JP3713653B2 - Vibration control floor - Google Patents

Vibration control floor Download PDF

Info

Publication number
JP3713653B2
JP3713653B2 JP24418898A JP24418898A JP3713653B2 JP 3713653 B2 JP3713653 B2 JP 3713653B2 JP 24418898 A JP24418898 A JP 24418898A JP 24418898 A JP24418898 A JP 24418898A JP 3713653 B2 JP3713653 B2 JP 3713653B2
Authority
JP
Japan
Prior art keywords
floor
slab
vibration
viscoelastic body
finishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24418898A
Other languages
Japanese (ja)
Other versions
JP2000073482A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP24418898A priority Critical patent/JP3713653B2/en
Publication of JP2000073482A publication Critical patent/JP2000073482A/en
Application granted granted Critical
Publication of JP3713653B2 publication Critical patent/JP3713653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は建物の床の構造に係わり、特に上下方向の振動を抑制し得る制振床に関する。
【0002】
【従来の技術】
近年の建物は、プラン自由度向上を目的とする大スパン化と、各種建築材料の高性能化による軽量化が推進され、それに伴い建物の床を構成するコンクリート造のスラブも大スパンかつ軽量なものとなってきている。そのような大スパンかつ軽量の床は構造的強度は支障はないものの上下方向に振動を生じやすくかつ固有周期が長くなる傾向にあるので、振動により居住性能が悪化するといった問題も生じてきている。
【0003】
【発明が解決しようとする課題】
床の振動に対処するものとして、地震に対する高度の安全性や信頼性が要求される機器や振動を極度に嫌う精密機器を対象とする特殊かつ大掛かりな免震床装置や免震床システムも開発されているが、床自体の振動を抑制し得て通常の建物に広く適用することのできる有効な手段が望まれていた。
【0004】
【課題を解決するための手段】
本発明の制振床は、建物の床を構成するコンクリート造のスラブの上面側もしくは下面側に、該スラブに対して面内方向に相対変形可能な状態で板体を全面的に積層するとともに、それらスラブと板体との間に粘弾性体を接着状態で挟み込んでなるものである。前記粘弾性体は前記スラブと前記板体との間に全面的に挟み込むのではなく、粘弾性体を部分的に挟み込んで、粘弾性体のない部分にはスラブと板体との間に縁切り材を介装してそれらを非付着状態に維持する。前記板体としては前記スラブ上に打設されたモルタルからなる仕上床を採用することが良い。
【0005】
【発明の実施の形態】
図1は本発明の制振床の原理を説明するための参考例を示す断面図で、符号1はスラブ、2はその上面に全面的に形成された仕上床、3はそれらの間に全面的に挟み込まれた粘弾性体である。
【0006】
スラブ1は通常の鉄筋コンクリート造のものであり、仕上床2はそのスラブ1上にモルタルが打設されることで形成されたものである。その仕上床2は目地を設けることなくスラブ1と同面積の1枚ものとして形成する。粘弾性体3は自身の粘性抵抗力により減衰効果を発揮するもので、具体的にはたとえばゴムアスファルト系のもの、アスファルト系のもの、アクリル系のもの、高減衰ゴム系のもの等が好適に採用可能である。
【0007】
上記構造の制振床を施工するには、スラブ1を通常の施工法により形成した後、その上面に高温溶融状態の粘弾性体3を流し込み、それが固化した後に、その上にモルタルを打設して仕上床2を形成すれば良い。以上によりスラブ1と仕上床2との間に粘弾性体3が自ずと双方に接着された状態で挟み込まれることになり、スラブ1と仕上床2とは面内方向に相対変形可能な状態で積層されことになる。
【0008】
あるいは他の施工法として、粘弾性体3を予めシート状に形成しておいてそれをスラブ1上に敷設して接着しても良いし、2枚の薄鋼板の間に粘弾性体3を挟み込んだ製品を予め製作しておいてそれをスラブ1と仕上床2の双方にシヤーキーを用いて固定したり接着することも考えられる。
【0009】
上記構造の制振床は、この制振床自体が振動して上下方向に撓むように変形した際にはスラブ1と仕上床2とが面内方向でずれるように相対変形し、それらの間で粘弾性体3が変形してその粘性抵抗力により床振動を抑制し減衰せしめる効果が得られる(その詳細は図4により後述する)。つまり、この制振床自体が粘弾性ダンパーとして機能するものであり、軽量かつ大スパンの床であってもその振動を十分に抑制することができるものである。
【0010】
なお、上記制振床の各部の寸法は適宜で良く、通常は粘弾性体3の厚さt1は数mm程度以下、仕上床2の厚さt2は20〜50mm程度で十分であるが、仕上床2の単位面積当たりの軸剛性(面内剛性)をスラブ1のそれの10%以上とすることが好ましく、具体的には仕上床2の厚さt2をスラブ1の厚さt0の10%以上とすることが好ましい。そして、必要であれば、仕上床2に補強用の金網や鉄筋を埋設することで振動による割れや座屈防止を図れば良い。
【0011】
図2は本発明の第1実施形態を示すものである。上記の参考例ではスラブ1と仕上床2との間に粘弾性体3を全面的に設けたものとしたが、本第1実施形態では粘弾性体3を部分的に設けたものである。この場合も参考例と同様の効果が得られるが、この場合においては粘弾性体3の幅(および長さ)寸法bは少なくとも粘性体3の厚みtの10倍程度以上とすることが好ましい。また、この場合において、粘弾性体3のない部分においてスラブ1と仕上床2が強固に固着してしまうと、それらの相対変形が損なわれて粘弾性体3の変形が阻害され、したがって振動抑制効果が損なわれるから、スラブ1と仕上床2との間に剥離剤やシート等の縁切り材4を介装してスラブ1と仕上材2とが相対変形し得る状態を維持する。
【0012】
図3は第2実施形態を示すものである。上記第1実施形態は大スパンの床、特に短辺寸法が6m以上の床に適用して好適なものであるが、本第2実施形態第1実施形態の構造を片持ちのスラブ1に適用したものであり、特に振動の生じやすい跳ね出し長さが2m以上となる場合においてもその振動を十分に抑制し得るものとなる。
【0013】
図4は図2に示した第1実施形態の制振床を例にとって本発明の制振床の振動減衰作用についてより詳細に説明するものである。(a)はこの制振床が振動して下方に撓んだ状態を示している。この場合、スラブ1と仕上床2との間に挟み込まれている粘弾性体3は(b)に示すように剪断力Pを受けて一方向に変形し、制振床が上方に撓んだときには粘弾性体3は逆方向に変形する。(c)は上記のような振動により粘弾性体3が両方向に繰り返し受ける剪断力Pと変位量δとの関係を示す履歴特性であり、図中の閉鎖曲線内の面積に相当するエネルギーが吸収されることになる。
【0014】
以上のように、上記各実施形態の制振床は、スラブ1と仕上床2との間に粘弾性体3を部分的に挟み込んでそれ以外の部分には縁切り材を介装するという簡便な構成で十分な振動抑制効果が得られるものであり、歩行や車両通行等の内部の振動源による振動に対してはもとより、交通振動等の外部の振動源による振動や地震時における振動にも効果的であり、振動に対する建物性能や居住性を向上させることができる。
【0015】
そして、上記制振床は、粘弾性体3の種類や厚さ、面積を調節することで所望の減衰性能が得られるように調節することが可能である。また、従来一般のスラブ1に対して、粘弾性体3と仕上床2を合わせてもせいぜい数十mmの厚さのものを積層するだけで良いので、室内空間を圧迫することはないし、既設建物に対して適用することも可能である。
【0016】
また、その施工に際しては何等特殊な素材や工具を必要としないので施工を容易に行い得るし、大きなコスト増にもならない。しかも、粘弾性体3の耐久性や耐候性は問題とならないし、クリープ変形が問題となることもないので基本的に保守は不要であり、万一火災や大地震により残留変形が生じた際には、スラブ1が健全であれば仕上床2と粘弾性体3を撤去して再施工することで容易に復旧することができる。
【0017】
なお、本発明は上記実施形態に限定されることなくさらに種々の変形や応用が可能である。たとえば、仕上床2はモルタルにより形成することに限るものではなく、振動時に粘弾性体3に対して変形を与えうるものである限りにおいてPC版等の他の板体の採用も可能である。また、最終的な床の仕上をタイル貼りや石貼りとする場合には上記の仕上床2をその下地として利用すれば良い。換言すれば、タイル貼りや石貼りの床の下地としてのモルタル層を上記の仕上床2として利用して制振床を構成することができる。
【0018】
また、上記各実施形態はスラブ1の上面に設けた仕上床2との間に粘弾性体3を設けたが、その天地を逆にした形態、つまり、スラブ1の下面側に上記仕上床2と同様の板体を設けてそれらの間に粘弾性体3を挟み込むことでも同様の効果が得られる。その場合、スラブ1下面に設ける板体としては上記仕上床2と同様にモルタルからなるものでのでも良いし、あるいはたとえばPC版や鋼板等の他の板体も採用可能であり、スラブ1下面を直仕上する場合にはその板体を仕上天井を兼ねるものとすることができる。ただし、いずれにしてもスラブ1からの脱落や剥離に対する対策は必要となる。
【0019】
【発明の効果】
以上のように、本発明の制振床は、建物の床を構成するコンクリート造のスラブの上面側もしくは下面側に、該スラブに対して面内方向に相対変形可能な状態で板体を全面的に積層するとともに、それらスラブと板体との間に粘弾性体を接着状態で挟み込んでなるものであるから、簡便な構成でありながらこの制振床自体が粘弾性ダンパーとして機能して優れた振動抑制効果が得られ、したがって軽量かつ大スパンの床であってもその振動を十分に抑制することができ、建物性能や居住性を改善することができる。特に、スラブと板体との間に粘弾性体を部分的に挟み込んで粘弾性体のない部分にはスラブと板体とを非付着状態に維持するための縁切り材を介装したことにより、スラブと板体との相対変形が拘束されることなく振動抑制効果が確実に得られる。そして、スラブ上に打設したモルタルからなる仕上床を板体として採用すればそれ自体を床仕上材ないし床下地材として利用できるから合理的である。
【図面の簡単な説明】
【図1】 本発明の原理を説明するための参考例を示す図である。
【図2】 本発明の第1実施形態を示す図である。
【図3】 本発明の第2実施形態を示す図である。
【図4】 本発明の振動減衰作用を説明するための図である。
【符号の説明】
1 スラブ
2 仕上床(板体)
3 粘弾性体
4 縁切り材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a building floor structure, and more particularly to a vibration control floor capable of suppressing vertical vibrations.
[0002]
[Prior art]
Buildings in recent years have been promoted to increase the span for the purpose of improving the degree of freedom of the plan, and to reduce the weight by improving the performance of various building materials. As a result, the concrete slabs that make up the floor of the building also have a large span and light weight. It has become a thing. Such a large-span and lightweight floor has no problem in structural strength, but tends to generate vibrations in the vertical direction and tends to have a long natural period. .
[0003]
[Problems to be solved by the invention]
Develop special and large-scale seismic isolation floor systems and seismic isolation floor systems for equipment that requires a high level of safety and reliability against earthquakes and precision equipment that is extremely hated of vibration as a countermeasure against floor vibration However, there has been a demand for an effective means that can suppress vibration of the floor itself and can be widely applied to ordinary buildings.
[0004]
[Means for Solving the Problems]
The vibration-damping floor according to the present invention is formed by laminating a plate body entirely on the upper surface side or the lower surface side of a concrete slab constituting the floor of a building in a state in which it can be relatively deformed in the in-plane direction with respect to the slab. The viscoelastic body is sandwiched between the slab and the plate body in an adhesive state. The viscoelastic body is not entirely sandwiched between the slab and the plate body, but the viscoelastic body is partially sandwiched between the slab and the plate body in a portion without the viscoelastic body. Interpose materials to keep them non-adhering. As the plate body, it is preferable to employ a finishing floor made of mortar placed on the slab.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing a reference example for explaining the principle of the vibration damping floor of the present invention. Reference numeral 1 is a slab, 2 is a finished floor formed entirely on the upper surface, and 3 is an entire surface therebetween. It is a viscoelastic body sandwiched between the two.
[0006]
The slab 1 is made of ordinary reinforced concrete, and the finishing floor 2 is formed by placing mortar on the slab 1. The finishing floor 2 is formed as a single piece having the same area as the slab 1 without providing joints. The viscoelastic body 3 exhibits a damping effect by its own viscous resistance, and specifically, for example, a rubber asphalt type, an asphalt type, an acrylic type, a high damping rubber type, etc. are suitable. It can be adopted.
[0007]
In order to construct a vibration-damping floor having the above structure, after forming the slab 1 by a normal construction method, a high temperature melted viscoelastic body 3 is poured onto the upper surface thereof, and after it has solidified, a mortar is applied thereon. What is necessary is just to form and form the finishing floor 2. Thus, the viscoelastic body 3 is naturally sandwiched between the slab 1 and the finishing floor 2, and the slab 1 and the finishing floor 2 are laminated so as to be relatively deformable in the in-plane direction. Will be.
[0008]
Alternatively, as another construction method, the viscoelastic body 3 may be formed in a sheet shape in advance and laid on the slab 1 to be bonded, or the viscoelastic body 3 may be bonded between two thin steel plates. It is also conceivable to manufacture a sandwiched product in advance and fix or bond it to both the slab 1 and the finishing floor 2 using a shear key.
[0009]
When the vibration-damping floor having the above structure is deformed so that the vibration-damping floor itself vibrates and bends in the vertical direction, the slab 1 and the finishing floor 2 are relatively deformed so that they are displaced in the in-plane direction. The viscoelastic body 3 is deformed, and the effect of suppressing and attenuating the floor vibration by the viscous resistance force is obtained (the details will be described later with reference to FIG. 4). That is, the vibration damping floor itself functions as a viscoelastic damper, and even a lightweight and large span floor can sufficiently suppress the vibration.
[0010]
It should be noted that the dimensions of the respective parts of the vibration damping floor may be appropriate. Usually, the thickness t 1 of the viscoelastic body 3 is about several mm or less, and the thickness t 2 of the finishing floor 2 is about 20 to 50 mm. The axial rigidity (in-plane rigidity) per unit area of the finishing floor 2 is preferably 10% or more of that of the slab 1. Specifically, the thickness t 2 of the finishing floor 2 is set to the thickness t of the slab 1. It is preferable to be 10% or more of 0 . And if necessary, it is sufficient to prevent cracking and buckling due to vibration by embedding reinforcing wire nets and reinforcing bars in the finishing floor 2.
[0011]
FIG. 2 shows a first embodiment of the present invention . In the above reference example , the viscoelastic body 3 is provided entirely between the slab 1 and the finishing floor 2. However, in the first embodiment , the viscoelastic body 3 is partially provided. In this case as well, the same effect as in the reference example can be obtained. In this case, the width (and length) dimension b of the viscoelastic body 3 is preferably at least about 10 times the thickness t 1 of the viscous body 3. . Further, in this case, if the slab 1 and the finishing floor 2 are firmly fixed in a portion where the viscoelastic body 3 is not present, the relative deformation of the slab 1 and the finishing floor 2 is impaired, so that the deformation of the viscoelastic body 3 is hindered. Since the effect is impaired, a state in which the slab 1 and the finishing material 2 can be relatively deformed is maintained by interposing a cutting material 4 such as a release agent or a sheet between the slab 1 and the finishing floor 2 .
[0012]
FIG. 3 shows a second embodiment . The first embodiment is suitable for application to a floor having a large span, particularly a floor having a short side dimension of 6 m or more. However, the second embodiment has the structure of the first embodiment as a cantilever slab 1. This is applied, and the vibration can be sufficiently suppressed even in the case where the jump length at which vibration easily occurs is 2 m or more.
[0013]
FIG. 4 explains in more detail the vibration damping action of the vibration damping floor of the present invention taking the vibration damping floor of the first embodiment shown in FIG. 2 as an example. (A) has shown the state which this damping floor vibrated and bent below. In this case, the viscoelastic body 3 sandwiched between the slab 1 and the finishing floor 2 receives a shearing force P and deforms in one direction as shown in (b), and the damping floor is bent upward. Sometimes the viscoelastic body 3 is deformed in the opposite direction. (C) is a hysteresis characteristic showing the relationship between the shearing force P repeatedly received in both directions by the vibration as described above and the displacement amount δ, and energy corresponding to the area in the closed curve in the figure is absorbed. Will be.
[0014]
As described above, the vibration-damping floor of each of the above embodiments is a simple method in which the viscoelastic body 3 is partially sandwiched between the slab 1 and the finishing floor 2 and the edge cutting material is interposed in other portions. The structure provides a sufficient vibration suppression effect, and is effective not only for vibrations caused by internal vibration sources such as walking and vehicle traffic, but also for vibrations caused by external vibration sources such as traffic vibrations and vibrations during earthquakes. It is possible to improve the building performance and habitability against vibration.
[0015]
And the said damping floor can be adjusted so that desired damping performance may be obtained by adjusting the kind, thickness, and area of the viscoelastic body 3. FIG. In addition, even if the viscoelastic body 3 and the finishing floor 2 are combined with the conventional general slab 1, it is only necessary to laminate a layer having a thickness of several tens of millimeters at the most. It can also be applied to buildings.
[0016]
In addition, since no special materials or tools are required for the construction, the construction can be performed easily and the cost is not increased. In addition, the durability and weather resistance of the viscoelastic body 3 are not a problem, and creep deformation is not a problem, so basically no maintenance is necessary. In the unlikely event of residual deformation due to a fire or a major earthquake If the slab 1 is healthy, it can be easily restored by removing the finishing floor 2 and the viscoelastic body 3 and reconstructing them.
[0017]
The present invention is not limited to the above embodiment, and various modifications and applications can be made. For example, the finishing floor 2 is not limited to being formed of mortar, and other plate bodies such as a PC plate can be used as long as the viscoelastic body 3 can be deformed during vibration. In addition, when the final floor finish is tiled or stoned, the above-described finished floor 2 may be used as the base. In other words, the vibration-damping floor can be configured by using the mortar layer as the base of the tiled or stoned floor as the finishing floor 2.
[0018]
Moreover, although each said embodiment provided the viscoelastic body 3 between the finishing floors 2 provided in the upper surface of the slab 1, the top and bottom of the top and bottom, ie, the said finishing floor 2 on the lower surface side of the slab 1, was provided. The same effect can be obtained by providing the same plate bodies and sandwiching the viscoelastic body 3 between them. In this case, the plate provided on the lower surface of the slab 1 may be made of mortar as with the finishing floor 2, or another plate such as a PC plate or a steel plate may be employed. When finishing directly, the plate can also serve as a finishing ceiling. However, in any case, it is necessary to take measures against dropping or peeling from the slab 1.
[0019]
【The invention's effect】
As described above, the vibration-damping floor of the present invention covers the entire surface of the plate body on the upper surface side or the lower surface side of the concrete slab constituting the floor of the building in a state in which the plate body can be relatively deformed in the in-plane direction with respect to the slab. In addition to being laminated, the viscoelastic body is sandwiched between the slab and the plate so that the damping floor itself functions as a viscoelastic damper while having a simple structure. Therefore, even if the floor is light and has a large span, the vibration can be sufficiently suppressed, and the building performance and comfort can be improved. In particular, by sandwiching a viscoelastic body between the slab and the plate body and interposing an edge cutting material for maintaining the slab and the plate body in a non-adhered state in the portion without the viscoelastic body, The vibration suppressing effect can be reliably obtained without restraining the relative deformation between the slab and the plate. If a finishing floor made of mortar placed on a slab is used as a plate, it is reasonable because it can be used as a floor finishing material or a floor base material.
[Brief description of the drawings]
FIG. 1 is a diagram showing a reference example for explaining the principle of the present invention.
FIG. 2 is a diagram showing a first embodiment of the present invention.
FIG. 3 is a diagram showing a second embodiment of the present invention.
FIG. 4 is a diagram for explaining a vibration damping action of the present invention.
[Explanation of symbols]
1 Slab 2 Finishing floor (plate)
3 Viscoelastic body 4 Edge cutting material

Claims (2)

建物の床を構成するコンクリート造のスラブの上面側もしくは下面側に、該スラブに対して面内方向に相対変形可能な状態で板体を全面的に積層するとともに、それらスラブと板体との間に粘弾性体を部分的に接着状態で挟み込み、該粘弾性体のない部分における前記スラブと前記板体との間にそれらを非付着状態に維持する縁切り材を介装してなることを特徴とする制振床。On the upper surface side or lower surface side of the concrete slab that constitutes the floor of the building, a plate body is entirely laminated in a state in which it can be relatively deformed in the in-plane direction with respect to the slab, and the slab and the plate body A viscoelastic body is partially sandwiched between the slab and the plate body in a portion without the viscoelastic body, and an edge cutting material is interposed between the slab and the plate body to keep them in a non-adhered state. Characteristic damping floor. 前記板体は前記スラブ上に打設されたモルタルからなる仕上床であることを特徴とする請求項1記載の制振床。  The vibration-damping floor according to claim 1, wherein the plate is a finishing floor made of mortar placed on the slab.
JP24418898A 1998-08-28 1998-08-28 Vibration control floor Expired - Fee Related JP3713653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24418898A JP3713653B2 (en) 1998-08-28 1998-08-28 Vibration control floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24418898A JP3713653B2 (en) 1998-08-28 1998-08-28 Vibration control floor

Publications (2)

Publication Number Publication Date
JP2000073482A JP2000073482A (en) 2000-03-07
JP3713653B2 true JP3713653B2 (en) 2005-11-09

Family

ID=17115089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24418898A Expired - Fee Related JP3713653B2 (en) 1998-08-28 1998-08-28 Vibration control floor

Country Status (1)

Country Link
JP (1) JP3713653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199964A1 (en) * 2013-06-14 2014-12-18 積水ハウス株式会社 Sound-insulating floor structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070200A (en) * 2000-08-30 2002-03-08 Toyo Constr Co Ltd Vibration control structure for building and construction method therefor
JP4838088B2 (en) * 2006-10-10 2011-12-14 株式会社竹中工務店 Synthetic floor slab with vibration control function
EP2295304B1 (en) * 2009-09-11 2019-03-20 ALSTOM Transport Technologies Floor board with improved acoustics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199964A1 (en) * 2013-06-14 2014-12-18 積水ハウス株式会社 Sound-insulating floor structure

Also Published As

Publication number Publication date
JP2000073482A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
CN101316973B (en) Fork configuration dampers and method of using same
EP0545570A1 (en) Vibration control devices for structures, using laminated rubber
JP3694982B2 (en) Seismic isolation device
JPH038907A (en) Response control device
JP3713653B2 (en) Vibration control floor
JP2001182776A (en) Base isolation bearing unit
JP3931944B2 (en) Damping damper and its installation structure
JP4413344B2 (en) Soundproof floor structure
JPH1181737A (en) Vibration control construction for reinforced concrete building and constructing method therefor
JP4176917B2 (en) building
JP2001207675A (en) Damping construction method incorporating damping structure and damping device
JPS6245836A (en) Earthquake isolator
KR100462552B1 (en) Floating floor structure for reducing floor shock sound
JP2810927B2 (en) Damping beam
JPH02137756A (en) Sound insulation composite floor
JP2011241602A (en) Wind-resistant ground base isolation structure using bearings and construction method thereof
JP2856035B2 (en) Laminated rubber bearings for lightweight structures, etc.
JP3134025B2 (en) Deformation control vibration control structure of building
JP4460753B2 (en) Damping structure of buildings
JP2662774B2 (en) Seismic isolation bearing structure for structures
JP3742899B2 (en) Middle-layer seismic isolation structure for buildings
JPS60258354A (en) Composite vibration dampening floor
JP2009191584A (en) Floor slab structure and building having floor slab structure
JP2733559B2 (en) Damping floor structure
KR20070072979A (en) Building vibration reducing method using skybridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees