JP3714057B2 - EGR valve device - Google Patents

EGR valve device Download PDF

Info

Publication number
JP3714057B2
JP3714057B2 JP29245799A JP29245799A JP3714057B2 JP 3714057 B2 JP3714057 B2 JP 3714057B2 JP 29245799 A JP29245799 A JP 29245799A JP 29245799 A JP29245799 A JP 29245799A JP 3714057 B2 JP3714057 B2 JP 3714057B2
Authority
JP
Japan
Prior art keywords
valve
negative pressure
lift
pressure chamber
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29245799A
Other languages
Japanese (ja)
Other versions
JP2001115902A (en
Inventor
好之 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP29245799A priority Critical patent/JP3714057B2/en
Publication of JP2001115902A publication Critical patent/JP2001115902A/en
Application granted granted Critical
Publication of JP3714057B2 publication Critical patent/JP3714057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気路の排ガスを吸気路側に還流する排気ガス再循環装置に用いられるEGR弁装置に関する。
【0002】
【従来の技術】
エンジンの排気ガス中の有害成分であるNOXを低減するために、排気ガスの一部を吸気側に還流する排気ガス再循環装置が知られている。たとえば、図3に示す排気ガス再循環装置は、エンジン100の運転状態に応じた排気ガスの還流量を調整すべくダイヤフラム式アクチュエータで駆動するEGR弁装置をエンジン排気路110と吸気路120を結ぶ排気ガス還流路(以下、単にEGR通路と記す)130内に備える。
【0003】
EGR弁装置は内部に再循環排気ガス(以下、単にEGRガスと記す)が流れる弁ハウジング140を備え、同弁ハウジング140はEGR通路130の排気ガス入口と排気ガス出口との中間部分に弁座150を設けている。弁ハウジング140には摺動案内部材を介して弁軸160が摺動自在に支持され、同弁軸160の下端には弁座150と協働して弁開口面積を増減調整する弁体170が装着される。弁軸160の弁ハウジング140の外部に突出した上端部分に負圧応動式の弁アクチュエータ180が配設され、同弁アクチュエー夕180は弁ハウジング140上に締め付け結合されたブラケット190に支持されている。弁アクチュエータ180はプレス成形された上下ケーシング200、210と、両ケーシングの外周フランジ部にその外周縁部を挟持された大径の第1ダイヤフラム220と、弁軸160が挿通される下ケーシングの開口部にその外周縁都を固着された第2ダイヤフラム230とを備える。これら両ダイヤフラムは夫々ラバーによって作られ、各内周縁部は弁軸160上の各対向部位にシール性を保持した状態で固定される。
【0004】
第1ダイヤフラム220の下側面に接合された押え板240と下ケーシング210の底壁との間にリターンスブリング250が縮設され、これによって第1ダイヤフラム220は、常時、上向き即ち弁体170が閉じる方向に弾性的に付勢されている。また、第1及び第2ダイヤフラム220、230と下ケーシング210とによって負圧室260が形成され、同負圧室には負圧導入管270が接続されている。なお、上ケーシング200には大気開放口280が設けられ、第lダイヤフラムの上側面には大気圧が作用している。
【0005】
このようなEGR弁装置において、弁体170及び弁軸160側にはリ夕一ンスプリング250の上向きの閉弁力psと、負圧室の第1ダイヤフラム220が受ける太気圧とエンジン100の運転状態に応じた制御負圧との差圧に応じた下向きの開弁力pcが基本的に加わり、しかも、弁体170には排気路側圧力と吸気路側圧力との差圧による上向きの排気差圧力pgが加わる。このため、弁体170はこれら各作用力が実質的に平衡する、すなわち、pc(=ps+pg)となる位置まで弁軸160が下動し、弁体170が弁座150から離れてEGR通路130が開かれる。これにより、一部の排気ガスが弁ハウジング140内の排気ガス通路を通り、吸気通路に還流され、周知NOx低減効果が得られる。この場合、EGRガスの流量はEGR弁の開度及び排気ガス圧力と吸気圧力との圧力差に略依存する。
【0006】
【発明が解決しようとする課題】
ところで、弁体170の開度が比較的小さくなるとEGR通路130でのしぼり作用が大きく働き、排気ガス圧力と吸気圧力との圧力差が大きくなり、弁体170に大きな排気差圧力pgが作用する。ここで排気圧力はエンジン100駆動時に大きく脈動し、排気差圧力pgが大きく変動し、微小リフトの弁体170がその弁開度を振動的に変化してハンチングを起しやすく、EGRガスの流量が不安定化し、所期のNOx低減効果が得られず問題となっている。特に、エンジンの各運転域で要求されるEGRガス流量は、たとえば図4に示すように、中速中負荷域E1側より高速高負荷域E2側に運転域が順次移動する状況下では、要求されるEGRガス流量qが順次低減し、q1>qa>qb>q2(=0)に低減されるようなEGRガス流量制御が要求される。ところが、従来のEGR弁装置では弁体170を微小リフト域で安定して保持できず、EGRガスの流量が不安定化し、実質的にこのような中高負荷域域での微小リフトでの使用が困難となり、供給流量qをゼロまで順次低減できず、NOxやスモーク発生を抑える上で問題と成っている。
【0007】
なお、負圧駆動のダイヤフラム式アクチュエータでEGR弁の開度を調整するのに代えて、ステッパモータで弁開度を調整することも可能であるが、この場合、負荷荷重が大きくなると脱調を起こしやすいという問題があり、また、DCサーボモータで弁開度を調整することも可能であるが、この場合、ポジションセンサ等を必要とし、コスト増を招き易いという問題がある。
【0008】
上述の課題に基づき、請求項1の発明は、ダイヤフラム式アクチュエータで駆動するEGR弁装置であって、弁体を複数微小開度に順次切り換えた際に、EGRガス流量を複数の微小流量に順次安定して切り換え保持できるEGR弁装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明では、弁軸の一端側に取り付けられ上記弁軸に弁リフト方向への開弁力を付与する負圧感応式の弁開度制御用ダイヤフラムと上記弁軸に弁リフト減少方向への閉弁付勢力を付与するリターンスプリングとの作動により弁軸の他端の弁体が内燃機関の排気ガス還流路断面積を増減調整するEGR弁装置において、上記弁軸の一端側に取り付けられたダイヤフラムを収容する第1の負圧室と、上記第1負圧室の弁軸方向最上位置に配設された第2負圧室と、上記第2負圧室に収容された第1リフト用ダイヤフラムの作動により上記弁軸を開弁方向に押動する主部及び該主部の上方位置にて主部よりも幅方向に拡大された傘部とから形成された軸対向ストッパと、上記第1負圧室と上記第2負圧室との間に形成された第3の負圧室と、上記第3負圧室に収容された第2リフト用ダイヤフラムの作動により上記第2負圧室側に移動せしめられ上記傘部に当接して上記軸対向ストッパの移動量を規制すると共に上記第2リフト用ダイヤフラムが非作動のとき上記軸対向ストッパの傘部に対し所定の隙間を存するように配設された可動ストッパと、上記第2負圧室と上記第3負圧室との間に位置し、上記可動ストッパの第2負圧室側への移動量を規制すると共に上記第2リフト用ダイヤフラムが非作動のとき可動ストッパに対し上記所定の隙間よりも小さい隙間を持って配設された固定ストッパとを具備し、上記第2負圧室が負圧駆動し軸対向ストッパの傘部が弁リフト方向に移動して上記可動ストッパに当接することで弁軸側を第1リフト位置に位置決めし、上記第2負圧室と共に上記第3負圧室が負圧駆動することで上記可動ストッパが弁リフト減少方向に作動して上記固定ストッパに当接することで上記可動ストッパと当接状態の軸対向ストッパが弁軸側を第1リフト位置より小リフトの第2リフト位置に位置決めすることを特徴としている。
【0010】
ここで、第2負圧室が負圧供給されると軸対向ストッパが可動ストッパに当接することで軸対向ストッパに当接する弁軸側の弁体を第1リフト位置に位置決めし、第1、第2の両負圧室が負圧供給されると軸対向ストッパが当接する可動ストッパを固定ストッパに当接することで弁軸側の弁体を第1リフト位置より小リフトの第2リフト位置に位置決めできる。このため、第1リフト位置及び第2リフト位置が微小リフト位置であっても、各位置で弁軸が軸対向ストッパを介し可動ストッパ軸及び固定ストッパによりそれぞれ位置決めされ、弁軸側の振動的な変位を確実に抑止でき、エンジンの運転状態に応じた複数段での微少な弁開度をそれぞれ安定して確保でき、EGRガス流量を複数の微小流量に順次安定して切り換え保持できる。
【0011】
【発明の実施の形態】
図1には本発明の適用されたEGR弁装置が採用された内燃機関の排気ガス再循環装置が示される。この排気ガス再循環装置はエンジン1の排気路2と吸気路3を結ぶ排気ガス還流路(以下、単にEGR通路と記す)4を備え、EGR通路4の途中にEGR弁装置5を備える。EGR弁装置5は内部にEGR通路4の一部を設けた弁ハウジング6を備える。
EGR通路4の排気ガス入口7と排気ガス出口8との中間部分に弁座9配設され、また弁ハウジング6上に装着された摺動案内部材11に弁軸12が摺動自在に挿通されている。弁軸12の下端部に弁座9と協働して弁開口面積を制御する円板状の弁部材13が一体的に装着されている。
【0012】
弁ハウジング6上にU字状又はカップ状をなす支持部材14が固着され、同支持部材14には、弁アクチュエータ15とその上側の第2ストッパ装置16とその上側の第1ストッパ装置17とが互いに重なり合って支持されている。なお、弁ハウジング6とこれに摺動自在に支持された弁軸12及び弁座9と、弁軸12の上端部に連結されている弁アクチュエータ15とがEGR弁構成部18を成している。
【0013】
弁アクチュエータ15は弁軸12が嵌挿される穴19を有するカップ状の下方ケーシング20と、同下方ケーシング20の上端フランジ部に自身の外周フランジ部を重ねて装架された中央穴23’を有する厚板ケーシング21と、下方ケーシング20及び厚板ケーシング21の外周フランジ部によってその外周縁を挟持されたラバー製の弁開度制御用ダイヤフラム22と、これら外周縁部及び後述の第2ストッパ装置16側の部材を含めこれらを一体的に締め付け結合する締め付けベルト23と、下方ケーシング20の下端周縁部201とリング部材24により挟持され、互いに固着された下部シール用ダイヤフラム25とを備えている。
【0014】
下部シール用ダイヤフラム25は、その中央部分を上下のホルダ26及び27に挟持され、また比較的大きな受圧面積を有する弁開度制御用ダイヤフラム22は、その中央部分を上下の押え板28及び29を介してホルダ26及び締付ナット30により弁軸12の上端部分に固着されている。弁開度制御用ダイヤフラム22と下方ケーシング20と下部シール用ダイヤフラム25とによって、負圧室31が限界され、これにより弁開度制御用ダイヤフラム22が負圧感応式のダイヤフラムとして構成されている。なお、弁開度制御用ダイヤフラム22の上側面には厚板ケーシング21に設けた図示しない通気孔を介して常時大気圧が作用している。
【0015】
負圧室31内には、下の押え板29と下方ケーシング20との間に縮設されたリターンスプリング32が収容され、また下方ケーシング20には負圧導入管33の一端が接続されている。負庄導入管33はデューティー制御弁35を介して負圧源34に接続され、デューティー制御弁35はエンジン1の運転状態に応じた制御負圧を生起すべくコントローラ36により駆動制御される。
厚板ケーシング21の外周縁の上面にはラバー製の第2リフト用ダイヤフラム37と段付き筒状の上側ケーシング38及びその内側のインナーケーシング39の各外周縁が順次重ね合わされ、締め付けベルト23により一体的に締め付け結合されている。第2リフト用ダイヤフラム37は下リング片40と上環状金具41に挟持された上で一体結合され、これらの中央には弁軸12の遊嵌する中央開口42が形成されている。
【0016】
上環状金具41は、その上方に位置するインナーケーシング39とで第2スプリング43を挟持し、この弾性力を受けて負圧がかけられていない時に第2リフト用ダイヤフラム37の上面を厚板ケーシング21の上面に押圧している。更に、上環状金具41は中央開口42が形成されている部位より外側の環状部に環状の可動ストッパ44を一体結合している。可動ストッパ44は上側に外周突出し部e1とストッパ部e2とを形成され、外周突出し部e1とこれと対向する上環状金具41の環状ビードrとでシール用ダイヤフラム45の中央縁部を挟持している。なお、シール用ダイヤフラム45の外周縁部は環状板状の固定ストッパ46と共にインナーケーシング39と上側ケーシング38とで挟持される。これにより、インナーケーシング39と第2リフト用ダイヤフラム37とシール用ダイヤフラム45と上環状金具41とによって、負圧室47が限界され、これにより第2リフト用ダイヤフラム37が負圧感応式のダイヤフラムとして構成されている。
【0017】
インナーケーシング39及びアウターケーシング38には負圧導入管48の一端が接続されている。同負庄導入管48は開閉電磁弁49を介し負圧源34に接続され、開閉電磁弁49はコントローラ36により駆動制御される。
ここで、可動ストッパ44は第2スプリング43により上環状金具41を介し厚板ケーシング21に当接する際にストッパ部e2を第1リフト規制位置A1に保持し、後述の軸対向ストッパ50と共に弁軸12を第1リフト位置P1に位置決め(位置規制)し、ストッパ部e2を固定ストッパ46に当接した際に、図2に示すように第1リフト規制位置A1より第1ストッパ装置17側の第2リフト規制位置A2に切り換え移動し,弁軸12を第2リフト位置P2に位置決めする。
【0018】
上方ケーシング38及び固定ストッパ46上に第1ストッパ装置17が配設されている。第1ストッパ装置17は、上方ケーシング38の内壁に重なるインナーケーシング51を備える。インナーケーシング51の上端屈曲縁はその上向き面に第1リフト用ダイヤフラム52の外周縁とその上に帽着された上蓋53の外周縁とを順位重ね、その上でこれらを結合すべく挟圧固定するように上方ケーシング38が屈曲処理されている。第1リフト用ダイヤフラム52の中央部は後述の軸対向ストッパ50の突出しねじ部fとナット55により上下押え板53’、54に挟持された状態でねじ止めされている。インナーケーシング51の下端屈曲縁は固定ストッパ46との間にシール用ダイヤフラム57の外周縁を挟持し、一体結合している。このシール用ダイヤフラム57の中央部は弁軸12の上端部と対向配備される軸対向ストッパ50を貫通結合する。軸対向ストッパ50は弁軸12の上端部と接離する主部上側において径方向に拡大した係止部としての傘部gが突設されている。なお、傘部gと筒部材56の下端部とでシール用ダイヤフラム57の中央部を挟持し、互いが結合されている。
【0019】
第1リフト用ダイヤフラム52とシール用ダイヤフラム57とインナーケーシング51とによって、負圧室58が限界され、これにより第1リフト用ダイヤフラム52が負圧感応式のダイヤフラムとして構成されている。なお、上蓋53には図示しない通気孔が形成され、ここを介して第1リフト用ダイヤフラム52に常時大気圧が作用している。
負圧室58内には、下押え板54とインナーケーシング51の下端部との間に縮設されたリターンスプリング59が収容され、上蓋53のストッパ62により上方限界位置が決められる。また上方ケーシング38及びインナーケーシング51には負圧導入管60の一端が接続されている。負庄導入管60は開閉電磁弁61を介し負圧源34に接続され、開閉電磁弁61はコントローラ36により駆動制御される。
【0020】
ここで、第1リフト用ダイヤフラム52は負圧室58が負圧供給されて駆動した際に、軸対向ストッパ50を弁リフト方向Oである下方移動させ、第1リフト規制位置A1の可動ストッパ44に当接して位置保持され、この際、弁軸12側を第1リフト位置P1に位置決めできる。
このような構成において、図1はエンジン1が停止し、又はエンジンがEGRを行なわない運転状態の弁軸12を介して弁体13がリターンスプリング32の付勢力により弁座9に当接され、弁体13が零即ち全閉位置P0に位置する状態を示している。この間、第1ストッパ装置17と第2ストッパ装置16の各負圧室47、58は共に負圧供給がなく、軸対向ストッパ50は図1の実線で示す非作動状態に保持される。
【0021】
次に、図4のEGRガス流量の設定用マップに示されたように、中速中負荷域E1側での運転時には多量のEGRガス流量q1が要求され、この場合、エンジンコントローラ36は負圧室31に供給される制御負圧を運転域に応じたEGRガス流量が得られる開度に弁体13を調整すべくデューティー制御弁35をデューティー駆動する。これにより負圧室31の制御負圧が調整され、これに応じ弁開度制御用ダイヤフラム22が一層下方に変位して弁軸12及び弁体13を弁リフト方向O側である下方に移動させる。このため、エンジン1の吸気路3に運転状態に応じた所定量の排気還流がなされ、排気ガス中のNOxの低減を図ることができる。
【0022】
次に、エンジンの運転状態が変化し、図4に示すように、中速中負荷域E1側より高速高負荷域E2側に向け運転域が移動し、たとえばEGRガスの供給流量がqaの運転域に移行した場合、コントローラ36は、制御負圧を運転域に応じ設定し、その制御負圧を得るようデューティー制御弁35をデューティー駆動し、その制御負圧で弁開度制御用ダイヤフラム22を駆動し、弁体13を微小開度域に調整する。更に、コントローラ36は、第1電磁弁61をオンさせ、第1ストッパ装置17の負圧室58に負圧供給し、第1リフト用ダイヤフラム52を駆動し軸対向ストッパ50を図1に示したすき間t1相当降下させ、第1リフト規制位置A1の可動ストッパ44に当接する(図2(a)参照)。これにより、排圧変動によって閉じ側に移動しようとする弁軸12が軸対向ストッパ50に当接し、可動ストッパ44により規制された比較的微小の第1リフト位置P1に安定して保持されることとなる。このため、エンジン1の吸気路3に運転状態に応じた所定流量の排気還流がなされ、排気ガス中のNOx及びスモークの低減を図ることができる。
【0023】
更に、エンジンの運転状態が変化し、図4に示す中速中負荷域E1側より高速高負荷域E2側に向け、たとえばEGRガスの供給流量がqaよりqbの運転域に移行した場合、コントローラ36は、第1電磁弁61と共に第2電磁弁49をもオンさせ、第1ストッパ装置17と第2ストッパ装置16の両負圧室58、47に負圧供給し、第1、第2リフト用ダイヤフラム52、37を駆動する。この際、第1リフト用ダイヤフラム52より負圧受け面積が大きな第2リフト用ダイヤフラム37の上向き操作力で可動ストッパ44が第1リフト規制位置A1より上昇作動し、そのストッパ部e2が固定ストッパ46に当接し、第2リフト規制位置A2に保持される。この可動ストッパ44の上昇作動に連動し、軸対向ストッパ50及び弁軸12も弁リフト減少方向Cに作動し、図2(a)等に示したすき間t2相当上昇し,弁軸12及び弁体13が図2(b)に示すように、第1リフト位置P1より小リフトの第2リフト位置P2に安定して保持されることとなる。このため、エンジン1の吸気路3に運転状態に応じた供給流量のEGRガスが排気還流され、排気ガス中のNOxの低減を確実に図ることができ、且つ、所期のEGRガスの量より多量のEGRガスが還流されることが防止され、スモークの増大を防ぐことができる。
【0024】
なお、この後,エンジン運転域が高速高負荷域E2に移行すると,コントローラ36は、第1電磁弁61と第2電磁弁49及びデューティー制御弁35を全てオフし、軸対向ストッパ50及び弁体13側を弁リフト減少方向Cに移動し、図1に実線で示す全閉位置P0に戻し、EGRガス流量をゼロに保持する。
従って、弁体13が微小開度域で第1第2リフト位置P1,P2に2段階に移動しリフト量が減少変位する際、各リフト位置で弁体13が振動的に変位して微小のEGRガス流量が不安定になることがなく、エンジンの全ての運転域で所要のEGRガス流量を確保することができ、確実にNOx低減を図れ、EGR量増大に起因したスモークの発生を抑えることができる。更に、弁体13が複数の各微小開度域で振動的変位を防止されているので、従来装置のような振動に基づく早期破損を効果的に防止し、弁アクチュエ一夕15、ひいてはEGR弁装置5の耐久性及び信頼性を確保し得る利点がある。
【0025】
本発明は、上記実施形態に限定されるものではなく、特許請求の範囲において上記実施形態に種々の変更、修正を加え実施することができる。例えば、弁体が弁座の上流側に配置された構成に限らず、弁体が弁座の下流側に配置され、弁体の開度が小さいときに、その上流側と下流側との間に大きな差圧が発生して弁体の開度が振動的に変化する場合にも適用することができる。
また、上述のコントローラ36は弁体13を第1リフト位置P1に位置決めする場合において、ダイヤフラム22と、ダイヤフラム52とを駆動させているが、ダイヤフラム52のみを駆動させて第1リフト量を規制するように制御してもよい。
【0026】
【発明の効果】
以上のように、請求項1の発明は、第2及び第3負圧室の負圧化を切り換えることで弁体側を第1リフト位置及びこれよりも小リフトの第2リフト位置に順次位置決めできるため、第1リフト位置及び第2リフト位置が微小リフト位置であっても、各位置で弁軸が軸対向ストッパを介し可動ストッパ軸及び固定ストッパによりそれぞれ位置決めされ、弁軸側の振動的な変位を確実に抑止でき、エンジンの運転状態に応じた複数段での微少な弁開度をそれぞれ安定して確保でき、EGRガス流量を複数の微小流量に順次安定して切り換え保持できる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのEGR弁装置を備えた内燃機関の排気ガス再循環装置の概略構成図である。
【図2】図1のEGR弁装置の弁切り換え作動特性を説明する図で、(a)は可動ストッパが第1リフト規制位置にある時の弁体側の位置を、(b)は可動ストッパが第2リフト規制位置にある時の弁体側の位置を示す。
【図3】従来のEGR弁装置を備えた内燃機関の排気ガス再循環装置の概略構成図である。
【図4】通常の内燃機関の排気ガス再循環装置が用いるEGRガス流量の設定用マップの特性図である。
【符号の説明】
1 エンジン
4 EGR通路
6 弁ハウジング
12 弁軸
13 弁体
15 弁アクチュエータ
16 第2ストッパ装置
17 第1ストッパ装置
22 弁開度制御用ダイヤフラム
37 第2リフト用ダイヤフラム
44 可動ストッパ
46 固定ストッパ
50 軸対向ストッパ
52 第1リフト用ダイヤフラム
A1 第1リフト規制位置
A2 第2リフト規制位置
O 弁リフト方向
P1 第1リフト位置
P2 第2リフト位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an EGR valve device used in an exhaust gas recirculation device that recirculates exhaust gas in an exhaust passage of an internal combustion engine to an intake passage side.
[0002]
[Prior art]
An exhaust gas recirculation device that recirculates a part of the exhaust gas to the intake side in order to reduce NO x that is a harmful component in the exhaust gas of the engine is known. For example, the exhaust gas recirculation device shown in FIG. 3 connects the engine exhaust passage 110 and the intake passage 120 with an EGR valve device driven by a diaphragm actuator to adjust the exhaust gas recirculation amount according to the operating state of the engine 100. It is provided in an exhaust gas recirculation path (hereinafter simply referred to as EGR path) 130.
[0003]
The EGR valve device includes a valve housing 140 through which recirculated exhaust gas (hereinafter simply referred to as EGR gas) flows, and the valve housing 140 is provided at a valve seat at an intermediate portion between the exhaust gas inlet and the exhaust gas outlet of the EGR passage 130. 150 is provided. A valve shaft 160 is slidably supported on the valve housing 140 via a sliding guide member, and a valve body 170 for increasing / decreasing the valve opening area in cooperation with the valve seat 150 is provided at the lower end of the valve shaft 160. Installed. A negative pressure responsive valve actuator 180 is disposed at an upper end portion of the valve shaft 160 protruding to the outside of the valve housing 140, and the valve actuator 180 is supported by a bracket 190 that is fastened to the valve housing 140. . The valve actuator 180 includes press-molded upper and lower casings 200 and 210, a large-diameter first diaphragm 220 having an outer peripheral edge sandwiched between outer peripheral flanges of both casings, and an opening in a lower casing through which the valve shaft 160 is inserted. And a second diaphragm 230 having an outer peripheral edge fixed thereto. Both of these diaphragms are made of rubber, and each inner peripheral edge portion is fixed to each facing portion on the valve shaft 160 in a state of maintaining a sealing property.
[0004]
A return sbling 250 is contracted between the press plate 240 joined to the lower surface of the first diaphragm 220 and the bottom wall of the lower casing 210, so that the first diaphragm 220 is always upward or the valve body 170 is It is elastically biased in the closing direction. A negative pressure chamber 260 is formed by the first and second diaphragms 220 and 230 and the lower casing 210, and a negative pressure introduction pipe 270 is connected to the negative pressure chamber. The upper casing 200 is provided with an air opening 280, and atmospheric pressure acts on the upper surface of the l-th diaphragm.
[0005]
In such an EGR valve device, the upward closing valve force ps on the valve body 170 and the valve shaft 160 side, the atmospheric pressure received by the first diaphragm 220 in the negative pressure chamber, and the operation of the engine 100 A downward valve opening force pc corresponding to the differential pressure from the control negative pressure corresponding to the state is basically applied, and the upward exhaust differential pressure due to the differential pressure between the exhaust passage side pressure and the intake passage side pressure is applied to the valve body 170. Add pg. For this reason, the valve body 170 moves down to a position where these acting forces are substantially balanced, that is, pc (= ps + pg), and the valve body 170 moves away from the valve seat 150 to the EGR passage 130. Is opened. Thereby, a part of the exhaust gas passes through the exhaust gas passage in the valve housing 140 and is recirculated to the intake passage, so that a known NOx reduction effect is obtained. In this case, the flow rate of the EGR gas substantially depends on the opening degree of the EGR valve and the pressure difference between the exhaust gas pressure and the intake pressure.
[0006]
[Problems to be solved by the invention]
By the way, when the opening degree of the valve body 170 becomes relatively small, the squeezing action in the EGR passage 130 acts greatly, the pressure difference between the exhaust gas pressure and the intake pressure becomes large, and a large exhaust differential pressure pg acts on the valve body 170. . Here, the exhaust pressure pulsates greatly when the engine 100 is driven, the exhaust differential pressure pg fluctuates greatly, and the valve body 170 of the minute lift easily changes its valve opening to cause hunting, and the flow rate of EGR gas. Becomes unstable, and the desired NOx reduction effect cannot be obtained. In particular, the EGR gas flow rate required in each engine operating range is, for example, as shown in FIG. 4, in a situation where the operating range sequentially moves from the medium speed / medium load range E1 side to the high speed / high load range E2 side. Therefore, the EGR gas flow rate control is required such that the EGR gas flow rate q is sequentially reduced to q1>qa>qb> q2 (= 0). However, in the conventional EGR valve device, the valve body 170 cannot be stably held in the minute lift region, the flow rate of the EGR gas becomes unstable, and it is practically used in such a minute lift in the middle and high load region. It becomes difficult, and the supply flow rate q cannot be reduced to zero sequentially, which is a problem in suppressing the generation of NOx and smoke.
[0007]
In addition, instead of adjusting the opening of the EGR valve with a diaphragm actuator driven by negative pressure, it is also possible to adjust the opening of the valve with a stepper motor. Although there is a problem that the valve opening degree can be adjusted with a DC servo motor, there is a problem that a position sensor or the like is required in this case, and the cost is likely to increase.
[0008]
Based on the above-mentioned problems, the invention of claim 1 is an EGR valve device driven by a diaphragm actuator, and when the valve body is sequentially switched to a plurality of minute openings, the EGR gas flow rate is sequentially changed to a plurality of minute flow rates. An object of the present invention is to provide an EGR valve device that can be stably switched and held.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a negative pressure sensitive type valve opening control diaphragm which is attached to one end of the valve shaft and applies a valve opening force in the valve lift direction to the valve shaft. And an EGR valve device in which the valve body at the other end of the valve shaft adjusts the cross-sectional area of the exhaust gas recirculation path of the internal combustion engine by operating the valve shaft and a return spring that applies a valve closing biasing force in the valve lift decreasing direction to the valve shaft. A first negative pressure chamber that houses a diaphragm attached to one end of the valve shaft, a second negative pressure chamber disposed at the uppermost position in the valve axial direction of the first negative pressure chamber, and the second A main portion that pushes the valve shaft in the valve opening direction by the operation of the first lift diaphragm housed in the negative pressure chamber, and an umbrella portion that is expanded in the width direction from the main portion at a position above the main portion; a shaft opposite the stopper formed of, between the first negative pressure chamber and the second negative pressure chamber The third negative pressure chamber and, the contact with the shaft to the bevel portion is moved to the third and the second negative pressure chamber side by the operation of the second lift diaphragms housed in the negative pressure chamber formed in the a movable stopper which the second lifting diaphragm is arranged to lie a predetermined gap against the umbrella portion of the shaft opposite the stopper when inoperative while restricting the amount of movement of the counter stopper, the second negative pressure chamber And the third negative pressure chamber, restricting the amount of movement of the movable stopper toward the second negative pressure chamber , and when the second lift diaphragm is inactive , A fixed stopper disposed with a gap smaller than the gap, the second negative pressure chamber is driven with negative pressure, and the umbrella portion of the shaft-facing stopper moves in the valve lift direction to contact the movable stopper. The valve shaft side to the first lift position When the third negative pressure chamber is driven with negative pressure together with the second negative pressure chamber, the movable stopper operates in the valve lift decreasing direction and comes into contact with the fixed stopper. The shaft-facing stopper in a state is characterized in that the valve shaft side is positioned at a second lift position that is smaller than the first lift position .
[0010]
Here, when the second negative pressure chamber is supplied with negative pressure, the shaft-facing stopper contacts the movable stopper, thereby positioning the valve body on the valve shaft side that contacts the shaft-facing stopper at the first lift position, When a negative pressure is supplied to both the second negative pressure chambers, the valve stopper on the valve shaft side is moved from the first lift position to the second lift position of the small lift by bringing the movable stopper, which the shaft facing stopper contacts, into contact with the fixed stopper. Can be positioned. For this reason, even if the first lift position and the second lift position are the minute lift positions, the valve shaft is positioned by the movable stopper shaft and the fixed stopper via the shaft-facing stopper at each position, and the valve shaft side is vibrated. Displacement can be reliably suppressed, minute valve openings at a plurality of stages according to the operating state of the engine can be secured stably, and the EGR gas flow rate can be sequentially switched and held at a plurality of minute flow rates.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an exhaust gas recirculation device for an internal combustion engine employing an EGR valve device to which the present invention is applied. The exhaust gas recirculation device includes an exhaust gas recirculation passage (hereinafter simply referred to as an EGR passage) 4 connecting the exhaust passage 2 and the intake passage 3 of the engine 1, and an EGR valve device 5 in the middle of the EGR passage 4. The EGR valve device 5 includes a valve housing 6 in which a part of the EGR passage 4 is provided.
A valve seat 9 is disposed at an intermediate portion between the exhaust gas inlet 7 and the exhaust gas outlet 8 of the EGR passage 4, and a valve shaft 12 is slidably inserted into a sliding guide member 11 mounted on the valve housing 6. ing. A disc-shaped valve member 13 that controls the valve opening area in cooperation with the valve seat 9 is integrally attached to the lower end portion of the valve shaft 12.
[0012]
A U-shaped or cup-shaped support member 14 is fixed on the valve housing 6. The support member 14 includes a valve actuator 15, a second stopper device 16 on the upper side, and a first stopper device 17 on the upper side. It is supported by overlapping each other. The valve housing 6, the valve shaft 12 and the valve seat 9 slidably supported by the valve housing 6, and the valve actuator 15 connected to the upper end of the valve shaft 12 form an EGR valve component 18. .
[0013]
The valve actuator 15 has a cup-shaped lower casing 20 having a hole 19 into which the valve shaft 12 is inserted, and a central hole 23 ′ mounted on the upper end flange portion of the lower casing 20 with its outer peripheral flange portion overlapped. A thick plate casing 21, a rubber valve opening degree control diaphragm 22 sandwiched by outer peripheral flange portions of the lower casing 20 and the thick plate casing 21, and these outer peripheral portions and a second stopper device 16 described later. A tightening belt 23 that integrally tightens and couples these members, including a member on the side, and a lower seal diaphragm 25 sandwiched between a lower end peripheral portion 201 of the lower casing 20 and a ring member 24 and fixed to each other.
[0014]
The lower seal diaphragm 25 is sandwiched at its center by upper and lower holders 26 and 27, and the valve opening degree control diaphragm 22 having a relatively large pressure-receiving area has upper and lower press plates 28 and 29 at its center. And is fixed to the upper end portion of the valve shaft 12 by a holder 26 and a tightening nut 30. The negative pressure chamber 31 is limited by the valve opening control diaphragm 22, the lower casing 20, and the lower seal diaphragm 25, whereby the valve opening control diaphragm 22 is configured as a negative pressure sensitive diaphragm. Note that atmospheric pressure always acts on the upper surface of the valve opening control diaphragm 22 through a vent hole (not shown) provided in the thick plate casing 21.
[0015]
In the negative pressure chamber 31, a return spring 32 that is contracted between the lower presser plate 29 and the lower casing 20 is accommodated, and one end of a negative pressure introduction pipe 33 is connected to the lower casing 20. . The negative inlet pipe 33 is connected to a negative pressure source 34 via a duty control valve 35, and the duty control valve 35 is driven and controlled by the controller 36 to generate a control negative pressure corresponding to the operating state of the engine 1.
On the upper surface of the outer peripheral edge of the thick plate casing 21, the outer peripheral edges of the second lift diaphragm 37 made of rubber, the stepped cylindrical upper casing 38, and the inner casing 39 inside thereof are sequentially overlapped and integrated by the fastening belt 23. Are tightly coupled. The second lift diaphragm 37 is sandwiched between the lower ring piece 40 and the upper annular fitting 41, and is integrally coupled. A central opening 42 in which the valve shaft 12 is loosely fitted is formed at the center thereof.
[0016]
The upper annular metal fitting 41 sandwiches the second spring 43 with the inner casing 39 positioned above the upper annular metal fitting 41, and when the negative pressure is not applied due to this elastic force, the upper surface of the second lift diaphragm 37 is placed on the thick plate casing. 21 is pressed against the upper surface. Further, the upper annular metal fitting 41 is integrally joined with an annular movable stopper 44 at an annular portion outside the portion where the central opening 42 is formed. The movable stopper 44 is formed with an outer peripheral protruding portion e1 and a stopper portion e2 on the upper side, and the central edge portion of the sealing diaphragm 45 is sandwiched between the outer peripheral protruding portion e1 and the annular bead r of the upper annular metal fitting 41 opposed thereto. Yes. The outer peripheral edge of the sealing diaphragm 45 is sandwiched between the inner casing 39 and the upper casing 38 together with the annular plate-like fixing stopper 46. Thus, the negative pressure chamber 47 is limited by the inner casing 39, the second lift diaphragm 37, the sealing diaphragm 45, and the upper annular fitting 41, whereby the second lift diaphragm 37 serves as a negative pressure sensitive diaphragm. It is configured.
[0017]
One end of a negative pressure introduction pipe 48 is connected to the inner casing 39 and the outer casing 38. The negative introduction pipe 48 is connected to the negative pressure source 34 via an open / close electromagnetic valve 49, and the open / close electromagnetic valve 49 is driven and controlled by the controller 36.
Here, the movable stopper 44 holds the stopper portion e2 at the first lift restricting position A1 when the second spring 43 abuts the thick plate casing 21 via the upper annular fitting 41, and together with the shaft facing stopper 50 described later, the valve shaft 12 is positioned (position restricted) at the first lift position P1, and when the stopper portion e2 is brought into contact with the fixed stopper 46, as shown in FIG. The valve shaft 12 is moved to the second lift position P2 by switching to the second lift restriction position A2.
[0018]
The first stopper device 17 is disposed on the upper casing 38 and the fixed stopper 46. The first stopper device 17 includes an inner casing 51 that overlaps the inner wall of the upper casing 38. The upper bent edge of the inner casing 51 is placed on its upper surface with the outer peripheral edge of the first lift diaphragm 52 and the outer peripheral edge of the upper lid 53 fitted on top of each other, and then clamped and fixed to join them together. Thus, the upper casing 38 is bent. The central portion of the first lift diaphragm 52 is screwed in a state of being sandwiched between the upper and lower presser plates 53 ′ and 54 by a protruding screw portion f of a shaft facing stopper 50 described later and a nut 55. The outer peripheral edge of the sealing diaphragm 57 is sandwiched between the lower bent edge of the inner casing 51 and the fixed stopper 46, and is integrally coupled. The central portion of the sealing diaphragm 57 is coupled through the shaft-facing stopper 50 disposed opposite to the upper end portion of the valve shaft 12. The shaft-facing stopper 50 is provided with a protruding portion g as a locking portion that expands in the radial direction on the upper side of the main portion that is in contact with and away from the upper end portion of the valve shaft 12. Note that the central portion of the sealing diaphragm 57 is sandwiched between the umbrella portion g and the lower end portion of the tubular member 56, and is coupled to each other.
[0019]
The negative pressure chamber 58 is limited by the first lift diaphragm 52, the sealing diaphragm 57, and the inner casing 51, whereby the first lift diaphragm 52 is configured as a negative pressure sensitive diaphragm. Note that a vent hole (not shown) is formed in the upper lid 53, and atmospheric pressure always acts on the first lift diaphragm 52 through the vent hole.
In the negative pressure chamber 58, a return spring 59 that is contracted between the lower presser plate 54 and the lower end portion of the inner casing 51 is accommodated, and an upper limit position is determined by a stopper 62 of the upper lid 53. One end of a negative pressure introducing pipe 60 is connected to the upper casing 38 and the inner casing 51. The negative inlet pipe 60 is connected to the negative pressure source 34 via the open / close electromagnetic valve 61, and the open / close electromagnetic valve 61 is driven and controlled by the controller 36.
[0020]
Here, when the negative pressure chamber 58 is driven with negative pressure supplied, the first lift diaphragm 52 moves the shaft-facing stopper 50 downward in the valve lift direction O to move the movable stopper 44 at the first lift restricting position A1. In this case, the valve shaft 12 side can be positioned at the first lift position P1.
In such a configuration, in FIG. 1, the valve body 13 is brought into contact with the valve seat 9 by the urging force of the return spring 32 through the valve shaft 12 in an operation state where the engine 1 is stopped or the engine does not perform EGR. The state which the valve body 13 is located in zero, ie, the fully closed position P0 is shown. During this time, the negative pressure chambers 47 and 58 of the first stopper device 17 and the second stopper device 16 are not supplied with negative pressure, and the shaft-facing stopper 50 is held in the inoperative state shown by the solid line in FIG.
[0021]
Next, as shown in the map for setting the EGR gas flow rate in FIG. 4, a large amount of EGR gas flow rate q1 is required during the operation in the medium speed / medium load region E1, and in this case, the engine controller 36 has a negative pressure. The duty control valve 35 is duty-driven so as to adjust the valve body 13 to the opening degree at which the control negative pressure supplied to the chamber 31 can obtain the EGR gas flow rate corresponding to the operation region. As a result, the control negative pressure of the negative pressure chamber 31 is adjusted, and the valve opening degree control diaphragm 22 is further displaced downward in accordance with this to move the valve shaft 12 and the valve body 13 downward on the valve lift direction O side. . Therefore, a predetermined amount of exhaust gas recirculation is made in the intake passage 3 of the engine 1 according to the operating state, and NOx in the exhaust gas can be reduced.
[0022]
Next, the operating state of the engine changes, and as shown in FIG. 4, the operating range moves from the medium speed / medium load range E1 side to the high speed / high load range E2 side. The controller 36 sets the control negative pressure in accordance with the operation range, drives the duty control valve 35 to obtain the control negative pressure, and controls the valve opening degree diaphragm 22 with the control negative pressure. Driven to adjust the valve body 13 to a minute opening range. Further, the controller 36 turns on the first electromagnetic valve 61, supplies negative pressure to the negative pressure chamber 58 of the first stopper device 17, drives the first lift diaphragm 52, and the shaft facing stopper 50 is shown in FIG. The gap is lowered by a distance corresponding to the clearance t1, and comes into contact with the movable stopper 44 at the first lift restricting position A1 (see FIG. 2A). As a result, the valve shaft 12 that is about to move to the closing side due to fluctuations in exhaust pressure comes into contact with the shaft-facing stopper 50 and is stably held at the relatively small first lift position P <b> 1 regulated by the movable stopper 44. It becomes. For this reason, exhaust gas recirculation is performed in the intake passage 3 of the engine 1 at a predetermined flow rate according to the operating state, and NOx and smoke in the exhaust gas can be reduced.
[0023]
Further, when the operating state of the engine changes and the supply flow rate of EGR gas shifts from qa to qb in the operation range from qa to high-speed and high-load region E2 side as shown in FIG. 36 also turns on the second electromagnetic valve 49 together with the first electromagnetic valve 61 to supply negative pressure to both the negative pressure chambers 58 and 47 of the first stopper device 17 and the second stopper device 16, and the first and second lifts. The diaphragms 52 and 37 are driven. At this time, the movable stopper 44 is moved upward from the first lift restricting position A1 by the upward operating force of the second lift diaphragm 37 having a larger negative pressure receiving area than the first lift diaphragm 52, and the stopper portion e2 is fixed to the fixed stopper 46. And is held at the second lift restricting position A2. In conjunction with the raising operation of the movable stopper 44, the shaft-facing stopper 50 and the valve shaft 12 are also operated in the valve lift decreasing direction C, and the valve shaft 12 and the valve body are raised corresponding to the clearance t2 shown in FIG. As shown in FIG. 2B, 13 is stably held at the second lift position P2 that is smaller than the first lift position P1. For this reason, the EGR gas having a supply flow rate corresponding to the operating state is exhausted and recirculated to the intake passage 3 of the engine 1, and NOx in the exhaust gas can be reliably reduced, and the desired amount of EGR gas can be obtained. A large amount of EGR gas is prevented from being refluxed, and smoke can be prevented from increasing.
[0024]
After that, when the engine operating range shifts to the high speed and high load range E2, the controller 36 turns off all of the first solenoid valve 61, the second solenoid valve 49, and the duty control valve 35, and the shaft facing stopper 50 and the valve body. The side 13 is moved in the valve lift decreasing direction C and returned to the fully closed position P0 indicated by the solid line in FIG. 1, and the EGR gas flow rate is maintained at zero.
Accordingly, when the valve body 13 moves in two steps to the first and second lift positions P1 and P2 in the minute opening range and the lift amount decreases and displaces, the valve body 13 is oscillated and displaced slightly at each lift position. The EGR gas flow rate does not become unstable, the required EGR gas flow rate can be secured in all engine operating ranges, NOx reduction can be ensured, and the occurrence of smoke due to the increase in EGR amount can be suppressed. Can do. Further, since the valve body 13 is prevented from vibrational displacement in each of a plurality of minute opening ranges, it is possible to effectively prevent premature breakage due to vibration as in the conventional device, and the valve actuator 15 and thus the EGR valve. There is an advantage that the durability and reliability of the device 5 can be secured.
[0025]
The present invention is not limited to the above embodiment, and various changes and modifications can be made to the above embodiment within the scope of the claims. For example, not only the configuration in which the valve body is disposed on the upstream side of the valve seat, but also when the valve body is disposed on the downstream side of the valve seat and the opening degree of the valve body is small, between the upstream side and the downstream side. The present invention can also be applied to cases where a large differential pressure is generated and the opening of the valve body changes in an oscillating manner.
In addition, the controller 36 drives the diaphragm 22 and the diaphragm 52 when positioning the valve body 13 at the first lift position P1, but only the diaphragm 52 is driven to regulate the first lift amount. You may control as follows.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, the valve body side can be sequentially positioned at the first lift position and the second lift position of a smaller lift by switching the negative pressure of the second and third negative pressure chambers. Therefore, even if the first lift position and the second lift position are minute lift positions, the valve shaft is positioned by the movable stopper shaft and the fixed stopper via the shaft-facing stopper at each position, and the vibration displacement on the valve shaft side Can be reliably suppressed, minute valve openings in a plurality of stages according to the operating state of the engine can be stably ensured, and the EGR gas flow rate can be sequentially switched to a plurality of minute flow rates.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust gas recirculation device for an internal combustion engine equipped with an EGR valve device as one embodiment of the present invention.
2A and 2B are diagrams for explaining valve switching operation characteristics of the EGR valve device of FIG. 1, in which FIG. 2A shows the position of the valve body when the movable stopper is in the first lift restricting position, and FIG. The position on the valve body side when in the second lift restricting position is shown.
FIG. 3 is a schematic configuration diagram of an exhaust gas recirculation device for an internal combustion engine equipped with a conventional EGR valve device.
FIG. 4 is a characteristic diagram of an EGR gas flow rate setting map used by an exhaust gas recirculation device for a normal internal combustion engine.
[Explanation of symbols]
1 Engine 4 EGR passage 6 Valve housing 12 Valve shaft 13 Valve body 15 Valve actuator 16 Second stopper device 17 First stopper device 22 Valve opening control diaphragm 37 Second lift diaphragm 44 Movable stopper 46 Fixed stopper 50 Axis facing stopper 52 First lift diaphragm A1 First lift restriction position A2 Second lift restriction position O Valve lift direction P1 First lift position P2 Second lift position

Claims (1)

弁軸の一端側に取り付けられ上記弁軸に弁リフト方向への開弁力を付与する負圧感応式の弁開度制御用ダイヤフラムと上記弁軸に弁リフト減少方向への閉弁付勢力を付与するリターンスプリングとの作動により弁軸の他端の弁体が内燃機関の排気ガス還流路断面積を増減調整するEGR弁装置において、上記弁軸の一端側に取り付けられたダイヤフラムを収容する第1の負圧室と、上記第1負圧室の弁軸方向最上位置に配設された第2負圧室と、上記第2負圧室に収容された第1リフト用ダイヤフラムの作動により上記弁軸を開弁方向に押動する主部及び該主部の上方位置にて主部よりも幅方向に拡大された傘部とから形成された軸対向ストッパと、上記第1負圧室と上記第2負圧室との間に形成された第3の負圧室と、上記第3負圧室に収容された第2リフト用ダイヤフラムの作動により上記第2負圧室側に移動せしめられ上記傘部に当接して上記軸対向ストッパの移動量を規制すると共に上記第2リフト用ダイヤフラムが非作動のとき上記軸対向ストッパの傘部に対し所定の隙間を存するように配設された可動ストッパと、上記第2負圧室と上記第3負圧室との間に位置し、上記可動ストッパの第2負圧室側への移動量を規制すると共に上記第2リフト用ダイヤフラムが非作動のとき可動ストッパに対し上記所定の隙間よりも小さい隙間を持って配設された固定ストッパとを具備し、上記第2負圧室が負圧駆動し軸対向ストッパの傘部が弁リフト方向に移動して上記可動ストッパに当接することで弁軸側を第1リフト位置に位置決めし、上記第2負圧室と共に上記第3負圧室が負圧駆動することで上記可動ストッパが弁リフト減少方向に作動して上記固定ストッパに当接することで上記可動ストッパと当接状態の軸対向ストッパが弁軸側を第1リフト位置より小リフトの第2リフト位置に位置決めすることを特徴とするEGR弁装置。 A negative pressure sensitive diaphragm for controlling the opening of the valve, which is attached to one end of the valve shaft and applies a valve opening force in the valve lift direction to the valve shaft, and a valve closing biasing force in the valve lift decreasing direction on the valve shaft. In the EGR valve device in which the valve body at the other end of the valve shaft adjusts the cross-sectional area of the exhaust gas recirculation path of the internal combustion engine by adjusting the return spring to be applied, the diaphragm attached to the one end side of the valve shaft is accommodated. The first negative pressure chamber, the second negative pressure chamber disposed at the uppermost position in the valve axis direction of the first negative pressure chamber, and the first lift diaphragm accommodated in the second negative pressure chamber act as described above. A shaft opposing stopper formed of a main portion that pushes the valve shaft in the valve opening direction, and an umbrella portion that is expanded in the width direction from the main portion at a position above the main portion; and the first negative pressure chamber; A third negative pressure chamber formed between the second negative pressure chamber and the third negative pressure chamber; When the second lift diaphragm is inactive while restricting the amount of movement of the shaft opposite the stopper in contact with the valve head is moved in the second negative pressure chamber side by the operation of the second lifting diaphragm which is and disposed a movable stopper to lie the umbrella predetermined gap against the above shaft opposite the stopper, positioned between the second negative pressure chamber and the third vacuum chamber, the second of the movable stopper comprising the said fixed stopper second lift diaphragm is disposed with a small gap than the predetermined gap with respect to the movable stopper when inoperative while regulating the movement amount in the negative pressure chamber side, the The second negative pressure chamber is driven by negative pressure, and the umbrella portion of the shaft facing stopper moves in the valve lift direction to contact the movable stopper, thereby positioning the valve shaft side at the first lift position, and the second negative pressure chamber. And the third negative pressure chamber By the pressure driving, the movable stopper operates in the valve lift decreasing direction and contacts the fixed stopper, so that the shaft-facing stopper in contact with the movable stopper moves the valve shaft side closer to the valve shaft side than the first lift position. An EGR valve device that is positioned at a two-lift position .
JP29245799A 1999-10-14 1999-10-14 EGR valve device Expired - Fee Related JP3714057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29245799A JP3714057B2 (en) 1999-10-14 1999-10-14 EGR valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29245799A JP3714057B2 (en) 1999-10-14 1999-10-14 EGR valve device

Publications (2)

Publication Number Publication Date
JP2001115902A JP2001115902A (en) 2001-04-27
JP3714057B2 true JP3714057B2 (en) 2005-11-09

Family

ID=17782060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29245799A Expired - Fee Related JP3714057B2 (en) 1999-10-14 1999-10-14 EGR valve device

Country Status (1)

Country Link
JP (1) JP3714057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103021A (en) * 2007-10-23 2009-05-14 Aisan Ind Co Ltd Passage switching valve

Also Published As

Publication number Publication date
JP2001115902A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
JP4309493B2 (en) Fuel injection mechanism for internal combustion engine
JPH09189364A (en) Valve
US20150253783A1 (en) Pressure reducing valve and pressure regulating device
JP3714057B2 (en) EGR valve device
JP3940862B2 (en) Exhaust gas recirculation control valve
JPH0972250A (en) Exhaust gas recirculation system
JPS58122354A (en) Device for recirculating and controlling exhaust gas
JPS5845593B2 (en) Additional fluid control device for internal combustion engines
JPH04181102A (en) Potentiometer
JP2000227050A (en) Exhaust gas recirculating valve device
JP4064390B2 (en) Exhaust gas recirculation valve and its sealing device
WO2020050221A1 (en) Pressure control valve
JPH11200959A (en) Egr valve structure
JPH06108923A (en) Exhaust gas reflux controller
JP2006057819A (en) Electromagnetic proportional valve
JP3639205B2 (en) Idle speed control device for internal combustion engine
JP2890883B2 (en) Solenoid valve for fluid control
JPH09144611A (en) Exhaust gas recirculation control valve device
EP0075266B1 (en) Exhaust gas recirculation (egr) system with a vacuum regulator in an automotive vehicle
JP3154610B2 (en) safety valve
JP2003269262A (en) Exhaust gas recirculation system
JP2006057820A (en) Electromagnetic proportional valve
JPH09217659A (en) Exhaust gas recirculating device
JPH11200958A (en) Egr valve
JPS61167155A (en) Pressure regulator for internal-combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees