JP3713764B2 - Organic photoconductor for electrophotography and method for producing the same - Google Patents

Organic photoconductor for electrophotography and method for producing the same Download PDF

Info

Publication number
JP3713764B2
JP3713764B2 JP25595195A JP25595195A JP3713764B2 JP 3713764 B2 JP3713764 B2 JP 3713764B2 JP 25595195 A JP25595195 A JP 25595195A JP 25595195 A JP25595195 A JP 25595195A JP 3713764 B2 JP3713764 B2 JP 3713764B2
Authority
JP
Japan
Prior art keywords
undercoat layer
halogen
layer
concentration
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25595195A
Other languages
Japanese (ja)
Other versions
JPH0996917A (en
Inventor
宏一 会沢
孝 大日方
信二郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP25595195A priority Critical patent/JP3713764B2/en
Publication of JPH0996917A publication Critical patent/JPH0996917A/en
Application granted granted Critical
Publication of JP3713764B2 publication Critical patent/JP3713764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は複写機、プリンター、普通紙FAX等の電子写真装置に用いられる積層型有機感光体、中でも炭素,水素,窒素,酸素の他に塩素,ヨウ素,フッ素等のハロゲンを含有した層を有する有機感光体及びその製造方法に係り、特に残留電位が低く、高感度を有し、印字上の黒点、白点、メモリー、解像度の低下等の印字不良が発生せず、高温高湿や低温低湿保管による品質の劣化を生ずることがなく、長期耐刷性に優れ、特に繰り返し使用による印字欠陥の発生のない感光体およびその製造方法に関する。
【0002】
【従来の技術】
近年、特公昭55−42380号公報や特公昭60−34099号公報に記載されているように導電性基体上に電荷発生層、電荷輸送層を積層してなる積層型有機感光体が開発されている。これらの積層型有機感光体は、例えば電荷発生物質をある種の樹脂バインダー、有機溶剤とともに分散液としたものを用いて塗布、乾燥した電荷発生層と電荷輸送物質を樹脂バインダー、添加剤ともに有機溶剤に溶解した液を用いて塗布乾燥した電荷輸送層とで形成される。
【0003】
このような感光体では、反転現像を用いた電子写真プロセスにおいて黒点等の印字欠陥の発生や、残留電位の上昇による印字濃度の低下等の不具合が生じる。
そこで導電性基体と電荷発生層との間に下引き層または中間層と呼ばれる樹脂層を設ける技術が知られている。例えば、アルコール可溶性ポリアミド樹脂(特公昭58−45707号公報,特開昭60−168157号公報)等が知られている。下引き層の形成方法としては上記したような塗布及び乾燥工程を適用することが知られている。
【0004】
図1は電子写真感光体を示す断面図である。電荷発生層と電荷輸送層は積層型の感光層である。単層型の感光層もある。
導電性基体としては、種々の金属及び合金或いは導電性樹脂等が用いられるが軽量で加工性の良いアルミニウム円筒やカーボンを含有した樹脂(導電性樹脂)を用いるのが一般的である。
【0005】
【発明が解決しようとする課題】
ところがこれらの方法で作製された感光体では初期には良好な印字品質、電機特性が得られるものの、繰り返し使用(たとえば、A4サイズで10000プリント)によって感光層中に残留した電荷の蓄積が生じ、黒点の発生や残留電位の上昇等の不具合が生ずる。さらには導電性基体としてアルミニウム合金を用いる場合には、高温高湿下でハロゲンとアルミニウムとの反応による膜の変質、ガスの発生、基体と下引き層との剥離という問題点があった。
【0006】
また、下引き層の塗布後の熱処理は一定温度での硬化処理が一般的であり、そのような場合溶剤の残留、添加材料と有機樹脂との相溶性の差による析出等の問題を生じていた。
本発明者らは、ハロゲンを含有する下引き層を有する有機感光体に関し鋭意研究を重ねた結果、ハロゲンの濃度分布状態を適切に設計することが上記課題の解決に極めて有効であることを見出し、この知見に基づいて本発明をなすに至った。
【0007】
この発明は上記の点に鑑みてなされその目的は下引き層中のハロゲンの濃度分布を最適化することにより、くり返し使用後においても印字特性が良好であり、高温高湿下での品質劣化がなく信頼性に優れる電子写真用感光体およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上述の目的は第一の発明によれば導電性基板上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体において、下引き層中のハロゲン(但し、塩類として含有する場合を除く。)の濃度が導電性基板に接する面より感光層に接する面に向けて増大する濃度勾配を有するとすることにより達成される。
【0009】
第二の発明によれば、第一の発明において、下引き層がハロゲン濃度の相対的に低い第一の下引き層とハロゲン濃度の相対的に高い第二の下引き層が順次積層された二層からなるとすることが有効である。
第三の発明によれば、導電性基体上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、有機樹脂とハロゲンを含む下引き層用塗布液(但し、ハロゲンを塩類として含有する場合を除く。)を導電性基体上に塗布し、2種の異なる温度、時間による2段階或いはそれ以上の多段工程により乾燥熱処理したのちに有機樹脂の硬化熱処理を行うことにより、ハロゲンの濃度が導電性基板に接する面より感光層に接する面に向けて増大する濃度勾配を有する下引き層を形成する工程を含む有機感光体の製造方法とすることにより達成される。または、第四の発明によれば、導電性基体上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、ハロゲン濃度の相対的に低い第一の下引き層とハロゲン濃度の相対的に高い第二の下引き層を順次積層した二層からなる下引き層を形成する工程を含む有機感光体の製造方法とすることにより達成される。
【0010】
第五の発明(請求項1に係る発明)によれば、導電性基板上に、ハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、有機樹脂中にハロゲンを含有する下引き層を形成する工程と、得られた下引き層をハロゲン含有溶液中に浸漬し下引き層表面のハロゲン濃度を高くする工程を備える有機感光体の製造方法とすることにより達成される。
第六の発明(請求項2に係る発明)によれば、第二の発明におけるハロゲン濃度の相対的に低い第一の下引き層とハロゲン濃度の相対的に高い第二の下引き層を異なる濃度のハロゲンを含有する反応ガスを用いてプラズマ重合法により形式することにより達成される。
【0011】
第七の発明(請求項3に係る発明)によれば導電性基体上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、前記下引き層はハロゲン濃度の相対的に低い第一の下引き層とハロゲン濃度の相対的に高い第二の下引き層とを順次積層した二層からなり、これら第一と第二の下引き層を異なる濃度のハロゲン元素を含有する合金を用いて真空蒸着法により形成することにより達成される。
【0012】
【発明の実施の形態】
本発明において、導電性基体には公知のアルミニウム合金であるJIS3003系、JIS5000系、JIS6000系等のものが適用できる。
これらの導電性基体はアルミニウムの押し出し加工、引き抜き加工及び切削加工等により所定の寸法精度に仕上げられる。
【0013】
この導電性基体の表面は必要に応じて、ダイヤモンドバイト等による切削加工等により適切な表面粗さに仕上げられる。その後、加工に用いられた切削油等を除去し清浄化し、陽極酸化、酸エッチング、アルカリエッチング等の処理により酸化アルミニウム層が形成される。
また、本発明における導電性基体として、導電性樹脂を用いる事もできる。特に、架橋タイプのポリフェニレンサルファイド樹脂を主成分とし、これに高導電性カーボンブラックを配合したものが好適である。
【0014】
その後塗工前洗浄が施されるが、従来はフロン等の塩素系有機溶剤が用いられていたが、近年、オゾン層保護等の目的で弱アルカリ性洗剤等の水系洗浄剤が用いられる。
次に下引き層が塗布されるが導電性基体との密着性を向上するために導電性基体の表面を紫外線照射,オゾン暴露,化学エッチング等の方法により改質する場合もある。
【0015】
また下引き層としては水系洗剤による洗浄後あるいは改質後の導電性基体表面との密着性、塗工性に優れた樹脂が選択されるが、適切な電荷の注入性,ブロッキング性を付与するためにハロゲンを含有する樹脂が選択される。即ち、塩素,フッ素,臭素,ヨウ素等をイオン,錯体,及び分子として添加含有した塩ビ,可溶性フッ化エチレン,臭素化フェノキシ,ヨウ素含有メラミンその他のハロゲン化樹脂が用いられる。
【0016】
これらの材料を用いた下引き層の膜厚は0.5ミクロン以上が好ましい。この基体の表面粗さおよび添加剤の粒子形状が感光層を形成する際に残っていると感光層の塗工ムラによる画像不良が発生することがあるため、下引き層を形成する際にはある膜厚以上の層、例えば0.5ミクロン以上とすることが好ましい。この下引き層を含む感光層を有する感光体はレーザビームプリンターに用いる場合は感光層の屈折率やその膜厚や光源波長などとの組み合わせによっては干渉模様が発生し易くなる。それを防ぐためには感光体の導電性基体を特定の表面粗さに加工する方法、光源波長の光を吸収する吸収材料の下引き層への添加、光の散乱を誘起させる様な微粒子の下引き層への添加等の手法が必要となる。
【0017】
これらの下引き層形成材料(上記樹脂,干渉防止剤,硬化剤,導電性付与剤等)および有機溶剤を混合することにより下引き層用の塗工液が作成される。この塗工液を用いて、適切な膜厚の下引き層を形成するが、その方法としては浸漬法,スプレー法等が知られている。
本発明ではこの下引き層内にハロゲンの濃度プロファイルを設けることにより電気特性,印字品質,耐久性に優れた感光体を提供することを主眼としている。そのハロゲンの濃度プロファイルを設ける具体的な方法としては、ハロゲン含有量の異なる塗工液を2種類以上準備し、濃度の低い液を用い第一の下引き層、濃度の高い液を用いて第2の下引き層をこの順序で塗工する方法と、1種類の塗工液により1層の下引き層を塗工後熱処理時のハロゲンの拡散を利用して所定の濃度分布を発生させる方法が挙げられる。
【0018】
下引き層塗工後は、膜の乾燥、硬化工程を行う。この工程を用いている樹脂のガラス転移温度、硬化剤を用いた場合はその硬化温度、有機溶剤の沸点等により適切な温度、時間が定められる。また本発明において明らかになったのは乾燥及び硬化条件を適切に定める事により層中のハロゲンを所定の濃度プロファイルに設定できることである。乾燥炉,硬化炉内に温度プロファイルを持たせる事が最も効果的であるが、場合により2種の異なる温度、時間による2段階或いはそれ以上の多段工程により濃度プロファイルを設定することもできる。
【0019】
その他の方法としてハロゲンを分子内に含有した原料ガスのプラズマ重合法,ハロゲン含有合金の真空蒸着法なども応用できる。
この後に、導電性基体上への改質処理と同じ理由で下引き層表面の改質処理が施される。下引き層の表面改質工程としては紫外線照射が施こされる。一般的な紫外線ランプにより、184.9nm及び253.7nmの波長が下引き層表面の分子結合を切断し、表面が活性化する。また前述した様な化学処理等でも同等の効果が得られる。本発明においてはこの工程を特に限定しない。
【0020】
本発明による感光体においては下引き層の上に電荷発生層が形成される。電荷発生物質は無金属フタロシアニン,各種の金属フタロシアニン等レーザー光源の波長に光感度を有する材料、アゾ顔料等の白色光に適した分光感度を有する材料であれば特に制限をうけるものではない。
また本発明による電荷輸送層は電荷発生層の上に形成され、例えばポリビニルカルバゾール,オキサジアゾール,イミダゾール,ピラゾリン,ヒドラゾン,スチルベン等の電荷輸送物質を1種類以上含み、結着剤樹脂及び必要に応じて酸化防止剤、紫外線吸収剤等を含んだものが用いられる。
実施例1
下記組成のアルミニウム合金を用いて直径30mm、長さ250mmの導電性基体を得た(表1)。
【0021】
【表1】

Figure 0003713764
さらに基体表面をダイヤモンド仕上げにより最大表面粗さ0.5ミクロンとした。
【0022】
この基体を水系洗剤(ライオン(株)MF−10)5パーセント溶液中で温度50℃、3分浸漬し超音波洗浄を行った後、同一洗剤を用いてブラシ洗浄、浄水すすぎ(超音波付加3分)、純水すすぎ(超音波付加3分)、超純水すすぎ、温純水乾燥(温度70℃)の工程で表面を清浄化した。
引き続き以下の組成の下引き層を浸漬塗工により5ミクロン厚さに形成した。
【0023】
メラミン樹脂(三井東圧化学:ユーバン21R)50重量部
無水トリメリット酸(和光純薬試薬) 7重量部
ヨウ素(和光純薬試薬) 8重量部
疎水性シリカ(日本エアロジル) 35重量部
メチルアルコール 700重量部
この後に100℃で20分乾燥を行い、さらに140℃で20分の熱硬化を施し、次に以下の組成の溶液中にドラムを10分間浸漬し表面へのヨウ素の添加を行った。
【0024】
ヨウ素(和光純薬試薬) 3重量部
メチルアルコール 100重量部
このようにして得られた下引き層の表面のヨウ素濃度は55重量パーセントであった。一方、導電性基体側のヨウ素濃度は塗液中不揮発分に対する濃度と同じく8重量パーセントであり擬似2層構成となっている。
【0025】
さらに紫外線照射装置(サンエンジニアリング(株);SUV200NS)を用いてランプと感光体の距離20mm、ランプ電圧200Vで20秒の密着性改良を行った。
電荷発生層は以下の組成の塗液により0.1ミクロン厚さに浸漬塗工した。
X型無金属フタロシアニン 1重量部
ポリビニルブチラール 1重量部
テトラヒドロフラン 98重量部
電荷輸送層は以下の組成の塗液により20ミクロン厚さに浸漬塗工した。
【0026】
ヒドラゾン化合物(亜南香料:CTC191) 6重量部
ブタジエン化合物(亜南香料:T−405) 4重量部
ポリカーボネート樹脂(帝人:C−1400) 10重量部
ジクロロメタン 80重量部
以上のようにして作製された感光体をレーザービームプリンターに搭載して印字試験を行ったところ初期で印字濃度1.42(マクベス濃度計による)白紙濃度0.05(マクベス濃度計による)、直径0.1mm以上の黒点数はドラム1周あたり4個と良好であった。またゴバンメ試験(JIS K5400)の結果、剥離は0/100と良好であった。
【0027】
またこのドラムで10万枚のランニング試験を実施したのちの印字試験によると、印字濃度1.41,白紙濃度0.06、黒点数5個と初期との差はみとめられず、また試験中の膜剥離等も生じなかった。
さらに、この感光体を60℃、相対湿度90%の環境中に1500時間放置した後に印字試験、ゴバンメ試験、ランニング試験を行ったところ放置前と同様良好な結果が得られた。
【0028】
このドラムの下引き層中のヨウ素濃度はイオンマイクロアナライザIMAにより測定した結果、導電性基体側では約8%に対して電荷発生層側では電荷発生層から約0.4μmの位置から急激にヨウ素濃度が増加していた。
比較例1
ヨウ素溶液による添加処理を省略した他は実施例1と同一条件で感光体を作製した。
【0029】
このドラムの下引き層中のヨウ素濃度は導電性基体側から電荷発生層側まではほぼ均一であり約8%であった。但し最表面は濃度低下があり、約6%に下がっていた。
またこのドラムで10万枚のランニング試験を実施したのちの印字試験によると、印字濃度低下,白紙濃度上昇すなわち地カブリが認められた。この現象は電気特性の測定結果により、帯電位の低下と残留電位の上昇による明部電位上昇によることが明確になった。即ち、ヨウ素濃度が電荷発生層側で高くなっていない感光体は繰り返し使用による特性変動が大きい。
実施例2
導電性基体を体積抵抗が100Ω・cmのポリフェニレンサルファイド(PPS)樹脂(カーボンブラック含有)に替える以外は実施例1と同様にして感光体を作成した。
【0030】
以上のようにして作成された感光体をレーザービームプリンターに搭載して印字試験を行ったところ、初期で印字濃度1.41(マクベス濃度計による)、白紙濃度0.06(マクベス濃度計による)、直径0.1mm以上の黒点数はドラム1周あたり2個と良好であった。また、ゴバンメ試験(JIS K5400)の結果、剥離は0/100と良好であった。
【0031】
また、このドラムで10万枚のランニング試験を実施したのちの印字試験によると、印字濃度1.40,白紙濃度0.06、黒点数3個と初期との差はみとめられず、また試験中の膜剥離等も生じなかった。
さらにこの感光体を60℃、相対湿度90%の環境中に1500時間放置した後に印字試験、ゴバンメ試験、ランニング試験を行ったところ放置前と同様にして良好な結果が得られた。
【0032】
このときのヨウ素濃度分布は実施例1と同様であった。
参考例3
下引き層を以下の様な2層構成に替える以外は実施例1と同様にして感光体を作成した。
第一の層:
メラミン樹脂(三井東圧化学;ユーバン20SB) 50重量部
安息香酸アンモニウム(和光純薬試薬) 7重量部
ヨウ素(和光純薬試薬) 8重量部
微粒子酸化チタン(石原産業) 35重量部
メチルアルコール 700重量部
乾燥条件 100℃、20分
硬化条件 135℃、20分
膜厚 9μm
第二の層:
メラミン樹脂(三井東圧化学;ユーバン20SB) 20重量部
安息香酸アンモニウム(和光純薬試薬) 7重量部
ヨウ素(和光純薬試薬) 63重量部
微粒子酸化チタン(石原産業) 10重量部
メチルアルコール 700重量部
乾燥条件 100℃、20分
硬化条件 140℃、20分
膜厚 1μm
この感光体も実施例1と同様に良好な特性を示した。
参考例4
参考例3と同様の方法で第二の下引き層のハロゲン含有量のみを変化させた感光体を作成し、ハロゲン濃度依存性を評価した。その結果を表2に示す。
【0033】
【表2】
Figure 0003713764
このときの評価結果を示す記号の意味は以下の通りである。
【0034】
○:10万枚のランニング後も良好な印字を示す
△:10万枚のランニングにより印字の劣化はあるが、実用上問題
ないレベルにある。
×:10万枚のランニングにより実用上問題のある印字を示す
第二の下引き層中のヨウ素濃度が第一の下引き層中のヨウ素濃度より高いと良好な耐刷性を示すことがわかる。
実施例5
第一と第二の下引き層を以下の条件で作成した以外は参考例3と同一の条件でサンプルを作成評価した。
【0035】
サンプルA:プラズマ重合法
第一の下引き層
原料ガス C(50%)とCF(50%)
ガス圧力 13.3Pa
放電電力 500W
フッ素 10%
第二の下引き層
原料ガス C(30%)とCF(70%)
ガス圧力 13.3Pa
放電電力 500W
フッ素 18%
サンプルB:真空蒸着法
第一の下引き層
原料合金 500ppm塩素含有SeAs
真空度 0.0133Pa
蒸着時ボート温度 250℃
塩素濃度 500ppm
第二の下引き層
原料合金 SeAs(80%) 金属ヨウ素(20%)
真空度 0.0133Pa
蒸着時ボート温度 300℃
ヨウ素濃度 20%
サンプルA、Bともハロゲンの濃度分布が電荷発生層側で高くなるように設定すると良好なランニング特性を得ることができる。
参考例6
下記組成のアルミニウム合金を用いて直径30mm、長さ250mmの導電性基体を得た(表3)。
【0036】
【表3】
Figure 0003713764
さらに基体表面をダイヤモンド仕上げにより最大表面粗さ0.5ミクロンとした。
【0037】
この基体を水系洗剤(ライオン(株)MF−10)5パーセント溶液中で温度50℃、3分浸漬し超音波洗浄を行った後、同一洗剤を用いてブラシ洗浄、浄水すすぎ(超音波付加3分)、純水すすぎ(超音波付加3分)、超純水すすぎ、温純水乾燥(温度70℃)の工程で表面を清浄化した。
引き続き以下の組成の下引き層を浸漬塗工により2ミクロン厚さに形成した。
【0038】
メラミン樹脂(三井東圧化学:ユーバン21R)50重量部
無水トリメリット酸(和光純薬試薬) 7重量部
ヨウ素(和光純薬試薬) 3重量部
疎水性シリカ(日本エアロジル) 40重量部
メチルアルコール 700重量部
この後に第一の熱処理を100℃で20分乾燥を行い、さらに第二の熱処理を140℃で20分の工程を施した。
【0039】
さらに紫外線照射装置(サンエンジニアリング(株);SUV200NS)を用いてランプと感光体の距離20mm、ランプ電圧200Vで20秒の密着性改良を行った。
電荷発生層は以下の組成の塗液により0.1ミクロン厚さに浸漬塗工した。
X型無金属フタロシアニン 1重量部
ポリビニルブチラール 1重量部
テトラヒドロフラン 98重量部
電荷輸送層は以下の組成の塗液により20ミクロン厚さに浸漬塗工した。
【0040】
ヒドラゾン化合物(亜南香料:CTC191) 5重量部
ブタジエン化合物(亜南香料:T−405) 5重量部
ポリカーボネート樹脂(帝人:C−1400) 10重量部
ジクロロメタン 80重量部
以上のようにして作製された感光体をレーザービームプリンターに搭載して印字試験を行ったところ初期で印字濃度1.42(マクベス濃度計による)白紙濃度0.05(マクベス濃度計による)、直径0.1mm以上の黒点数はドラム1周あたり4個と良好であった。また、ゴバンメ試験(JIS K5400)の結果、剥離は0/100と良好であった。
【0041】
またこのドラムで10万枚のランニング試験を実施したのち印字試験によると、印字濃度1.41,白紙濃度0.06、黒点数5個と初期との差はみとめられず、また試験中の膜剥離等も生じなかった。
さらに、この感光体を60℃、相対湿度90%の環境中に1500時間放置した後に印字試験、ゴバンメ試験、ランニング試験を行ったところ放置前と同様良好な結果が得られた。
【0042】
このドラムの下引き層中のヨウ素濃度はイオンマイクロアナライザIMAにより測定した結果、導電性基体側では約2.5%に対して電荷発生層側では3.5%である。
参考比較例2
下引き層の乾燥、硬化工程を140℃、20分の1工程に替えた以外は参考例6と同一条件で感光体を作成した。
【0043】
このドラムの下引き層中のヨウ素濃度は導電性基体側から電荷発生層側まではほぼ均一であり約3%であった。但し最表面は濃度低下があり、約2.6%に下がっていた。
またこのドラムで10万枚のランニング試験を実施したのちの印字試験によると、印字濃度低下,白紙濃度上昇すなわち地カブリが認められた。この現象は電気特性の測定結果により、帯電位の低下と残留電位の上昇による明部電位上昇によることが明確になった。即ち、ヨウ素濃度が電荷発生層側で高くなっていない感光体は繰り返し使用による特性変動が大きい。
参考例7
導電性基体を体積抵抗が100Ω・cmのPPS樹脂(カーボンブラック含有)に替える以外は参考例6と同様にして感光体を作成した。
【0044】
以上のようにして作成された感光体をレーザービームプリンターに搭載して印字試験を行ったところ、初期で印字濃度1.41(マクベス濃度計による)、白紙濃度0.06(マクベス濃度計による)、直径0.1mm以上の黒点数はドラム1周あたり2個と良好であった。また、ゴバンメ試験(JIS K5400)の結果、剥離は0/100と良好であった。
【0045】
また、このドラムで10万枚のランニング試験を実施したのちの印字試験によると、印字濃度1.40,白紙濃度0.06、黒点数3個と初期との差はみとめられず、また試験中の膜剥離等も生じなかった。
さらにこの感光体を60℃、相対湿度90%の環境中に1500時間放置した後に印字試験、ゴバンメ試験、ランニング試験を行ったところ放置前と同様にして良好な結果が得られた。
【0046】
このときのヨウ素濃度分布は参考例6と同様であった。
参考例8
下引き層を参考例3と同様な方法で表4に示した条件の組み合わせの第一の下引き層と第二の下引き層の二層積層の感光体を作成した。その際の乾燥、硬化温度、膜厚は以下の通りである。
【0047】
Figure 0003713764
【0048】
【表4】
Figure 0003713764
【0049】
電荷発生層側のヨウ素濃度が導電性基体側より高濃度になっていれば良好である。
参考例9
下引き層の組成を変える以外は参考例6と同一条件で感光体を作成し、参考例6と同様の評価を行った。
【0050】
サンプルC:
臭素化エポキシ樹脂(積水化学;エスレックKS−1)50重量部
疎水性シリカ(日本エアロジル) 50重量部
テトラヒドロフラン 700重量部
サンプルD:
フッ素含有櫛形ポリマー(綜研化学;LF40) 50重量部
酸化チタン微粒子(日本エアロジル) 50重量部
テトラヒドロフラン 700重量部
サンプルE:
塩ビ/酢ビ共重合樹脂 50重量部
酸化チタン微粒子(日本エアロジル) 50重量部
テトラヒドロフラン 700重量部
サンプルC、D、Eすべてにおいてハロゲンの濃度分布を電荷発生層側が高くなるように設定することで良好なランニング特性を得ることができた。
【0051】
【発明の効果】
この発明によれば下引き層中のハロゲン濃度が導電性基体に接する面より感光層に接する面に向けて増大する濃度勾配を有するのでくり返し使用後においても印字特性が良好であり、高温高湿下の品質劣化のない電子写真用有機感光体が得られる。
【0052】
また下引き層を第一の下引き層と第二の下引き層により構成するのでプラズマ重合法,真空蒸着法等を用いて容易にハロゲン濃度勾配を有する電子写真用感光体を容易に調製することができる。
導電性基体上にハロゲンを含む下引き層を形成し、乾燥熱処理,硬化熱処理を行うときは、下引き層中のハロゲンの拡散によりハロゲンの濃度勾配を持った下引き層が容易に得られる。
【0053】
下引き層を形成したのちにハロゲン含有溶液中に浸漬するとハロゲンが下引き層に拡散してハロゲン濃度勾配を有する下引き層が得られる。
【図面の簡単な説明】
【図1】電子写真用感光体を示す断面図
【符号の説明】
1 導電性基体
2 下引き層
3 電荷発生層
4 電荷輸送層[0001]
BACKGROUND OF THE INVENTION
The present invention is a laminated organic photoconductor used in electrophotographic apparatuses such as copying machines, printers, plain paper fax machines, etc., and in particular has a layer containing halogen such as chlorine, iodine and fluorine in addition to carbon, hydrogen, nitrogen and oxygen. The present invention relates to an organic photoreceptor and a method for producing the same, and particularly has a low residual potential, high sensitivity, and does not cause printing defects such as black spots, white spots, memory, and a decrease in resolution. The present invention relates to a photoconductor that does not deteriorate in quality due to storage, has excellent long-term printing durability, and does not cause printing defects due to repeated use, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, as described in Japanese Patent Publication No. 55-42380 and Japanese Patent Publication No. 60-34099, a multilayer organic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive substrate has been developed. Yes. These layered organic photoreceptors are, for example, applied to a charge generation material in the form of a dispersion liquid together with a resin binder and an organic solvent. The charge transport layer is formed by coating and drying using a solution dissolved in a solvent.
[0003]
In such a photoconductor, problems such as the occurrence of printing defects such as black spots in the electrophotographic process using reversal development, and a decrease in printing density due to an increase in residual potential occur.
Therefore, a technique is known in which a resin layer called an undercoat layer or an intermediate layer is provided between a conductive substrate and a charge generation layer. For example, alcohol-soluble polyamide resins (Japanese Patent Publication No. 58-45707, Japanese Patent Laid-Open No. 60-168157) are known. As a method for forming the undercoat layer, it is known to apply the coating and drying steps as described above.
[0004]
FIG. 1 is a cross-sectional view showing an electrophotographic photosensitive member. The charge generation layer and the charge transport layer are laminated photosensitive layers. There is also a single-layer type photosensitive layer.
As the conductive substrate, various metals and alloys, conductive resins, or the like are used. However, it is common to use a lightweight and good workability aluminum cylinder or carbon-containing resin (conductive resin).
[0005]
[Problems to be solved by the invention]
However, in the photoconductor produced by these methods, although good print quality and electrical characteristics can be obtained in the initial stage, accumulation of charges remaining in the photosensitive layer is caused by repeated use (for example, A4 size 10,000 prints). Problems such as generation of black spots and increase in residual potential occur. Furthermore, when an aluminum alloy is used as the conductive substrate, there are problems such as film alteration due to the reaction between halogen and aluminum under high temperature and high humidity, gas generation, and peeling between the substrate and the undercoat layer.
[0006]
In addition, the heat treatment after application of the undercoat layer is generally a curing treatment at a constant temperature. In such a case, problems such as residual solvent and precipitation due to a difference in compatibility between the additive material and the organic resin have occurred. It was.
As a result of intensive studies on an organic photoreceptor having a halogen-containing undercoat layer, the present inventors have found that it is extremely effective to solve the above problems by appropriately designing the halogen concentration distribution state. Based on this finding, the present invention has been made.
[0007]
The present invention has been made in view of the above points, and an object thereof is to optimize the halogen concentration distribution in the undercoat layer so that the printing characteristics are good even after repeated use, and the quality deterioration under high temperature and high humidity. An object of the present invention is to provide an electrophotographic photoreceptor excellent in reliability and a method for producing the same.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided an electrophotographic organic photoreceptor in which a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, wherein the halogen in the undercoat layer (however, salts) In the case where it is contained as a density gradient that increases from the surface in contact with the conductive substrate toward the surface in contact with the photosensitive layer.
[0009]
According to the second invention, in the first invention, the undercoat layer is formed by sequentially laminating the first undercoat layer having a relatively low halogen concentration and the second undercoat layer having a relatively high halogen concentration. It is effective to consist of two layers.
According to the third invention, in a method for producing an organic photoconductor for electrophotography in which a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, an undercoat layer containing an organic resin and a halogen is used. A coating solution (except when halogen is contained as a salt) is coated on a conductive substrate, dried and heat-treated by two or more multi-step processes depending on two different temperatures and times, and then the organic resin An organic photoreceptor manufacturing method including a step of forming an undercoat layer having a concentration gradient in which a halogen concentration increases from a surface in contact with a conductive substrate toward a surface in contact with the photosensitive layer by performing a curing heat treatment. Is achieved. Alternatively, according to the fourth invention, in the method for producing an electrophotographic organic photoreceptor in which a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, the halogen concentration is relatively low. This is achieved by providing a method for producing an organic photoreceptor including a step of forming an undercoat layer composed of two layers in which one undercoat layer and a second undercoat layer having a relatively high halogen concentration are sequentially laminated.
[0010]
According to the fifth invention ( the invention according to claim 1) , in the method for producing an electrophotographic organic photoconductor, wherein a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, A process for forming an undercoat layer containing halogen in the resin, and a method for producing an organic photoreceptor comprising the steps of immersing the obtained undercoat layer in a halogen-containing solution to increase the halogen concentration on the surface of the undercoat layer; Is achieved.
According to the sixth invention ( the invention according to claim 2) , the first undercoat layer having a relatively low halogen concentration and the second undercoat layer having a relatively high halogen concentration in the second invention are different. This is achieved by forming by a plasma polymerization method using a reaction gas containing a concentration of halogen.
[0011]
According to a seventh aspect of the invention (invention according to claim 3) , in the method for producing an organic photoconductor for electrophotography in which a halogen-containing subbing layer and a photosensitive layer are sequentially laminated on a conductive substrate, the subbing is performed. The layer is composed of two layers in which a first undercoat layer having a relatively low halogen concentration and a second undercoat layer having a relatively high halogen concentration are sequentially laminated. This is achieved by forming by vacuum deposition using alloys containing halogen elements of different concentrations .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, known aluminum alloys such as JIS 3003, JIS 5000, and JIS 6000 can be applied to the conductive substrate.
These conductive substrates are finished with a predetermined dimensional accuracy by aluminum extrusion, drawing and cutting.
[0013]
The surface of this conductive substrate is finished to an appropriate surface roughness by cutting with a diamond tool or the like, if necessary. Thereafter, the cutting oil or the like used for processing is removed and cleaned, and an aluminum oxide layer is formed by a treatment such as anodization, acid etching, or alkali etching.
Also, a conductive resin can be used as the conductive substrate in the present invention. In particular, those containing a cross-linked polyphenylene sulfide resin as a main component and blended with highly conductive carbon black are preferred.
[0014]
Thereafter, pre-coating cleaning is performed. Conventionally, chlorinated organic solvents such as chlorofluorocarbons have been used, but recently, aqueous cleaners such as weak alkaline detergents are used for the purpose of protecting the ozone layer.
Next, an undercoat layer is applied, but the surface of the conductive substrate may be modified by a method such as ultraviolet irradiation, ozone exposure, or chemical etching in order to improve adhesion to the conductive substrate.
[0015]
For the undercoat layer, a resin having excellent adhesion to the surface of the conductive substrate after washing with a water-based detergent or after modification and coating properties are selected, but it imparts appropriate charge injection and blocking properties. Therefore, a resin containing halogen is selected. That is, vinyl chloride, soluble ethylene fluoride, brominated phenoxy, iodine-containing melamine and other halogenated resins containing chlorine, fluorine, bromine, iodine and the like added as ions, complexes, and molecules are used.
[0016]
The thickness of the undercoat layer using these materials is preferably 0.5 microns or more. When the surface roughness of the substrate and the particle shape of the additive remain when forming the photosensitive layer, image defects may occur due to uneven coating of the photosensitive layer. A layer having a certain thickness or more, for example, 0.5 μm or more is preferable. When the photoreceptor having the photosensitive layer including the undercoat layer is used in a laser beam printer, an interference pattern is likely to occur depending on the combination of the refractive index of the photosensitive layer, the film thickness, the light source wavelength, and the like. In order to prevent this, a method in which the conductive substrate of the photoconductor is processed to a specific surface roughness, the addition of an absorbing material that absorbs light of the light source wavelength to the undercoat layer, the presence of fine particles that induce light scattering, etc. A technique such as addition to the pulling layer is required.
[0017]
A coating liquid for the undercoat layer is prepared by mixing these undercoat layer forming materials (the above resin, interference preventing agent, curing agent, conductivity imparting agent, etc.) and an organic solvent. An undercoat layer having an appropriate film thickness is formed using this coating solution, and as its method, a dipping method, a spray method or the like is known.
The main object of the present invention is to provide a photoreceptor excellent in electrical characteristics, print quality and durability by providing a halogen concentration profile in the undercoat layer. As a specific method of providing the halogen concentration profile, two or more types of coating liquids having different halogen contents are prepared, a low concentration liquid is used, a first undercoat layer, and a high concentration liquid is used. A method of coating two undercoat layers in this order, and a method of generating a predetermined concentration distribution by using halogen diffusion during heat treatment after coating one undercoat layer with one type of coating liquid Is mentioned.
[0018]
After coating the undercoat layer, the film is dried and cured. When a glass transition temperature of a resin using this process or a curing agent is used, an appropriate temperature and time are determined depending on the curing temperature, the boiling point of the organic solvent, and the like. Also, in the present invention, it has become clear that the halogen in the layer can be set to a predetermined concentration profile by appropriately determining the drying and curing conditions. It is most effective to have a temperature profile in the drying furnace and the curing furnace, but in some cases, the concentration profile can be set by two or more multistage processes depending on two different temperatures and times.
[0019]
Other methods such as plasma polymerization of a source gas containing halogen in the molecule and vacuum deposition of a halogen-containing alloy can also be applied.
Thereafter, the modification treatment of the surface of the undercoat layer is performed for the same reason as the modification treatment on the conductive substrate. As the surface modification process of the undercoat layer, ultraviolet irradiation is performed. With a general ultraviolet lamp, the wavelengths of 184.9 nm and 253.7 nm break molecular bonds on the surface of the undercoat layer, and the surface is activated. In addition, the same effect can be obtained by chemical treatment as described above. In the present invention, this step is not particularly limited.
[0020]
In the photoreceptor according to the present invention, a charge generation layer is formed on the undercoat layer. The charge generation material is not particularly limited as long as it is a material having photosensitivity to the wavelength of a laser light source such as metal-free phthalocyanine, various metal phthalocyanines, or a material having spectral sensitivity suitable for white light such as an azo pigment.
In addition, the charge transport layer according to the present invention is formed on the charge generation layer, and includes one or more kinds of charge transport materials such as polyvinyl carbazole, oxadiazole, imidazole, pyrazoline, hydrazone, stilbene, and binder resin and Accordingly, those containing an antioxidant, an ultraviolet absorber and the like are used.
Example 1
A conductive substrate having a diameter of 30 mm and a length of 250 mm was obtained using an aluminum alloy having the following composition (Table 1).
[0021]
[Table 1]
Figure 0003713764
Further, the surface of the substrate was diamond finished to a maximum surface roughness of 0.5 microns.
[0022]
This substrate was immersed in a 5% aqueous detergent (Lion Corporation MF-10) solution at a temperature of 50 ° C. for 3 minutes and subjected to ultrasonic cleaning, followed by brush cleaning and clean water rinsing using the same detergent (ultrasonic addition 3 Minute), pure water rinse (3 minutes with ultrasonic wave addition), ultrapure water rinse, and warm pure water drying (temperature 70 ° C.).
Subsequently, an undercoat layer having the following composition was formed to a thickness of 5 microns by dip coating.
[0023]
Melamine resin (Mitsui Toatsu Chemicals: Yuban 21R) 50 parts by weight trimellitic anhydride (Wako Pure Chemical Reagents) 7 parts by weight Iodine (Wako Pure Chemicals Reagents) 8 parts by weight hydrophobic silica (Nippon Aerosil) 35 parts by weight methyl alcohol 700 Part by weight After this, drying was carried out at 100 ° C. for 20 minutes, followed by heat curing at 140 ° C. for 20 minutes. Next, the drum was immersed in a solution having the following composition for 10 minutes, and iodine was added to the surface.
[0024]
Iodine (Wako Pure Chemical Reagent) 3 parts by weight Methyl alcohol 100 parts by weight The iodine concentration on the surface of the subbing layer thus obtained was 55 percent by weight. On the other hand, the iodine concentration on the conductive substrate side is 8 weight percent, which is the same as the concentration with respect to the non-volatile content in the coating liquid, and has a pseudo two-layer structure.
[0025]
Further, the adhesion was improved for 20 seconds at a lamp-to-photoreceptor distance of 20 mm and a lamp voltage of 200 V using an ultraviolet irradiation device (Sun Engineering Co., Ltd .; SUV200NS).
The charge generation layer was dip coated to a thickness of 0.1 microns with a coating liquid having the following composition.
X-type metal-free phthalocyanine 1 part by weight Polyvinyl butyral 1 part by weight Tetrahydrofuran 98 parts by weight The charge transport layer was dip coated to a thickness of 20 microns with a coating solution having the following composition.
[0026]
Hydrazone compound (Suban fragrance: CTC191) 6 parts by weight butadiene compound (Suban fragrance: T-405) 4 parts by weight Polycarbonate resin (Teijin: C-1400) 10 parts by weight Dichloromethane 80 parts by weight or more When a printing test was conducted with the photoconductor mounted on a laser beam printer, the initial printing density was 1.42 (using a Macbeth densitometer), white paper density was 0.05 (using a Macbeth densitometer), and the number of black spots with a diameter of 0.1 mm or more was It was as good as 4 pieces per drum. Further, as a result of the Gobang test (JIS K5400), the peeling was as good as 0/100.
[0027]
Also, according to the print test after running a 100,000 sheets test with this drum, the print density is 1.41, blank paper density is 0.06, the number of black dots is 5 and the difference between the initial and the initial is not found. No film peeling occurred.
Further, when this photoconductor was left in an environment of 60 ° C. and relative humidity 90% for 1500 hours and then subjected to a printing test, a gobang test and a running test, the same good results as before were obtained.
[0028]
The concentration of iodine in the undercoat layer of this drum was measured by an ion microanalyzer IMA. As a result, about 8% on the conductive substrate side, and suddenly iodine from the position of about 0.4 μm from the charge generation layer on the charge generation layer side. The concentration was increasing.
Comparative Example 1
A photoconductor was produced under the same conditions as in Example 1 except that the addition treatment with the iodine solution was omitted.
[0029]
The iodine concentration in the undercoat layer of this drum was almost uniform from the conductive substrate side to the charge generation layer side and was about 8%. However, the outermost surface had a decrease in concentration, which was about 6%.
In addition, according to a printing test after a running test of 100,000 sheets on this drum, printing density decrease, white paper density increase, that is, background fogging was recognized. It was clarified that this phenomenon was caused by a rise in the light potential due to a decrease in the charged potential and a rise in the residual potential, based on the measurement results of the electrical characteristics. In other words, a photoreceptor whose iodine concentration is not high on the charge generation layer side has a large characteristic fluctuation due to repeated use.
Example 2
A photoconductor was prepared in the same manner as in Example 1 except that the conductive substrate was replaced with a polyphenylene sulfide (PPS) resin (containing carbon black) having a volume resistance of 100 Ω · cm.
[0030]
When the photoconductor prepared as described above was mounted on a laser beam printer and a print test was performed, the print density was 1.41 (using a Macbeth densitometer) and the white paper density was 0.06 (using a Macbeth densitometer). The number of black spots with a diameter of 0.1 mm or more was as good as 2 per drum circumference. Further, as a result of the Gobanme test (JIS K5400), the peeling was as good as 0/100.
[0031]
In addition, according to the printing test after running a 100,000 sheets running test with this drum, the printing density 1.40, blank paper density 0.06, 3 black spots, the difference between the initial and the initial is not found No film peeling or the like occurred.
Further, when this photoconductor was left in an environment of 60 ° C. and relative humidity 90% for 1500 hours and then subjected to a printing test, gobang test and running test, good results were obtained as before.
[0032]
The iodine concentration distribution at this time was the same as in Example 1.
Reference example 3
A photoconductor was prepared in the same manner as in Example 1 except that the undercoat layer was changed to the following two-layer structure.
First layer:
Melamine resin (Mitsui Toatsu Chemicals; Uban 20SB) 50 parts by weight
7 parts by weight of ammonium benzoate (Wako Pure Chemical Reagent)
Iodine (Wako Pure Chemical Reagent) 8 parts by weight
Fine particle titanium oxide (Ishihara Sangyo) 35 parts by weight
700 parts by weight of methyl alcohol
Drying conditions 100 ° C, 20 minutes
Curing conditions 135 ° C, 20 minutes
Film thickness 9μm
Second layer:
Melamine resin (Mitsui Toatsu Chemicals; Uban 20SB) 20 parts by weight
7 parts by weight of ammonium benzoate (Wako Pure Chemical Reagent)
63 parts by weight of iodine (Wako Pure Chemical Reagent)
Particulate titanium oxide (Ishihara Sangyo) 10 parts by weight
700 parts by weight of methyl alcohol
Drying conditions 100 ° C, 20 minutes
Curing conditions 140 ° C, 20 minutes
Film thickness 1μm
This photoreceptor also showed good characteristics as in Example 1.
Reference example 4
A photoreceptor in which only the halogen content of the second undercoat layer was changed was prepared in the same manner as in Reference Example 3, and the halogen concentration dependency was evaluated. The results are shown in Table 2.
[0033]
[Table 2]
Figure 0003713764
The meanings of the symbols indicating the evaluation results at this time are as follows.
[0034]
○: Good printing even after running 100,000 sheets
Δ: Although printing is deteriorated by running 100,000 sheets, there is a problem in practical use.
There is no level.
X: Printing having a problem in practical use by running 100,000 sheets It can be seen that when the iodine concentration in the second undercoat layer is higher than the iodine concentration in the first undercoat layer, good printing durability is exhibited. .
Example 5
Samples were prepared and evaluated under the same conditions as in Reference Example 3 except that the first and second undercoat layers were prepared under the following conditions.
[0035]
Sample A: Plasma polymerization first subbing layer
Source gases C 2 H 2 (50%) and CF 4 (50%)
Gas pressure 13.3Pa
Discharge power 500W
Fluorine 10%
Second undercoat layer
Source gases C 2 H 2 (30%) and CF 4 (70%)
Gas pressure 13.3Pa
Discharge power 500W
Fluorine 18%
Sample B: Vacuum deposition method First undercoat layer
Raw material alloy 500ppm chlorine containing SeAs
Degree of vacuum 0.0133Pa
Deposition boat temperature 250 ° C
Chlorine concentration 500ppm
Second undercoat layer
Raw material alloy SeAs (80%) Metal iodine (20%)
Degree of vacuum 0.0133Pa
Deposition boat temperature 300 ° C
Iodine concentration 20%
If both the samples A and B are set so that the halogen concentration distribution is higher on the charge generation layer side, good running characteristics can be obtained.
Reference Example 6
A conductive substrate having a diameter of 30 mm and a length of 250 mm was obtained using an aluminum alloy having the following composition (Table 3).
[0036]
[Table 3]
Figure 0003713764
Further, the surface of the substrate was diamond finished to a maximum surface roughness of 0.5 microns.
[0037]
This substrate was immersed in a 5% aqueous detergent (Lion Corporation MF-10) solution at a temperature of 50 ° C. for 3 minutes and subjected to ultrasonic cleaning, followed by brush cleaning and clean water rinsing using the same detergent (ultrasonic addition 3 Minute), pure water rinse (3 minutes with ultrasonic wave addition), ultrapure water rinse, and warm pure water drying (temperature 70 ° C.).
Subsequently, an undercoat layer having the following composition was formed to a thickness of 2 microns by dip coating.
[0038]
Melamine resin (Mitsui Toatsu Chemicals: Yuban 21R) 50 parts by weight trimellitic anhydride (Wako Pure Chemical Reagents) 7 parts by weight Iodine (Wako Pure Chemicals Reagents) 3 parts by weight hydrophobic silica (Nippon Aerosil) 40 parts by weight methyl alcohol 700 Part by weight After this, the first heat treatment was dried at 100 ° C. for 20 minutes, and the second heat treatment was further performed at 140 ° C. for 20 minutes.
[0039]
Further, the adhesion was improved for 20 seconds at a lamp-to-photoreceptor distance of 20 mm and a lamp voltage of 200 V using an ultraviolet irradiation device (Sun Engineering Co., Ltd .; SUV200NS).
The charge generation layer was dip coated to a thickness of 0.1 microns with a coating liquid having the following composition.
X-type metal-free phthalocyanine 1 part by weight Polyvinyl butyral 1 part by weight Tetrahydrofuran 98 parts by weight The charge transport layer was dip coated to a thickness of 20 microns with a coating solution having the following composition.
[0040]
Hydrazone compound (Suban fragrance: CTC191) 5 parts by weight Butadiene compound (Suban fragrance: T-405) 5 parts by weight Polycarbonate resin (Teijin: C-1400) 10 parts by weight Dichloromethane 80 parts by weight or more When a printing test was conducted with the photoconductor mounted on a laser beam printer, the initial printing density was 1.42 (using a Macbeth densitometer), white paper density was 0.05 (using a Macbeth densitometer), and the number of black spots with a diameter of 0.1 mm or more was It was as good as 4 pieces per drum. Further, as a result of the Gobanme test (JIS K5400), the peeling was as good as 0/100.
[0041]
Also, after running a 100,000 sheets test with this drum, according to the print test, the print density is 1.41, blank paper density is 0.06, the number of black spots is 5 and the difference between the initial and the initial film is not recognized. No peeling or the like occurred.
Further, when this photoconductor was left in an environment of 60 ° C. and relative humidity 90% for 1500 hours and then subjected to a printing test, a gobang test and a running test, the same good results as before were obtained.
[0042]
As a result of measuring the iodine concentration in the undercoat layer of this drum with an ion microanalyzer IMA, it is about 2.5% on the conductive substrate side and 3.5% on the charge generation layer side.
Reference Comparative Example 2
A photoconductor was prepared under the same conditions as in Reference Example 6 except that the drying and curing steps of the undercoat layer were changed to 140 ° C. and 1/20 step.
[0043]
The iodine concentration in the undercoat layer of this drum was almost uniform from the conductive substrate side to the charge generation layer side and was about 3%. However, the outermost surface had a decrease in density, which was reduced to about 2.6%.
In addition, according to a printing test after a running test of 100,000 sheets on this drum, printing density decrease, white paper density increase, that is, background fogging was recognized. It was clarified that this phenomenon was caused by a rise in the light potential due to a decrease in the charged potential and a rise in the residual potential, based on the measurement results of the electrical characteristics. In other words, a photoreceptor whose iodine concentration is not high on the charge generation layer side has a large characteristic fluctuation due to repeated use.
Reference Example 7
A photoconductor was prepared in the same manner as in Reference Example 6 except that the conductive substrate was replaced with a PPS resin (containing carbon black) having a volume resistance of 100 Ω · cm.
[0044]
When the photoconductor prepared as described above was mounted on a laser beam printer and a print test was performed, the print density was 1.41 (using a Macbeth densitometer) and the white paper density was 0.06 (using a Macbeth densitometer). The number of black spots with a diameter of 0.1 mm or more was as good as 2 per drum circumference. Further, as a result of the Gobanme test (JIS K5400), the peeling was as good as 0/100.
[0045]
In addition, according to the printing test after running a 100,000 sheets running test with this drum, the printing density 1.40, blank paper density 0.06, 3 black spots, the difference between the initial and the initial is not found No film peeling or the like occurred.
Further, when this photoconductor was left in an environment of 60 ° C. and relative humidity 90% for 1500 hours and then subjected to a printing test, a govanme test, and a running test, good results were obtained as before.
[0046]
The iodine concentration distribution at this time was the same as in Reference Example 6 .
Reference Example 8
A two-layered photoreceptor having a first undercoat layer and a second undercoat layer having a combination of conditions shown in Table 4 was prepared in the same manner as in Reference Example 3 for the undercoat layer. The drying, curing temperature, and film thickness at that time are as follows.
[0047]
Figure 0003713764
[0048]
[Table 4]
Figure 0003713764
[0049]
It is satisfactory if the iodine concentration on the charge generation layer side is higher than that on the conductive substrate side.
Reference Example 9
A photoconductor was prepared under the same conditions as in Reference Example 6 except that the composition of the undercoat layer was changed, and the same evaluation as in Reference Example 6 was performed.
[0050]
Sample C:
Brominated epoxy resin (Sekisui Chemical; ESREC KS-1) 50 parts by weight Hydrophobic silica (Nippon Aerosil) 50 parts by weight Tetrahydrofuran 700 parts by weight Sample D:
Fluorine-containing comb polymer (Soken Chemicals; LF40) 50 parts by weight Titanium oxide fine particles (Nippon Aerosil) 50 parts by weight Tetrahydrofuran 700 parts by weight Sample E:
Vinyl chloride / vinyl acetate copolymer resin 50 parts by weight Titanium oxide fine particles (Nippon Aerosil) 50 parts by weight Tetrahydrofuran 700 parts by weight Good in all samples C, D, E by setting the concentration distribution of halogen to be higher on the charge generation layer side Running characteristics were obtained.
[0051]
【The invention's effect】
According to the present invention, since the halogen concentration in the undercoat layer has a concentration gradient that increases from the surface in contact with the conductive substrate toward the surface in contact with the photosensitive layer, the printing characteristics are good even after repeated use, and the high temperature and high humidity The organic photoconductor for electrophotography without the quality deterioration below is obtained.
[0052]
In addition, since the undercoat layer is composed of the first undercoat layer and the second undercoat layer, an electrophotographic photoreceptor having a halogen concentration gradient can be easily prepared using a plasma polymerization method, a vacuum deposition method, or the like. be able to.
When a subbing layer containing halogen is formed on a conductive substrate and subjected to a drying heat treatment and a curing heat treatment, a subbing layer having a halogen concentration gradient can be easily obtained by the diffusion of halogen in the subbing layer.
[0053]
When the subbing layer is formed and then immersed in a halogen-containing solution, the halogen diffuses into the subbing layer and a subbing layer having a halogen concentration gradient is obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an electrophotographic photosensitive member.
DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Undercoat layer 3 Charge generation layer 4 Charge transport layer

Claims (3)

導電性基体上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、有機樹脂中にハロゲンを含有する下引き層を形成する工程と、得られた下引き層をハロゲン含有溶液中に浸漬し下引き層表面のハロゲン濃度を高くする工程を備えることを特徴とする電子写真用有機感光体の製造方法。In a method for producing an organic photoconductor for electrophotography in which a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, a step of forming a halogen-containing undercoat layer in an organic resin, and A method for producing an electrophotographic organic photoreceptor, comprising the step of immersing the obtained undercoat layer in a halogen-containing solution to increase the halogen concentration on the surface of the undercoat layer. 導電性基体上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、前記下引き層はハロゲン濃度の相対的に低い第一の下引き層とハロゲン濃度の相対的に高い第二の下引き層とを順次積層した二層からなり、これら第一と第二の下引き層を異なる濃度のハロゲンを含有する反応ガスを用いてプラズマ重合法により形成することを特徴とする電子写真用有機感光体の製造方法。In the method for producing an organic photoconductor for electrophotography in which a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, the undercoat layer is a first undercoat layer having a relatively low halogen concentration. And a second subbing layer having a relatively high halogen concentration, and a plasma polymerization method using a reactive gas containing different concentrations of halogen. A method for producing an organic photoconductor for electrophotography, comprising: 導電性基体上にハロゲンを含有する下引き層、感光層を順次積層してなる電子写真用有機感光体の製造方法において、前記下引き層はハロゲン濃度の相対的に低い第一の下引き層とハロゲン濃度の相対的に高い第二の下引き層とを順次積層した二層からなり、これら第一と第二の下引き層を異なる濃度のハロゲン元素を含有する合金を用いて真空蒸着法により形成することを特徴とする電子写真用有機感光体の製造方法。In the method for producing an organic photoconductor for electrophotography in which a halogen-containing undercoat layer and a photosensitive layer are sequentially laminated on a conductive substrate, the undercoat layer is a first undercoat layer having a relatively low halogen concentration. And a second subbing layer having a relatively high halogen concentration, and sequentially depositing the first and second subbing layers using an alloy containing halogen elements having different concentrations. A method for producing an organic photoconductor for electrophotography, which is characterized by comprising:
JP25595195A 1995-10-03 1995-10-03 Organic photoconductor for electrophotography and method for producing the same Expired - Fee Related JP3713764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25595195A JP3713764B2 (en) 1995-10-03 1995-10-03 Organic photoconductor for electrophotography and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25595195A JP3713764B2 (en) 1995-10-03 1995-10-03 Organic photoconductor for electrophotography and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0996917A JPH0996917A (en) 1997-04-08
JP3713764B2 true JP3713764B2 (en) 2005-11-09

Family

ID=17285852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25595195A Expired - Fee Related JP3713764B2 (en) 1995-10-03 1995-10-03 Organic photoconductor for electrophotography and method for producing the same

Country Status (1)

Country Link
JP (1) JP3713764B2 (en)

Also Published As

Publication number Publication date
JPH0996917A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US5744271A (en) Photoconductor for electrophotography
CN111552153B (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2008134425A (en) Electrophotographic photoreceptor
JP2014059459A (en) Electrophotographic photoreceptor and image forming device including the same
JP3258163B2 (en) Electrophotographic photoreceptor
JP2000066428A (en) Electrophotographic photoreceptor and its production
JP3713764B2 (en) Organic photoconductor for electrophotography and method for producing the same
JP3012537B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP3371732B2 (en) Photoreceptor for internally illuminated electrophotography
JP2000221719A (en) Electrophotographic photoreceptor
KR101046665B1 (en) Method for producing an electrophotographic photosensitive member and an electrophotographic photosensitive member
JP4698088B2 (en) Electrophotographic photoreceptor for reversal development process and method for producing the same
US5656405A (en) Organic photoconductor for electrophotography
JP2002174913A (en) Method of manufacturing electrophotographic photoreceptor
JP3482706B2 (en) Cleaning method for metal cylindrical drum
JP2005165274A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JPH0895276A (en) Electrophotographic organic photoreceptor
JP2013182181A (en) Electrophotographic photoreceptor
JP3088221B2 (en) Manufacturing method of laminated photoreceptor
JPH0862880A (en) Electrophotographic organic photoreceptor
JPH0772637A (en) Laminated electrophotographic photoreceptor and its production
JPH08248651A (en) Manufacture of electrophotographic photosensitive material
TWI643040B (en) Electronic photoreceptor and image forming device using the same
JPH08190218A (en) Electrophotographic photoreceptor
JPH0772638A (en) Laminated electrophotographic photoreceptor and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees