JP3713827B2 - Driving force control method and driving force control device for four-wheel drive vehicle - Google Patents

Driving force control method and driving force control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP3713827B2
JP3713827B2 JP20703696A JP20703696A JP3713827B2 JP 3713827 B2 JP3713827 B2 JP 3713827B2 JP 20703696 A JP20703696 A JP 20703696A JP 20703696 A JP20703696 A JP 20703696A JP 3713827 B2 JP3713827 B2 JP 3713827B2
Authority
JP
Japan
Prior art keywords
driving force
differential
rotational speed
wheels
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20703696A
Other languages
Japanese (ja)
Other versions
JPH1044801A (en
Inventor
政義 武田
秀昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP20703696A priority Critical patent/JP3713827B2/en
Priority to US08/906,520 priority patent/US6059065A/en
Priority to DE19734037A priority patent/DE19734037B4/en
Priority to DE19758968A priority patent/DE19758968B8/en
Publication of JPH1044801A publication Critical patent/JPH1044801A/en
Application granted granted Critical
Publication of JP3713827B2 publication Critical patent/JP3713827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、四輪駆動車の各車輪に伝達される駆動力を制御する技術に関するものである。
【0002】
【従来の技術】
従来より、エンジンからの駆動力を左右前後の四つの車輪に伝達して悪路不整地等の走破能力を向上させた四輪駆動車が実用化されている。
ところが、このような四輪駆動車においても、一つの車輪がスリップして空転すると、他の車輪に駆動力が伝達されなくなり、車両の推進力が低下してしまうという問題があった。つまり、一般的にこの種の四輪駆動車では、エンジンからの駆動力を、センタ・ディファレンシャルギヤ(差動装置)を介して前輪用の駆動軸と後輪用の駆動軸とに分配し、更に、前輪用の駆動軸に分配された駆動力をフロント・ディファレンシャルギヤを介して左右前輪に分配すると共に、後輪用の駆動軸に分配された駆動力をリア・ディファレンシャルギヤを介して左右後輪に分配するようにしているため、何れか一つの車輪が空転してしまうと、各ディファレンシャルギヤの作用によって他の車輪に駆動力が伝達されなくなってしまうのである。
【0003】
そこで、このような問題を解決するための技術として、例えば特開昭60−248440号公報には、各車輪のスリップ状態を検出し、スリップが発生した車輪に対してブレーキ装置により制動力を与えて空転を抑えることにより、他の車輪に駆動力が伝達されるようにすることが提案されている。つまり、この技術では、空転した車輪に伝達される駆動力をブレーキにより低減することで、各車輪間の回転速度差(所謂、差動)を抑制するようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報に開示の技術は、ただ単に空転した車輪に対して制動力を与えるもの(換言すれば、駆動力を低減するもの)であるため、車両の走行安定性を損ねてしまう可能性がある。
【0005】
例えば、走行中に左右前輪の何れか一方が空転し、且つ、左右後輪間にも回転速度差が生じているといった状況において、空転した上記前輪に制動(ブレーキ)がかけられると、各ディファレンシャルギヤの作用によって後輪に伝達される駆動力が増加し、左右後輪間の回転速度差が一層大きくなってしまう。そして、この結果、車両の挙動がオーバステア傾向(スピン傾向)になって、走行安定性が損なわれてしまうのである。
【0006】
本発明は、こうした問題に鑑みなされたものであり、四輪駆動車の推進力を、走行安定性を損ねることなく確実に向上させることを目的としている。
【0007】
【課題を解決するための手段、及び発明の効果】
上記目的を達成するためになされた請求項1に記載の本発明は、左右前後の四つの車輪を駆動輪として備える四輪駆動車に用いられ、該四輪駆動車に搭載された動力源から左右前輪の各々に伝達される駆動力を調整して、該左右前輪間の回転速度差を抑制する第1の差動抑制制御と、前記動力源から左右後輪の各々に伝達される駆動力を調整して、該左右後輪間の回転速度差を抑制する第2の差動抑制制御と、を実行する四輪駆動車の駆動力制御方法であって、前記第2の差動抑制制御における前記左右後輪間の回転速度差の制御目標値を、前記第1の差動抑制制御における前記左右前輪間の回転速度差の制御目標値よりも小さい値に設定することを特徴としている。
【0008】
この駆動力制御方法によれば、左右前輪間の回転速度差(即ち、左前輪と右前輪との回転速度差)が大きくなると、第1の差動抑制制御によって駆動源から左右前輪の各々に伝達される駆動力が調整されて、その左右前輪間の回転速度差が抑制され、また、左右後輪間の回転速度差(即ち、左後輪と右後輪との回転速度差)が大きくなると、第2の差動抑制制御によって駆動源から左右後輪の各々に伝達される駆動力が調整されて、その左右後輪間の回転速度差が抑制されるのであるが、上記2つの制御目標値の大小関係により、左右前輪間と左右後輪間との双方に回転速度差が生じた際には、第2の差動抑制制御による左右後輪に対する駆動力調整が、第1の差動抑制制御による左右前輪に対する駆動力調整よりも優先して実行されることとなる。
【0009】
よって、請求項1に記載の四輪駆動車の駆動力制御方法によれば、左右前輪間の回転速度差よりも、左右後輪間の回転速度差の方が優先して抑制されるようになるため、左右後輪間に回転速度差が生じて車両の挙動がオーバステア傾向(スピン傾向)になってしまうことを確実に防止することができる。この結果、走行安定性が損なわれてしまうことを防止しつつ、車両の推進力(換言すれば、各車輪への駆動力の伝達効率)を確実に向上させることができるようになる。
【0010】
次に、請求項2に記載の本発明は、請求項1に記載の四輪駆動車の駆動力制御方法において、更に、前記動力源から左右前輪と左右後輪とに伝達される駆動力を調整して、該前後輪間の回転速度差を抑制する第3の差動抑制制御を実行すると共に、前記第2の差動抑制制御における前記左右後輪間の回転速度差の制御目標値を、前記第1の差動抑制制御における前記左右前輪間の回転速度差の制御目標値及び前記第3の差動抑制制御における前記前後輪間の回転速度差の制御目標値よりも小さい値に設定することを特徴としている。
【0011】
つまり、請求項2に記載の駆動力制御方法では、左右前輪間の回転速度差を抑制するための第1の差動抑制制御と左右後輪間の回転速度差を抑制するための第2の差動抑制制御に加えて、更に、前後輪間の回転速度差(即ち、左前輪と右前輪の回転速度の合計と、左後輪と右後輪の回転速度の合計との差)を抑制するために動力源から左右前輪と左右後輪とに伝達される駆動力を調整する第3の差動抑制制御を実行するようにしており、この駆動力制御方法においても、上記3つの制御目標値の大小関係により、第2の差動抑制制御による左右後輪に対する駆動力調整が、第1の差動抑制制御による左右前輪に対する駆動力調整、及び第3の差動抑制制御による前後輪に対する駆動力調整よりも優先して実行されるようにしている。
【0012】
よって、請求項2に記載の駆動力制御方法によっても、各車輪の回転速度に差が生じた際に、左右後輪間の回転速度差が優先して抑制されるようになり、走行安定性を損なうことなく、車両の推進力を確実に向上させることができる。
ところで、請求項1に記載の駆動力制御方法は、請求項3に記載の駆動力制御装置によって実施することができる。
【0013】
即ち、請求項3に記載の駆動力制御装置は、左右前後の四つの車輪を駆動輪として備える四輪駆動車に用いられ、該四輪駆動車に搭載された動力源から左右前輪の各々に伝達される駆動力を調整して、該左右前輪間の回転速度差を抑制する第1の差動抑制手段と、前記動力源から左右後輪の各々に伝達される駆動力を調整して、該左右後輪間の回転速度差を抑制する第2の差動抑制手段と、を備えた四輪駆動車の駆動力制御装置であって、
前記第2の差動抑制手段における前記左右後輪間の回転速度差の制御目標値が、前記第1の差動抑制手段における前記左右前輪間の回転速度差の制御目標値よりも小さい値に設定されていることを特徴としている。
【0014】
そして、このような請求項3に記載の駆動力制御装置によれば、請求項1に記載の駆動力制御方法による前述の効果を得ることができる。
ここで、請求項3に記載の駆動力制御装置における第1の差動抑制手段及び第2の差動抑制手段は、請求項4に記載の如く構成することができる。
【0015】
即ち、請求項4に記載の駆動力制御装置では、まず、第1の差動抑制手段が、前記動力源から左右前輪の各々に伝達される駆動力を外部からの指令に応じて調整する第1の調整手段と、第1の差動検出手段と、第1の制御手段とを備えている。
【0016】
そして、第1の差動検出手段は、左右前輪の各々について、他方の車輪との回転速度差を検出して、その検出した各回転速度差を、対応する車輪の差動量として出力し、第1の制御手段は、左右前輪のうち第1の差動検出手段から出力された差動量が第1の所定値以上である車輪に伝達される駆動力を低減させるための指令を、第1の調整手段に出力する。すると、第1の調整手段は、第1の制御手段からの指令に応じて、第1の差動検出手段から出力された差動量が第1の所定値以上である車輪に伝達される駆動力を低減させ、これにより、左右前輪のうち回転速度が大きい方の車輪へ伝達される駆動力が低減されて、左右前輪間の回転速度差が抑制される。
【0017】
また同様に、請求項4に記載の駆動力制御装置では、第2の差動抑制手段が、前記動力源から左右後輪の各々に伝達される駆動力を外部からの指令に応じて調整する第2の調整手段と、第2の差動検出手段と、第2の制御手段とを備えている。
【0018】
そして、第2の差動検出手段は、左右後輪の各々について、他方の車輪との回転速度差を検出して、その検出した各回転速度差を、対応する車輪の差動量として出力し、第2の制御手段は、左右後輪のうち第2の差動検出手段から出力された差動量が第2の所定値以上である車輪に伝達される駆動力を低減させるための指令を、第2の調整手段に出力する。すると、第2の調整手段は、第2の制御手段からの指令に応じて、第2の差動検出手段から出力された差動量が第2の所定値以上である車輪に伝達される駆動力を低減させ、これにより、左右後輪のうち回転速度が大きい方の車輪へ伝達される駆動力が低減されて、左右後輪間の回転速度差が抑制される。
【0019】
そして更に、請求項4に記載の駆動力制御装置では、前記第2の所定値が、前記第1の所定値よりも小さい値に設定されており、この設定により、左右前輪間と左右後輪間との双方に回転速度差が生じた際に、左右後輪間の回転速度差を抑制するための第2の差動抑制手段による左右後輪に対する駆動力調整が、左右前輪間の回転速度差を抑制するための第1の差動抑制手段による左右前輪に対する駆動力調整よりも、優先して行われるようにしている。
【0020】
つまり、第1の差動抑制手段においては、第1の差動検出手段により、左前輪の回転速度VWFL と右前輪の回転速度VWFR との差[VWFL −VWFR ]が、左前輪の差動量△VFLとして出力されると共に、右前輪の回転速度VWFR と左前輪の回転速度VWFL との差[VWFR −VWFL ]が、右前輪の差動量△VFRとして出力され、第1の制御手段及び第1の調整手段により、左右前輪のうち上記差動量△VFL,△VFRが第1の所定値N1以上である車輪への駆動力が低減される。
【0021】
また、第2の差動抑制手段においては、第2の差動検出手段により、左後輪の回転速度VWRL と右後輪の回転速度VWRR との差[VWRL −VWRR ]が、左後輪の差動量△VRLとして出力されると共に、右後輪の回転速度VWRR と左後輪の回転速度VWRL との差[VWRR −VWRL ]が、右後輪の差動量△VRRとして出力され、第2の制御手段及び第2の調整手段により、左右後輪のうち上記差動量△VRL,△VRRが第2の所定値N2以上である車輪への駆動力が低減される。
【0022】
よって、左右前輪に対する駆動力調整は、左右前輪間の回転速度差(差動量△VFL,△VFR)が第1の所定値N1以上になると行われるのに対し、左右後輪に対する駆動力調整は、左右後輪間の回転速度差(差動量△VRL,△VRR)が、第1の所定値N1よりも小さい第2の所定値N2(<N1)以上になると行われることとなり、この結果、左右前輪間と左右後輪間との双方に回転速度差が生じた際に、左右後輪に対する駆動力調整が優先して行われるのである。
【0023】
そして、このような請求項4に記載の駆動力制御装置によれば、請求項1に記載の駆動力制御方法による効果、即ち、走行安定性が損なわれてしまうことを防止しつつ車両の推進力を確実に向上させることができる、という効果を簡単な構成で得ることができる。
【0024】
一方、請求項5に記載の四輪駆動車の駆動力制御装置では、請求項4に記載の駆動力制御装置において、第1の差動検出手段が、左右前輪の各々について、他方の車輪との回転速度差を検出することに加えて、更に、左右前輪の回転速度の平均値と左右後輪の回転速度の平均値との差を前後輪回転速度差として検出すると共に、左右前輪の各々について検出した各回転速度差に前記前後輪回転速度差を各々加算した値を、左右前輪の各々に対応する前記差動量として出力するように構成されている。
【0025】
また同様に、第2の差動検出手段が、左右後輪の各々について、他方の車輪との回転速度差を検出することに加えて、更に、左右後輪の回転速度の平均値と左右前輪の回転速度の平均値との差を後前輪回転速度差として検出すると共に、左右後輪の各々について検出した各回転速度差に前記後前輪回転速度差を各々加算した値を、左右後輪の各々に対応する前記差動量として出力するように構成されている。
【0026】
つまり、請求項5に記載の駆動力制御装置では、第1の差動検出手段が、下記の式1,式2に示すように、左右前輪の回転速度VWFL ,VWFR の平均値と左右後輪の回転速度VWRL ,VWRR の平均値との差である前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]を、左右前輪の各々について検出した各回転速度差[VWFL −VWFR ],[VWFR −VWFL ]に各々加算して、その加算した各値を、左右前輪の各々に対応する差動量△VFL,△VFRとして第1の制御手段へ出力する。
【0027】
また、第2の差動検出手段が、下記の式3,式4に示すように、左右後輪の回転速度VWRL ,VWRR の平均値と左右前輪の回転速度VWFL ,VWFR の平均値との差である後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]を、左右後輪の各々について検出した各回転速度差[VWRL −VWRR ],[VWRR −VWRL ]に各々加算して、その加算した各値を、左右後輪の各々に対応する差動量△VRL,△VRRとして第2の制御手段へ出力する。
【0028】
【数1】

Figure 0003713827
【0029】
このような請求項5に記載の駆動力制御装置によれば、左右前輪の合計回転速度[VWFL +VWFR ]が左右後輪の合計回転速度[VWRL +VWRR ]よりも大きくなるほど、左右前輪に対応する各差動量△VFL,△VFRが大きな値となる。そして、左右前輪の差動量△VFL,△VFRが両方共に第1の所定値N1以上になると、第1の制御手段及び第1の調整手段によって、左右前輪の両方への駆動力が低減され、これにより、前後輪間の回転速度差(即ち、左右前輪の合計回転速度と左右後輪の合計回転速度との差)が抑制される。
【0030】
また逆に、左右後輪の合計回転速度[VWRL +VWRR ]が左右前輪の合計回転速度[VWFL +VWFR ]よりも大きくなるほど、左右後輪に対応する各差動量△VRL,△VRRが大きな値となる。そして、左右後輪の差動量△VRL,△VRRが両方共に第2の所定値N2以上になると、第2の制御手段及び第2の調整手段により、左右後輪の両方への駆動力が低減され、これにより前後輪間の回転速度差が抑制される。
【0031】
従って、請求項5に記載の駆動力制御装置によれば、請求項4に記載の駆動力制御装置による効果に加えて、更に、前後輪間の回転速度差をも抑制することができる。
ところで、請求項4又は請求項5に記載の四輪駆動車の駆動力制御装置において、第1の差動検出手段及び第2の差動検出手段は、前述した各回転速度差を、車両に搭載されたディファレンシャルギヤの差動状態や、車輪を駆動する軸部のトルク等によって検出するように構成しても良いが、請求項6に記載のように、四つの各車輪の回転速度を各々検出するための車輪速度センサを備え、第1の差動検出手段及び第2の差動検出手段が、前記車輪速度センサからの検出信号に基づき、各車輪に対応する前記差動量を出力するように構成すれば、簡単な構成で且つ正確に、各車輪に伝達される駆動力を制御することができるようになる。
【0032】
一方、請求項4ないし請求項6の何れかに記載の四輪駆動車の駆動力制御装置において、第1の調整手段は、センタ・ディファレンシャルギヤによって前輪用の駆動軸に分配された駆動力を外部指令に応じて左右前輪に分配する電子制御式のフロント・ディファレンシャルギヤによって構成することができ、また同様に、第2の調整手段は、センタ・ディファレンシャルギヤによって後輪用の駆動軸に分配された駆動力を外部指令に応じて左右後輪に分配する電子制御式のリア・ディファレンシャルギヤによって構成することができる。
【0033】
また、第1の調整手段及び第2の調整手段を、請求項7に記載のように構成すれば、一層大きな効果を得ることができる。
即ち、請求項7に記載の駆動力制御装置においては、第1の調整手段が、左右前輪の各々に、外部からの指令に応じて制動力を発生させることにより、駆動源から左右前輪の各々に伝達される駆動力を調整するように構成されており、第2の調整手段が、左右後輪の各々に、外部からの指令に応じて制動力を発生させることにより、駆動源から左右後輪の各々に伝達される駆動力を調整するように構成されている。そして、このような請求項7に記載の駆動力制御装置によれば、車両に搭載される既存のブレーキシステムの大部分を用いて、第1及び第2の調整手段を構成することができるため、装置の簡略化及び車両の低重量化を図ることができるのである。
【0034】
一方更に、請求項2に記載の駆動力制御方法は、請求項8に記載の駆動力制御装置によって実施することができる。
即ち、請求項8に記載の駆動力制御装置は、請求項3に記載の四輪駆動車の駆動力制御装置において、前記動力源から左右前輪と左右後輪とに伝達される駆動力を調整して、該前後輪間の回転速度差を抑制する第3の差動抑制手段を備えると共に、前記第2の差動抑制手段における前記左右後輪間の回転速度差の制御目標値が、前記第1の差動抑制手段における前記左右前輪間の回転速度差の制御目標値及び前記第3の差動抑制手段における前記前後輪間の回転速度差の制御目標値よりも小さい値に設定されていることを特徴としている。
【0035】
そして、このような請求項8に記載の駆動力制御装置によれば、請求項2に記載の駆動力制御方法による前述の効果、即ち、各車輪の回転速度に差が生じた際に、左右後輪間の回転速度差が優先して抑制されるようになり、走行安定性を損なうことなく車両の推進力を確実に向上させることができる、という効果を得ることができる。
【0036】
【発明の実施の形態】
以下、本発明が適用された実施例について図面を用いて説明する。尚、本発明の実施の形態は、下記の実施例に何ら限定されることなく、本発明の技術的範囲に属する限り、種々の形態を採り得ることは言うまでもない。
【0037】
まず図1は、本発明が適用された四輪駆動車の制御系全体の構成を表わす概略構成図である。
図1に示す如く、車両の各車輪(左前輪FL,右前輪FR,左後輪RL,右後輪RR)には、各車輪FL〜RRに制動力を与えるための油圧式のブレーキ装置(以下、ホイールシリンダ:W/Cという)2FL,2FR,2RL,2RR、及び各車輪の回転速度(以下、車輪速度ともいう)を検出するための車輪速度センサ4FL,4FR,4RL,4RRが夫々設けられている。
【0038】
一方、エンジン6から変速機8を介して出力されるトルクは、センタ・ディファレンシャルギヤ10Cによって、前輪用の駆動軸11Fと後輪用の駆動軸11Rとに分配され、更に、前輪用の駆動軸11Fのトルクが、フロント・ディファレンシャルギヤ10Fによって左右前輪FL,FRの各々に分配され、後輪用の駆動軸11Rのトルクが、リア・ディファレンシャルギヤ10Rによって左右後輪RL,RRの各々に分配されるようになっている。
【0039】
また、エンジン6には、その回転速度,吸入空気量,冷却水温,スロットルバルブの開度等の運転状態を検出するセンサ群12が設けられており、これらセンサ群12からの検出信号、及び各車輪速度センサ4FL〜4RRからの検出信号等が、電子制御装置(以下、ECUという)20に入力されている。
【0040】
そして、ECU20は、センサ群12からの検出信号に基づきエンジン6の燃料噴射量や点火時期等を制御すると共に、ブレーキペダル32の踏込によりブレーキ油を吐出するマスタシリンダ(以下、M/Cという)34から各車輪FL〜RRのW/C2FL〜2RRに至る油圧経路に設けられた油圧回路40内の各種アクチュエータを制御することにより、車両制動時に車輪に生じたスリップを抑制するアンチスキッド制御(以下、ABS制御という)、及び、各車輪FL〜RRの回転速度差を抑制する差動制限制御(以下、駆動力制御という)を実行する。
【0041】
尚、ECU20は、CPU,ROM,RAM等を備えたマイクロコンピュータを中心に構成されており、該ECU20には、ブレーキペダル32の操作時にオン(ON)状態となるブレーキスイッチ36からの検出信号も入力されている。また、エンジン6の吸気系には、運転者のアクセル操作に応じて開度調節されるスロットルバルブ(図示省略)とは別に、サブスロットルSSが設けられており、このサブスロットルSSは、ECU20により車両の運転状態に応じて開度調節が行われるようになっている。
【0042】
次に、油圧回路40について説明する。
図2に示す如く、油圧回路40は、M/C34の2個の油路から圧送されるブレーキ油を、左前輪FLと右後輪RR、右前輪FRと左後輪RLに夫々供給するための2系統の油圧経路42,44を備えている。
【0043】
そして、油圧経路42において、左前輪FLのW/C2FLに至る経路42FLと、右後輪RRのW/C2RRに至る経路42RRとには、夫々、その経路42FL,42RRを連通する増圧位置とその経路を遮断する保持位置とに切換可能な電磁式の増圧制御弁46FL,46RRと、各W/C2FL,2RR内のブレーキ油を排出するための電磁式の減圧制御弁48FL,48RRとが設けられている。
【0044】
また同様に、油圧経路44において、右前輪FRのW/C2FRに至る経路44FRと、左後輪RLのW/C2RLに至る経路44RLとには、夫々、その経路44FR,44RLを連通する増圧位置とその経路を遮断する保持位置とに切換可能な電磁式の増圧制御弁46FR,46RLと、各W/C2FR,2RL内のブレーキ油を排出するための電磁式の減圧制御弁48FR,48RLとが設けられている。
【0045】
尚、増圧制御弁46FL,46FR,46RL,46RRは、通常、増圧位置となっており、ECU20からの通電により保持位置に切り換えられる。また、減圧制御弁48FL,48FR,48RL,48RRは、通常、遮断状態になっており、ECU20からの通電により連通状態となって、対応するW/C2FL〜2RR内のブレーキ油を排出する。
【0046】
一方、油圧経路42において、増圧制御弁46FL,46RRよりもM/C34側の経路には、その経路を連通・遮断するマスタシリンダカットバルブ(以下、SM弁という)50aが設けられている。そして、このSM弁50aと並列に、M/C34側の油圧が増圧制御弁46FL,46RR側の油圧より大きくなったときに連通して、M/C34から出力された圧油を増圧制御弁46FL,46RR側に供給するリリーフ弁54aが接続されている。
【0047】
また同様に、油圧経路44において、増圧制御弁46FR,46RLよりもM/C34側の経路にも、その経路を連通・遮断するSM弁50bが設けられている。そして、このSM弁50bと並列に、M/C34側の油圧が増圧制御弁46FR,46RL側の油圧より大きくなったときに連通して、M/C34から出力された圧油を増圧制御弁46FR,46RL側に供給するリリーフ弁54bが接続されている。
【0048】
尚、SM弁50a,50bは、電源OFF時には連通状態となっており、ECU20からの通電により遮断状態に切り換えられる。
SM弁50a,50bには、それぞれ並列に差圧弁PRVa,PRVbが接続されており、この各差圧弁PRVa,PRVbは、M/C34からW/C側へのブレーキ油の流動は禁止し、W/C側からM/C34へのブレーキ油の流動は、W/C側のブレーキ油圧がM/C34側の圧力より所定圧以上高くなった際に許容する。この所定圧として、50atm〜200atmに設定してよく、各差圧弁PRVa,PRVbは、後述するポンプ60,62の吐出時において、SM弁50a,50bよりもW/C側の管路内が所定圧以上にならないように管路保護を行う。
【0049】
尚、図2では、SM弁50a,50bに並列な管路を設け、この管路に差圧弁PRVa,PRVbを設けるようにしているが、このような構成に代えて、SM弁50a,50bの遮断位置の弁体を、所定圧のリリーフ圧(開放圧)を有する差圧弁として、上記差圧弁PRVa,PRVbを各SM弁50a,50bに内蔵する構成を採用してもよい。
【0050】
そして更に、各油圧経路42,44には、減圧制御弁48FL〜48RRから排出されたブレーキ油を一時的に蓄えるリザーバ56,58が備えられ、更にそのブレーキ油を、SM弁50aと増圧制御弁46FL,46RRとの間の経路と、SM弁50bと増圧制御弁46FR,RLとの間の経路とに夫々圧送するポンプ60,62が備えられている。尚、各ポンプ60,62からのブレーキ油の吐出経路には、内部の油圧の脈動を抑えるアキュムレータ64,66が夫々設けられている。
【0051】
また、各油圧経路42,44には、後述する駆動力制御(差動制限制御)の実行時に、M/C34を介してM/C34の上部に設けられたリザーバ68からポンプ60,62に直接ブレーキ油を供給するための油供給経路42P,44Pが設けられており、これら各油供給経路42P,44Pには、その経路を連通・遮断するリザーバカットバルブ(以下、SR弁という)70a,70bが夫々配設されている。
【0052】
尚、SR弁70a,70bは、通常、遮断状態となっており、ECU20からの通電により連通状態に切り換えられる。また、各ポンプ60,62は、ABS制御及び駆動力制御の実行時に、モータ80を介して駆動される。
次に、ECU20にて行われるABS制御及び駆動力制御について説明する。
【0053】
尚、ABS制御及び駆動力制御を行わない場合は、油圧回路40の全ての電磁弁がオフ(OFF)となっており、図2は、その無制御状態を表している。具体的には、駆動力制御に切り替えるための電磁弁として、SM弁50a,50b=連通位置、且つ、SR弁70a,70b=遮断位置であり、更に、増圧制御弁46FL〜46RR=連通位置、減圧制御弁48FL〜48RR=遮断位置とされている。
【0054】
▲1▼ABS制御
例えばドライバの急激なブレーキ操作によって、各車輪FL〜RRにスリップが発生すると、図3に示す様に、ABS制御を開始し、SM弁50a,50b=連通位置(OFF)且つSR弁70a,70b=遮断位置(OFF)のままで、モータ80を駆動してポンプ60,62を作動させ、更に、増圧制御弁46FL〜46RRと減圧制御弁48FL〜48RRを夫々ON・OFF(通電・非通電)することにより、各車輪FL〜RRのスリップ状態に応じて各W/C2FL〜2RR内のブレーキ油圧を、減圧,保持,増圧の状態に適宜切り換える。
【0055】
具体的には、車輪がロック傾向にあると判断すると、その車輪に対応する増圧制御弁46FL〜46RRを遮断(ON)させると共に減圧制御弁48FL〜48RRを連通(ON)させて、対応するW/C2FL〜2RRの油圧を減圧し、車輪のロックを防止する。また、このとき、W/C2FL〜2RRから減圧された油量は、減圧制御弁48FL〜48RRを介してリザーバ56,58に排出され、更にモータ80を駆動することによってリザーバ56,58に蓄積されたブレーキ油を通常のブレーキ系に還流させる。
【0056】
そして、ABS制御中に、車輪のロック傾向が解消したと判断すると、その車輪に対応する増圧制御弁46FL〜46RRを連通(OFF)させると共に減圧制御弁48FL〜48RRを遮断(OFF)させて、対応するW/C2FL〜2RRの油圧を増加させる。尚、この場合、W/C油圧を急激に増加させると、車輪がロック傾向となるため、増圧制御弁46FL〜46RRと減圧制御弁48FL〜48RRとを共に遮断(増圧制御弁46=ON,減圧制御弁48=OFF)させて、W/C油圧を保持する状態を作る。そして、このような制御により、W/C油圧を徐々に増加させ、車輪のロックを防止しつつ車両の安定性を確保する。
【0057】
また、ABS制御の終了後には、次のABS制御を円滑に行うために所定期間モータ80を駆動して、リザーバ56,58内のブレーキ油を汲み出しておく。
▲2▼駆動力制御(各車輪FL〜RRの差動制限制御)
この駆動力制御は、制御対象である当該四輪駆動車において、各車輪FL〜RRのうちの何れかが空転してしまうと、「従来の技術」の項で述べたように、各ディファレンシャルギヤ10C,10F,10Rの作用によって、他の車輪に駆動力が伝達されなくなってしまうため、このような現象を防止すべく、運転者がアクセル操作を行って車両を走行させている際に(ブレーキ操作を行っていない場合に)、各車輪FL〜RR間の回転速度差(差動)を検出し、その差動を抑制するために行われるものである。
【0058】
まず、この駆動力制御では、図4に示す様に、モータ80を駆動してポンプ60,62を作動させると共に、SM弁50a,50bとSR弁70a,70bとをON(通電)する。つまり、SM弁50a,50b=遮断位置、且つ、SR弁70a,70b=連通位置として、M/C34の上部に設けられたリザーバ68から各増圧制御弁46FL〜46RRへ、ポンプ60,62によってブレーキ油が圧送可能な状態とする。
【0059】
そして更に、駆動力制御では、各車輪FL〜RR間の回転速度差に応じて、増圧制御弁46FL〜46RRと減圧制御弁48FL〜48RRとをON・OFFすることにより、各車輪FL〜RRに適宜制動力を与え、各車輪FL〜RR間の回転速度差を抑制する(換言すれば、各車輪の差動を制限する)。
【0060】
具体的には、ABS制御の場合と同様に、増圧制御弁46FL〜46RRと減圧制御弁48FL〜48RRとを駆動して、各車輪FL〜RRのW/C油圧を増圧・保持・減圧に適宜切り換え、これにより、各車輪FL〜RRの制動力を変化させて、各車輪FL〜RRに実際に伝達される駆動力を調整するのである。
【0061】
そこで以下、駆動力制御を行うためにECU20で実行される(本実施例の要部である)駆動力制御処理について、図5に示すフローチャートに沿って説明する。尚、この駆動力制御処理は、車両のイグニッションスイッチ(図示省略)がONされると、所定時間毎に定期的に実行される。また、以下の説明において、数値を表す符号に付した添え字、「FL」,「FR」,「RL」,「RR」は、その数値が、各車輪FL,FR,RL,RRに各々対応するものであることを示している。よって、例えば、車輪速度VW のうち、VWFL とは、左前輪FLの車輪速度であることを示している。
図5に示すように、駆動力制御処理の実行が開始されると、まずステップ(以下、単に「S」と記す)110にて、駆動力制御の制御開始条件が成立しているか否かを判定する。そして、制御開始条件が成立していない場合には、そのまま当該駆動力制御処理を一旦終了するが、制御開始条件が成立していると判定した場合には、S120に進む。尚、この制御開始条件は、例えば、ブレーキスイッチ36がONしておらず、且つ運転者によりアクセル操作が行われている場合に成立する。
【0062】
S120では、上記各車輪速度センサ4FL〜4RRからの検出信号に基づき、各車輪FL〜RRの車輪速度VWFL 〜VWRR を算出し、続くS130にて、S120で求めた車輪速度VWFL 〜VWRR に基づき、車両の車体速度VB を演算する。この処理は、例えば、各車輪FL〜RRの車輪速度VWFL 〜VWRR の内の最大速度VWmaxが、前回求めた車体速度VB(n-1)に所定値を加えた加速限界値Vαから、車体速度VB(n-1)から所定値を減じた減速限界値Vβまでの範囲内にあるか否かを判断し、最大速度VWmaxが加速限界値Vαから減速限界値Vβまでの範囲内にあれば、最大速度VWmaxをそのまま車体速度VB として設定し、最大速度VWmaxが加速限界値Vαを越えていれば、この加速限界値Vαを車体速度VB として設定し、最大速度VWmaxが減速限界値Vβを下回っていれば、その減速限界値Vβを車体速度VB として設定する、といった従来より周知の手順で実行される。
【0063】
こうして車体速度VB が求められると、S140に進んで、S120で算出した車輪速度VWFL 〜VWRR に基づき、既述した式1〜式4を用いて、各車輪FL〜RRの差動量△VFL〜△VRR を算出する。
具体的には、左前輪FLの差動量△VFLは、式1に示されるように、左前輪FLの車輪速度VWFL と右前輪FRの車輪速度VWFR との差[VWFL −VWFR ]に、更に、左右前輪の車輪速度VWFL ,VWFR の平均値と左右後輪の車輪速度VWRL ,VWRR の平均値との差である前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]を加算した値として算出される。
【0064】
また、右前輪FRの差動量△VFRは、式2に示されるように、右前輪FRの車輪速度VWFR と左前輪FLの車輪速度VWFL との差[VWFR −VWFL ]に、更に、上記前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]を加算した値として算出される。
【0065】
一方、左後輪RLの差動量△VRLは、式3に示されるように、左後輪RLの車輪速度VWRL と右後輪RRの車輪速度VWRR との差[VWRL −VWRR ]に、更に、左右後輪の車輪速度VWRL ,VWRR の平均値と左右前輪の車輪速度VWFL ,VWFR の平均値との差である後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]を加算した値として算出される。
【0066】
また、右後輪RRの差動量△VRRは、式4に示されるように、右後輪RRの車輪速度VWRR と左後輪RLの車輪速度VWRL との差[VWRR −VWRL ]に、更に、上記後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]を加算した値として算出される。
【0067】
よって、各差動量△VFL〜△VRRは、対応する車輪の車輪速度VW が他の車輪の車輪速度VW に対してどれだけ大きいかを示すこととなる。
このようにS140で各車輪FL〜RRの差動量△VFL〜△VRRが算出されると、続くS150にて、S130で求めた車体速度VB に基づき、図6のデータマップを用いて、各車輪FL〜RRの差動量△VFL〜△VRRの制御目標値VTFL 〜VTRRを設定する。
【0068】
尚、この制御目標値VTFL 〜VTRRは、各車輪FL〜RRの差動量△VFL〜△VRRを、その値以内に抑えるための目標値である。つまり、各車輪FL〜RRの差動量△VFL〜△VRRが、対応する制御目標値VTFL 〜VTRR 以上になると、後述するように、対応する車輪のW/C油圧が増圧されて、該車輪に伝達される駆動力が低減され、この結果、各車輪の差動量△VFL〜△VRRが制御目標値VTFL 〜VTRR 以内に抑制される。
【0069】
また、図6に示すように、制御目標値VTFL 〜VTRR は、車体速度VB が大きい時ほど、大きな値に設定されるようになっており、特に、左右後輪RL,RRの制御目標値VTRL ,VTRR の方が、左右前輪FL,FRの制御目標値VTFL ,VTFR よりも、常に小さい値に設定されるようになっている。よって、後輪RL,RRの方が前輪FL,FRよりも、差動量△Vが小さい時点でW/C油圧の増圧(換言すれば、駆動力の低減)が開始されることとなる。尚、図6に示すように、本実施例では、左右後輪RL,RRの各制御目標値VTRL ,VTRR は共に同じ値に設定され、また、左右前輪FL,FRの各制御目標値VTFL ,VTFR も共に同じ値に設定されるようになっている。
【0070】
このようにして各車輪FL〜RRの制御目標値VTFL 〜VTRRが設定されると、次にS160へ進み、S140で求めた差動量△VFL〜△VRRとS150で求めた制御目標値VTFL 〜VTRR とを用いて、下記の式5〜式8に基づき、各車輪FL〜RRのW/C2FL〜2RRに対する制御油圧相当値BPFL〜BPRRを算出する。即ち、各制御油圧相当値BPFL〜BPRRは、式5〜式8に示されるように、各車輪FL〜RRの各々について、その差動量△Vと制御目標値VT との差[△V−VT ]に予め定められた定数αを乗じた値として算出される。
【0071】
【数2】
BPFL = α×(△VFL−VTFL) …式5
BPFR = α×(△VFR−VTFR) …式6
BPRL = α×(△VRL−VTRL) …式7
BPRR = α×(△VRR−VTRR) …式8
そして、続くS170にて、図4を用いて説明したように、モータ80を駆動してポンプ60,62を作動させると共に、SM弁50a,50bとSR弁70a,70bとを共にONして、SM弁50a,50b=遮断位置、且つ、SR弁70a,70b=連通位置とする。そして更に、このS170では、S160にて算出した制御油圧相当値BPFL〜BPRRに応じて、増圧制御弁46FL〜46RRと減圧制御弁48FL〜48RRを駆動し、各車輪FL〜RRのW/C油圧を増圧・保持・減圧に適宜切り換える。そして、これにより、各車輪FL〜RRに実際に伝達される駆動力を調整して、各車輪FL〜RRの差動量△VFL〜△VRRを制御目標値VTFL 〜VTRR 以内に抑制する。
【0072】
具体的には、何れかの車輪の差動量△Vが制御目標値VT 以上となって、S160で算出される制御油圧相当値BPが正の値になると、その制御油圧相当値BPが大きい時ほど(即ち、差動量△Vが制御目標値VT を大きく上回っている時ほど)、その車輪のW/C油圧が大きくなるように、該車輪に対応する増圧制御弁46及び減圧制御弁48を駆動する。すると、その車輪の制動力が大きくなって車輪速度VW が低下するため、当該車輪の差動量△Vが小さくなる。そして、その後、差動量△Vが制御目標値VT 以下となって、制御油圧相当値BPが負の値になると、W/C油圧の加圧を停止するのである。
【0073】
そして、このようなS170の処理を実行した後、当該駆動力制御処理を一旦終了し、所定時間が経過すると、再びS110の処理から実行を開始する。
尚、本実施例では、左右前輪FL,FRのW/C2FL,2FRと、油圧回路40において、左右前輪FL,FRの各々に対する制動力を制御するための、増圧制御弁46FL,46FR及び減圧制御弁48FL,48FRを中心とした部分とが、第1の調整手段に相当し、駆動力制御処理におけるS120の処理と、S140にて式1及び式2の演算を行う処理とが、第1の差動検出手段に相当し、駆動力制御処理のS160にて式5及び式6の演算を行う処理と、S170にて、左右前輪FL,FRの制御油圧相当値BPFL,BPFRに応じて増圧制御弁46FL,46FR及び減圧制御弁48FL,48FRを駆動する処理とが、第1の制御手段に相当している。そして、駆動力制御処理のS150で設定される左右前輪FL,FRの制御目標値VTFL ,VTFR が、第1の所定値に相当しており、上記第1の調整手段,第1の差動検出手段,及び第1の制御手段に相当する各部材と処理とが、第1の差動抑制手段に相当している。
【0074】
また同様に、左右後輪RL,RRのW/C2RL,2RRと、油圧回路40において、左右後輪RL,RRの各々に対する制動力を制御するための、増圧制御弁46RL,46RR及び減圧制御弁48RL,48RRを中心とした部分とが、第2の調整手段に相当し、駆動力制御処理におけるS120の処理と、S140にて式3及び式4の演算を行う処理とが、第2の差動検出手段に相当し、駆動力制御処理のS160にて式7及び式8の演算を行う処理と、S170にて、左右後輪RL,RRの制御油圧相当値BPRL,BPRRに応じて増圧制御弁46RL,46RR及び減圧制御弁48RL,48RRを駆動する処理とが、第2の制御手段に相当している。そして、駆動力制御処理のS150で設定される左右後輪RL,RRの制御目標値VTRL ,VTRR が、第2の所定値に相当しており、上記第2の調整手段,第2の差動検出手段,及び第2の制御手段に相当する各部材と処理とが、第2の差動抑制手段に相当している。
【0075】
以上詳述したように、本実施例のECU20では、各車輪FL〜RRの他の車輪に対する差動量(回転速度差)△VFL 〜△VRRを、前述した式1〜式4によって算出し(S120,S140)、その算出した差動量△VFL 〜△VRRがS150で設定した制御目標値VTFL 〜VTRR以上になって、S160で算出される制御油圧相当値BPFL 〜BPRRが正の値になると、対応する車輪のW/C圧を増圧して制動力を与えることにより、各車輪FL〜RR間の回転速度差を抑制するようにしている。
【0076】
そして、このように各車輪FL〜RR間の回転速度差を抑制することで、各車輪FL〜RRに、エンジン6及び変速機8からの駆動力が各ディファレンシャルギヤ10C,10F,10Rを介して確実に伝達されるようにしている。
そして特に、本実施例では、左右後輪RL,RRの制御目標値VTRL ,VTRR を、左右前輪FL,FRの制御目標値VTFL ,VTFR よりも小さい値に設定するようにしており、これによって、左右後輪RL,RRの方が左右前輪FL,FRよりも、差動量△Vが小さい時点でW/C油圧の増圧が開始されるようにしている。
【0077】
従って、本実施例によれば、左右前輪FL,FR間と左右後輪RL,RR間との双方に回転速度差が生じた際には、左右前輪FL,FR間の回転速度差よりも、左右後輪RL,RR間の回転速度差の方が優先して抑制されるようになる。この結果、左右後輪RL,RR間に回転速度差が生じて車両の挙動がオーバステア傾向(スピン傾向)になってしまうことを優先的に防止することができ、走行安定性が損なわれてしまうことを防止しつつ、車両の推進力を確実に向上させることができるようになる。
【0078】
例えば、図7に例示する如く、車両が加速している時に、左後輪RLの車輪速度VWRL よりも右後輪RRの車輪速度VWRR の方が大きく、且つ、左前輪FLの車輪速度VWFL よりも右前輪FRの車輪速度VWFR の方が大きくなった場合には、まず、左右後輪RL,RR間の回転速度差が優先的に抑制され(時刻t1)、次いで、左右前輪FL,FR間の回転速度差が抑制されるようになり(時刻t2)、このような優先順位により、走行安定性を損ねることなく車両の推進力を向上させることができるのである。
【0079】
また、本実施例では、左右前輪FL,FR同士の各回転速度差[VWFL −VWFR ],[VWFR −VWFL ]に、前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]を加算した値を、左右前輪FL,FRの差動量△VFL,△VFRとし、左右後輪RL,RR同士の各回転速度差[VWRL −VWRR ],[VWRR −VWRL ]に、後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]を加算した値を、左右後輪RL,RRの差動量△VRL,△VRRとしている。
【0080】
よって、左右前輪FL,FRの合計回転速度[VWFL +VWFR ]が左右後輪RL,RRの合計回転速度[VWRL +VWRR ]よりも大きくなるほど、左右前輪FL,FRの各差動量△VFL,△VFRが大きな値となり、両差動量△VFL,△VFRが共に制御目標値VTFL ,VTFR 以上になると、左右前輪FL,FRの両方へ制動力が与えられ、これにより前後輪間の回転速度差が抑制される。
【0081】
また逆に、左右後輪RL,RRの合計回転速度[VWRL +VWRR ]が左右前輪FL,FRの合計回転速度[VWFL +VWFR ]よりも大きくなるほど、左右後輪RL,RRの各差動量△VRL,△VRRが大きな値となり、両差動量△VRL,△VRRが共に制御目標値VTRL ,VTRR 以上になると、左右後輪RL,RRの両方へ制動力が与えられ、これにより前後輪間の回転速度差が抑制される。
【0082】
従って、本実施例によれば、走行安定性が損なわれてしまうことを防止しつつ、前後輪間の回転速度差をも抑制することができ、車両の推進力を一層確実に向上させることができる。
尚、本実施例では、車輪速度センサ4FL〜4RRからの検出信号に基づき、各車輪FL〜RRの差動量△VFL〜△VRRを求めるようにしているため、簡単な構成で且つ正確に、各車輪FL〜RRに伝達される駆動力を制御できるのであるが、例えば、フロント・ディファレンシャルギヤ10F及びリア・ディファレンシャルギヤ10Rの各々の差動状態をモニタして、左右前輪FL,FR同士の回転速度差[VWFL −VWFR ],[VWFR −VWFL ]と左右後輪RL,RR同士の回転速度差[VWRL −VWRR ],[VWRR −VWRL ]を検出し、更に、センタ・ディファレンシャルギヤ10Cの差動状態をモニタして、前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]と後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]を検出することにより、各車輪FL〜RRの差動量△VFL〜△VRRを求めるようにしても良い。
【0083】
一方、本実施例では、各車輪FL〜RRに制動力を発生させることで、各車輪FL〜RRに伝達される駆動力を調整するようにしているため、車両に搭載される既存のブレーキシステムの大部分を用いて、上述した効果を得ることができ、装置の簡略化及び車両の低重量化を図ることができる。
【0084】
具体的には、通常、ABS制御を行うためには、図2の油圧回路40において、SM弁50a,50bとリリーフ弁54a,54b及びSR弁70a,70bを除いた回路構成が必要となるが、この構成に対して、上記SM弁,リリーフ弁,及びSR弁を追加するだけで良いのである。
【0085】
ところで、上記実施例における四輪駆動車の制御系を下記の(A)〜(F)のように変形しても、上記実施例と同様の効果を得ることができる。
(A)センタ・ディファレンシャルギヤ10Cを、前輪用の駆動軸11Fと後輪用の駆動軸11RとにECU20からの指令に応じた比率でトルクを分配可能な電子制御式のものとし、フロント・ディファレンシャルギヤ10Fを、左前輪FLと右前輪FRとにECU20からの指令に応じた比率でトルクを分配可能な電子制御式のものとし、リア・ディファレンシャルギヤ10Rを、左後輪RLと右後輪RRとにECU20からの指令に応じた比率でトルクを分配可能な電子制御式のものとする。
【0086】
(B)ECU20は、前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]と後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]とを加味せずに、下記の式9〜式12により、各車輪FL〜RRの差動量△VFL〜△VRRを算出する。
【0087】
【数3】
△VFL=VWFL−VWFR …式9
△VFR=VWFR−VWFL …式10
△VRL=VWRL−VWRR …式11
△VRR=VWRR−VWRL …式12
(C)ECU20は、左右前輪FL,FRの差動量△VFL,△VFRのうち、何れか一方が所定値N1以上になると、電子制御式のフロント・ディファレンシャルギヤ10Fに、差動量△Vが所定値N1以上である方の車輪に伝達されるトルクの比率を低減させるための指令を出力する。
【0088】
(D)また同様に、ECU20は、左右後輪RL,RRの差動量△VRL,△VRRのうち、何れか一方が所定値N2以上になると、電子制御式のリア・ディファレンシャルギヤ10Rに、差動量△Vが所定値N2以上である方の車輪に伝達されるトルクの比率を低減させるための指令を出力する。
【0089】
(E)そして更に、ECU20は、前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]と後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]とを算出すると共に、前後輪回転速度差[(VWFL +VWFR )/2−(VWRL +VWRR )/2]が所定値N3以上になると、電子制御式のセンタ・ディファレンシャルギヤ10Cに、前輪に伝達されるトルクの比率を低減させるための指令を出力し、逆に、後前輪回転速度差[(VWRL +VWRR )/2−(VWFL +VWFR )/2]が所定値N3以上になると、電子制御式のセンタ・ディファレンシャルギヤ10Cに、後輪に伝達されるトルクの比率を低減させるための指令を出力する。
【0090】
(F)上記所定値N1,N2,N3は、後輪RL,RRに関する所定値N2が最も小さい値となるように設定する。尚、これら所定値N1〜N3は、予め定めた値であっても良いし、図6に示したデータマップの如く車体速度VB に応じて設定するようにしても良い。
【0091】
つまり、上記(A)〜(F)の変形例では、(C)の処理により、左右前輪FL,FRの各々に伝達される駆動力を調整して、左右前輪FL,FR間の回転速度差を抑制する第1の差動抑制手段としての動作を行い、(D)の処理により、左右後輪RL,RRの各々に伝達される駆動力を調整して、左右後輪RL,RR間の回転速度差を抑制する第2の差動抑制手段としての動作を行うようにしており、更に、(E)の処理により、左右前輪FL,FRと左右後輪RL,RRとに伝達される駆動力を調整して、前後輪間の回転速度差を抑制する第3の差動抑制手段としての動作を行うようにしている。
【0092】
そして、この変形例においても、上記所定値N1〜N3のうち、左右後輪RL,RRの各々に伝達される駆動力を調整するか否かを判定するための所定値N2が最も小さい値に設定されているため、左右前輪FL,FR間と左右後輪RL,RR間と前後輪間とに、夫々、回転速度差が生じた際に、リア・ディファレンシャルギヤ10Rによる左右後輪RL,RRに対する駆動力調整が、フロント・ディファレンシャルギヤ10Fによる左右前輪FL,FRに対する駆動力調整、及びセンタ・ディファレンシャルギヤ10Cによる前後輪に対する駆動力調整よりも、優先して実行される。
【0093】
よって、先に説明した実施例と同様に、左右後輪RL,RR間に回転速度差が生じて車両の挙動がオーバステア傾向になってしまうことを優先的に防止することができ、走行安定性が損なわれてしまうことを防止しつつ、車両の推進力を確実に向上させることができるようになる。
【0094】
尚、上記変形例を含む各実施例において、算出した各車輪FL〜RRの差動量△VFL〜△VRRの値が、各ディファレンシャルギヤ10C,10F,10Rの耐久指数を表すPV値(軸受面圧Pとすべり速度Vの積で与えられるすべり軸受の作動限界を示す因子)を越えそうな場合には、エンジン6の吸気系に設けられたサブスロットルSSの開度を絞って、エンジン出力を抑えるようにしても良い。そして、このような制御を行えば、ディファレンシャルギヤ10C,10F,10Rを確実に保護することができる。
【図面の簡単な説明】
【図1】 実施例の四輪駆動車の制御系全体の構成を表わす概略構成図である。
【図2】 実施例の油圧回路の構成を示す説明図である。
【図3】 ECUが行うABS制御を説明するタイミングチャートである。
【図4】 ECUが行う駆動力制御を説明するタイミングチャートである。
【図5】 ECUで実行される駆動力制御処理を表すフローチャートである。
【図6】 駆動力制御処理の実行時に用いられるデータマップを説明する説明図である。
【図7】 駆動力制御処理の実行による作用を説明する説明図である。
【符号の説明】
FL…左前輪 FR…右前輪 RL…左後輪 RR…右後輪
2…ブレーキ装置(ホイールシリンダ:W/C) 4…車輪速度センサ
6…エンジン 8…変速機 10C…センタ・ディファレンシャルギヤ
10F…フロント・ディファレンシャルギヤ 11F,11R…駆動軸
10R…リア・ディファレンシャルギヤ 12…センサ群
SS…サブスロットル 20…電子制御装置(ECU)
32…ブレーキペダル 34…マスタシリンダ(M/C)
36…ブレーキスイッチ 40…油圧回路 42,44…油圧経路
46…増圧制御弁 48…減圧制御弁
50a,50b…マスタシリンダカットバルブ(SM弁)
54a,54b…リリーフ弁 56,58,68…リザーバ
60,62…ポンプ 64,66…アキュムレータ
70a,70b…リザーバカットバルブ(SR弁) 80…モータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for controlling a driving force transmitted to each wheel of a four-wheel drive vehicle.
[0002]
[Prior art]
Conventionally, a four-wheel drive vehicle has been put into practical use in which driving force from an engine is transmitted to four wheels on the left and right and front and rear to improve traveling ability such as rough roads.
However, even in such a four-wheel drive vehicle, when one wheel slips and slips, there is a problem that the driving force is not transmitted to the other wheel and the propulsive force of the vehicle is reduced. That is, in general, in this type of four-wheel drive vehicle, the driving force from the engine is distributed to the front wheel drive shaft and the rear wheel drive shaft through the center differential gear (differential device), Furthermore, the driving force distributed to the front wheel drive shaft is distributed to the left and right front wheels via the front differential gear, and the driving force distributed to the rear wheel drive shaft is transferred to the left and right rear wheels via the rear differential gear. Since any one of the wheels rotates idly because the wheels are distributed to the wheels, the driving force is not transmitted to the other wheels due to the action of each differential gear.
[0003]
Therefore, as a technique for solving such a problem, for example, in Japanese Patent Laid-Open No. 60-248440, a slip state of each wheel is detected, and a braking force is applied to the wheel in which the slip has occurred by a brake device. Thus, it has been proposed that driving force is transmitted to other wheels by suppressing idling. That is, in this technique, the driving force transmitted to the idling wheel is reduced by the brake, thereby suppressing the rotational speed difference (so-called differential) between the wheels.
[0004]
[Problems to be solved by the invention]
However, since the technique disclosed in the above publication merely gives a braking force to the idle wheel (in other words, reduces the driving force), there is a possibility of impairing the running stability of the vehicle. There is.
[0005]
For example, in a situation where either one of the left and right front wheels is idling while driving and there is a difference in rotational speed between the left and right rear wheels, when the braking (braking) is applied to the idling front wheels, each differential The driving force transmitted to the rear wheel is increased by the action of the gear, and the rotational speed difference between the left and right rear wheels is further increased. As a result, the behavior of the vehicle becomes an oversteer tendency (spin tendency), and the running stability is impaired.
[0006]
The present invention has been made in view of these problems, and an object of the present invention is to reliably improve the propulsive force of a four-wheel drive vehicle without impairing traveling stability.
[0007]
[Means for solving the problems and effects of the invention]
  In order to achieve the above object, the present invention according to claim 1 is used in a four-wheel drive vehicle including four wheels on the left and right and front and rear as drive wheels, and from a power source mounted on the four-wheel drive vehicle. A first differential suppression control for adjusting a driving force transmitted to each of the left and right front wheels to suppress a difference in rotational speed between the left and right front wheels, and a driving force transmitted from the power source to each of the left and right rear wheels. And a second differential suppression control that suppresses a difference in rotational speed between the left and right rear wheels, and a driving force control method for a four-wheel drive vehicle,In the second differential suppression controlThe control target value of the rotational speed difference between the left and right rear wheels, In the first differential suppression controlSet to a value smaller than the control target value of the rotational speed difference between the left and right front wheels.AndIt is a feature.
[0008]
  According to this driving force control method, when the rotational speed difference between the left and right front wheels (that is, the rotational speed difference between the left front wheel and the right front wheel) increases, the first differential suppression control causes each of the left and right front wheels to move from the driving source. The transmitted driving force is adjusted to suppress the rotational speed difference between the left and right front wheels, and the rotational speed difference between the left and right rear wheels (that is, the rotational speed difference between the left rear wheel and the right rear wheel) is large. Then, the driving force transmitted from the driving source to each of the left and right rear wheels is adjusted by the second differential suppression control, and the rotational speed difference between the left and right rear wheels is suppressed.Due to the magnitude relationship between the above two control target values,When there is a difference in rotational speed between the left and right front wheels and between the left and right rear wheels, the driving force adjustment for the left and right rear wheels by the second differential suppression control is applied to the left and right front wheels by the first differential suppression control. Executed in preference to driving force adjustmentIt will be.
[0009]
Therefore, according to the driving force control method for a four-wheel drive vehicle according to claim 1, the rotational speed difference between the left and right rear wheels is suppressed more preferentially than the rotational speed difference between the left and right front wheels. Therefore, it is possible to reliably prevent a difference in rotational speed between the left and right rear wheels from causing an oversteer tendency (spin tendency) of the vehicle behavior. As a result, the propulsive force of the vehicle (in other words, the transmission efficiency of the driving force to each wheel) can be reliably improved while preventing the running stability from being impaired.
[0010]
  Next, according to a second aspect of the present invention, in the driving force control method for a four-wheel drive vehicle according to the first aspect, the driving force transmitted from the power source to the left and right front wheels and the left and right rear wheels is further increased. Performing the third differential suppression control to adjust and suppress the rotational speed difference between the front and rear wheels,The control target value of the rotational speed difference between the left and right rear wheels in the second differential suppression control is the control target value of the rotational speed difference between the left and right front wheels in the first differential suppression control and the third Setting the rotational speed difference between the front and rear wheels in the differential suppression control to a value smaller than the control target valueIt is characterized by.
[0011]
  That is, in the driving force control method according to claim 2, the first differential suppression control for suppressing the rotational speed difference between the left and right front wheels and the second differential control for suppressing the rotational speed difference between the left and right rear wheels. In addition to differential suppression control, further suppresses the rotational speed difference between the front and rear wheels (that is, the difference between the total rotational speed of the left front wheel and the right front wheel and the total rotational speed of the left rear wheel and the right rear wheel). Therefore, the third differential suppression control for adjusting the driving force transmitted from the power source to the left and right front wheels and the left and right rear wheels is executed. Also in this driving force control method,Due to the magnitude relationship between the above three control target values,The driving force adjustment for the left and right rear wheels by the second differential suppression control takes precedence over the driving force adjustment for the left and right front wheels by the first differential suppression control and the driving force adjustment for the front and rear wheels by the third differential suppression control. To be executed.
[0012]
Therefore, even with the driving force control method according to the second aspect, when a difference occurs in the rotational speed of each wheel, the rotational speed difference between the left and right rear wheels is preferentially suppressed, and the running stability is improved. Without impairing the vehicle, the propulsive force of the vehicle can be reliably improved.
By the way, the driving force control method according to claim 1 can be carried out by the driving force control device according to claim 3.
[0013]
  That is, the driving force control apparatus according to claim 3 is used in a four-wheel drive vehicle including four wheels on the left and right and the front and rear as drive wheels, and is applied to each of the left and right front wheels from a power source mounted on the four-wheel drive vehicle. Adjusting the transmitted driving force, adjusting the driving force transmitted from the power source to each of the left and right rear wheels, the first differential suppressing means for suppressing the rotational speed difference between the left and right front wheels; A driving force control device for a four-wheel drive vehicle, comprising: second differential suppression means for suppressing a difference in rotational speed between the left and right rear wheels,
In the second differential suppression meansControl target value of rotational speed difference between the left and right rear wheelsIn the first differential suppression meansSet to a value smaller than the control target value of the rotational speed difference between the left and right front wheelsis being doneIt is characterized by.
[0014]
And according to the driving force control apparatus of such a 3rd aspect, the above-mentioned effect by the driving force control method of the 1st aspect can be acquired.
Here, the first differential suppression means and the second differential suppression means in the driving force control apparatus according to claim 3 can be configured as described in claim 4.
[0015]
That is, in the driving force control apparatus according to the fourth aspect, first, the first differential suppressing means adjusts the driving force transmitted from the power source to each of the left and right front wheels in accordance with a command from the outside. 1 adjustment means, first differential detection means, and first control means.
[0016]
And the first differential detection means detects the rotational speed difference with the other wheel for each of the left and right front wheels, and outputs the detected rotational speed difference as a differential amount of the corresponding wheel, The first control means outputs a command for reducing a driving force transmitted to a wheel having a differential amount output from the first differential detection means of the left and right front wheels equal to or greater than a first predetermined value. 1 to the adjusting means. Then, the first adjusting means is driven to be transmitted to the wheels whose differential amount output from the first differential detecting means is equal to or greater than the first predetermined value in response to a command from the first control means. Thus, the driving force transmitted to the wheel having the larger rotational speed among the left and right front wheels is reduced, and the rotational speed difference between the left and right front wheels is suppressed.
[0017]
Similarly, in the driving force control apparatus according to claim 4, the second differential suppressing means adjusts the driving force transmitted from the power source to each of the left and right rear wheels in accordance with an external command. Second adjustment means, second differential detection means, and second control means are provided.
[0018]
The second differential detection means detects the rotational speed difference between the left and right rear wheels and the other wheel, and outputs each detected rotational speed difference as a differential amount of the corresponding wheel. The second control means issues a command to reduce the driving force transmitted to the wheels of which the differential amount output from the second differential detection means of the left and right rear wheels is greater than or equal to a second predetermined value. , Output to the second adjusting means. Then, the second adjusting means is driven to be transmitted to the wheel whose differential amount output from the second differential detecting means is equal to or greater than the second predetermined value in response to a command from the second control means. Accordingly, the driving force transmitted to the wheel having the larger rotational speed among the left and right rear wheels is reduced, and the rotational speed difference between the left and right rear wheels is suppressed.
[0019]
Further, in the driving force control apparatus according to claim 4, the second predetermined value is set to a value smaller than the first predetermined value, and by this setting, between the left and right front wheels and the left and right rear wheels. When the rotational speed difference occurs between the left and right wheels, the driving force adjustment for the left and right rear wheels by the second differential suppression means for suppressing the rotational speed difference between the left and right rear wheels is the rotational speed between the left and right front wheels. The first differential suppression means for suppressing the difference is prioritized over the driving force adjustment for the left and right front wheels.
[0020]
In other words, in the first differential suppression means, the difference between the rotation speed VWFL of the left front wheel and the rotation speed VWFR of the right front wheel [VWFL−VWFR] is determined by the first differential detection means. ΔVFL is output, and the difference [VWFR−VWFL] between the rotation speed VWFR of the right front wheel and the rotation speed VWFL of the left front wheel is output as the differential amount ΔVFR of the right front wheel. By the first adjusting means, the driving force to the wheels of which the differential amounts ΔVFL, ΔVFR are equal to or greater than the first predetermined value N1 among the left and right front wheels is reduced.
[0021]
In the second differential suppression means, the difference between the rotation speed VWRL of the left rear wheel and the rotation speed VWRR of the right rear wheel [VWRL−VWRR] is determined by the second differential detection means. The difference [VWRR−VWRL] between the rotation speed VWRR of the right rear wheel and the rotation speed VWRL of the left rear wheel is output as the differential amount ΔVRR of the right rear wheel. By the second control means and the second adjustment means, the driving force to the wheels of which the differential amounts ΔVRL and ΔVRR are equal to or greater than the second predetermined value N2 among the left and right rear wheels is reduced.
[0022]
Therefore, the driving force adjustment for the left and right front wheels is performed when the difference in rotational speed between the left and right front wheels (differential amount ΔVFL, ΔVFR) is equal to or greater than the first predetermined value N1, whereas the driving force adjustment for the left and right rear wheels is performed. Is performed when the difference in rotational speed between the left and right rear wheels (differential amount ΔVRL, ΔVRR) becomes equal to or larger than a second predetermined value N2 (<N1) smaller than the first predetermined value N1. As a result, when there is a difference in rotational speed between the left and right front wheels and between the left and right rear wheels, the driving force adjustment for the left and right rear wheels is prioritized.
[0023]
According to the driving force control apparatus of the fourth aspect, the effect of the driving force control method of the first aspect, that is, the propulsion of the vehicle while preventing the running stability from being impaired. The effect that the force can be reliably improved can be obtained with a simple configuration.
[0024]
On the other hand, in the driving force control device for a four-wheel drive vehicle according to claim 5, in the driving force control device according to claim 4, the first differential detection means is configured to connect the other wheel to each of the left and right front wheels. In addition to detecting the rotation speed difference between the left and right front wheels, the difference between the average rotation speed of the left and right front wheels and the average rotation speed of the left and right rear wheels is detected as the front and rear wheel rotation speed difference. A value obtained by adding the front and rear wheel rotational speed differences to the detected rotational speed differences is output as the differential amount corresponding to each of the left and right front wheels.
[0025]
Similarly, the second differential detection means detects, in addition to detecting the rotational speed difference between each of the left and right rear wheels and the other wheel, and further, the average value of the rotational speeds of the left and right rear wheels and the left and right front wheels. The difference between the average value of the rotational speeds of the left and right rear wheels is detected as a difference between the rotational speeds of the left and right rear wheels. The differential amount corresponding to each is output.
[0026]
In other words, in the driving force control apparatus according to the fifth aspect, the first differential detection means is configured such that the average values of the rotational speeds VWFL and VWFR of the left and right front wheels and the left and right rear wheels are calculated as shown in the following expressions 1 and 2. The difference between the front and rear wheel speeds [(VWFL + VWFR) / 2− (VWRL + VWRR) / 2], which is the difference between the average speeds VWRL and VWRR, of each of the left and right front wheels [VWFL − VWFR] and [VWFR−VWFL] are added to each other, and the added values are output to the first control means as differential amounts ΔVFL and ΔVFR corresponding to the left and right front wheels, respectively.
[0027]
Further, as shown in the following formulas 3 and 4, the second differential detection means determines the difference between the average value of the rotational speeds VWRL and VWRR of the left and right rear wheels and the average value of the rotational speeds VWFL and VWFR of the left and right front wheels. The difference between the rear front wheel rotational speeds [(VWRL + VWRR) / 2− (VWFL + VWFR) / 2] is added to the detected rotational speed differences [VWRL−VWRR] and [VWRR−VWRL] for the left and right rear wheels, respectively. Then, the added values are output to the second control means as differential amounts ΔVRL and ΔVRR corresponding to the left and right rear wheels, respectively.
[0028]
[Expression 1]
Figure 0003713827
[0029]
According to such a driving force control apparatus of the fifth aspect, as the total rotational speed [VWFL + VWFR] of the left and right front wheels becomes larger than the total rotational speed [VWRL + VWRR] of the left and right rear wheels, The differential amounts ΔVFL and ΔVFR are large values. When both the differential amounts ΔVFL and ΔVFR of the left and right front wheels are equal to or greater than the first predetermined value N1, the driving force to both the left and right front wheels is reduced by the first control means and the first adjusting means. Thus, the rotational speed difference between the front and rear wheels (that is, the difference between the total rotational speed of the left and right front wheels and the total rotational speed of the left and right rear wheels) is suppressed.
[0030]
Conversely, as the total rotational speed [VWRL + VWRR] of the left and right rear wheels becomes larger than the total rotational speed [VWFL + VWFR] of the left and right front wheels, the differential amounts ΔVRL and ΔVRR corresponding to the left and right rear wheels become larger. Become. When the differential amounts ΔVRL and ΔVRR of the left and right rear wheels are both equal to or greater than the second predetermined value N2, the driving force to both the left and right rear wheels is applied by the second control means and the second adjusting means. This reduces the rotational speed difference between the front and rear wheels.
[0031]
Therefore, according to the driving force control apparatus of the fifth aspect, in addition to the effect of the driving force control apparatus of the fourth aspect, it is possible to further suppress the rotational speed difference between the front and rear wheels.
By the way, in the driving force control apparatus for a four-wheel drive vehicle according to claim 4 or claim 5, the first differential detection means and the second differential detection means provide the above-mentioned rotational speed differences to the vehicle. Although it may be configured to detect the differential state of the mounted differential gear, the torque of the shaft portion that drives the wheel, etc., as described in claim 6, the rotational speed of each of the four wheels is set respectively. A wheel speed sensor for detection is provided, and the first differential detection means and the second differential detection means output the differential amount corresponding to each wheel based on the detection signal from the wheel speed sensor. If comprised in this way, it will become possible to control the driving force transmitted to each wheel with a simple structure and accurately.
[0032]
On the other hand, in the driving force control apparatus for a four-wheel drive vehicle according to any one of claims 4 to 6, the first adjusting means uses the driving force distributed to the driving shaft for the front wheels by the center differential gear. It can be composed of an electronically controlled front differential gear that distributes to the left and right front wheels in response to an external command. Similarly, the second adjusting means is distributed to the drive shaft for the rear wheels by the center differential gear. The driving force can be constituted by an electronically controlled rear differential gear that distributes the driving force to the left and right rear wheels according to an external command.
[0033]
Further, if the first adjusting means and the second adjusting means are configured as described in claim 7, a greater effect can be obtained.
That is, in the driving force control apparatus according to claim 7, the first adjusting means generates a braking force in response to an external command to each of the left and right front wheels, so that each of the left and right front wheels from the driving source. The second adjusting means generates a braking force in response to an external command to each of the left and right rear wheels, thereby causing the left and right rear to move from the driving source. The driving force transmitted to each of the wheels is configured to be adjusted. According to the driving force control apparatus of the seventh aspect, the first and second adjusting means can be configured using most of the existing brake system mounted on the vehicle. Therefore, it is possible to simplify the device and reduce the weight of the vehicle.
[0034]
  On the other hand, the driving force control method according to claim 2 can be implemented by the driving force control device according to claim 8.
  That is, the driving force control device according to claim 8 adjusts the driving force transmitted from the power source to the left and right front wheels and the left and right rear wheels in the four-wheel drive vehicle driving force control device according to claim 3. And a third differential suppressing means for suppressing the rotational speed difference between the front and rear wheels,The control target value of the rotational speed difference between the left and right rear wheels in the second differential suppression means is the control target value of the rotational speed difference between the left and right front wheels in the first differential suppression means and the third The differential suppression means is set to a value smaller than the control target value of the rotational speed difference between the front and rear wheels.It is characterized by.
[0035]
According to the driving force control apparatus of the eighth aspect, when the above-mentioned effect by the driving force control method of the second aspect, that is, when a difference occurs in the rotational speed of each wheel, the left and right A difference in rotational speed between the rear wheels is preferentially suppressed, and an effect that the propulsive force of the vehicle can be surely improved without impairing running stability can be obtained.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments to which the present invention is applied will be described below with reference to the drawings. Needless to say, the embodiments of the present invention are not limited to the following examples, and can take various forms as long as they belong to the technical scope of the present invention.
[0037]
FIG. 1 is a schematic configuration diagram showing the configuration of the entire control system of a four-wheel drive vehicle to which the present invention is applied.
As shown in FIG. 1, hydraulic brake devices for applying braking force to the wheels FL to RR are applied to each wheel (left front wheel FL, right front wheel FR, left rear wheel RL, right rear wheel RR) of the vehicle ( Wheel cylinder: W / C) 2FL, 2FR, 2RL, 2RR and wheel speed sensors 4FL, 4FR, 4RL, 4RR for detecting the rotational speed of each wheel (hereinafter also referred to as wheel speed) are provided. It has been.
[0038]
On the other hand, torque output from the engine 6 via the transmission 8 is distributed to the front wheel drive shaft 11F and the rear wheel drive shaft 11R by the center differential gear 10C, and further, the front wheel drive shaft. 11F torque is distributed to each of the left and right front wheels FL, FR by the front differential gear 10F, and torque of the rear wheel drive shaft 11R is distributed to each of the left and right rear wheels RL, RR by the rear differential gear 10R. It has become so.
[0039]
Further, the engine 6 is provided with a sensor group 12 for detecting an operation state such as a rotational speed, an intake air amount, a cooling water temperature, an opening degree of a throttle valve, and the like. Detection signals and the like from the wheel speed sensors 4FL to 4RR are input to an electronic control unit (hereinafter referred to as ECU) 20.
[0040]
The ECU 20 controls the fuel injection amount and ignition timing of the engine 6 based on the detection signal from the sensor group 12, and discharges brake oil when the brake pedal 32 is depressed (hereinafter referred to as M / C). By controlling various actuators in the hydraulic circuit 40 provided in the hydraulic path from 34 to W / C2FL to 2RR of each wheel FL to RR, anti-skid control (hereinafter referred to as slip control) that suppresses slip generated on the wheel during vehicle braking is performed. , ABS control) and differential limiting control (hereinafter referred to as driving force control) for suppressing the rotational speed difference between the wheels FL to RR is executed.
[0041]
The ECU 20 is mainly composed of a microcomputer having a CPU, a ROM, a RAM and the like. The ECU 20 also receives a detection signal from a brake switch 36 that is turned on when the brake pedal 32 is operated. Have been entered. In addition, a sub-throttle SS is provided in the intake system of the engine 6 separately from a throttle valve (not shown) whose opening is adjusted according to the accelerator operation of the driver. The opening degree is adjusted according to the driving state of the vehicle.
[0042]
Next, the hydraulic circuit 40 will be described.
As shown in FIG. 2, the hydraulic circuit 40 supplies brake oil pressure-fed from two oil passages of M / C 34 to the left front wheel FL and the right rear wheel RR, and the right front wheel FR and the left rear wheel RL, respectively. These two hydraulic paths 42 and 44 are provided.
[0043]
In the hydraulic path 42, a path 42FL reaching the W / C2FL of the left front wheel FL and a path 42RR leading to the W / C2RR of the right rear wheel RR are respectively connected to pressure increasing positions that communicate the paths 42FL and 42RR. Electromagnetic pressure-increasing control valves 46FL and 46RR that can be switched to a holding position for blocking the path, and electromagnetic pressure-reducing control valves 48FL and 48RR for discharging brake oil in each W / C2FL and 2RR are provided. Is provided.
[0044]
Similarly, in the hydraulic path 44, the path 44FR leading to the W / C2FR of the right front wheel FR and the path 44RL leading to the W / C2RL of the left rear wheel RL are respectively increased in pressure to communicate the paths 44FR and 44RL. Electromagnetic pressure-increasing control valves 46FR, 46RL that can be switched between a position and a holding position that blocks the path, and electromagnetic pressure-reducing control valves 48FR, 48RL for discharging brake oil in each W / C2FR, 2RL And are provided.
[0045]
The pressure increase control valves 46FL, 46FR, 46RL, and 46RR are normally in a pressure increasing position, and are switched to the holding position by energization from the ECU 20. Further, the pressure reducing control valves 48FL, 48FR, 48RL, and 48RR are normally in a cut-off state, and are brought into a communication state by energization from the ECU 20, and the brake oil in the corresponding W / C2FL to 2RR is discharged.
[0046]
On the other hand, in the hydraulic path 42, a master cylinder cut valve (hereinafter referred to as an SM valve) 50a that communicates and blocks the path is provided on the path closer to the M / C 34 than the pressure increase control valves 46FL and 46RR. In parallel with the SM valve 50a, when the oil pressure on the M / C 34 side becomes larger than the oil pressure on the pressure increase control valves 46FL, 46RR side, the pressure oil output from the M / C 34 is increased and controlled. A relief valve 54a to be supplied to the valves 46FL and 46RR is connected.
[0047]
Similarly, in the hydraulic path 44, an SM valve 50b that communicates and blocks the path is also provided on the M / C 34 side of the pressure increase control valves 46FR and 46RL. In parallel with the SM valve 50b, when the hydraulic pressure on the M / C 34 side becomes larger than the hydraulic pressure on the pressure increase control valves 46FR, 46RL side, the pressure oil output from the M / C 34 is controlled to increase pressure. A relief valve 54b is connected to the valves 46FR and 46RL.
[0048]
The SM valves 50a and 50b are in a communication state when the power is turned off, and are switched to a cut-off state by energization from the ECU 20.
Differential pressure valves PRVa and PRVb are respectively connected in parallel to the SM valves 50a and 50b. The differential pressure valves PRVa and PRVb prohibit the flow of brake oil from the M / C 34 to the W / C side. The flow of brake oil from the / C side to the M / C 34 is allowed when the brake hydraulic pressure on the W / C side becomes higher than the pressure on the M / C 34 side by a predetermined pressure or more. The predetermined pressure may be set to 50 atm to 200 atm, and each differential pressure valve PRVa, PRVb is predetermined in the pipe line on the W / C side from the SM valves 50a, 50b at the time of discharge of pumps 60, 62 described later. Protect the pipeline so that it does not exceed the pressure.
[0049]
In FIG. 2, the SM valves 50a and 50b are provided with a parallel pipe line, and the differential pressure valves PRVa and PRVb are provided in the pipe line, but instead of such a configuration, the SM valves 50a and 50b A configuration in which the differential pressure valves PRVa and PRVb are incorporated in the SM valves 50a and 50b may be employed as the differential pressure valve having a predetermined relief pressure (open pressure) as the valve body at the cutoff position.
[0050]
Further, the hydraulic paths 42 and 44 are respectively provided with reservoirs 56 and 58 for temporarily storing brake oil discharged from the pressure reduction control valves 48FL to 48RR. Pumps 60 and 62 are provided for feeding pressure to a path between the valves 46FL and 46RR and a path between the SM valve 50b and the pressure increase control valves 46FR and RL, respectively. In addition, accumulators 64 and 66 for suppressing pulsation of the internal hydraulic pressure are provided in the brake oil discharge paths from the pumps 60 and 62, respectively.
[0051]
In addition, the hydraulic paths 42 and 44 are directly connected to the pumps 60 and 62 from the reservoir 68 provided on the upper part of the M / C 34 via the M / C 34 when the driving force control (differential restriction control) described later is executed. Oil supply paths 42P and 44P for supplying brake oil are provided, and these oil supply paths 42P and 44P are respectively connected to reservoir cut valves (hereinafter referred to as SR valves) 70a and 70b. Are arranged respectively.
[0052]
The SR valves 70a and 70b are normally in a cut-off state, and are switched to a communication state by energization from the ECU 20. The pumps 60 and 62 are driven via the motor 80 when the ABS control and the driving force control are executed.
Next, ABS control and driving force control performed by the ECU 20 will be described.
[0053]
When the ABS control and the driving force control are not performed, all the solenoid valves of the hydraulic circuit 40 are turned off (OFF), and FIG. 2 shows the uncontrolled state. Specifically, as solenoid valves for switching to driving force control, SM valves 50a, 50b = communication position, SR valves 70a, 70b = interruption position, and pressure increase control valves 46FL-46RR = communication position The pressure reducing control valves 48FL to 48RR are in the cutoff position.
[0054]
(1) ABS control
For example, if a slip occurs in each of the wheels FL to RR due to a sudden brake operation by the driver, as shown in FIG. 3, the ABS control is started, the SM valves 50a, 50b = communication position (OFF) and the SR valves 70a, 70b. = The motor 80 is driven to operate the pumps 60 and 62 while the shutoff position (OFF) is maintained, and the pressure increase control valves 46FL to 46RR and the pressure reduction control valves 48FL to 48RR are turned ON / OFF (energized / non-energized), respectively. ), The brake hydraulic pressure in each of the W / C 2FL to 2RR is appropriately switched between the reduced pressure state, the maintained pressure state, and the increased pressure state in accordance with the slip state of each wheel FL to RR.
[0055]
Specifically, if it is determined that the wheel tends to be locked, the pressure increase control valves 46FL to 46RR corresponding to the wheel are shut off (ON) and the pressure reduction control valves 48FL to 48RR are communicated (ON). The hydraulic pressure of W / C2FL to 2RR is reduced to prevent the wheels from being locked. At this time, the amount of oil depressurized from W / C 2 FL to 2 RR is discharged to the reservoirs 56 and 58 via the pressure reducing control valves 48 FL to 48 RR and further accumulated in the reservoirs 56 and 58 by driving the motor 80. Return the brake oil to the normal brake system.
[0056]
When it is determined that the wheel lock tendency has been eliminated during the ABS control, the pressure increase control valves 46FL to 46RR corresponding to the wheel are communicated (OFF) and the pressure reduction control valves 48FL to 48RR are shut off (OFF). , Increase the hydraulic pressure of the corresponding W / C2FL to 2RR. In this case, if the W / C hydraulic pressure is suddenly increased, the wheels tend to lock, so that the pressure increase control valves 46FL to 46RR and the pressure reduction control valves 48FL to 48RR are both shut off (pressure increase control valve 46 = ON). , Pressure reducing control valve 48 = OFF) to create a state in which the W / C oil pressure is maintained. By such control, the W / C hydraulic pressure is gradually increased to ensure the stability of the vehicle while preventing the wheels from being locked.
[0057]
In addition, after the ABS control is finished, the motor 80 is driven for a predetermined period to smoothly pump the brake oil in the reservoirs 56 and 58 in order to smoothly perform the next ABS control.
(2) Driving force control (differential limiting control for each wheel FL to RR)
In the driving force control, if any of the wheels FL to RR is idle in the four-wheel drive vehicle to be controlled, as described in the section of “Prior Art”, each differential gear is controlled. Since the driving force is not transmitted to the other wheels due to the action of 10C, 10F, and 10R, in order to prevent such a phenomenon, when the driver performs the accelerator operation to drive the vehicle (brake This is performed to detect the rotational speed difference (differential) between the wheels FL to RR and suppress the differential when the operation is not performed.
[0058]
First, in this driving force control, as shown in FIG. 4, the motor 80 is driven to operate the pumps 60 and 62, and the SM valves 50a and 50b and the SR valves 70a and 70b are turned on (energized). That is, with the SM valves 50a, 50b = interruption positions and the SR valves 70a, 70b = communication positions, the pumps 60, 62 transfer from the reservoir 68 provided at the top of the M / C 34 to the pressure increase control valves 46FL-46RR. Brake oil can be pumped.
[0059]
Further, in the driving force control, each of the wheels FL to RR is turned on and off by turning on and off the pressure increase control valves 46FL to 46RR and the pressure reduction control valves 48FL to 48RR in accordance with the rotational speed difference between the wheels FL to RR. A braking force is appropriately applied to the wheel to suppress the rotational speed difference between the wheels FL to RR (in other words, the differential of each wheel is limited).
[0060]
Specifically, as in the case of ABS control, the pressure increase control valves 46FL to 46RR and the pressure reduction control valves 48FL to 48RR are driven to increase, hold and reduce the W / C hydraulic pressure of each wheel FL to RR. Accordingly, the braking force of each wheel FL to RR is changed to adjust the driving force actually transmitted to each wheel FL to RR.
[0061]
Therefore, hereinafter, a driving force control process (which is a main part of the present embodiment) executed by the ECU 20 to perform the driving force control will be described with reference to a flowchart shown in FIG. This driving force control process is periodically executed every predetermined time when an ignition switch (not shown) of the vehicle is turned on. In the following description, the subscripts “FL”, “FR”, “RL”, and “RR” attached to the symbols representing the numerical values correspond to the wheels FL, FR, RL, and RR, respectively. It shows that it is to do. Therefore, for example, of the wheel speed VW, VWFL indicates the wheel speed of the left front wheel FL.
As shown in FIG. 5, when the execution of the driving force control process is started, first, in step (hereinafter simply referred to as “S”) 110, it is determined whether or not the control start condition for the driving force control is satisfied. judge. Then, when the control start condition is not satisfied, the driving force control process is temporarily terminated as it is, but when it is determined that the control start condition is satisfied, the process proceeds to S120. This control start condition is satisfied, for example, when the brake switch 36 is not turned on and the accelerator operation is performed by the driver.
[0062]
In S120, the wheel speeds VWFL to VWRR of the wheels FL to RR are calculated based on the detection signals from the wheel speed sensors 4FL to 4RR, and in S130, based on the wheel speeds VWFL to VWRR determined in S120, The vehicle body speed VB is calculated. This process is performed, for example, by determining the maximum vehicle speed VWmax from the wheel speeds VWFL to VWRR of the wheels FL to RR from the acceleration limit value Vα obtained by adding a predetermined value to the previously determined vehicle speed VB (n-1). It is determined whether or not it is within a range from VB (n-1) to a deceleration limit value Vβ obtained by subtracting a predetermined value, and if the maximum speed VWmax is within a range from the acceleration limit value Vα to the deceleration limit value Vβ, The maximum speed VWmax is set as the vehicle speed VB as it is. If the maximum speed VWmax exceeds the acceleration limit value Vα, the acceleration limit value Vα is set as the vehicle speed VB, and the maximum speed VWmax is below the deceleration limit value Vβ. If so, the deceleration limit value Vβ is set as the vehicle body speed VB according to a conventionally known procedure.
[0063]
When the vehicle body speed VB is obtained in this way, the process proceeds to S140, and based on the wheel speeds VWFL to VWRR calculated in S120, using the above-described formulas 1 to 4, the differential amounts ΔVFL to ΔVFL of the wheels FL to RR are calculated. ΔVRR is calculated.
Specifically, the differential amount ΔVFL of the left front wheel FL is further set to a difference [VWFL−VWFR] between the wheel speed VWFL of the left front wheel FL and the wheel speed VWFR of the right front wheel FR, as shown in Expression 1. The difference between the front and rear wheel speeds VWFL and VWFR and the front and rear wheel speeds VWRL and VWRR is the difference between the front and rear wheel speeds [(VWFL + VWFR) / 2-(VWRL + VWRR) / 2] Is calculated as a value obtained by adding
[0064]
Further, the differential amount ΔVFR of the right front wheel FR is equal to the difference [VWFR−VWFL] between the wheel speed VWFR of the right front wheel FR and the wheel speed VWFL of the left front wheel FL, as shown in Expression 2, It is calculated as a value obtained by adding the wheel rotational speed difference [(VWFL + VWFR) / 2− (VWRL + VWRR) / 2].
[0065]
On the other hand, the differential amount ΔVRL of the left rear wheel RL is further set to the difference [VWRL−VWRR] between the wheel speed VWRL of the left rear wheel RL and the wheel speed VWRR of the right rear wheel RR as shown in Equation 3. The difference between the average speed of the left and right rear wheel speeds VWRL and VWRR and the average value of the left and right front wheel speeds VWFL and VWFR is the difference between the rotational speeds of the rear front wheels [(VWRL + VWRR) / 2-(VWFL + VWFR) / 2] Is calculated as a value obtained by adding
[0066]
Further, as shown in Expression 4, the differential amount ΔVRR of the right rear wheel RR is further increased by the difference [VWRR−VWRL] between the wheel speed VWRR of the right rear wheel RR and the wheel speed VWRL of the left rear wheel RL. The rear front wheel rotational speed difference [(VWRL + VWRR) / 2− (VWFL + VWFR) / 2] is calculated.
[0067]
Therefore, each differential amount ΔVFL to ΔVRR indicates how large the wheel speed VW of the corresponding wheel is relative to the wheel speed VW of the other wheels.
When the differential amounts ΔVFL to ΔVRR of the respective wheels FL to RR are calculated in S140 as described above, in the subsequent S150, based on the vehicle body speed VB obtained in S130, each data amount of FIG. Control target values VTFL to VTRR of the differential amounts ΔVFL to ΔVRR of the wheels FL to RR are set.
[0068]
The control target values VTFL to VTRR are target values for suppressing the differential amounts ΔVFL to ΔVRR of the wheels FL to RR within the values. That is, when the differential amount ΔVFL to ΔVRR of each wheel FL to RR becomes equal to or greater than the corresponding control target value VTFL to VTRR, the W / C hydraulic pressure of the corresponding wheel is increased, as will be described later. The driving force transmitted to the wheels is reduced, and as a result, the differential amounts ΔVFL to ΔVRR of each wheel are suppressed within the control target values VTFL to VTRR.
[0069]
Further, as shown in FIG. 6, the control target values VTFL to VTRR are set to a larger value as the vehicle body speed VB is larger. In particular, the control target values VTRL for the left and right rear wheels RL and RR are set. , VTRR is always set to a smaller value than the control target values VTFL, VTFR of the left and right front wheels FL, FR. Therefore, when the differential amount ΔV is smaller for the rear wheels RL and RR than for the front wheels FL and FR, the W / C hydraulic pressure is increased (in other words, the driving force is reduced). . As shown in FIG. 6, in this embodiment, the control target values VTRL and VTRR for the left and right rear wheels RL and RR are both set to the same value, and the control target values VTFL and FTFL for the left and right front wheels FL and FR are set. Both VTFR are set to the same value.
[0070]
When the control target values VTFL to VTRR of the respective wheels FL to RR are set in this way, the process proceeds to S160, where the differential amounts ΔVFL to ΔVRR obtained in S140 and the control target value VTFL obtained in S150 are set. VTRR is used to calculate the control hydraulic pressure equivalent values BPFL to BPRR for W / C2FL to 2RR of the wheels FL to RR based on the following formulas 5 to 8. That is, the control hydraulic pressure equivalent values BPFL to BPRR are, as shown in Expressions 5 to 8, for each of the wheels FL to RR, the difference between the differential amount ΔV and the control target value VT [ΔV− [VT]] is multiplied by a predetermined constant α.
[0071]
[Expression 2]
BPFL = α × (ΔVFL−VTFL) Equation 5
BPFR = α × (ΔVFR−VTFR) Equation 6
BPRL = α × (ΔVRL−VTRL) Equation 7
BPRR = α × (ΔVRR−VTRR) Equation 8
In S170, as described with reference to FIG. 4, the motor 80 is driven to operate the pumps 60 and 62, and the SM valves 50a and 50b and the SR valves 70a and 70b are both turned on. The SM valves 50a and 50b are set to the cutoff position, and the SR valves 70a and 70b are set to the communication position. In S170, the pressure increase control valves 46FL to 46RR and the pressure reduction control valves 48FL to 48RR are driven according to the control hydraulic pressure equivalent values BPFL to BPRR calculated in S160, and the W / C of each wheel FL to RR is driven. Change the oil pressure appropriately to increase, hold, or reduce pressure. Thus, the driving force actually transmitted to each wheel FL to RR is adjusted, and the differential amount ΔVFL to ΔVRR of each wheel FL to RR is suppressed within the control target value VTFL to VTRR.
[0072]
Specifically, when the differential amount ΔV of any wheel becomes equal to or greater than the control target value VT and the control hydraulic pressure equivalent value BP calculated in S160 becomes a positive value, the control hydraulic pressure equivalent value BP is large. As time increases (that is, as the differential amount ΔV greatly exceeds the control target value VT), the pressure increase control valve 46 and the pressure reduction control corresponding to the wheel increase so that the W / C hydraulic pressure of the wheel increases. The valve 48 is driven. Then, the braking force of the wheel increases and the wheel speed VW decreases, so that the differential amount ΔV of the wheel decreases. After that, when the differential amount ΔV becomes equal to or less than the control target value VT and the control hydraulic pressure equivalent value BP becomes a negative value, the pressurization of the W / C hydraulic pressure is stopped.
[0073]
Then, after the process of S170 is executed, the driving force control process is temporarily ended, and when a predetermined time has elapsed, the process starts again from the process of S110.
In this embodiment, the W / C2FL, 2FR of the left and right front wheels FL, FR and the pressure increase control valves 46FL, 46FR and the pressure reduction for controlling the braking force for each of the left and right front wheels FL, FR in the hydraulic circuit 40 are described. The part centering on the control valves 48FL and 48FR corresponds to the first adjusting means, and the process of S120 in the driving force control process and the process of calculating the expressions 1 and 2 in S140 are the first. In step S160 of the driving force control process, the calculation is performed in accordance with the control hydraulic pressure equivalent values BPFL and BPFR in step S170 and the left and right front wheels FL and FR in step S170. The process of driving the pressure control valves 46FL and 46FR and the pressure reduction control valves 48FL and 48FR corresponds to the first control means. The control target values VTFL and VTFR of the left and right front wheels FL and FR set in S150 of the driving force control process correspond to the first predetermined value, and the first adjustment means and the first differential detection are performed. Each member and processing corresponding to the means and the first control means correspond to the first differential suppression means.
[0074]
Similarly, the pressure increase control valves 46RL and 46RR and the pressure reduction control for controlling the braking force for the left and right rear wheels RL and RR in the hydraulic circuit 40 in the W / C 2RL and 2RR of the left and right rear wheels RL and RR. The portion centered on the valves 48RL and 48RR corresponds to the second adjusting means, and the processing of S120 in the driving force control processing and the processing of performing the calculations of Expressions 3 and 4 in S140 are the second Corresponding to the differential detection means, the process of calculating the formulas 7 and 8 in S160 of the driving force control process, and in S170, it increases according to the control hydraulic pressure equivalent values BPRL and BPRR of the left and right rear wheels RL and RR. The process of driving the pressure control valves 46RL and 46RR and the pressure reduction control valves 48RL and 48RR corresponds to the second control means. The control target values VTRL and VTRR of the left and right rear wheels RL and RR set in S150 of the driving force control process correspond to the second predetermined value, and the second adjusting means and the second differential Each member and process corresponding to the detection means and the second control means correspond to a second differential suppression means.
[0075]
As described above in detail, the ECU 20 of the present embodiment calculates the differential amounts (rotational speed differences) ΔVFL to ΔVRR of the wheels FL to RR with respect to the other wheels by the above-described equations 1 to 4 ( S120, S140), when the calculated differential amounts ΔVFL to ΔVRR become equal to or greater than the control target values VTFL to VTRR set in S150, and the control hydraulic pressure equivalent values BPFL to BPRR calculated in S160 become positive values. By increasing the W / C pressure of the corresponding wheel and applying a braking force, the rotational speed difference between the wheels FL to RR is suppressed.
[0076]
And by suppressing the rotational speed difference between each wheel FL-RR in this way, the driving force from the engine 6 and the transmission 8 is applied to each wheel FL-RR via each differential gear 10C, 10F, 10R. It is surely transmitted.
In particular, in this embodiment, the control target values VTRL and VTRR for the left and right rear wheels RL and RR are set to values smaller than the control target values VTFL and VTFR for the left and right front wheels FL and FR. The left / right rear wheels RL and RR are started to increase the W / C hydraulic pressure when the differential amount ΔV is smaller than that of the left and right front wheels FL and FR.
[0077]
Therefore, according to this embodiment, when a rotational speed difference occurs between both the left and right front wheels FL and FR and between the left and right rear wheels RL and RR, the rotational speed difference between the left and right front wheels FL and FR The rotational speed difference between the left and right rear wheels RL and RR is preferentially suppressed. As a result, a difference in rotational speed between the left and right rear wheels RL and RR can be preferentially prevented from causing the vehicle behavior to become an oversteer tendency (spin tendency), and the running stability is impaired. Thus, the propulsive force of the vehicle can be reliably improved.
[0078]
For example, as illustrated in FIG. 7, when the vehicle is accelerating, the wheel speed VWRR of the right rear wheel RR is larger than the wheel speed VWRL of the left rear wheel RL and is larger than the wheel speed VWFL of the left front wheel FL. If the wheel speed VWFR of the right front wheel FR becomes larger, first, the rotational speed difference between the left and right rear wheels RL and RR is preferentially suppressed (time t1), and then between the left and right front wheels FL and FR. The rotational speed difference of the vehicle is suppressed (time t2), and the driving force of the vehicle can be improved without impairing the running stability by such priority.
[0079]
In this embodiment, the rotational speed difference between the left and right front wheels FL, FR [VWFL-VWFR], [VWFR-VWFL] is different from the front-rear wheel rotational speed difference [(VWFL + VWFR) / 2- (VWRL + VWRR) / 2. ] As the differential amounts ΔVFL, ΔVFR of the left and right front wheels FL, FR, and the difference between the rotational speeds [VWRL−VWRR], [VWRR−VWRL] between the left and right rear wheels RL, RR The value obtained by adding the rotational speed difference [(VWRL + VWRR) / 2− (VWFL + VWFR) / 2] is used as the differential amounts ΔVRL and ΔVRR of the left and right rear wheels RL and RR.
[0080]
Accordingly, as the total rotational speed [VWFL + VWFR] of the left and right front wheels FL, FR becomes larger than the total rotational speed [VWRL + VWRR] of the left and right rear wheels RL, RR, the respective differential amounts ΔVFL, ΔVFR of the left and right front wheels FL, FR. When the differential value ΔVFL and ΔVFR both exceed the control target values VTFL and VTFR, braking force is applied to both the left and right front wheels FL and FR, thereby causing a difference in rotational speed between the front and rear wheels. It is suppressed.
[0081]
Conversely, as the total rotational speed [VWRL + VWRR] of the left and right rear wheels RL and RR becomes larger than the total rotational speed [VWFL + VWFR] of the left and right front wheels FL and FR, the respective differential amounts ΔVRL of the left and right rear wheels RL and RR. , △ VRR becomes a large value and both differential amounts △ VRL, △ VRR are both equal to or greater than the control target values VTRL, VTRR, braking force is applied to both the left and right rear wheels RL, RR, thereby The rotational speed difference is suppressed.
[0082]
Therefore, according to the present embodiment, it is possible to suppress the difference in rotational speed between the front and rear wheels while preventing the running stability from being impaired, and to further improve the driving force of the vehicle. it can.
In the present embodiment, the differential amounts ΔVFL to ΔVRR of the wheels FL to RR are obtained based on the detection signals from the wheel speed sensors 4FL to 4RR. The driving force transmitted to each of the wheels FL to RR can be controlled. For example, the differential state of each of the front differential gear 10F and the rear differential gear 10R is monitored, and the rotation between the left and right front wheels FL and FR is monitored. The speed difference [VWFL-VWFR], [VWFR-VWFL] and the rotational speed difference [VWRL-VWRR], [VWRR-VWRL] between the left and right rear wheels RL, RR are detected, and further, the differential of the center differential gear 10C is detected. Monitor the condition and detect the front and rear wheel speed difference [(VWFL + VWFR) / 2-(VWRL + VWRR) / 2] and the rear front wheel speed difference [(VWRL + VWRR) / 2-(VWFL + VWFR) / 2] The Rukoto, may be obtained differential amount △ VFL~ △ VRR of the wheels FL to RR.
[0083]
On the other hand, in the present embodiment, the braking force is generated on each wheel FL to RR to adjust the driving force transmitted to each wheel FL to RR. Most of the above can be used to obtain the above-described effects, simplifying the device and reducing the weight of the vehicle.
[0084]
Specifically, normally, in order to perform the ABS control, a circuit configuration excluding the SM valves 50a and 50b, the relief valves 54a and 54b, and the SR valves 70a and 70b in the hydraulic circuit 40 of FIG. 2 is required. To this configuration, only the SM valve, the relief valve, and the SR valve need be added.
[0085]
By the way, even if the control system of the four-wheel drive vehicle in the above embodiment is modified as shown in the following (A) to (F), the same effect as in the above embodiment can be obtained.
(A) The center differential gear 10C is an electronically controlled type capable of distributing torque to the front wheel drive shaft 11F and the rear wheel drive shaft 11R at a ratio according to a command from the ECU 20, and the front differential The gear 10F is of an electronic control type capable of distributing torque to the left front wheel FL and the right front wheel FR at a ratio according to a command from the ECU 20, and the rear differential gear 10R is made of the left rear wheel RL and the right rear wheel RR. In addition, an electronic control type that can distribute torque at a ratio according to a command from the ECU 20 is used.
[0086]
(B) The ECU 20 takes into account the difference between the front and rear wheel rotational speeds [(VWFL + VWFR) / 2− (VWRL + VWRR) / 2] and the rear front wheel rotational speed difference [(VWRL + VWRR) / 2− (VWFL + VWFR) / 2]. Instead, the differential amounts ΔVFL to ΔVRR of the respective wheels FL to RR are calculated by the following equations 9 to 12.
[0087]
[Equation 3]
△ VFL = VWFL-VWFR Equation 9
△ VFR = VWFR-VWFL ... Equation 10
△ VRL = VWRL-VWRR ... Formula 11
△ VRR = VWRR−VWRL… Formula 12
(C) The ECU 20 applies the differential amount ΔV to the electronically controlled front differential gear 10F when either one of the differential amounts ΔVFL, ΔVFR of the left and right front wheels FL, FR exceeds a predetermined value N1. Outputs a command for reducing the ratio of torque transmitted to the wheel of which is equal to or greater than a predetermined value N1.
[0088]
(D) Similarly, when one of the differential amounts ΔVRL and ΔVRR of the left and right rear wheels RL and RR becomes equal to or greater than a predetermined value N2, the ECU 20 applies an electronically controlled rear differential gear 10R. A command for reducing the ratio of torque transmitted to the wheel whose differential amount ΔV is equal to or greater than a predetermined value N2 is output.
[0089]
(E) Further, the ECU 20 determines that the front / rear wheel rotational speed difference [(VWFL + VWFR) / 2− (VWRL + VWRR) / 2] and the rear front wheel rotational speed difference [(VWRL + VWRR) / 2− (VWFL + VWFR) / 2]. When the difference between the front and rear wheel rotational speeds [(VWFL + VWFR) / 2− (VWRL + VWRR) / 2] becomes equal to or greater than a predetermined value N3, the difference is transmitted to the electronically controlled center differential gear 10C to the front wheels. When a command for reducing the torque ratio is output and, on the contrary, the rear front wheel rotational speed difference [(VWRL + VWRR) / 2− (VWFL + VWFR) / 2] exceeds a predetermined value N3, the electronically controlled center A command for reducing the ratio of torque transmitted to the rear wheels is output to differential gear 10C.
[0090]
(F) The predetermined values N1, N2, and N3 are set so that the predetermined value N2 regarding the rear wheels RL and RR is the smallest value. These predetermined values N1 to N3 may be predetermined values or may be set according to the vehicle body speed VB as in the data map shown in FIG.
[0091]
That is, in the modified examples (A) to (F), the driving force transmitted to each of the left and right front wheels FL and FR is adjusted by the process of (C), and the rotational speed difference between the left and right front wheels FL and FR is adjusted. Is operated as a first differential suppressing means, and the driving force transmitted to each of the left and right rear wheels RL and RR is adjusted by the processing of (D), so that the distance between the left and right rear wheels RL and RR is adjusted. The operation as the second differential suppression means for suppressing the rotational speed difference is performed, and further, the drive transmitted to the left and right front wheels FL and FR and the left and right rear wheels RL and RR by the processing of (E). By adjusting the force, the operation as the third differential suppressing means for suppressing the rotational speed difference between the front and rear wheels is performed.
[0092]
Also in this modification, the predetermined value N2 for determining whether or not to adjust the driving force transmitted to each of the left and right rear wheels RL and RR is the smallest value among the predetermined values N1 to N3. Therefore, when the rotational speed difference occurs between the left and right front wheels FL and FR, between the left and right rear wheels RL and RR, and between the front and rear wheels, the left and right rear wheels RL and RR by the rear differential gear 10R respectively. Is adjusted with priority over the driving force adjustment for the left and right front wheels FL, FR by the front differential gear 10F and the driving force adjustment for the front and rear wheels by the center differential gear 10C.
[0093]
Therefore, similarly to the embodiment described above, it is possible to preferentially prevent the vehicle behavior from becoming an oversteer tendency due to a difference in rotational speed between the left and right rear wheels RL, RR, and driving stability. The propulsive force of the vehicle can be reliably improved while preventing the vehicle from being damaged.
[0094]
In each of the embodiments including the above-described modifications, the calculated differential values ΔVFL to ΔVRR of the wheels FL to RR are PV values (bearing surfaces) representing the durability indexes of the differential gears 10C, 10F, and 10R. If it is likely to exceed the sliding bearing operating limit given by the product of the pressure P and the sliding speed V), the opening of the sub-throttle SS provided in the intake system of the engine 6 is throttled to reduce the engine output. It may be suppressed. If such control is performed, the differential gears 10C, 10F, and 10R can be reliably protected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a configuration of an entire control system of a four-wheel drive vehicle according to an embodiment.
FIG. 2 is an explanatory diagram illustrating a configuration of a hydraulic circuit according to an embodiment.
FIG. 3 is a timing chart illustrating ABS control performed by an ECU.
FIG. 4 is a timing chart illustrating driving force control performed by an ECU.
FIG. 5 is a flowchart showing a driving force control process executed by the ECU.
FIG. 6 is an explanatory diagram for explaining a data map used when a driving force control process is executed.
FIG. 7 is an explanatory diagram for explaining the effect of execution of a driving force control process.
[Explanation of symbols]
FL ... Left front wheel FR ... Right front wheel RL ... Left rear wheel RR ... Right rear wheel
2 ... Brake device (Wheel cylinder: W / C) 4 ... Wheel speed sensor
6 ... Engine 8 ... Transmission 10C ... Center / Differential gear
10F ... Front differential gear 11F, 11R ... Drive shaft
10R ... Rear differential gear 12 ... Sensor group
SS ... sub-throttle 20 ... electronic control unit (ECU)
32 ... Brake pedal 34 ... Master cylinder (M / C)
36 ... Brake switch 40 ... Hydraulic circuit 42,44 ... Hydraulic path
46 ... Pressure increase control valve 48 ... Pressure reduction control valve
50a, 50b ... Master cylinder cut valve (SM valve)
54a, 54b ... relief valve 56, 58, 68 ... reservoir
60, 62 ... Pump 64, 66 ... Accumulator
70a, 70b ... Reservoir cut valve (SR valve) 80 ... Motor

Claims (8)

左右前後の四つの車輪を駆動輪として備える四輪駆動車に用いられ、
該四輪駆動車に搭載された動力源から左右前輪の各々に伝達される駆動力を調整して、該左右前輪間の回転速度差を抑制する第1の差動抑制制御と、
前記動力源から左右後輪の各々に伝達される駆動力を調整して、該左右後輪間の回転速度差を抑制する第2の差動抑制制御と、
を実行する四輪駆動車の駆動力制御方法であって、
前記第2の差動抑制制御における前記左右後輪間の回転速度差の制御目標値を、前記第1の差動抑制制御における前記左右前輪間の回転速度差の制御目標値よりも小さい値に設定すること、
を特徴とする四輪駆動車の駆動力制御方法。
Used for four-wheel drive vehicles with four wheels on the left and right and front and rear as drive wheels,
A first differential suppression control for adjusting a driving force transmitted to each of the left and right front wheels from a power source mounted on the four-wheel drive vehicle, and suppressing a rotational speed difference between the left and right front wheels;
A second differential suppression control for adjusting a driving force transmitted from the power source to each of the left and right rear wheels to suppress a rotational speed difference between the left and right rear wheels;
A driving force control method for a four-wheel drive vehicle that executes
The control target value of the rotational speed difference between the left and right rear wheels in the second differential suppression control is set to a value smaller than the control target value of the rotational speed difference between the left and right front wheels in the first differential suppression control. settings and child,
A driving force control method for a four-wheel drive vehicle.
請求項1に記載の四輪駆動車の駆動力制御方法において、
更に、前記動力源から左右前輪と左右後輪とに伝達される駆動力を調整して、該前後輪間の回転速度差を抑制する第3の差動抑制制御を実行すると共に、
前記第2の差動抑制制御における前記左右後輪間の回転速度差の制御目標値を、前記第1の差動抑制制御における前記左右前輪間の回転速度差の制御目標値及び前記第3の差動抑制制御における前記前後輪間の回転速度差の制御目標値よりも小さい値に設定すること、
を特徴とする四輪駆動車の駆動力制御方法。
The driving force control method for a four-wheel drive vehicle according to claim 1,
Further, the driving force transmitted from the power source to the left and right front wheels and the left and right rear wheels is adjusted, and third differential suppression control is performed to suppress the rotational speed difference between the front and rear wheels,
The control target value of the rotational speed difference between the left and right rear wheels in the second differential suppression control is the control target value of the rotational speed difference between the left and right front wheels in the first differential suppression control and the third Setting a value smaller than the control target value of the rotational speed difference between the front and rear wheels in the differential suppression control;
A driving force control method for a four-wheel drive vehicle.
左右前後の四つの車輪を駆動輪として備える四輪駆動車に用いられ、
該四輪駆動車に搭載された動力源から左右前輪の各々に伝達される駆動力を調整して、該左右前輪間の回転速度差を抑制する第1の差動抑制手段と、
前記動力源から左右後輪の各々に伝達される駆動力を調整して、該左右後輪間の回転速度差を抑制する第2の差動抑制手段と、
を備えた四輪駆動車の駆動力制御装置であって、
前記第2の差動抑制手段における前記左右後輪間の回転速度差の制御目標値が、前記第1の差動抑制手段における前記左右前輪間の回転速度差の制御目標値よりも小さい値に設定されていること、
を特徴とする四輪駆動車の駆動力制御装置。
Used for four-wheel drive vehicles with four wheels on the left and right and front and rear as drive wheels,
First differential suppression means for adjusting a driving force transmitted to each of the left and right front wheels from a power source mounted on the four-wheel drive vehicle, and suppressing a difference in rotational speed between the left and right front wheels;
Adjusting a driving force transmitted to each of the left and right rear wheels from the power source, and a second differential suppressing means for suppressing a rotational speed difference between the left and right rear wheels;
A driving force control device for a four-wheel drive vehicle comprising:
The control target value of the rotational speed difference between the left and right rear wheels in the second differential suppression means is smaller than the control target value of the rotational speed difference between the left and right front wheels in the first differential suppression means. That it is configured,
A driving force control device for a four-wheel drive vehicle.
請求項3に記載の四輪駆動車の駆動力制御装置において、
前記第1の差動抑制手段は、
前記動力源から前記左右前輪の各々に伝達される駆動力を、外部からの指令に応じて調整する第1の調整手段と、
前記左右前輪の各々について、他方の車輪との回転速度差を検出し、該検出した各回転速度差を、対応する車輪の差動量として出力する第1の差動検出手段と、
前記左右前輪のうち前記第1の差動検出手段から出力された差動量が第1の所定値以上である車輪に伝達される駆動力を低減させるための指令を、前記第1の調整手段に出力する第1の制御手段とを備え、
前記第2の差動抑制手段は、
前記駆動源から前記左右後輪の各々に伝達される駆動力を、外部からの指令に応じて調整する第2の調整手段と、
前記左右後輪の各々について、他方の車輪との回転速度差を検出し、該検出した各回転速度差を、対応する車輪の差動量として出力する第2の差動検出手段と、
前記左右後輪のうち前記第2の差動検出手段から出力された差動量が第2の所定値以上である車輪に伝達される駆動力を低減させるための指令を、前記第2の調整手段に出力する第2の制御手段とを備え、
更に、前記第2の所定値が、前記第1の所定値よりも小さい値に設定されていること、
を特徴とする四輪駆動車の駆動力制御装置。
In the four-wheel drive vehicle driving force control device according to claim 3,
The first differential suppression means includes:
First adjusting means for adjusting the driving force transmitted from the power source to each of the left and right front wheels in accordance with an external command;
First differential detection means for detecting a rotational speed difference with the other wheel for each of the left and right front wheels, and outputting the detected rotational speed difference as a differential amount of the corresponding wheel;
A command for reducing a driving force transmitted to a wheel of which the differential amount output from the first differential detection means among the left and right front wheels is equal to or greater than a first predetermined value is provided as the first adjustment means. First control means for outputting to
The second differential suppression means includes
A second adjusting means for adjusting a driving force transmitted from the driving source to each of the left and right rear wheels according to an external command;
Second differential detection means for detecting a rotational speed difference with the other wheel for each of the left and right rear wheels, and outputting each detected rotational speed difference as a differential amount of the corresponding wheel;
A command for reducing a driving force transmitted to a wheel of which the differential amount output from the second differential detection means among the left and right rear wheels is equal to or greater than a second predetermined value is provided in the second adjustment. Second control means for outputting to the means,
Further, the second predetermined value is set to a value smaller than the first predetermined value,
A driving force control device for a four-wheel drive vehicle.
請求項4に記載の四輪駆動車の駆動力制御装置において、
前記第1の差動検出手段は、
前記左右前輪の各々について、他方の車輪との回転速度差を検出することに加えて、更に、前記左右前輪の回転速度の平均値と前記左右後輪の回転速度の平均値との差を前後輪回転速度差として検出すると共に、前記左右前輪の各々について検出した各回転速度差に前記前後輪回転速度差を各々加算した値を、前記左右前輪の各々に対応する前記差動量として出力するように構成されており、
前記第2の差動検出手段は、
前記左右後輪の各々について、他方の車輪との回転速度差を検出することに加えて、更に、前記左右後輪の回転速度の平均値と前記左右前輪の回転速度の平均値との差を後前輪回転速度差として検出すると共に、前記左右後輪の各々について検出した各回転速度差に前記後前輪回転速度差を各々加算した値を、前記左右後輪の各々に対応する前記差動量として出力するように構成されていること、
を特徴とする四輪駆動車の駆動力制御装置。
The driving force control apparatus for a four-wheel drive vehicle according to claim 4,
The first differential detection means includes
For each of the left and right front wheels, in addition to detecting the rotational speed difference with the other wheel, the difference between the average rotational speed of the left and right front wheels and the average rotational speed of the left and right rear wheels While detecting as a wheel rotation speed difference, a value obtained by adding the front and rear wheel rotation speed difference to the rotation speed difference detected for each of the left and right front wheels is output as the differential amount corresponding to each of the left and right front wheels. Is configured as
The second differential detection means includes
For each of the left and right rear wheels, in addition to detecting the rotational speed difference with the other wheel, the difference between the average rotational speed of the left and right rear wheels and the average rotational speed of the left and right front wheels The differential amount corresponding to each of the left and right rear wheels is obtained by adding a value obtained by adding the rear front wheel rotational speed difference to each rotational speed difference detected for each of the left and right rear wheels. Is configured to output as
A driving force control device for a four-wheel drive vehicle.
請求項4又は請求項5に記載の四輪駆動車の駆動力制御装置において、
前記四つの各車輪の回転速度を各々検出するための車輪速度センサを備え、
前記第1の差動検出手段及び前記第2の差動検出手段は、前記車輪速度センサからの検出信号に基づき、前記各車輪に対応する前記差動量を出力するように構成されていること、
を特徴とする四輪駆動車の駆動力制御装置。
In the driving force control device for a four-wheel drive vehicle according to claim 4 or 5,
A wheel speed sensor for detecting the rotational speed of each of the four wheels,
The first differential detection means and the second differential detection means are configured to output the differential amount corresponding to each wheel based on a detection signal from the wheel speed sensor. ,
A driving force control device for a four-wheel drive vehicle.
請求項4ないし請求項6の何れかに記載の四輪駆動車の駆動力制御装置において、
前記第1の調整手段は、前記左右前輪の各々に、外部からの指令に応じて制動力を発生させることにより、前記駆動源から前記左右前輪の各々に伝達される駆動力を調整するように構成されており、
前記第2の調整手段は、前記左右後輪の各々に、外部からの指令に応じて制動力を発生させることにより、前記駆動源から前記左右後輪の各々に伝達される駆動力を調整するように構成されていること、
を特徴とする四輪駆動車の駆動力制御装置。
In the driving force control apparatus for a four-wheel drive vehicle according to any one of claims 4 to 6,
The first adjusting means adjusts the driving force transmitted from the driving source to each of the left and right front wheels by generating a braking force on each of the left and right front wheels in response to a command from the outside. Configured,
The second adjusting means adjusts the driving force transmitted from the driving source to each of the left and right rear wheels by causing each of the left and right rear wheels to generate a braking force in accordance with an external command. That is structured as
A driving force control device for a four-wheel drive vehicle.
請求項3に記載の四輪駆動車の駆動力制御装置において、
前記動力源から左右前輪と左右後輪とに伝達される駆動力を調整して、該前後輪間の回転速度差を抑制する第3の差動抑制手段を備えると共に、
前記第2の差動抑制手段における前記左右後輪間の回転速度差の制御目標値が、前記第1の差動抑制手段における前記左右前輪間の回転速度差の制御目標値及び前記第3の差動抑制手段における前記前後輪間の回転速度差の制御目標値よりも小さい値に設定されていること、
を特徴とする四輪駆動車の駆動力制御装置。
In the four-wheel drive vehicle driving force control device according to claim 3,
Adjusting the driving force transmitted from the power source to the left and right front wheels and the left and right rear wheels, and comprising a third differential suppressing means for suppressing the rotational speed difference between the front and rear wheels;
The control target value of the rotational speed difference between the left and right rear wheels in the second differential suppression means is the control target value of the rotational speed difference between the left and right front wheels in the first differential suppression means and the third The differential suppression means is set to a value smaller than the control target value of the rotational speed difference between the front and rear wheels;
A driving force control device for a four-wheel drive vehicle.
JP20703696A 1996-08-06 1996-08-06 Driving force control method and driving force control device for four-wheel drive vehicle Expired - Fee Related JP3713827B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20703696A JP3713827B2 (en) 1996-08-06 1996-08-06 Driving force control method and driving force control device for four-wheel drive vehicle
US08/906,520 US6059065A (en) 1996-08-06 1997-08-05 Driving torque control method and apparatus for a four-wheel drive vehicle
DE19734037A DE19734037B4 (en) 1996-08-06 1997-08-06 Drive torque control device for a vehicle with four-wheel drive
DE19758968A DE19758968B8 (en) 1996-08-06 1997-08-06 A drive torque control method and apparatus for a four-wheel drive vehicle based on rotational speed differentials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20703696A JP3713827B2 (en) 1996-08-06 1996-08-06 Driving force control method and driving force control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH1044801A JPH1044801A (en) 1998-02-17
JP3713827B2 true JP3713827B2 (en) 2005-11-09

Family

ID=16533149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20703696A Expired - Fee Related JP3713827B2 (en) 1996-08-06 1996-08-06 Driving force control method and driving force control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3713827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988026B2 (en) 2015-12-22 2018-06-05 Autoliv-Nissin Brake Systems Japan Co., Ltd. System and method for independently controlling wheel slip and vehicle acceleration

Also Published As

Publication number Publication date
JPH1044801A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
EP0842836B1 (en) Vehicular motion controlling system
US6976741B2 (en) Brake control system for vehicle and method for controlling brake system
US6199964B1 (en) Braking control system for an automotive vehicle
US5978726A (en) Driving torque control method and apparatus for a four-wheel drive vehicle
JP3972431B2 (en) Four-wheel drive traction control system
US20180281760A1 (en) Control device for four-wheel drive vehicle
CN108621787B (en) Control device for four-wheel drive vehicle
JP2002234355A (en) Control device for four-wheel drive vehicle
US6059065A (en) Driving torque control method and apparatus for a four-wheel drive vehicle
JP2707806B2 (en) Anti-skid brake control method for four-wheel drive
JP4085452B2 (en) Vehicle braking force control device
JP2880663B2 (en) Brake fluid pressure control device
JPH035344B2 (en)
JP3713827B2 (en) Driving force control method and driving force control device for four-wheel drive vehicle
JP2002067917A (en) Braking control device for vehicle
JP3781101B2 (en) Braking force control device for vehicle
JP3085092B2 (en) Acceleration slip control device
JP5125669B2 (en) Vehicle speed estimation device for four-wheel drive vehicles
JP3726297B2 (en) Brake pressure control device for vehicles
JPH10147230A (en) Driving force controlling method, driving force controller and storage medium of four-wheel drive vehicle
JP3975510B2 (en) Brake device for vehicle
JP3114525B2 (en) Vehicle behavior control device
JPH1086803A (en) Driving force control method and driving force control device of four-wheeled vehicle
JPH11189150A (en) Driving force controller for 4-wheel drive vehicle
JP3238482B2 (en) Anti-skid brake system for vehicles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees