JP3712497B2 - Manufacturing method of steel pipe with internal reinforcement - Google Patents

Manufacturing method of steel pipe with internal reinforcement Download PDF

Info

Publication number
JP3712497B2
JP3712497B2 JP07870097A JP7870097A JP3712497B2 JP 3712497 B2 JP3712497 B2 JP 3712497B2 JP 07870097 A JP07870097 A JP 07870097A JP 7870097 A JP7870097 A JP 7870097A JP 3712497 B2 JP3712497 B2 JP 3712497B2
Authority
JP
Japan
Prior art keywords
steel pipe
square steel
internal reinforcing
reinforcing material
square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07870097A
Other languages
Japanese (ja)
Other versions
JPH10273930A (en
Inventor
伸 中島
Original Assignee
ナカジマ鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナカジマ鋼管株式会社 filed Critical ナカジマ鋼管株式会社
Priority to JP07870097A priority Critical patent/JP3712497B2/en
Publication of JPH10273930A publication Critical patent/JPH10273930A/en
Application granted granted Critical
Publication of JP3712497B2 publication Critical patent/JP3712497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば鉄骨構造物の支柱間を梁材により連結する際に、支柱側の連結部に、板厚確保などのための内部補強材を取り付けてなる内部補強材付き鋼管の製造方法に関するものである。
【0002】
【従来の技術】
従来、支柱側に対するダイヤフラム(内部補強材の一例)の取り付けは、たとえば梁貫通方式で行われていた。この梁貫通方式によると、支柱、すなわち角形鋼管を長さ方向において複数に切断するとともに、切断面にそれぞれ開先加工を行ったのち、ダイヤフラムを取り付けることから、切断作業や開先加工作業に多大な時間と経費とが必要になり、しかも溶接箇所が多いなどの問題がある。
【0003】
そこで、角形鋼管の切断を行わない工法として、たとえば特開平7−238636号公報に見られる大径角形鋼管内ダイヤフラムの位置決め及び溶接工法が提供されている。この従来工法は、両面の周囲に裏当て金を仮付け溶接した内ダイヤフラムを角形鋼管内に挿入させ、貫通孔に嵌着させたノックピンに係合させて所定位置に位置決めし、次いで挿入口側の裏当て金を角形鋼管の内壁に仮付け溶接したのち、貫通孔を利用して、角形鋼管の内壁と内ダイヤフラムの外周とをエレクトスラグ溶接している。
【0004】
【発明が解決しようとする課題】
上記した角形鋼管の分断を行わない工法においては、裏当て金の外径は角形鋼管内径壁に隙間なく、たとえば0.5mm 程度の隙間を許容して接触するように形成してあり、したがって内ダイヤフラムを角形鋼管内に挿入させる際に引っ掛かったり詰まったりして、その挿入は容易に行えない。また角形鋼管の内面が凹凸変化していたときには、挿入そのものが行えないことになる。
【0005】
これに対しては、隙間を十分に取るようにすればよいが、この隙間が大きいと、角形鋼管と内ダイヤフラムと両裏当て金とにより囲まれた溶接空間内に、エレクトロスラグ溶接の溶融金属が滞留するとき、この溶融金属が隙間から外部に洩れて、良好な溶接が行えない恐れがある。さらに、溶接作業自体は面倒で経費や時間のかかる作業となる。
【0006】
そこで本発明の請求項1記載の発明は、鋼管は熱間成形により性状の良いものにし得、鋼管内への内部補強材の挿入は、加熱成形時における鋼管の加熱膨張により内部補強材の外周面と鋼管内周面との間に生じる十分な隙間を利用して容易に円滑に行え、しかも鋼管と内部補強材との結合、すなわち他材連結部の形成は溶接することなく強固に行える内部補強材付き鋼管の製造方法を提供することを目的としたものである。
【0008】
【課題を解決するための手段】
前述した目的を達成するために、本発明の請求項1記載の内部補強材付き鋼管の製造方法は、対象とする鋼管の内寸と同等の外寸の管体と、この管体内に位置して管体に一体化された縮径阻止体とにより形成された内部補強材を準備しておき、中空鋼管を加熱炉内において搬送して所定の温度に加熱したのち、鋼管成形ミルにおいて、対象とする鋼管が加熱膨張された状態の内寸に熱間成形し、次いで内部補強材供給装置によって、この熱間成形され加熱膨張されている鋼管内の所定位置まで前記内部補強材を挿入させ、鋼管の冷却収縮により鋼管内周面を内部補強材の管体外周面に当接させて、鋼管と管体との重合部を形成し、この重合部の複数箇所に孔をあけ、これら孔に結合具を作用させて鋼管と内部補強材とを結合することで、重合部に他材連結部を形成することを特徴としたものである。
【0012】
したがって請求項1の発明によると、鋼管は熱間成形により性状の良いものにし得、その際の加熱成形時における鋼管の加熱膨張により内部補強材の外周面と鋼管内周面との間に生じる十分な隙間を利用して、内部補強材の鋼管内への挿入は、引っ掛かりや詰まりなど生じることなく容易に円滑に行える。そして、鋼管の冷却収縮により隙間を自動的に埋めて、鋼管内周面が内部補強材の外周面に当接(圧接)することを利用して、内部補強材を鋼管に定着し得る。また鋼管と管体とにより形成される重合部は、複数の結合具により、溶接することなく強固に一体化し得る。さらに重合部によって形成される他材連結部は管体により、鋼管の板厚が薄くても十分な板厚を確保し得る。
【0015】
【発明の実施の形態】
以下に、本発明の第一の実施の形態を、四角形の角形鋼管を熱間成形する際に採用した状態として、図1〜図8に基づいて説明する。
【0016】
図4、図5において、たとえば大径の角形鋼管を製造するに当たり、多くとも二箇所にシーム溶接部1を有する正四角形状の多角中空鋼管2が使用される。その際に、多角中空鋼管2は、相対向した平板部2Aの内面幅寸法W1 が最終製品(後述する。)の平板部の内面幅寸法よりも広い寸法に成形され、また角部2Bの曲率半径R1 が最終製品の角部の曲率半径よりも大きく成形されている。
【0017】
このように形成された多角中空鋼管2は、搬入床装置5上に搬入される。ここで搬入床装置5はコンベヤ形式であって、複数本の多角中空鋼管2を平行させて支持し、そして長さ方向に対して直角状の横方向へと搬送させる。この搬入床装置5の終端部に搬送された多角中空鋼管2は、ローラコンベヤ6を介して加熱炉7に搬入され、この加熱炉7において長さ方向に搬送されて、その搬送中に高温加熱Aされる。
【0018】
所定の温度に加熱された多角中空鋼管2は、加熱炉7から搬出され、そして前段角形鋼管成形ミル8に搬入される。この前段角形鋼管成形ミル8は、複数のつづみ形ロール9などを介して熱間成形(成形温度、A3 変態点以上)を行うもので、多角中空鋼管2に対して前段の絞り成形が行われる。次いで多角中空鋼管2は後段角形鋼管成形ミル10に搬入される。この後段角形鋼管成形ミル10は、複数の平形ロール11などを介して熱間成形(成形温度、A3 変態点以上)を行うもので、多角中空鋼管2に対して後段(最終段)の絞り成形が行われ、以て所定寸法の大径で四角形状の角形鋼管3が熱間成形される。
【0019】
このように多角中空鋼管2に対して、前段角形鋼管成形ミル8や後段角形鋼管成形ミル10による複数段の絞り成形(または単数段の絞り成形)を行うことにより、最終製品である角形鋼管3を製作し得る。その際に、前述した絞り成形により、角形鋼管3における相対向した平板部3Aの内面幅寸法Wは、多角中空鋼管2の内面幅寸法W1 に対して狭く、すなわちW<W1 となるように成形され、また角部3Bの曲率半径Rは、多角中空鋼管2の角部2Bの曲率半径R1 に対して小さく、すなわちR<R1 となるように成形されて、四隅のコーナRが揃えられる。
【0020】
ここで角形鋼管3の内面幅寸法Wとは、加熱成形し冷却した後の最終製品の寸法であって、熱間成形した直後においては、その加熱膨張により、最終製品の内面幅寸法Wに対して広い内面幅寸法W+αに、すなわちW<W+α<W1 になっている。
【0021】
前述したように、多角中空鋼管2の角部2Bの曲率半径R1 が角形鋼管3の角部3Bの曲率半径Rよりも大きい寸法に成形されることで、無理のない成形(プレス成形)を容易に行える。また高温加熱Aにより、その材質(分子配列)が元に戻っている多角中空鋼管2を、内面幅寸法Wが狭くかつ角部3Bの曲率半径Rが小さくなるるように、熱間で絞り成形することで、残留応力も除去され、全断面で材質を変えることなく断面係数の高い最終製品、すなわち角形鋼管3が得られる。
【0022】
さらに熱間の絞り成形によって、角形鋼管3は、先端部から後端部まで完全またはほぼ完全に成形されることになり、したがって後工程における先端部や後端部の切断除去は成形量により不要になるか、または、切断除去は短い寸法で行われ、以て歩留まりが良いものになる。
【0023】
また熱間成形直後の角形鋼管3は、各平板部3Aが直状面となり、さらに角部3BのRはシャープとなって、断面係数が高くなる。なお多角中空鋼管2が正四角形状であることから、ローラコンベヤ6による搬送は一つの平板部分3Aを利用して常に一定の向きで行え、以て角形鋼管成形ミル8,10での熱間成形は、常にシーム溶接部1の位置を一定の方向に揃えて行える。
【0024】
なお角形鋼管成形ミル8,10の周辺で、必要する箇所(前段角形鋼管成形ミル8の前、両角形鋼管成形ミル8,10の間、後段角形鋼管成形ミル10の後などの単数箇所または複数箇所)には、必要とする数のデスケーラー装置12が設けられている。このデスケーラー装置12は、角形鋼管3などに対して水圧をかけた水を噴射するもので、この水噴射によりミルスケールなどを除去して、表面肌を良くし得る。
【0025】
上述のようにして、熱間成形された角形鋼管3は冷却床装置15に受け取られる。この冷却床装置15は複数本の角形鋼管3を平行させて支持し、そして長さ方向に対して直角状の横方向へと搬送させる。この冷却床装置15での搬送中に、角形鋼管3は空冷形式で放熱B、すなわち徐冷される。
【0026】
前記冷却床装置15は、たとえば同期して間欠駆動自在な八条(複数条)のチェーンコンベヤ装置16を並設して構成される。前記冷却床装置15の終端に連続して後段冷却床装置17が配設されている。この後段冷却床装置17は前記冷却床装置15と同様な構成であって、複数条のチェーンコンベヤ装置18を並設して構成されている。前記後段冷却床装置17の終端外方には、この後段冷却床装置17からの角形鋼管3を受け入れる取り出しコンベヤ装置19が配設されている。
【0027】
前記冷却床装置15の部分には、この冷却床装置15により横向きで支持された角形鋼管3内の所定位置まで角筒型内部補強材(内部補強材の一例)20の供給を行う内部補強材供給装置30が配設されている。
【0028】
前記角形内部補強材20は、図5〜図7に示すように、角形管体(管体の一例)21と、この角形管体21内の中間に位置して角形管体21に一体化された矩形板体(縮径阻止体の一例)22とにより形成されている。この矩形板体22は、その外周面22aのほぼ全域が角形管体21の内周面21aに当接されて、溶接23により一体化されている。
【0029】
その際に角筒型内部補強材20の外寸Lとなる角形管体21の外面間距離は、最終製品である角形鋼管3の内面幅寸法Wと同等(僅かに大きめ)に、すなわちL≧Wに形成されている。しかし角形鋼管3は前述したように加熱膨張されており、L<W+αであることから、その加熱膨張時における平板部内周面(鋼管内周面)3aと角形管体外周面(管体外周面)21bとの間には、隙間(ほぼ5mm)Sが生じることになる。
【0030】
図4、図6に示すように、前記内部補強材供給装置30は冷却床装置15の両側方に設けられる。これら内部補強材供給装置30は同様な構成であって、前記角形鋼管3内に対して挿抜自在でかつ昇降自在な腕杆31や、この腕杆31の遊端に設けられて前記角形管体21を内側からクランプ自在なクランプ装置32などにより構成されている。
【0031】
前記内部補強材供給装置30による供給部分には端矯正装置(図示せず。)が設けられる。この端矯正装置は、熱間成形された角形鋼管3の端の矯正(拡げ)を行うもので、その際のクランプにより、角形鋼管3の位置決め(定位置への固定ならびにストッパー)をも行う。なお、位置決めは別な装置で行ってもよく、また端の矯正が不要であれば、端矯正装置は省略し得る。
【0032】
以下に、上記した第一の実施の形態において、角形鋼管3の冷却と、角形鋼管3内へ角形内部補強材20を取り付ける作用とを説明する。
まず図4、ならびに図6の実線に示すように、内部補強材供給装置30を抜出動(後退動)させた位置で、そのクランプ装置32により角形内部補強材20がクランプ(支持)される。なお、図6の実線に示すように、角形鋼管3内には既に一個の角形内部補強材20が挿入されている。他方、後段角形鋼管成形ミル10で熱間成形された角形鋼管3は、冷却床装置15のチェーンコンベヤ装置16群の始端部上に載置される。
【0033】
このようにして冷却床装置15の始端部に載置された角形鋼管3の端に対して、端矯正装置を作用させ、以て熱間成形時に変形された端の矯正(拡げ)を行うとともに、そのクランプにより、角形鋼管3の位置決め(定位置への固定)を行う。なお角形鋼管3の長さ方向における位置決めは継続してもよいし、他のストッパー装置により位置決めしてもよい。そして、このように端矯正装置を非作用にしたのち、図6の実線に示すように、矯正された角形鋼管3の端に、内部補強材供給装置30側で支持された角形内部補強材20を対向させる。
【0034】
この状態で、腕杆31を角形鋼管3内に突入動させ、図5、ならびに図6の仮想線に示すように、角形鋼管3内の所定位置にまで角形内部補強材20を挿入させる。その際に、角形内部補強材20の外寸Lが、角形鋼管3の加熱膨張時の内面幅寸法W+αよりも小さく、角形管体21の外周面21bと平板部内周面3aとの間に隙間Sが生じていることから、角形内部補強材20は引っ掛かりや詰まりなど生じることなく挿入し得る。そして腕杆31の挿入動は、角形内部補強材20を角形鋼管3内の所定位置とするように、制御装置(図示せず。)により位置制御される。
【0035】
このような角形内部補強材20の供給(挿入)工程を終えた状態で、まず腕杆31の下降動によって、図7に示すように、角形鋼管3における下位の平板部3Aの内周面3a上に、角形内部補強材20における角形管体21の下位の外周面21bを当接(着地)させる。次いでクランプ装置32による角形内部補強材20のクランプを解除させる。その後に腕杆31が抜出動される。
【0036】
このようにして、角形鋼管3に対して角形内部補強材20の挿入が行えるのであり、その際に一個の角形内部補強材20を挿入させるときには、いずれか一方の内部補強材供給装置30が作動され、また二個の角形内部補強材20を挿入させるときには両方の内部補強材供給装置30が作動され、そして三個以上の角形内部補強材20を挿入させるときには、少なくとも一方の内部補強材供給装置30が複数回で作動される。なお、この実施の形態では、図6の実線や仮想線に示すように、一箇所の他材連結部(後述する。)当たり二個の角形内部補強材20が所定距離で接近して挿入される。
【0037】
前述したように角形鋼管3の内周面3a上に角形内部補強材20を当接(着地)させたとき、図7に示すように、上位の平板部3Aの内周面3aと上位の外周面21bとの間には、ほぼ2倍の隙間2Sが形成される。この状態でチェーンコンベヤ装置16群を間欠駆動させ、角形鋼管3を、その長さ方向に対して直交状の横方向に所定ピッチ(所定距離)だけ間欠搬送させる。その際に、角形内部補強材20は、面接触により角形鋼管3に対して長さ方向で位置ずれすることはない。
【0038】
なおチェーンコンベヤ装置16の始端部には、前述したようにして角形鋼管3が次々と供給され、そして内部補強材供給装置30を介して角形内部補強材20の供給(挿入)が順次行われる。このような冷却床装置15での角形鋼管3群の間欠搬送は、隣接した角形鋼管3の間を離した状態で行われる。これにより角形鋼管3は、同じ雰囲気温度下で徐冷されることになる。
【0039】
この冷却床装置15上において角形鋼管3は、冷却されるにつれて収縮され、以て最終製品に相当する内面幅寸法Wに収縮されたとき、図5や図8に示すように、角形管体21の外周面に平板部内面3aが当接(圧接)され、さらには、僅かであるがめり込み状になる。これにより角形内部補強材20側が角形鋼管3に、焼き嵌め状で定着化され、以て角形管体21と角形鋼管3との重合部24が形成される。
【0040】
このようにして前段冷却された角形鋼管3は、図4において、冷却床装置15の終端部から後段冷却床装置17の始端部へ移され、この後段冷却床装置17の同様の作動により搬送されながら、後段の徐冷が行われる。そして後段冷却されて後段冷却床装置17の終端部へ達した角形鋼管3は、取り出しコンベヤ装置19に移され、その後に、図示していない先端切断装置、後端切断装置、洗浄装置、防錆装置へと搬送され、それぞれで処理されたのち、製品としてストレージされる。
【0041】
このように製品としてストレージされた角形鋼管3、または後段冷却床装置17から取り出されたあとの適宜の工程部分の角形鋼管3に対して、その重合部24の複数箇所(応力の伝達に好ましい任意の数でかつ任意の配置)に対して、図8の仮想線に示すように、孔25が適宜の装置により形成される。その際に角形鋼管3の平板部3Aの板厚が薄くても、角形内部補強材20の角形管体21により増厚し得、以て十分な長さの孔25が形成される。
【0042】
その後、図1〜図3に示すように、各孔25に結合具26を作用させて角形鋼管3と角形内部補強材20の角形管部21とを結合することで、重合部24に他材連結部27を形成し得る。ここで結合具26は、孔25に対して外側から差し込んだのち、回転による螺合作用によって内側にナット部を形成し得るボルト形式が採用されているが、これはリベット形式などであってもよい。このようにして複数本の結合具26を作用させることで、角形鋼管3と角形内部補強材20との結合は、十分に強固に行える。
【0043】
以上のようにして、たとえば図1〜図3に示すような支柱(内部補強材付き鋼管の一例)40が製作され、そして支柱40の他材連結部27の外側に梁材(他材の一例)41が連結される。すなわち、梁材41はH型鋼からなり、その端部を支柱40の他材連結部27の外側に当て付け、そして溶接42を施工させることで、支柱40の他材連結部27の外側に梁材41を連結し得る。
【0044】
次に、本発明の第二の実施の形態を、図9に基づいて説明する。
すなわち、たとえば大径の角形鋼管を製造するに当たり、大径角形鋼管に見合う所定の径、板厚、長さの丸形鋼管60が中空原管として搬入床装置5上に準備される。この搬入床装置5は、複数本の丸形鋼管60を平行して支持し、そして長さ方向に対して直角状の横方向へと搬送させる。搬入床装置5の終端部に搬送された丸形鋼管60は加熱炉65に搬入され、この加熱炉65内にて、その長さ方向に対して直角状の横方向へと搬送されながら、A3 変態点以上に高温加熱Aされる。
【0045】
前記加熱炉65はボックス状に形成され、その内部には間欠順送り装置66が配設され、そして前部炉壁には搬入口67が、また後部炉壁には搬出口68が形成され、これら搬入口67や搬出口68には、それぞれ開閉扉69,70が設けられている。さらに所定箇所には、所定数の加熱バーナー71が配設され、また所定箇所には排煙口72が形成されている。
【0046】
前記搬入床装置5の終端に搬送された丸形鋼管60は、開閉扉69を開動させたのち、その長さ方向に対して直角状の横方向に搬送され、搬入口67を通して加熱炉65内に搬入されて間欠順送り装置66により支持され、そして搬入後に開閉扉69は閉動される。次いで丸形鋼管60は、間欠順送り装置66により、その長さ方向に対して直角状の横方向で後端側へと間欠搬送され、その搬送中において、加熱バーナ71からの炎によりA3 変態点以上に高温加熱Aされる。このようにして加熱され搬出口68の近くまで搬送された丸形鋼管60は、短時間開放される搬出口68を通して搬出され、以て加熱炉65からローラコンベヤ6上に取り出される。そして搬出後に開閉扉70は閉動される。
【0047】
上述したように、加熱炉65において所定の温度に加熱されて搬出された丸形鋼管60は、溶接シーム位置調整装置73へ渡され、支持ロール74や押えロール75などを介して管軸心の回りに回転させて、シーム溶接部の位置を一定の方向に揃える。この溶接シーム位置調整装置73からの丸形鋼管60は、丸形鋼管成形ミル76に搬入され、複数のサイジングロール77などを介して絞り状に熱間成形されて、最終製品である角形鋼管が所定の寸法で仕上がるように所定の直径に精製され、以て精製丸形鋼管61にする。
【0048】
このようにして丸形鋼管成形ミル76群により精製された精製丸形鋼管61は、前段角形鋼管成形ミル78に搬入される。ここでは複数のつづみ形ロール79などを介して熱間成形(成形温度A3 変態点以上)を行うもので、その際に熱間成形直後の多角中空鋼管は、各平板部がつづみ面に沿った外方への円弧面に成形されている。
【0049】
次いで多角中空鋼管は後段角形鋼管成形ミル80に搬入される。この後段角形鋼管成形ミル80では、複数の平形ロール81などを介して熱間成形(成形温度、A3 変態点以上)を行うもので、多角中空鋼管に対して後段(最終段)の絞り成形が行われ、以て所定寸法で最終製品となる大径の角形鋼管(鋼管)3が熱間成形される。この熱間成形された角形鋼管3は、冷却床装置15側に受け取られる。その後に、第一の実施の形態で述べたように、内部補強材供給装置30により角形内部補強材20が供給される。
【0050】
以下に、本発明の種々な実施の形態を、図に基づいて説明する。なお、ここでは、加熱膨張した鋼管内に内部補強材を内嵌させ、鋼管の冷却収縮により結合化させたのち、結合具26を作用させて支柱40とした状態で説明する。
【0051】
すなわち、図10は第三の実施の形態を示すもので、角筒型内部補強材(内部補強材の一例)50は、角形管体(管体の一例)51と十字形枠体(縮形阻止体の一例)52とにより形成され、以て重合部24により他材連結部27が形成されている。
【0052】
また図11は第四の実施の形態を示すもので、たとえば第二の実施の形態において熱間成形された精製丸形鋼管61に円筒型内部補強材(内部補強材の一例)54が内嵌結合化されている。この円筒型内部補強材54は、円管体(管体の一例)55と、円形板体(縮形阻止体の一例)56とにより形成され、以て重合部24により他材連結部27が形成されている。
【0053】
また、図12は第五の実施の形態を示すもので、たとえば第二の実施の形態において熱間成形された精製丸形鋼管61に円筒型内部補強材(内部補強材の一例)57が内嵌結合化されている。この円筒型内部補強材57は、円管体(管体の一例)58と、十字形枠体(縮形阻止部の一例)59とにより形成され、以て重合部24により他材連結部27が形成されている。
【0055】
上記した各実施の形態において、角形鋼管3は、主として大径鋼管であって、そのサイズは、たとえば板厚tは16〜60mm、材質はSN400 B〜SN490 BやSM520 B、外径は450 〜850mm であり、この場合に隙間Sは5〜6mmに形成される。また角形鋼管3としては、たとえば、熱間ロール成形によるワンシーム角形鋼管、熱間プレス成形による一対のみぞ形材を向き合わせて突き合わせ溶接したツーシーム角形鋼管、一対の圧延みぞ形材を溶接してなるツーシーム角形鋼管、圧延山形材を一対、向き合わせて溶接したツーシーム角形鋼管、四面ボックス、シームレス鋼管など、いずれも既製の大径鋼管が使用される。
【0056】
上記した第一の実施の形態では、断面で正四角形の角形鋼管3を製造し、角筒型内部補強材20を取り付けているが、これは断面で長方形の角形鋼管も同様に製造し内部補強材を取り付け得るものである。そして両角形鋼管成形ミル8,10のローラ配置を変更するなどして、五角形鋼管や六角形鋼管など多角形鋼管の熱間成形ならびに内部補強材の取り付けを行えるものである。
【0057】
上記した各実施の形態では、縮径阻止体として矩形板体22や十字形枠体52,59や円形板体56が示されているが、これは他の形式であってもよい。
上記した各実施の形態では、上下一対の内部補強材を所定間隔を置いて配置することで他材連結部27が形成されているが、これは必要長さの一個の内部補強材を配置することで他材連結部27が形成されてもよく、この場合、矩形板体22や円形板体56などは、単数枚または複数枚が設けられる。
【0058】
【発明の効果】
上記した本発明の請求項1によると、鋼管は熱間成形により性状の良いものにでき、そして加熱成形時における鋼管の加熱膨張により内部補強材の外周面と鋼管内周面との間に生じる十分な隙間を利用して、必要な長さの内部補強材の鋼管内への挿入を、引っ掛かりや詰まりなど生じることなく容易に円滑に、かつ所定の位置まで正確に行うことができる。そして、鋼管の冷却収縮により隙間を自動的に埋めて、鋼管内面が被当接面に当接(圧接)することを利用して、内部補強材を鋼管に定着できる。したがって、常温の鋼管を最初から加熱膨張させる方式に比べて、内部補強材の取り付けを効率的に経済的に行うことができる。また鋼管と管体とにより形成される重合部は、複数の結合具により、溶接することなく強固に一体化できる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態を示し、内部補強材付き鋼管の一部切り欠き斜視図である。
【図2】同内部補強材付き鋼管における他材連結状態の縦断側面図である。
【図3】同内部補強材付き鋼管における他材連結状態の横断平面図である。
【図4】同内部補強材付き鋼管の製造方法における熱間成形設備の工程斜視図である。
【図5】同内部補強材付き鋼管の製造方法における熱間成形設備の工程説明図である。
【図6】同内部補強材付き鋼管の製造方法における内部補強材供給時の一部切り欠き側面図である。
【図7】同内部補強材付き鋼管の製造方法における内部補強材供給時の鋼管正面図である。
【図8】同内部補強材付き鋼管の製造方法における冷却収縮時の鋼管正面図である。
【図9】本発明の第二の実施の形態を示し、内部補強材付き鋼管の製造方法における熱間成形設備の工程斜視図である。
【図10】本発明の第三の実施の形態を示し、内部補強材付き鋼管の一部切り欠き斜視図である。
【図11】本発明の第四の実施の形態を示し、内部補強材付き鋼管の一部切り欠き斜視図である。
【図12】本発明の第五の実施の形態を示し、内部補強材付き鋼管の一部切り欠き斜視図である。
【符号の説明】
2 多角中空鋼管
3 角形鋼管(鋼管)
3a 平板部内周面(鋼管内周面)
5 搬入床装置
7 加熱炉
8 前段角形鋼管成形ミル
10 後段角形鋼管成形ミル
15 冷却床装置
17 後段冷却床装置
20 角筒型内部補強材(内部補強材)
21 角形管体(管体)
21a 内周面
21b 外周面
22 矩形板体(縮径阻止体)
22a 外周面
23 溶接
24 重合部
25 孔
26 結合具
27 他材連結部
30 内部補強材供給装置
40 支柱(内部補強材付き鋼管)
41 梁材(他材)
50 角筒型内部補強材(内部補強材)
51 角形管体(管体)
52 十字形枠体(縮径阻止体)
54 円筒型内部補強材(内部補強材)
55 円形管体(管体)
56 円形板体(縮径阻止体)
57 円筒型内部補強材(内部補強材)
58 円形管体(管体)
59 十字形枠体(縮径阻止体)
60 丸形鋼管
61 精製丸形鋼管
65 加熱炉
76 丸形鋼管成形ミル
78 前段角形鋼管成形ミル
80 後段角形鋼管成形ミル
A 高温加熱
B 放熱
L 内部補強材の外寸
S 隙間
W 角形鋼管3の内面幅寸法
1 多角中空鋼管2の内面幅寸法
W+α 角形鋼管3の加熱膨張時の内面幅寸法
R 角形鋼管3の角部3Bの曲率半径
1 多角中空鋼管2の角部2Bの曲率半径
[0001]
BACKGROUND OF THE INVENTION
In the present invention, for example, when connecting columns of a steel structure with a beam material, an internal reinforcing material for securing a plate thickness is attached to a connection part on the column side. Ruuchi The present invention relates to a method for manufacturing a steel pipe with a partial reinforcing material.
[0002]
[Prior art]
Conventionally, a diaphragm (an example of an internal reinforcing material) is attached to the support column side by, for example, a beam penetration method. According to this beam penetration method, a pillar, that is, a square steel pipe, is cut into multiple pieces in the length direction, and a groove is attached to the cut surface, and then a diaphragm is attached. Time and cost are required, and there are many problems such as many welding points.
[0003]
Therefore, as a method of not cutting the square steel pipe, there is provided a positioning method and a welding method for a large-diameter square steel pipe diaphragm as disclosed in, for example, JP-A-7-238636. In this conventional method, an inner diaphragm with a backing metal temporarily welded on both sides is inserted into a square steel pipe, engaged with a knock pin fitted in a through hole, and positioned at a predetermined position. Are attached to the inner wall of the square steel pipe, and then the inner wall of the square steel pipe and the outer periphery of the inner diaphragm are welded to each other by using the through holes.
[0004]
[Problems to be solved by the invention]
In the construction method that does not divide the square steel pipe described above, the outer diameter of the backing metal is formed so as to allow contact with the inner diameter wall of the square steel pipe without allowing a gap, for example, a gap of about 0.5 mm. Is inserted into the rectangular steel pipe, it is caught or clogged, and the insertion is not easy. Moreover, when the inner surface of the square steel pipe is uneven, the insertion itself cannot be performed.
[0005]
In order to cope with this, it is sufficient to leave a sufficient gap. However, if this gap is large, the molten metal of electroslag welding is placed in the welding space surrounded by the square steel pipe, the inner diaphragm, and the two backing metal. When the stagnation occurs, the molten metal may leak from the gap to the outside, and good welding may not be performed. Furthermore, the welding operation itself is troublesome and expensive and time consuming.
[0006]
Therefore, the invention according to claim 1 of the present invention is Steel pipes can be made with good properties by hot forming, Inserting the internal reinforcement into the steel pipe Utilizing a sufficient gap generated between the outer peripheral surface of the internal reinforcement and the inner peripheral surface of the steel pipe due to the thermal expansion of the steel pipe during thermoforming An object of the present invention is to provide a method of manufacturing a steel pipe with an internal reinforcing material that can be easily and smoothly combined, and that the connection between the steel pipe and the internal reinforcing material, that is, the formation of the other material connecting portion can be performed firmly without welding. .
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, a method of manufacturing a steel pipe with an internal reinforcing material according to claim 1 of the present invention includes a tubular body having an outer dimension equivalent to the inner dimension of the target steel pipe, and the tubular body. Prepare the internal reinforcement formed by the diameter reduction block integrated with the tube body, Transported in the heating furnace After heating to the prescribed temperature, In steel pipe forming mill, Hot forming into the inner dimensions of the target steel pipe being heated and expanded, Then, by the internal reinforcement supply device this Hot formed Heated and expanded ing The inner reinforcing material is inserted to a predetermined position in the steel pipe, and the steel pipe inner peripheral surface is brought into contact with the outer peripheral surface of the inner reinforcing material by cooling contraction of the steel pipe, thereby forming a superposed portion of the steel pipe and the pipe body, Holes are formed at a plurality of locations in the overlapping portion, and a coupling member is applied to these holes to bond the steel pipe and the internal reinforcing material, thereby forming other material connecting portions in the overlapping portion. .
[0012]
Therefore, according to the first aspect of the present invention, the steel pipe can be made to have good properties by hot forming, and is generated between the outer peripheral surface of the internal reinforcing material and the inner peripheral surface of the steel pipe by the thermal expansion of the steel pipe at the time of hot forming. Make use of sufficient clearance to reinforce the internal reinforcement Is inserted into the steel pipe , Easily and smoothly without catching or clogging Can do The Then, the internal reinforcing material can be fixed to the steel pipe by utilizing the fact that the gap is automatically filled by the cooling shrinkage of the steel pipe and the inner peripheral surface of the steel pipe is in contact (pressure contact) with the outer peripheral surface of the internal reinforcing material. Moreover, the superposition | polymerization part formed with a steel pipe and a tubular body can be firmly integrated, without welding with several coupling tools. Further, the other material connecting portion formed by the overlapping portion can ensure a sufficient thickness even if the steel pipe is thin due to the tubular body.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Below, 1st embodiment of this invention is described based on FIGS. 1-8 as a state employ | adopted when carrying out hot forming of the square-shaped square steel pipe.
[0016]
4 and 5, for example, when manufacturing a large-diameter rectangular steel pipe, a regular rectangular polygonal hollow steel pipe 2 having seam welds 1 at most two locations is used. At that time, the polygonal hollow steel pipe 2 has an inner surface width dimension W of the opposed flat plate portions 2A. 1 Is formed into a dimension wider than the inner surface width dimension of the flat plate portion of the final product (described later), and the curvature radius R of the corner portion 2B. 1 Is formed larger than the radius of curvature of the corner of the final product.
[0017]
The polygonal hollow steel pipe 2 formed in this way is carried onto the carry-in floor device 5. Here, the carry-in floor device 5 is of a conveyor type, supports a plurality of polygonal hollow steel pipes 2 in parallel, and conveys them in a transverse direction perpendicular to the length direction. The polygonal hollow steel pipe 2 transported to the terminal end of the carry-in floor device 5 is transported into the heating furnace 7 via the roller conveyor 6, transported in the length direction in the heating furnace 7, and heated at a high temperature during the transport. A.
[0018]
The polygonal hollow steel pipe 2 heated to a predetermined temperature is carried out from the heating furnace 7 and carried into the front-stage square steel pipe forming mill 8. This front-stage square steel pipe forming mill 8 is hot-formed (forming temperature, A) via a plurality of pinched rolls 9 and the like. Three The transformation is performed on the polygonal hollow steel pipe 2 at the previous stage. Next, the polygonal hollow steel pipe 2 is carried into the rear-stage square steel pipe forming mill 10. This rear-stage square steel pipe forming mill 10 is hot-formed through a plurality of flat rolls 11 (forming temperature, A Three (The transformation point or higher), and the polygonal hollow steel pipe 2 is subjected to a subsequent (final) drawing process, so that a rectangular steel pipe 3 having a predetermined diameter and a large diameter is hot-formed.
[0019]
In this way, the multi-stage hollow steel pipe 2 is subjected to multiple-stage drawing (or single-stage drawing) by the front-stage square steel pipe forming mill 8 and the rear-stage square steel pipe forming mill 10 to thereby form the square steel pipe 3 as the final product. Can be made. At that time, the inner surface width dimension W of the flat plate portions 3A opposed to each other in the rectangular steel pipe 3 is set to the inner surface width dimension W of the polygonal hollow steel pipe 2 by the above-described drawing. 1 Narrow, ie W <W 1 And the radius of curvature R of the corner 3B is equal to the radius of curvature R of the corner 2B of the polygonal hollow steel pipe 2. 1 That is, R <R 1 The corners R at the four corners are aligned.
[0020]
Here, the inner surface width dimension W of the square steel pipe 3 is a dimension of the final product after being hot-formed and cooled. Immediately after hot forming, the inner surface width dimension W of the final product is increased by heat expansion. Wide inner surface width dimension W + α, that is, W <W + α <W 1 It has become.
[0021]
As described above, the curvature radius R of the corner 2B of the polygonal hollow steel pipe 2 1 Is formed into a dimension larger than the radius of curvature R of the corner portion 3B of the square steel pipe 3, so that it is possible to easily perform reasonable forming (press forming). Further, the polygonal hollow steel pipe 2 whose material (molecular arrangement) is restored to the original by the high temperature heating A is hot-drawn so that the inner surface width dimension W is narrow and the curvature radius R of the corner 3B is reduced. By doing so, the residual stress is also removed, and the final product having a high section modulus, that is, the square steel pipe 3 is obtained without changing the material in the entire section.
[0022]
Further, by hot drawing, the square steel pipe 3 is completely or almost completely formed from the front end portion to the rear end portion. Therefore, cutting and removing of the front end portion and the rear end portion in the subsequent process is not required depending on the forming amount. Alternatively, the cutting and removal are performed with a short dimension, so that the yield is improved.
[0023]
Further, in the square steel pipe 3 immediately after hot forming, each flat plate portion 3A has a straight surface, and the R of the corner portion 3B becomes sharp, and the section modulus becomes high. Since the polygonal hollow steel pipe 2 has a regular square shape, the conveyance by the roller conveyor 6 can always be carried out in a fixed direction by using one flat plate portion 3A, and thus hot forming in the square steel pipe forming mills 8 and 10 is possible. Can always be made with the position of the seam weld 1 aligned in a certain direction.
[0024]
Necessary places around the square steel pipe forming mills 8 and 10 (single or plural places such as before the front square steel pipe forming mill 8, between the double square steel pipe forming mills 8 and 10, and after the rear square steel pipe forming mill 10). The required number of descaler devices 12 are provided at the location). The descaler device 12 injects water with water pressure applied to the square steel pipe 3 and the like, and the water scale can be removed by this water injection to improve the surface skin.
[0025]
As described above, the hot-formed square steel pipe 3 is received by the cooling bed apparatus 15. The cooling bed apparatus 15 supports a plurality of rectangular steel pipes 3 in parallel and conveys them in a transverse direction perpendicular to the length direction. During the conveyance in the cooling bed apparatus 15, the square steel pipe 3 is radiated B, that is, gradually cooled in an air-cooled manner.
[0026]
The cooling floor device 15 is configured, for example, by arranging eight (a plurality of) chain conveyor devices 16 that can be intermittently driven synchronously. A subsequent-stage cooling bed apparatus 17 is disposed at the end of the cooling bed apparatus 15. The latter-stage cooling floor device 17 has the same configuration as the cooling bed device 15 and is configured by arranging a plurality of chain conveyor devices 18 side by side. A takeout conveyor device 19 that receives the square steel pipe 3 from the rear cooling floor device 17 is disposed outside the end of the rear cooling floor device 17.
[0027]
An internal reinforcing material for supplying a rectangular tube type internal reinforcing material (an example of an internal reinforcing material) 20 to a predetermined position in the square steel pipe 3 supported horizontally by the cooling floor device 15 is provided in the cooling floor device 15. A supply device 30 is provided.
[0028]
As shown in FIGS. 5 to 7, the rectangular internal reinforcing member 20 is integrated with the rectangular tube body 21 (an example of a tube body) 21 and an intermediate portion of the rectangular tube body 21. And a rectangular plate body 22 (an example of a diameter-reducing body). The rectangular plate 22 is integrated by welding 23 with almost the entire outer peripheral surface 22 a being in contact with the inner peripheral surface 21 a of the rectangular tube 21.
[0029]
At that time, the distance between the outer surfaces of the rectangular tube body 21 that becomes the outer dimension L of the rectangular tubular inner reinforcing member 20 is equal to (slightly larger) the inner surface width dimension W of the rectangular steel pipe 3 that is the final product, that is, L ≧ W is formed. However, since the square steel pipe 3 is heated and expanded as described above and L <W + α, the flat plate portion inner peripheral surface (steel pipe inner peripheral surface) 3a and the rectangular pipe outer peripheral surface (tube outer peripheral surface) at the time of the thermal expansion. ) A gap (approximately 5 mm) S is generated between 21b.
[0030]
As shown in FIGS. 4 and 6, the internal reinforcing material supply device 30 is provided on both sides of the cooling bed device 15. These internal reinforcing material supply devices 30 have the same configuration, and are provided with arm rods 31 that can be inserted into and removed from the rectangular steel pipe 3 and that can be raised and lowered, and provided at the free ends of the arm rods 31 and the rectangular tube body. 21 is configured by a clamping device 32 that can clamp 21 from the inside.
[0031]
An edge correction device (not shown) is provided at a supply portion by the internal reinforcing material supply device 30. This end straightening device performs straightening (expansion) of the end of the hot-formed square steel pipe 3, and positioning (fixing at a fixed position and a stopper) of the square steel pipe 3 is also performed by clamping at that time. Note that positioning may be performed by another device, and the edge correction device may be omitted if edge correction is unnecessary.
[0032]
Hereinafter, in the first embodiment described above, the cooling of the square steel pipe 3 and the operation of attaching the square internal reinforcement 20 into the square steel pipe 3 will be described.
First, as shown by the solid lines in FIG. 4 and FIG. 6, the rectangular internal reinforcing member 20 is clamped (supported) by the clamping device 32 at a position where the internal reinforcing member supply device 30 is extracted (retracted). As shown by the solid line in FIG. 6, one square internal reinforcing member 20 has already been inserted into the square steel pipe 3. On the other hand, the square steel pipe 3 hot-formed by the rear-stage square steel pipe forming mill 10 is placed on the start end portion of the chain conveyor device 16 group of the cooling floor device 15.
[0033]
In this way, the end straightening device is applied to the end of the square steel pipe 3 placed at the starting end of the cooling floor device 15, thereby correcting (expanding) the deformed end during hot forming. The rectangular steel pipe 3 is positioned (fixed at a fixed position) by the clamp. In addition, the positioning in the length direction of the square steel pipe 3 may be continued, or may be positioned by another stopper device. Then, after the end straightening device is deactivated in this manner, as shown by the solid line in FIG. 6, the square internal reinforcing material 20 supported on the internal reinforcing material supply device 30 side at the end of the straightened square steel pipe 3. Face each other.
[0034]
In this state, the brace 31 is rushed into the square steel pipe 3 and the square internal reinforcing member 20 is inserted to a predetermined position in the square steel pipe 3 as shown by phantom lines in FIGS. 5 and 6. At that time, the outer dimension L of the rectangular inner reinforcing member 20 is smaller than the inner surface width dimension W + α of the rectangular steel pipe 3 at the time of thermal expansion, and there is a gap between the outer peripheral surface 21b of the rectangular tubular body 21 and the inner peripheral surface 3a of the flat plate portion. Since S occurs, the rectangular internal reinforcing member 20 can be inserted without being caught or clogged. The insertion movement of the armband 31 is position-controlled by a control device (not shown) so that the square inner reinforcing member 20 is set at a predetermined position in the square steel pipe 3.
[0035]
In the state where the supply (insertion) process of the rectangular internal reinforcement member 20 is completed, first, as shown in FIG. 7, the inner peripheral surface 3 a of the lower flat plate portion 3 </ b> A in the rectangular steel pipe 3 by the downward movement of the armband 31. The lower outer peripheral surface 21b of the rectangular tubular body 21 in the rectangular internal reinforcing member 20 is brought into contact with (landed) on the top. Next, the clamp of the rectangular internal reinforcement 20 by the clamp device 32 is released. After that, the armband 31 is extracted.
[0036]
In this way, the rectangular internal reinforcing member 20 can be inserted into the rectangular steel pipe 3, and when one rectangular internal reinforcing member 20 is inserted at that time, one of the internal reinforcing member supply devices 30 is activated. In addition, when inserting two rectangular internal reinforcements 20, both internal reinforcement supply devices 30 are operated, and when inserting three or more rectangular internal reinforcements 20, at least one internal reinforcement supply device 30 is activated multiple times. In this embodiment, as shown by a solid line or an imaginary line in FIG. 6, two rectangular internal reinforcing members 20 are inserted close to each other at a predetermined distance per other material connecting portion (described later). The
[0037]
As described above, when the square internal reinforcing member 20 is brought into contact (landing) on the inner peripheral surface 3a of the square steel pipe 3, as shown in FIG. 7, the inner peripheral surface 3a of the upper flat plate portion 3A and the upper outer periphery are provided. A substantially double gap 2S is formed between the surface 21b. In this state, the chain conveyor device 16 group is intermittently driven, and the square steel pipe 3 is intermittently conveyed by a predetermined pitch (predetermined distance) in a transverse direction orthogonal to the length direction. At that time, the rectangular internal reinforcing member 20 is not displaced in the length direction with respect to the rectangular steel pipe 3 by surface contact.
[0038]
Note that the square steel pipes 3 are successively supplied to the starting end portion of the chain conveyor device 16 as described above, and the supply (insertion) of the rectangular internal reinforcing material 20 is sequentially performed via the internal reinforcing material supply device 30. The intermittent conveyance of the three square steel pipe groups in the cooling bed apparatus 15 is performed in a state where the adjacent square steel pipes 3 are separated from each other. Thereby, the square steel pipe 3 is gradually cooled under the same atmospheric temperature.
[0039]
On this cooling bed apparatus 15, when the square steel pipe 3 is shrunk as it is cooled and is shrunk to the inner surface width dimension W corresponding to the final product, as shown in FIG. 5 and FIG. The flat plate portion inner surface 3a is brought into contact (pressure contact) with the outer peripheral surface of the plate, and further, although it is slightly indented. As a result, the square inner reinforcing member 20 side is fixed to the square steel pipe 3 by shrink fitting, so that the overlapping portion of the square pipe 21 and the square steel pipe 3 is fixed. twenty four Is formed.
[0040]
In FIG. 4, the square steel pipe 3 cooled in the preceding stage is transferred from the terminal end of the cooling bed apparatus 15 to the starting end of the subsequent cooling bed apparatus 17 and is transported by the same operation of the subsequent cooling floor apparatus 17. However, the subsequent slow cooling is performed. Then, the square steel pipe 3 which has been cooled at the rear stage and has reached the end part of the rear stage cooling floor apparatus 17 is moved to the take-out conveyor apparatus 19, and thereafter, a front end cutting apparatus, a rear end cutting apparatus, a cleaning apparatus, and a rust preventive not shown. After being transported to the device and processed by each, it is stored as a product.
[0041]
In this way, the square steel pipe 3 stored as a product or the square steel pipe 3 in an appropriate process part after being taken out from the rear cooling bed apparatus 17 has a plurality of locations in the overlapping portion 24 (arbitrary optional for transmitting stress). As shown by the phantom lines in FIG. 8, the holes 25 are formed by an appropriate device. At that time, the flat plate portion 3A of the square steel pipe 3 Thickness Even if the thickness is small, the thickness can be increased by the rectangular tubular body 21 of the rectangular internal reinforcing member 20, so that a sufficiently long hole 25 is formed.
[0042]
Thereafter, as shown in FIG. 1 to FIG. 3, by connecting the square steel pipe 3 and the square pipe portion 21 of the square internal reinforcement member 20 by causing the coupler 26 to act on each hole 25, the superposition portion 24 is made of another material. A connecting portion 27 can be formed. Here, the coupling 26 is inserted into the hole 25 from the outside, and then a bolt type that can form a nut portion inside by a screwing action by rotation is adopted, but this may be a rivet type or the like Good. In this way, by causing the plurality of couplers 26 to act, the rectangular steel pipe 3 and the rectangular internal reinforcing member 20 can be coupled sufficiently firmly.
[0043]
As described above, for example, a column (an example of a steel pipe with an internal reinforcing material) 40 as shown in FIGS. 1 to 3 is manufactured, and a beam material (an example of another material) is formed outside the other material connecting portion 27 of the column 40. ) 41 is connected. That is, the beam member 41 is made of H-shaped steel, its end is applied to the outside of the other material connecting portion 27 of the support column 40, and welding is performed on the end of the beam 40 on the outer side of the other material connecting portion 27 of the support column 40. The material 41 can be connected.
[0044]
Next, a second embodiment of the present invention will be described with reference to FIG.
That is, for example, when manufacturing a large-diameter square steel pipe, a round steel pipe 60 having a predetermined diameter, plate thickness, and length suitable for the large-diameter square steel pipe is prepared on the carry-in floor device 5 as a hollow original pipe. The carry-in floor device 5 supports a plurality of round steel pipes 60 in parallel and conveys them in a lateral direction perpendicular to the length direction. The round steel pipe 60 transported to the terminal portion of the carry-in floor device 5 is transported into the heating furnace 65 and is transported in the horizontal direction perpendicular to the length direction in the heating furnace 65 while A Three High temperature heating A is performed above the transformation point.
[0045]
The heating furnace 65 is formed in a box shape, in which an intermittent progressive device 66 is disposed, a carry-in port 67 is formed in the front furnace wall, and a carry-out port 68 is formed in the rear furnace wall. Open / close doors 69 and 70 are provided at the carry-in entrance 67 and the carry-out exit 68, respectively. Further, a predetermined number of heating burners 71 are disposed at predetermined locations, and a smoke exhaust port 72 is formed at the predetermined location.
[0046]
The round steel pipe 60 transported to the terminal end of the carry-in floor device 5 opens the opening / closing door 69, and then is transported in a lateral direction perpendicular to the length direction of the round steel pipe 60. The door 69 is supported by the intermittent progressive device 66, and the door 69 is closed after the loading. Next, the round steel pipe 60 is intermittently conveyed to the rear end side in the transverse direction perpendicular to the length direction by the intermittent progressive device 66, and during the conveyance, the flame A from the heating burner 71 causes A Three High temperature heating A is performed above the transformation point. The round steel pipe 60 thus heated and transported to the vicinity of the carry-out port 68 is carried out through the carry-out port 68 opened for a short time, and is taken out from the heating furnace 65 onto the roller conveyor 6. After opening, the opening / closing door 70 is closed.
[0047]
As described above, the round steel pipe 60 heated to a predetermined temperature in the heating furnace 65 and delivered is transferred to the weld seam position adjusting device 73, and the center of the pipe axis is provided via the support roll 74, the presser roll 75, and the like. Rotate around to align the seam weld in a certain direction. The round steel pipe 60 from the welding seam position adjusting device 73 is carried into a round steel pipe forming mill 76 and hot-formed into a drawn shape through a plurality of sizing rolls 77 and the like, and a square steel pipe as a final product is formed. A refined round steel pipe 61 is obtained by refining to a prescribed diameter so as to be finished in a prescribed dimension.
[0048]
The refined round steel pipe 61 refined by the round steel pipe forming mill 76 group in this way is carried into the front square steel pipe forming mill 78. Here, hot forming (forming temperature A) via a plurality of pinched rolls 79, etc. Three In this case, the polygonal hollow steel pipe immediately after hot forming has a flat plate portion formed into an arcuate surface outward along the joint surface.
[0049]
Next, the polygonal hollow steel pipe is carried into a rear-stage square steel pipe forming mill 80. In this latter-stage square steel pipe forming mill 80, hot forming (forming temperature, A) via a plurality of flat rolls 81 and the like. Three (The transformation point or higher), the latter (final stage) drawing is performed on the polygonal hollow steel pipe, and the large-diameter square steel pipe (steel pipe) 3 as the final product is hot-formed with a predetermined dimension. The The hot-formed square steel pipe 3 is received by the cooling bed apparatus 15 side. Thereafter, as described in the first embodiment, the rectangular internal reinforcing material 20 is supplied by the internal reinforcing material supply device 30.
[0050]
Hereinafter, various embodiments of the present invention will be described with reference to the drawings. Here, an explanation will be given in a state in which an internal reinforcing material is fitted in a heat-expanded steel pipe and joined by cooling shrinkage of the steel pipe, and then the coupling tool 26 is used to form the support column 40.
[0051]
That is, FIG. 10 shows a third embodiment. A rectangular tube-type internal reinforcing material (an example of an internal reinforcing material) 50 includes a rectangular tubular body (an example of a tubular body) 51 and a cruciform frame (reduced shape). An example of a blocking body) 52 is formed by the superposition part 24, so that the other material connecting part 27 is formed.
[0052]
FIG. 11 shows a fourth embodiment. For example, a cylindrical internal reinforcing material (an example of an internal reinforcing material) 54 is fitted in a refined round steel pipe 61 hot-formed in the second embodiment. It is combined. The cylindrical internal reinforcing material 54 is formed by a circular pipe body (an example of a pipe body) 55 and a circular plate body (an example of a contraction prevention body) 56, and the other material connecting portion 27 is formed by the overlapping portion 24. Is formed.
[0053]
FIG. 12 shows a fifth embodiment. For example, a cylindrical internal reinforcing material (an example of an internal reinforcing material) 57 is included in a refined round steel pipe 61 hot-formed in the second embodiment. It is fitted. The cylindrical internal reinforcing member 57 is formed of a circular pipe body (an example of a pipe body) 58 and a cross-shaped frame body (an example of a contraction prevention portion) 59, and therefore, the other material connecting portion 27 is formed by the overlapping portion 24. Is formed.
[0055]
In each of the above-described embodiments, the square steel pipe 3 is mainly a large diameter steel pipe having a size of, for example, a thickness t of 16 to 60 mm, a material of SN400 B to SN490 B or SM520 B, and an outer diameter of 450 to 60 mm. In this case, the gap S is formed to be 5 to 6 mm. Further, as the square steel pipe 3, for example, a one-seam square steel pipe by hot roll forming, a two-seam square steel pipe obtained by facing and welding a pair of grooves by hot press forming, and a pair of rolled grooves are welded. Off-the-shelf large-diameter steel pipes are used, such as two-seam square steel pipes, two-seam square steel pipes obtained by facing and welding a pair of rolled chevron members, four-sided boxes, and seamless steel pipes.
[0056]
In the first embodiment described above, a square steel pipe 3 having a square shape in cross section is manufactured and a rectangular tube type internal reinforcing material 20 is attached. The material can be attached. Then, by changing the roller arrangement of the double-angle steel pipe forming mills 8 and 10, hot forming of polygonal steel pipes such as pentagonal steel pipes and hexagonal steel pipes and attachment of internal reinforcing materials can be performed.
[0057]
In each of the above-described embodiments, the rectangular plate member 22, the cross-shaped frame members 52 and 59, and the circular plate member 56 are shown as the diameter reduction preventing member, but this may be in other forms.
In each of the above-described embodiments, the other material connecting portion 27 is formed by arranging a pair of upper and lower internal reinforcing materials at a predetermined interval, but this arranges one internal reinforcing material of a necessary length. Thus, the other material connecting portion 27 may be formed. In this case, the rectangular plate body 22, the circular plate body 56, and the like are provided as a single sheet or a plurality of sheets.
[0058]
【The invention's effect】
According to the first aspect of the present invention described above, the steel pipe can be made to have good properties by hot forming, and is generated between the outer peripheral surface of the internal reinforcing material and the inner peripheral surface of the steel pipe by the thermal expansion of the steel pipe at the time of hot forming. Internal reinforcement with the required length using sufficient clearance Insertion into the steel pipe Easily, smoothly and accurately to a specified position without being caught or clogged To do it can. Then, the internal reinforcing material can be fixed to the steel pipe by utilizing the fact that the gap is automatically filled by the cooling contraction of the steel pipe and the inner surface of the steel pipe is in contact (pressure contact) with the contacted surface. Therefore, it is possible to efficiently and economically attach the internal reinforcing material as compared with a method in which a normal temperature steel pipe is heated and expanded from the beginning. Moreover, the superposition | polymerization part formed with a steel pipe and a pipe body can be firmly integrated without welding with a some coupling tool.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view of a steel pipe with an internal reinforcing material, showing a first embodiment of the present invention.
FIG. 2 is a longitudinal side view of another steel connected state in the steel pipe with the internal reinforcing material.
FIG. 3 is a cross-sectional plan view of another material connected state in the steel pipe with the internal reinforcing material.
FIG. 4 is a process perspective view of hot forming equipment in the manufacturing method of the steel pipe with the internal reinforcing material.
FIG. 5 is a process explanatory diagram of hot forming equipment in the manufacturing method of the steel pipe with the internal reinforcing material.
FIG. 6 is a partially cutaway side view when supplying the internal reinforcing material in the manufacturing method of the steel pipe with the internal reinforcing material.
FIG. 7 is a front view of the steel pipe when supplying the internal reinforcing material in the manufacturing method of the steel pipe with the internal reinforcing material.
FIG. 8 is a front view of the steel pipe at the time of cooling shrinkage in the manufacturing method of the steel pipe with internal reinforcing material.
FIG. 9 shows a second embodiment of the present invention and is a process perspective view of hot forming equipment in a method of manufacturing a steel pipe with an internal reinforcing material.
FIG. 10 is a partially cutaway perspective view of a steel pipe with an internal reinforcing material, showing a third embodiment of the present invention.
FIG. 11 is a partially cutaway perspective view of a steel pipe with an internal reinforcing material, showing a fourth embodiment of the present invention.
FIG. 12 is a partially cutaway perspective view of a steel pipe with an internal reinforcing material, showing a fifth embodiment of the present invention.
[Explanation of symbols]
2 Polygonal hollow steel pipe
3. Square steel pipe (steel pipe)
3a Flat part inner peripheral surface (steel pipe inner peripheral surface)
5 carry-in equipment
7 Heating furnace
8 Previous-stage square steel pipe forming mill
10 Rear square steel pipe forming mill
15 Cooling floor equipment
17 Rear cooling floor system
20 Square tube type internal reinforcement (internal reinforcement)
21 Square tube (tube)
21a Inner peripheral surface
21b Outer surface
22 Rectangular plate (diameter blocker)
22a Outer peripheral surface
23 Welding
24 Superposition part
25 holes
26 Joiner
27 Other material connection
30 Internal reinforcement supply device
40 strut (steel pipe with internal reinforcement)
41 Beam material (other materials)
50 Square tube type internal reinforcement (internal reinforcement)
51 Square tube (tube)
52 Cross frame (diameter blocker)
54 Cylindrical internal reinforcement (internal reinforcement)
55 Circular tube (tube)
56 Circular plate (diameter blocker)
57 Cylindrical internal reinforcement (internal reinforcement)
58 Circular tube (tube)
59 Cross frame (diameter blocker)
60 round steel pipe
61 Refined round steel pipe
65 Heating furnace
76 round steel pipe forming mill
78 Pre-form square steel pipe forming mill
80 Rear square steel pipe forming mill
A High temperature heating
B Heat dissipation
L External dimensions of internal reinforcement
S clearance
W Inner surface width of square steel pipe 3
W 1 Inner width dimension of polygonal hollow steel pipe 2
Inner width dimension during heating expansion of W + α square steel pipe 3
R Curvature radius of corner 3B of square steel pipe 3
R 1 Curvature radius of corner 2B of polygonal hollow steel pipe 2

Claims (1)

対象とする鋼管の内寸と同等の外寸の管体と、この管体内に位置して管体に一体化された縮径阻止体とにより形成された内部補強材を準備しておき、中空鋼管を加熱炉内において搬送して所定の温度に加熱したのち、鋼管成形ミルにおいて、対象とする鋼管が加熱膨張された状態の内寸に熱間成形し、次いで内部補強材供給装置によって、この熱間成形され加熱膨張されている鋼管内の所定位置まで前記内部補強材を挿入させ、鋼管の冷却収縮により鋼管内周面を内部補強材の管体外周面に当接させて、鋼管と管体との重合部を形成し、この重合部の複数箇所に孔をあけ、これら孔に結合具を作用させて鋼管と内部補強材とを結合することで、重合部に他材連結部を形成することを特徴とする内部補強材付き鋼管の製造方法。An internal reinforcement formed by a pipe body having an outer dimension equivalent to the inner dimension of the target steel pipe, and a diameter-reducing prevention body integrated in the pipe body in the pipe body is prepared and hollow. After the steel pipe is transported in a heating furnace and heated to a predetermined temperature, in the steel pipe forming mill, the target steel pipe is hot-formed to an inner size in a state of being heated and expanded, and then the internal reinforcing material supply apparatus to a predetermined position within the steel tube which is heated and expanded it is hot formed by inserting the internal reinforcement is abutted against the steel pipe inner surface in the pipe body outer peripheral surface of the inner reinforcing member by the cooling shrinkage of the steel pipe, steel pipe and tube Forming a superposition part with the body, drilling holes at multiple places in this superposition part, and connecting a steel pipe and an internal reinforcement by applying a tool to these holes, forming another material connection part in the superposition part A method of manufacturing a steel pipe with an internal reinforcing material.
JP07870097A 1997-03-31 1997-03-31 Manufacturing method of steel pipe with internal reinforcement Expired - Fee Related JP3712497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07870097A JP3712497B2 (en) 1997-03-31 1997-03-31 Manufacturing method of steel pipe with internal reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07870097A JP3712497B2 (en) 1997-03-31 1997-03-31 Manufacturing method of steel pipe with internal reinforcement

Publications (2)

Publication Number Publication Date
JPH10273930A JPH10273930A (en) 1998-10-13
JP3712497B2 true JP3712497B2 (en) 2005-11-02

Family

ID=13669154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07870097A Expired - Fee Related JP3712497B2 (en) 1997-03-31 1997-03-31 Manufacturing method of steel pipe with internal reinforcement

Country Status (1)

Country Link
JP (1) JP3712497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391400B1 (en) * 2020-01-29 2022-04-28 주식회사 가우리안 Connecting structure for columns

Also Published As

Publication number Publication date
JPH10273930A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP3925370B2 (en) Method and apparatus for manufacturing deformed element pipe for hydraulic bulge processing
JP3712497B2 (en) Manufacturing method of steel pipe with internal reinforcement
JP2823260B2 (en) Roll forming method for large diameter square steel pipe
JP3504107B2 (en) Manufacturing method of steel pipe with internal reinforcement
JP3274082B2 (en) Steel pipe manufacturing method
JP3202145B2 (en) Manufacturing method of large square steel pipe and large round steel pipe
JP2852315B2 (en) Method of manufacturing hot large-diameter rectangular steel pipe in which material of corner R does not deteriorate
JPH09234632A (en) Internal reinforcement member fitting method to steel tube
JP3305186B2 (en) How to attach inner diaphragm to steel pipe
JP3868797B2 (en) Method and apparatus for manufacturing deformed pipe for rock bolt
JPS603995A (en) Production of large-diameter welded steel pipe
JP3292829B2 (en) Method of manufacturing square steel pipe
JPH0938721A (en) Production of square steel tube
JP3231239B2 (en) Steel pipe manufacturing method
JP2006016859A (en) Square steel-pipe column and steel skeleton structure using square steel-pipe column
JP2852310B2 (en) Large diameter square tube forming method and equipment including heat treatment
JP2006009380A (en) Steel pipe column and its construction method
JP2852309B2 (en) Forming method for large diameter square steel pipe
JP3682682B2 (en) Manufacturing method of thin wall forged pipe
JPH0999324A (en) Manufacture of square tube
JPS59191516A (en) Production of thick walled large diameter steel pipe
JPH0788545A (en) Manufacture of large diameter square steel tube to improve corner r part material
JPH04284970A (en) Method for attaching joint of steel tube pile
JP3444702B2 (en) Metal tube with reinforcement and method of manufacturing the same
JP2000303454A (en) Joint hardware for pile coupler and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees