給される。
【0023】
圧電体W1 〜Wnの分極が進むと、図5に示すように分極度Δfが上昇するので、これを測定器7で測定する。すなわち、測定器7は圧電体W1 〜Wnの共振周波数frと反共振周波数faとを測定し、その周波数差Δfによって分極度を個別に算出する。制御装置12には、常温戻し後の安定した分極度Δf2 との間に高い相関がある分極中の分極度Δf1 が予め設定されており、分極中の分極度がこの設定値Δf1 となった時点で、制御装置12は高電圧切換スイッチ31 〜3nを個別にOFFさせ、圧電体W1 〜Wnへの直流電圧の印加を停止する。例えば、図2を参照すれば、目標分極度Δf2 =2.97kHzを得るためには、分極中の分極度Δf=4.13kHzに到達した時に電圧印加を停止すればよい。なお、分極度が設定値Δf1 に達していない圧電体がある場合には、この圧電体の分極度が設定値Δf1 となるまで、この圧電体への電圧印加を続行する。電圧印加の停止とともに、制御装置12は放電切換スイッチ51 〜5nをONさせ、圧電体W1 〜Wnに溜まった電荷を放電する。放電しないと、圧電体W1 〜Wnに溜まった電荷によって逆電界がかかり、分極が戻ってしまう恐れがあるからである。これにより、分極を終了する。
【0024】
次に、圧電体W1 〜Wnを恒温槽1で分極時と同一温度(例えば200℃)またはこれより低い温度に保持したまま、エージングを行なう。エージング時間は、2〜3分程度でよい。エージング期間中、放電切換スイッチ51 〜5nをON状態に維持し、放電を続行する。その後、圧電体W1 〜Wnを恒温槽1から取り出し、時間をかけて常温に戻すことにより、分極処理を終了する。
分極処理を終了した圧電体W1 〜Wnは、目標とする分極度Δf2 を得ることができる。
【0025】
上記実施例では、常温戻し後の安定した分極度Δf2 との間に高い相関がある分極中の分極度Δf1 を予め設定しておき、分極中の分極度Δfがこの設定値Δf1 となった時点で、圧電体W1 〜Wnへの電圧印加を停止するようにしたが、分極中の分極度測定値から分極度の挙動を特性式化して、設定レベルに到達する時間を算出し、算出した時間に達した時に電圧印加を停止する方法を用いてもよい。
【0026】
すなわち、図5に示すように、分極時における分極度(Δf)の挙動は、分極途中からリニアな変化を示す。分極中のデータをyt ,t-1 ・・・yt-m (mは任意)としたとき、分極中のデータから直線回帰計算により、近似式
y=at+b(y:分極度,t:分極時間)
および相関係数
2
を求め、判別式
2 >c(例えばc=0.92)
を満足した時のa,bを求める。
【0027】
上記判別式を満足しない間は、上記データは順次更新されていく(但し、データ数はn)。上記判別式を満足した時のa,bから設定レベル(分極度)y0 に到達するまでの時間t0 を以下の式で算出する。
0 =(y0 −b)/a
分極時間tがこの算出した時間t0 に到達した時に直流電圧の印加を停止する。複数の圧電体の場合は、各圧電体毎に上記予測演算を行い、個々に印加を停止すればよい。
上記方法の場合、分極終了付近において分極時間を測定するだけでよいため、分極終了時点における分極度を測定する必要がなく、測定遅れによる過剰分極を防ぐことができ、高精度に分極コントロールできるという利点がある。
【0028】
ブロック状のセラミック基板のように厚さの厚い圧電体を分極する場合、図6のように分極時に圧電体に流れる電流が時間とともに増加する傾向を示す。この電流増加は、高温で分極する程、顕著に現れる。分極中に圧電体に流れる電流が増加すると、電流制限抵抗41 〜4nで電圧降下が発生し、圧電体W1 〜Wnの両端電極間での電圧が低下する。この電圧の低下で、各圧電体W1 〜Wnの分極速度の低下や、所望の分極度が得られないという問題を生じる。
【0029】
そこで、制御装置12は電流検出回路11によって検出された電流値から電流制限抵抗41 〜4nでの電圧降下分を算出し、この電圧降下分を初期印加電圧に加えることにより、圧電体の電極間電圧が常に一定になるように制御する。
すなわち、次の算出式に基づいて印加電圧を決定する。
印加電圧=初期電圧+電流値×電流制限抵抗
このように各圧電体に印加される電圧を常に一定の電圧に維持することで、印加電圧のバラツキによる各圧電体間の分極度バラツキを解消できる。
【0030】
上記算出に必要な電流値は、図3のように印加電源2が1台であれば、各圧電体に流れる電流値の最小値を用いて、電源電圧をコントロールすればよい。これは、過電圧印加による圧電体の破壊を防止するためである。一方、複数台の印加電源2を備えた場合には、個々の圧電体の電流値で印加電圧を算出し、各圧電体毎に印加電源の電圧コントロールを行なえばよい。この電圧コントロールは、電流値の増加とともに常にフィードバックしてコントロールすればよい。
【0031】
次に、分極度Δfを算出するためのfr,faの求め方について説明する。
図7,図8は高温気中(200℃)での圧電体のインピーダンス、位相特性を示す。
図示するように、圧電体の高温気中でのインピーダンス波形は、fr,fa付近ではブロードになりやすく、さらに高電圧印加中はfr,fa付近でインピーダンス波形にリップルが発生しやすく、ピーク値にバラツキが生じやすい。そのため、図7のようにインピーダンス波形から求められるfr,faの値は取り得る範囲が広くなり、分極度Δfの測定ばらつきが大きくなる。
一方、位相波形の場合には、高温気中でかつ高電圧印加中であっても、位相0°を含んで直線的に変化しているので、図8のようにfr,faの値を安定して求めることができ、分極度Δfの測定ばらつきが小さくなる。なお、位相0°のfr,faの値と、インピーダンス最小,最大のfr,faの値とは同一値ではないが、ほぼ近似している。
【0032】
表1は、分極済みの圧電体を200℃の気中で30分放置した後、インピーダンス測定法(Z測定法)と位相0°法とでΔfを測定したときのバラツキを比較したものである。
表1から明らかなように、静的状態(分極済み状態)でのΔf測定バラツキを比較すると、インピーダンス測定法に比べて位相0°法の方がばらつきが小さいことがわかる。
【0033】
【表1】

Figure 0003714133
【0034】
図9,図10は、高温,高電圧で分極中の圧電体のΔf挙動を示したものであり、図9は位相0°法で測定したもの、図10はインピーダンス測定法で測定したものである。
また、表2は、各測定方法の違いによるΔf挙動の測定精度を比較したものである。表2では、各測定法毎の近似直線を求め、相関係数および近似直線との相対誤差で測定精度の比較を行ったものである。
図9,図10および表2から明らかなように、動的状態(分極中)でのΔf挙動は、インピーダンス測定法に比べて位相0°法ではリニアに変化していることがわかる。そのため、位相0°法では実測値と近似値との誤差も小さく、Δf挙動を高精度に測定できたことを示している。
そのため、本発明における分極中の分極度測定に、位相0°法を用いる方が、より高精度な分極コントロールが可能となる。
【0035】
【表2】
Figure 0003714133
【0036】
本発明は上記実施例に限定されるものではない。
上記実施例では、分極とエージングとを共に200℃で行なった例を示したが、分極温度はエージング温度以上であればよく、200℃に限るものではない。
圧電セラミックの場合、分極温度およびエージング温度は材料により異なるが、分極ばらつきを小さくするためには、180〜210℃の温度範囲が望ましい。
【0037】
【発明の効果】
以上の説明で明らかなように、請求項1に記載の発明によれば、気中であって、かつエージング温度以上の温度雰囲気中で、圧電体に直流電圧を印加して分極処理を行なうようにしたので、液中分極より低い電圧でも分極が進行し、短時間で液中分極と同等の分極度を得ることができる。また、分極中に同時にエージングも進むことから、電圧印加停止後のエージング時間も短縮できる。また、分極中の圧電体の分極度を測定しながら、測定分極度が設定レベルに到達した時に電圧印加を停止し、その後、エージング温度でエージングを行なうようにしたので、分極度のバラツキを小さくでき、目標とする分極度へ精度よく到達できる。
【0038】
また、請求項に記載の方法によれば、請求項1に記載の発明と同様に、分極時間およびエージング時間を短縮できるとともに、測定された分極度から分極度の分極時間に対する一次特性式を求め、その特性式から分極終了時刻を予測するようにしたので、分極終了付近における分極時間を測定するだけでよく、測定遅れによる過剰分極を防ぐことができ、高精度に分極コントロールできるという効果を有する。
【図面の簡単な説明】
【図1】分極処理過程における圧電体の分極度の変化を示す図である。
【図2】分極中の分極度と常温戻し後の分極度との相関関係を示す図である。
【図3】本発明にかかる分極処理装置の一例を示す回路図である。
【図4】分極温度と常温戻し後の分極度との関係を示す図である。
【図5】分極中の分極度の挙動を示す図である。
【図6】分極時の電流の挙動を示す図である。
【図7】圧電体の高温気中でのインピーダンス測定法を示す図である。
【図8】圧電体の高温気中での位相0°法を示す図である。
【図9】高温,高電圧で分極中の圧電体のΔfを位相0°法で測定した図である。
【図10】高温,高電圧で分極中の圧電体のΔfをインピーダンス測定法で測定した図である。
【符号の説明】
1 〜Wn 圧電体
1 恒温槽
2 高電圧直流電源
1 〜3n 高電圧切換スイッチ
1 〜4n 電流制限抵抗
7 測定器
1 〜8n,91 〜9n 測定用スイッチ
11 電流検出回路
12 制御装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for polarization treatment of a piezoelectric body used for a ceramic filter, a ceramic oscillator, or the like.
[0002]
[Prior art]
In the case of a PZT or PT-based piezoelectric ceramic substrate (block, unit, etc.), the polarization treatment is performed by firing a piezoelectric ceramic substrate and then providing double-sided electrodes such as silver on the relative surface of the piezoelectric ceramic substrate A plurality of sheets were simultaneously immersed in a polarizing solution at 60 to 100 ° C., and a voltage of 2 to 8 kV / mm was applied for about 10 to 30 minutes to obtain a desired degree of polarization.
In order to prevent deterioration of characteristics due to heat treatment or the like in the subsequent process, the characteristics of the piezoelectric body over time are obtained by allowing the film to stand (aging) in an atmosphere at about 150 ° C. for 20 to 30 minutes and forcibly deteriorating the characteristics. Is stabilizing.
[0003]
As described above, there are two types of polarization treatments in piezoelectric materials: liquid polarization performed in an insulating polarization liquid and air polarization performed in the air or gas atmosphere. In air polarization, the voltage is about 1 kV / Since it discharges at mm or more, a desired electric field strength cannot be obtained. Therefore, in order to obtain a high degree of polarization, it is common to perform polarization in liquid.
[0004]
However, in the case of polarization in liquid, the degree of polarization of the piezoelectric body cannot be measured during polarization. This is because the vibration characteristics of the piezoelectric body arranged in the liquid are damped because of the liquid, and the frequency characteristics cannot be measured. Therefore, in conventional submerged polarization, constant-time polarization is performed in which polarization is performed for a predetermined time. As a result, there is a problem in that the degree of polarization cannot be accurately controlled, and the degree of polarization varies due to the firing variation and composition variation of the piezoelectric body.
[0005]
In Japanese Patent No. 2656041, a piezoelectric constant value during polarization (for example, an electromechanical coupling coefficient K) is measured, and when a set level determined by the correlation between K immediately after stopping polarization and a stable value K after time has elapsed, A polarization method for stopping the application has been proposed. As a result, it is possible to reduce the variation in the degree of polarization caused by the variation in the material, the variation in the firing conditions, and the like, and to obtain a piezoelectric body having a constant quality.
[0006]
[Problems to be solved by the invention]
In the case of the above method, since the piezoelectric constant value during polarization is measured, it is necessary to perform polarization treatment in the air. However, in the air polarization, a voltage is applied at a voltage of about 1 kV / mm or more, so a high voltage is applied. There is a problem that a long-time polarization process is required to obtain a degree of polarization equivalent to that in liquid.
In the above method, the set level is determined by the correlation between the value K immediately after the stop of polarization and the stable value K after the elapse of time. However, if aging is performed after the polarization process, the degree of polarization changes, and K The value of will also change. Therefore, when aging is performed after the polarization process, the set level cannot be obtained from the correlation between the value K immediately after the polarization is stopped and the stable value K after the lapse of time.
[0007]
Therefore, an object of the present invention is to provide a method for polarization processing of a piezoelectric body that can obtain a polarization degree equivalent to polarization in liquid in the air in a short time.
Another object of the present invention is to provide a piezoelectric material polarization processing method that can reduce variations in the degree of polarization of each piezoelectric material and can accurately reach the target degree of polarization.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 includes a step of applying a direct current voltage to the piezoelectric body and performing a polarization treatment in an air atmosphere at a temperature equal to or higher than the aging temperature, and the piezoelectric body. The step of measuring the degree of polarization while performing the polarization treatment, the step of stopping the application of the DC voltage when the measured degree of polarization reaches a set level, and the aging at the aging temperature after the voltage application is stopped. a polarization treatment method of a piezoelectric body and a step of performing, the, the setting level, the polarization degree immediately before stopping the application of the DC voltage, the polarization degree after returning to room temperature aging after stopping the application stability The present invention provides a method for polarization processing of a piezoelectric body characterized in that it is obtained by a correlation between values .
[0009]
When the polarization treatment is performed in the air, a voltage of about 1 kV / mm or more cannot be applied. However, since the polarization treatment can be performed at a higher temperature than in the liquid polarization, the polarization proceeds even at a low voltage, and the time is short. A desired degree of polarization can be obtained. In addition, since aging proceeds simultaneously during polarization, the aging time after the voltage application is stopped can be shortened. For example, in the past, an aging time of about 20 to 30 minutes was required in an atmosphere of about 150 ° C., but in the present invention, it takes only a few minutes and the aging time can be reduced to about 1/10. Thus, since the polarization time and the aging time can be shortened, the entire time required for the polarization process can be shortened.
Moreover, since polarization can be performed at a relatively low voltage, the load on the piezoelectric body can be reduced, and problems such as cracking and chipping due to polarization can be solved.
Since polarization is performed in the air, the frequency characteristics of the piezoelectric body being polarized can be measured, and the degree of polarization can be easily measured. While measuring the degree of polarization, the voltage application is stopped when the measured degree of polarization reaches the set level, and after the voltage application is stopped, aging is performed at the aging temperature, thereby reducing the variation in the degree of polarization. Extremely accurate. The set level may be a value determined in advance according to the piezoelectric material, or may be a value determined according to a polarization condition such as a polarization temperature or a polarization voltage.
[0010]
FIG. 1 shows changes in the degree of polarization of a piezoelectric body in a process from polarization to aging to returning to room temperature.
As is apparent from FIG. 1, the degree of polarization rises to the maximum during polarization, and after the degree of polarization decreases due to aging, a part of the degree of polarization is restored and stabilized by returning to room temperature. There is a high correlation between the maximum degree of polarization Δf 1 during this polarization and the stable degree of polarization Δf 2 after returning to room temperature.
Here, the degree of polarization is obtained from the frequency difference Δf between the resonance frequency fr and the antiresonance frequency fa, but may be obtained from an electromechanical coupling coefficient K, a center frequency, or other piezoelectric constants.
[0011]
FIG. 2 shows the correlation between the maximum degree of polarization Δf 1 during polarization and the stable degree of polarization Δf 2 after returning to room temperature. This correlation was obtained under the following conditions.
Piezoelectric body: PZT block (thickness 8 mm)
Polarization voltage (voltage between electrodes): 8.7 kV
Polarization temperature: 200 ° C
Aging temperature: 200 ° C
As can be seen from FIG. 2, there is a high correlation between Δf 1 and Δf 2 . In this example, Δf 1 and Δf 2 are in a proportional relationship.
[0012]
Therefore, the setting level for stopping the application of the DC voltage can be determined by the method of the present invention . That is, the set level is obtained from the correlation between the degree of polarization just before the application of the DC voltage is stopped and the stable value of the degree of polarization after aging after the application is stopped and returning to room temperature. Since there is a high correlation between the degree of polarization during polarization and the degree of polarization after aging and returning to room temperature (referred to as the residual polarization degree), as shown in FIG. The degree of polarization during polarization is calculated backward, and voltage application is stopped when this degree of polarization is reached.
By this method, the target degree of polarization can be controlled with high accuracy, and polarization variation can be further reduced.
[0013]
The method according to claim 2 measures the degree of polarization while performing the polarization treatment of the piezoelectric body, obtains a primary characteristic equation for the polarization time of the degree of polarization from the measured value, and the degree of polarization becomes a set level by this characteristic equation. The reaching time is calculated, and when the calculated time is reached, the application of the DC voltage is stopped. That is, when the composition of the piezoelectric body is constant, the behavior of the polarization degree after the polarization has progressed to some extent is almost constant, and the time until the polarization degree reaches the set level can be predicted from this behavior. When the predicted time is reached, the voltage application is stopped.
In this method, the measurement of the degree of polarization, the formulation of the characteristic, the calculation of the time to reach the set level, etc. are performed during the polarization of each piezoelectric body. In the method of claim 2 , unlike the method of claim 1 in which the degree of polarization at the end of polarization is measured, it is only necessary to measure the polarization time in the vicinity of the end of polarization. There is an advantage that polarization can be controlled accurately.
[0014]
When a thick piezoelectric ceramic substrate such as a block is polarized in a high temperature atmosphere, the current flowing through the piezoelectric body may increase with time. This increase in current is due to the fact that the internal orientation of the crystal is aligned in the direction of the electric field as polarization progresses, so that the insulation resistance of the piezoelectric body decreases with time, and the current value increases as this insulation resistance decreases. It is believed that there is. This increase in current during polarization appears more markedly at higher temperatures. As the current increases, a voltage drop occurs in the current limiting resistor for preventing overcurrent connected in series with the piezoelectric body, and the voltage applied to the piezoelectric body decreases. This decrease in voltage causes problems such as a decrease in the polarization rate of each of the piezoelectric bodies W 1 to Wn and a desired degree of polarization cannot be obtained.
[0015]
Therefore, in the third aspect of the present invention , in the case where the current flowing through the piezoelectric body increases during polarization, the DC voltage is applied, and the voltage drop at the current limiting resistor is calculated from the current value flowing through the piezoelectric body. This is done by adding the drop to the initial applied voltage.
That is, the applied voltage is determined based on the following calculation formula.
Applied voltage = initial voltage + current value x current limiting resistance In this way, the voltage applied to each piezoelectric body is always maintained at a constant voltage, thereby eliminating the variation in the degree of polarization between the piezoelectric bodies due to variations in the applied voltage. it can. In this method, in addition to controlling the degree of polarization, the polarization condition (voltage) can be made constant, so that the variation in the degree of polarization can be further reduced.
[0016]
When measuring the degree of polarization while performing polarization processing of a piezoelectric body, it is common to measure the impedance waveform and obtain the degree of polarization Δf based on the difference between the maximum frequency fa and the minimum frequency fr. It is.
However, when polarization is performed by applying a high voltage in a high-temperature atmosphere, the impedance waveform during polarization becomes broad in the vicinity of fr and fa, and the peak value varies due to noise. Therefore, there is a problem that variation in measurement of Δf occurs.
Accordingly, in claim 4 , the phase of the piezoelectric body being polarized is measured, the frequency (fa, fr) when the phase becomes 0 ° is calculated, and the frequency difference Δf (= fa−) of the frequency (fa, fr) is calculated. The method of obtaining the degree of polarization from fr) is used. In the phase 0 ° method, the phase characteristics in the vicinity of fr and fa change linearly including the phase 0 °, so that the values of fr and fa are stable even in polarization in a high temperature atmosphere and a high voltage. This is because the variation in measurement of Δf can be reduced.
In particular, an oxide film is easily formed on an electrode or the like in high-temperature air, and the contact resistance of the contact terminal varies. For this reason, the impedance fluctuates and Δf also varies. In contrast, in the phase 0 ° method, the slope of the phase changes depending on the contact resistance, but the position of the phase waveform passing through the phase 0 °, that is, the values of fa and fr do not change. High-accuracy Δf measurement that is not received is possible.
Since Δf can be measured with high accuracy by using the phase 0 ° method in this way, the degree of polarization control during polarization according to the present invention can be performed with high accuracy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows an example of a polarization processing apparatus for performing the piezoelectric material polarization processing method according to the present invention.
W 1 to Wn are a plurality of piezoelectric bodies for performing polarization treatment, 1 is a thermostatic chamber that houses the piezoelectric bodies W 1 to Wn and controls them to a predetermined temperature atmosphere, 2 is a high-voltage DC power supply for polarization, 3 1 to 3n Is a high voltage changeover switch for applying a voltage to a plurality of piezoelectric bodies W 1 to Wn, 4 1 to 4 n are current limiting resistors for preventing overcurrent, and 5 1 to 5 n are discharges for discharging the charges of the piezoelectric bodies W 1 to Wn. changeover switch, 6 1 ~6n discharge resistor, 7 measuring device for measuring the polarization degree of the piezoelectric bodies W 1 wn in the middle polarization, 8 1 ~8n and 9 1 ~9n measurement switch, 10 during polarization An AC / DC separation circuit for blocking the direct current high voltage, 11 is a current detection circuit for detecting a current flowing through the piezoelectric body, and 12 is a control device for controlling applied voltage and polarization degree.
[0018]
The thermostat 1 is used to perform the processes of polarization of the piezoelectric bodies W 1 to Wn, aging, and return to room temperature, and is controlled by the control device 12 to a temperature suitable for each process. The polarization temperature is set to a temperature at which the polarization degree is equal to or higher than the aging temperature and the same degree of polarization as in the conventional liquid polarization. FIG. 4 shows the relationship between the polarization temperature in air polarization and the maximum degree of polarization Δf after returning to room temperature. The conditions were the same as in FIG. In this example, the temperature that is as high as possible within the range where no significant difference in the maximum degree of polarization Δf after returning to room temperature in air polarization is observed was taken as the polarization temperature.
[0019]
The measuring device 7 is composed of, for example, a network analyzer or the like, applies an AC signal to each of the piezoelectric bodies W 1 to Wn from a built-in AC signal source, detects a resonance frequency fr and an anti-resonance frequency fa from its impedance characteristics, and detects the frequency. The degree of polarization is measured by the difference Δf. As will be described later, a method of obtaining Δf not from the impedance characteristic but from the phase characteristic may be used. Further, the degree of polarization may be measured by an electromechanical coupling coefficient K in addition to Δf.
[0020]
Current detection circuit 11, a detection resistor 11a, is constituted by an amplifier 11b, such as OP amplifier for detecting a potential difference between both ends of the resistor 11a, the current flowing from the voltage across the resistor 11a to the respective piezoelectric bodies W 1 wn Are detected individually. Detecting resistor 11a and the amplifier 11b are connected individually to each of the piezoelectric bodies W 1 wn.
[0021]
The polarization degree signal of the measuring instrument 7 and the current detection signal of the amplifier 11 b are input to the control device 12. The control device 12 controls the thermostatic chamber 1, the high voltage DC power source 2, the high voltage changeover switches 3 1 to 3n, the discharge changeover switches 5 1 to 5n, the measurement switches 8 1 to 8n, 9 1 to 9n, and the like. . Note that after ON of the high-voltage changeover switch 3 1 3n, measurement switch 8 1 ~8n and 9 1 ~9n is continuously switched drive each piezoelectric body. Switching among the measurement switch 8 1 ~8N and 9 1 ~9N, switches that are connected to each other (8 1 and 9 1), (8 2 and 9 2) · · · (8n and 9n) is to be turned ON at the same time It is done. The high voltage changeover switches 3 1 to 3n and the discharge changeover switches 5 1 to 5n are alternatively turned on, the high voltage changeover switches 3 1 to 3n are turned on during polarization, and the discharge changeover switch 5 1 after polarization. ˜5n is turned on.
[0022]
Next, a polarization method of the polarization processing apparatus having the above configuration will be described.
First, the piezoelectric bodies W 1 to Wn are accommodated in the thermostatic chamber 1, and the temperature is controlled so that all the piezoelectric bodies have a predetermined temperature equal to or higher than the aging temperature (for example, 200 ° C.). Next, the high voltage changeover switches 3 1 to 3n are turned on, and a DC voltage for polarization is simultaneously applied to all the piezoelectric bodies W 1 to Wn. After the voltage application is started, the measurement switches 8 1 to 8n and 9 1 to 9n are switched to supply AC signals for measuring the degree of polarization from the measuring device 7 to the piezoelectric bodies W 1 to Wn in order.
[0023]
As the polarization of the piezoelectric bodies W 1 to Wn proceeds, the degree of polarization Δf increases as shown in FIG. That is, the measuring device 7 measures the resonance frequency fr and the antiresonance frequency fa of the piezoelectric bodies W 1 to Wn, and individually calculates the degree of polarization based on the frequency difference Δf. The control device 12 is preset with a polarization degree Δf 1 during polarization having a high correlation with the stable polarization degree Δf 2 after returning to room temperature, and the polarization degree during polarization is set to the set value Δf 1 . At that time, the control device 12 individually turns off the high voltage changeover switches 3 1 to 3n, and stops the application of the DC voltage to the piezoelectric bodies W 1 to Wn. For example, referring to FIG. 2, in order to obtain the target degree of polarization Δf 2 = 2.97 kHz, voltage application may be stopped when the degree of polarization Δf during polarization reaches 4.13 kHz. When there is piezoelectric polarization degree it does not reach the set value Delta] f 1, until the polarization degree of the piezoelectric body becomes the set value Delta] f 1, to continue the voltage application to the piezoelectric body. When the voltage application is stopped, the control device 12 turns on the discharge changeover switches 5 1 to 5 n to discharge the charges accumulated in the piezoelectric bodies W 1 to Wn. This is because if the discharge is not performed, a reverse electric field is applied by the electric charges accumulated in the piezoelectric bodies W 1 to Wn, and the polarization may be returned. This terminates the polarization.
[0024]
Next, aging is performed while holding the piezoelectric bodies W 1 to Wn in the thermostatic chamber 1 at the same temperature (for example, 200 ° C.) or lower than that at the time of polarization. The aging time may be about 2 to 3 minutes. During the aging period, the discharge changeover switches 5 1 to 5n are maintained in the ON state, and the discharge is continued. Thereafter, the piezoelectric bodies W 1 to Wn are taken out from the thermostat 1 and returned to room temperature over time, thereby terminating the polarization treatment.
The piezoelectric bodies W 1 to Wn that have finished the polarization treatment can obtain a target polarization degree Δf 2 .
[0025]
In the above embodiment, the degree of polarization Δf 1 during polarization having a high correlation with the stable degree of polarization Δf 2 after returning to room temperature is set in advance, and the degree of polarization Δf during polarization is the set value Δf 1 . At that time, the voltage application to the piezoelectric bodies W 1 to Wn was stopped, but the behavior of the degree of polarization was characterized from the measured degree of polarization during polarization, and the time to reach the set level was calculated. Alternatively, a method of stopping the voltage application when the calculated time is reached may be used.
[0026]
That is, as shown in FIG. 5, the behavior of the degree of polarization (Δf) during polarization shows a linear change from the middle of polarization. When the data during polarization is y t , y t-1 ... Y tm (m is arbitrary), the approximate expression y = at + b (y: degree of polarization, t: polarization) is obtained by linear regression calculation from the data during polarization. time)
And the correlation coefficient r 2
And discriminant r 2 > c (for example, c = 0.92)
A and b when satisfying the above are obtained.
[0027]
While the discriminant is not satisfied, the data is updated sequentially (however, the number of data is n). The time t 0 until reaching the set level (polarization degree) y 0 from a and b when the above discriminant is satisfied is calculated by the following equation.
t 0 = (y 0 −b) / a
When the polarization time t reaches the calculated time t 0 , the application of the DC voltage is stopped. In the case of a plurality of piezoelectric bodies, the prediction calculation is performed for each piezoelectric body, and the application may be stopped individually.
In the case of the above method, it is only necessary to measure the polarization time in the vicinity of the end of polarization, so there is no need to measure the degree of polarization at the end of polarization, and it is possible to prevent excessive polarization due to measurement delay and to control polarization with high accuracy. There are advantages.
[0028]
When a thick piezoelectric body such as a block-shaped ceramic substrate is polarized, the current flowing through the piezoelectric body during polarization tends to increase with time as shown in FIG. This increase in current becomes more pronounced as the polarization is increased at higher temperatures. When the current flowing through the piezoelectric body increases during polarization, a voltage drop occurs in the current limiting resistors 4 1 to 4n, and the voltage between the both end electrodes of the piezoelectric bodies W 1 to Wn decreases. This decrease in voltage causes problems such as a decrease in the polarization rate of each of the piezoelectric bodies W 1 to Wn and the inability to obtain a desired degree of polarization.
[0029]
Therefore, the control device 12 calculates a voltage drop at the current limiting resistors 4 1 to 4 n from the current value detected by the current detection circuit 11, and adds this voltage drop to the initial applied voltage, thereby providing an electrode of the piezoelectric body. The voltage is controlled so as to be always constant.
That is, the applied voltage is determined based on the following calculation formula.
Applied voltage = initial voltage + current value × current limiting resistance In this way, by maintaining the voltage applied to each piezoelectric body at a constant voltage, it is possible to eliminate variations in the degree of polarization between the piezoelectric bodies due to variations in applied voltage. .
[0030]
As for the current value necessary for the above calculation, if there is one applied power supply 2 as shown in FIG. 3, the power supply voltage may be controlled using the minimum value of the current value flowing through each piezoelectric body. This is to prevent destruction of the piezoelectric body due to overvoltage application. On the other hand, when a plurality of applied power sources 2 are provided, the applied voltage is calculated based on the current value of each piezoelectric body, and voltage control of the applied power source is performed for each piezoelectric body. This voltage control may be always performed by feedback as the current value increases.
[0031]
Next, how to obtain fr and fa for calculating the degree of polarization Δf will be described.
7 and 8 show the impedance and phase characteristics of the piezoelectric body in high-temperature air (200 ° C.).
As shown in the figure, the impedance waveform of the piezoelectric body in the high-temperature air tends to be broad in the vicinity of fr and fa, and further, ripples tend to occur in the impedance waveform in the vicinity of fr and fa when a high voltage is applied. Variation is likely to occur. Therefore, as shown in FIG. 7, the possible range of the values of fr and fa obtained from the impedance waveform is widened, and the measurement variation of the degree of polarization Δf increases.
On the other hand, in the case of a phase waveform, even when high voltage is applied and a high voltage is being applied, the values fr and fa are stabilized as shown in FIG. The measurement variation of the degree of polarization Δf can be reduced. Note that the values of fr and fa at a phase of 0 ° and the values of minimum and maximum impedances of fr and fa are not the same, but are approximately approximate.
[0032]
Table 1 compares the variation when Δf is measured by the impedance measurement method (Z measurement method) and the phase 0 ° method after leaving the polarized piezoelectric body in the atmosphere at 200 ° C. for 30 minutes. .
As is apparent from Table 1, when the Δf measurement variation in the static state (polarized state) is compared, it can be seen that the phase 0 ° method has less variation than the impedance measurement method.
[0033]
[Table 1]
Figure 0003714133
[0034]
FIGS. 9 and 10 show the Δf behavior of a piezoelectric body polarized at a high temperature and a high voltage. FIG. 9 shows the measurement by the phase 0 ° method, and FIG. 10 shows the measurement by the impedance measurement method. is there.
Table 2 compares the measurement accuracy of the Δf behavior due to the difference in each measurement method. In Table 2, approximate straight lines are obtained for each measurement method, and the measurement accuracy is compared with the relative error from the correlation coefficient and the approximate straight line.
As is clear from FIGS. 9 and 10 and Table 2, it can be seen that the Δf behavior in the dynamic state (during polarization) changes more linearly in the phase 0 ° method than in the impedance measurement method. Therefore, in the phase 0 ° method, the error between the actually measured value and the approximate value is small, indicating that the Δf behavior can be measured with high accuracy.
Therefore, using the phase 0 ° method for measuring the degree of polarization during polarization in the present invention enables more accurate polarization control.
[0035]
[Table 2]
Figure 0003714133
[0036]
The present invention is not limited to the above embodiments.
In the above embodiment, an example is shown in which both polarization and aging are performed at 200 ° C. However, the polarization temperature may be equal to or higher than the aging temperature, and is not limited to 200 ° C.
In the case of a piezoelectric ceramic, the polarization temperature and the aging temperature vary depending on the material, but a temperature range of 180 to 210 ° C. is desirable in order to reduce the polarization variation.
[0037]
【The invention's effect】
As is apparent from the above description, according to the first aspect of the invention, the polarization treatment is performed by applying a DC voltage to the piezoelectric body in an air atmosphere at a temperature higher than the aging temperature. Therefore, the polarization proceeds even at a voltage lower than the polarization in the liquid, and the degree of polarization equivalent to the polarization in the liquid can be obtained in a short time. In addition, since aging proceeds simultaneously during polarization, the aging time after the voltage application is stopped can be shortened. In addition, while measuring the degree of polarization of the piezoelectric body during polarization, voltage application was stopped when the measured degree of polarization reached the set level, and then aging was performed at the aging temperature. And can reach the target degree of polarization with high accuracy.
[0038]
In addition, according to the method of claim 2 , as in the invention of claim 1, the polarization time and the aging time can be shortened, and a primary characteristic equation for the polarization degree of the polarization degree from the measured polarization degree is obtained. Since the polarization end time is predicted from the characteristic equation, it is only necessary to measure the polarization time in the vicinity of the end of polarization, and it is possible to prevent excessive polarization due to measurement delay and to control polarization with high accuracy. Have.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change in the degree of polarization of a piezoelectric body during a polarization process.
FIG. 2 is a diagram showing the correlation between the degree of polarization during polarization and the degree of polarization after returning to room temperature.
FIG. 3 is a circuit diagram showing an example of a polarization processing apparatus according to the present invention.
FIG. 4 is a graph showing the relationship between the polarization temperature and the degree of polarization after returning to room temperature.
FIG. 5 is a diagram showing the behavior of the degree of polarization during polarization.
FIG. 6 is a diagram showing the behavior of current during polarization.
FIG. 7 is a diagram illustrating a method for measuring impedance of a piezoelectric body in high-temperature air.
FIG. 8 is a diagram illustrating a phase 0 ° method in a high-temperature atmosphere of a piezoelectric body.
FIG. 9 is a diagram in which Δf of a piezoelectric body being polarized at high temperature and high voltage is measured by a phase 0 ° method.
FIG. 10 is a diagram in which Δf of a piezoelectric body being polarized at high temperature and high voltage is measured by an impedance measurement method.
[Explanation of symbols]
W 1 wn piezoelectric body 1 thermostatic chamber 2 high-voltage direct-current power supply 3 1 3n high-voltage changeover switch 4 1 to 4n current limiting resistor 7 meter 8 1 ~8n, 9 1 ~9n measuring switch 11 current detecting circuit 12 control apparatus

Claims (4)

気中であって、かつエージング温度以上の温度雰囲気中で、圧電体に直流電圧を印加して分極処理を行なう工程と、
圧電体の分極処理を行いながら、その分極度を測定する工程と、
測定された分極度が設定レベルに達した時に直流電圧の印加を停止する工程と、
電圧印加の停止後、上記エージング温度でエージングを行なう工程と、を有する圧電体の分極処理方法であって、
上記設定レベルは、直流電圧の印加を停止する直前の分極度と、印加停止後エージングして常温に戻した後の分極度の安定値との間の相関関係によって求められることを特徴とする圧電体の分極処理方法。
A step of applying a direct current voltage to the piezoelectric body and performing a polarization treatment in an atmosphere and at a temperature equal to or higher than the aging temperature;
A step of measuring the degree of polarization while performing polarization treatment of the piezoelectric body;
Stopping the application of the DC voltage when the measured degree of polarization reaches a set level;
A step of performing aging at the aging temperature after the voltage application is stopped, and a polarization treatment method of the piezoelectric body ,
The set level is obtained by a correlation between a degree of polarization immediately before the application of the DC voltage is stopped and a stable value of the degree of polarization after aging after the application is stopped and returning to room temperature. Body polarization treatment method.
気中であって、かつエージング温度以上の温度雰囲気中で、圧電体に直流電圧を印加して分極処理を行なう工程と、
圧電体の分極処理を行いながら、その分極度を測定する工程と、
上記測定された分極度から、分極度の分極時間に対する一次特性式を求める工程と、
上記特性式により分極度が設定レベルに達する時間を算出する工程と、
算出された時間に達した時に直流電圧の印加を停止する工程と、
電圧印加の停止後、上記エージング温度でエージングを行なう工程と、を有することを特徴とする圧電体の分極処理方法。
A step of applying a direct current voltage to the piezoelectric body and performing a polarization treatment in an atmosphere and at a temperature equal to or higher than the aging temperature;
A step of measuring the degree of polarization while performing polarization treatment of the piezoelectric body;
From the measured degree of polarization, obtaining a primary characteristic equation for the polarization time of the degree of polarization ;
Calculating the time required for the degree of polarization to reach a set level according to the above characteristic equation ;
Stopping the application of DC voltage when the calculated time is reached;
And a step of performing aging at the aging temperature after the voltage application is stopped.
分極時に圧電体に流れる電流が増加する特性を持つものにおいて、
上記直流電圧の印加は、圧電体に流れる電流値から電流制限抵抗での電圧降下分を算出し、この電圧降下分を初期印加電圧に加えていくことを特徴とする請求項1または2に記載の圧電体の分極処理方法。
In what has the characteristic that the current flowing through the piezoelectric body increases during polarization,
Application of the DC voltage, calculates the voltage drop at the current limiting resistor from the current value flowing through the piezoelectric element, wherein the voltage drop in claim 1 or 2, characterized in that go in addition to the initial applied voltage The piezoelectric body polarization treatment method.
上記圧電体の分極処理を行いながら、その分極度を測定する工程は、
分極中の圧電体の位相を測定する工程と、
位相が0°となる時の周波数(fa,fr)を算出する工程と、
上記周波数(fa,fr)の周波数差Δf(=fa−fr)から分極度を求める工程と、を有することを特徴とする請求項1ないしのいずれかに記載の圧電体の分極処理方法。
The step of measuring the degree of polarization while performing the polarization treatment of the piezoelectric body,
Measuring the phase of the piezoelectric body during polarization;
Calculating a frequency (fa, fr) when the phase is 0 °;
The method for polarizing a piezoelectric body according to any one of claims 1 to 3 , further comprising a step of obtaining a degree of polarization from a frequency difference Δf (= fa-fr) of the frequencies (fa, fr).
JP2000242103A 1999-08-13 2000-08-10 Piezoelectric polarization treatment method Expired - Fee Related JP3714133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242103A JP3714133B2 (en) 1999-08-13 2000-08-10 Piezoelectric polarization treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-228954 1999-08-13
JP22895499 1999-08-13
JP2000242103A JP3714133B2 (en) 1999-08-13 2000-08-10 Piezoelectric polarization treatment method

Publications (2)

Publication Number Publication Date
JP2001127356A JP2001127356A (en) 2001-05-11
JP3714133B2 true JP3714133B2 (en) 2005-11-09

Family

ID=26528558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242103A Expired - Fee Related JP3714133B2 (en) 1999-08-13 2000-08-10 Piezoelectric polarization treatment method

Country Status (1)

Country Link
JP (1) JP3714133B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340631A (en) * 2004-05-28 2005-12-08 Sony Corp Piezoelectric element component and electronic equipment
JP5011887B2 (en) * 2006-08-22 2012-08-29 Tdk株式会社 Method of polarization of laminated piezoelectric element
KR101153632B1 (en) * 2010-01-07 2012-07-03 삼성전기주식회사 Poling device of piezoelectric element and poling method using the same
JP6699223B2 (en) * 2016-02-23 2020-05-27 株式会社リコー Piezoelectric evaluation device
CN115508658B (en) * 2022-11-21 2023-03-14 南京霆升医疗科技有限公司 Method and device for automatic polarization analysis of piezoelectric ceramics

Also Published As

Publication number Publication date
JP2001127356A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
JP3419356B2 (en) Polarization treatment method for piezoelectric body
Mueller et al. Shear response of lead zirconate titanate piezoceramics
Uchino et al. High power characterization of piezoelectric materials
Priya et al. High-power resonant measurements of piezoelectric materials: Importance of elastic nonlinearities
MXPA02006920A (en) Alternating voltage with resistance pressure sensor.
JP3714133B2 (en) Piezoelectric polarization treatment method
US6521166B1 (en) Method of polarization-treating piezoelectric body
JPH044542B2 (en)
KR20010062544A (en) Method and apparatus for measuring insulation resistance
JPH11281562A (en) Piezoelectric sensor device and detecting method for change in electric constant by using it
JP3724370B2 (en) Piezoelectric polarization method
JP2005077348A (en) Discharge performance evaluation device and discharge performance evaluation method
JP2006093342A (en) Dc-bias voltage measurement circuit and plasma-cvd processing device containing it
JP2656041B2 (en) Piezoelectric polarization method and apparatus
Sherrit et al. Use of piezoelectric resonators for the characterization of mechanical properties of polymers
JP2001016779A (en) Impedance matching box for plasma device
JP3293541B2 (en) Capacitor insulation resistance measurement method
Takahashi Electrical and electromechanical properties in Pb (Zr, Ti) O3 ceramic containing both Fe3+ and Nb5+ ions
Shekhani et al. High power characterization of piezoelectric ceramics using the burst/transient method with resonance and antiresonance analysis
Mirea et al. Resonant and Antiresonant Frequencies Behavior with Temperature Changes in Gravimetric Sensors
JP4936909B2 (en) How to use fluid property measuring device
Despotović et al. Laboratory Experimental Setup for High Voltage Corona Polarization of Thin PVDF Films
JPH10125972A (en) Method for polarizing piezoelectric substance
Fukunaga et al. Compact and simple apparatus for measuring direct piezoelectricity
JP2002208829A (en) Failure detection method for piezoelectric resonant element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees