JP3711028B2 - Gas turbine engine with foreign matter removal structure - Google Patents

Gas turbine engine with foreign matter removal structure Download PDF

Info

Publication number
JP3711028B2
JP3711028B2 JP2001042887A JP2001042887A JP3711028B2 JP 3711028 B2 JP3711028 B2 JP 3711028B2 JP 2001042887 A JP2001042887 A JP 2001042887A JP 2001042887 A JP2001042887 A JP 2001042887A JP 3711028 B2 JP3711028 B2 JP 3711028B2
Authority
JP
Japan
Prior art keywords
foreign matter
gas turbine
turbine engine
air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001042887A
Other languages
Japanese (ja)
Other versions
JP2002242699A (en
Inventor
勇志 竹原
哲男 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001042887A priority Critical patent/JP3711028B2/en
Publication of JP2002242699A publication Critical patent/JP2002242699A/en
Application granted granted Critical
Publication of JP3711028B2 publication Critical patent/JP3711028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主として、ヘリコプターのような航空機の動力源や発電機の駆動源等として用いられるガスタービンエンジンであって、エンジン内部に侵入した異物を簡単な構成で容易に捕集して除去することのできる異物除去構造を備えたものに関する。
【0002】
【従来の技術】
上述のような用途に用いらるガスタービンエンジンでは、砂、小石、金属片または小枝などの異物が吸入空気中に含まれた状態でエンジン内部に侵入し易く、これらの異物がエンジンの圧縮翼やタービン翼に衝突すると、その衝突時に受ける衝撃によるダメージでエンジンが損傷するおそれがある。特に、衝撃に対して脆いセラミック製のタービン翼を備えたエンジンでは、従来において問題とならなかった微細な異物によっても損傷を受けて故障発生の原因となる。すなわち、セラミック製のタービン翼を備えたエンジンでは、吸入空気中に含まれる異物だけでなく、内部で発生する切削粉やカーボンの塊といった異物も損傷の原因となる。
【0003】
そこで、従来では、吸入した空気を、旋回させたり、曲がった通路を通過させたのちに、エンジン内部に導入するようにして、空気よりも重い異物を遠心力で空気流路から外れる方向に導出させて除去し、空気のみをエンジン内部に吸入するIPS(inlet particle separator)が広く採用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の異物除去手段(IPS)では、重量の小さい異物がエンジン内部に進入するのを阻止することが難しいとともに、一旦エンジン内部に侵入した異物についてはこれを除去することができない。また、IPS等の従来の手段では、捕集した異物を、定期点検時などにおいてエンジンを分解するまで取り出すことができない。
【0005】
そこで、本発明は、前記従来の課題に鑑みてなされたもので、異物除去構造を、エンジンに既存の部品を利用して、コンパクトかつ安価に設けることができるとともに、捕集した異物を任意に取り出すことができるガスタービンエンジンを提供することを目的とするものでる。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明の第1構成に係るガスタービンエンジンは、ガスタービンエンジンにおける遠心圧縮機のディフューザの下流に、前記ディフューザからの空気を径方向の外向きから軸方向の後ろ向きを経て径方向の内向きに変向させる湾曲通路が形成され、前記湾曲通路における径方向外周部に、空気中の異物を進入させて前記湾曲通路外へ導出する捕集口が形成されている。
【0007】
この構成によれば、ディフューザから吐出される空気は、旋回成分を有して流動しているので、この空気中に含まれる異物には、空気の旋回による遠心力と湾曲通路の曲がりに抗して流動しようとする慣性力とが作用する。そのため、空気は湾曲通路に沿って強制的に流動していくのに対し、空気よりも重い異物は、大きな遠心力および慣性力が作用することから、湾曲通路から外れて捕集口内に進入して空気から除去される。一般に、遠心圧縮機の下流の湾曲通路は、曲がり角度が比較的大きいので、異物をこれに作用する慣性力によって捕集する効果が極めて大きく、小さな異物であってもほぼ確実に捕集することができる。また、この異物除去構造は、異物除去のために流路を特別に大きく曲げて形成する従来の異物除去手段とは異なり、既存の湾曲通路を利用して、この湾曲通路における径方向外周部に捕集口を設けるだけでよいので、コンパクトに構成できるとともに、コストアップを招くこともない。
【0008】
本発明の第2構成に係るガスタービンエンジンは、ガスタービンエンジンにおける燃焼器が、燃焼室を形成する内筒と、この内筒の外周部および頂部を覆う外筒と、前記内筒と外筒との間に形成されて圧縮機からの空気を前記内筒内の燃焼ガスの流れ方向と逆方向に導入する導入通路とを有しており、前記外筒における頂壁と周壁との境界部に、空気中の異物を進入させて、前記導入通路外へ導出する捕集口が形成されている。
【0009】
この構成によれば、導入通路を流動中の圧縮空気は、旋回成分を有しているので、この圧縮空気中に含まれている異物には、旋回による遠心力と、外筒の頂壁によって直角に変向されることにより生じる慣性力とが作用する。そのため、異物は、圧縮空気から分離して捕集口内に進入して捕集される。また、この異物除去構造は、圧縮空気の流路を特別に大きく曲げることなく、既存の導入通路を利用して、この導入通路の突き当たり箇所の外側にあたる前記境界部に捕集口を設けるだけでよいので、コンパクトに構成できるとともに、コストアップを招くこともない。
【0012】
前記第1および第2構成において、前記捕集口はエンジンの軸心と同心の環状に形成されていることが好ましく、これにより、異物を空気通路の全周において捕集できる。
【0013】
また、前記第1および第2構成において、前記捕集された異物をエンジン外へ取り出す取出口と、この取出口を開閉するプラグとを備えていることが好ましい。これにより、捕集した異物を、エンジンを分解することなく、プラグによって取出口を開放するだけで外部に排出することができる。
【0014】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面を参照しながら詳述する。
図1は、本発明の第1実施形態に係る異物除去構造を備えたガスタービンエンジンの概略構成を示す縦断面図である。
【0015】
このガスタービンエンジンは、空気吸入口INから空気Aを吸入して圧縮する2段の遠心圧縮機1と、圧縮された空気Aに燃料を供給して燃焼させる燃焼器4と、燃焼ガスGで駆動されるタービン7とを有している。前記圧縮機1およびタービン7はハウジング13内に収納され、燃焼器4はハウジング13に突出して取り付けられている。燃焼器4の燃焼室Cで発生した燃焼ガスGは、スクロール9を介してタービン7に導かれてタービン7を回転させ、このタービン7に回転軸10で連結されている2段の遠心圧縮機1と、発電機またはヘリコプターロータのような回転負荷Lとを駆動する。
【0016】
燃焼器4は、単缶型(多缶型でもよい)であって、タービン7のほぼ径方向に突出して設けられている。この燃焼器4は、燃焼室Cを形成する内筒8と、この内筒8の外周部8aおよび頂部8bを覆う外筒11とを有し、内筒8と外筒11との間に、圧縮機1からの圧縮空気CAを内筒8内の燃焼ガスGの流れ方向と逆方向に導入する導入通路12が形成されている。圧縮機1から供給された圧縮空気CAは、導入通路12内を燃焼器4の先端側に向かって流れ、燃焼器4の中心側に向かって変向されて内筒8内に入り、内筒8内で燃料ノズルから供給された燃料と混合されて燃焼して燃焼ガスGとなったのち、燃焼器4の基端側に向かって流れる。遠心圧縮機1を構成する2つの圧縮段2,3は、回転するインペラロータ2a,3aと、その下流側でハウジング13に固定されて空気Aの旋回を抑制し、動圧を静圧に転換して静圧を上昇させるディフューザ2b,3bとを備えている。
【0017】
1段目の圧縮段2の吐出口2ex、つまりディフューザ2bの下流端と、2段目の圧縮段3の吸入口3in、つまりインペラロータ3aの吸入端との間には、前記ディフューザ2bからの空気Aをガスタービンエンジンの径方向の外向きから径方向の内向きへUターンさせるように変向させる湾曲通路14が形成されている。
【0018】
図1のII部の拡大図である図2に示すように、前記湾曲通路14の径方向外周部を形成するエンジンハウジング13には、空気A中の異物Eを進入させて湾曲通路14外へ導出する捕集口17が、回転軸10(図1)の軸心、つまりガスタービンエンジンの軸心25と同心の環状に形成されており、その捕集口17の奥部には異物Eの捕集室18が設けられている。さらに、捕集室18には、外部に連通するねじ孔からなる取出口19が形成されており、その取出口19にはボルトからなるプラグ20が着脱自在に螺着されている。このプラグ20の着脱により開閉される取出口19は、周方向に複数個形成してもよいし、図1に示すように環状の捕集室18の下部に1つだけ設けてもよい。
【0019】
一般に、ディフューザ2bから吐出される空気Aは、旋回成分を有して流動しているので、この空気A中に異物Eが含まれていると、この異物Eには、空気Aの旋回による遠心力と湾曲通路14に沿った曲がりによる慣性力とが作用する。そのため、空気Aよりも重い異物Eは、湾曲通路14から径方向外方に外れて、図2の捕集口17内に進入し、捕集室18内に貯留される。
【0020】
前記の異物除去構造では、湾曲通路14の曲がり角度がほぼ180°と大きいので、慣性力によって異物Eを捕集する効果が極めて大きく、小さな異物Eであってもほぼ確実に捕集室18内に捕集することができる。また、この異物除去構造は、流路を特別に大きく曲げる従来の異物除去手段とは異なり、既存の湾曲通路14を利用して、この湾曲通路14における径方向外周部に捕集口17を有する捕集室18を設けるだけでよいので、コンパクトに構成できるとともに、コストアップを招くこともない。
【0021】
また、捕集室18内に貯留されている異物Eは、エンジンの停止時に図1に示す下方のプラグ20を取り外せば、取出口19から外部に自然落下させて排出することができる他に、エンジンの駆動中においては、上方のプラグ20を取り外しても、空気圧によって取出口19に向け吹き飛ばして外部に排出することができる。なお、取出口19は、プラグ20に代えて、電磁弁などで自動的に開閉できるようにすれば、エンジンの運転中においても容易に開放して異物を排出できる。
【0022】
図3は図1のIII 部の拡大図であって、2段目の圧縮段3の吐出口3exに、前記ディフューザ3bからの空気Aをガスタービンエンジンの径方向の外向きからエンジンの軸方向の後ろ向き(図の右方)へ変向させる湾曲通路21が形成されている。
【0023】
前記湾曲通路21の径方向外周部を形成するエンジンハウジング13には、空気A中の異物Eを進入させて湾曲通路21外へ導出する捕集口22が、回転軸10(図1)の軸心25と同心の環状に形成されており、その捕集口22の奥部には異物Eの捕集室23が設けられている。さらに、捕集室23には、外部に連通するねじ孔からなる取出口24が形成されており、その取出口24にはボルトからなるプラグ27が着脱自在に螺着されている。このプラグ27の着脱により開閉される取出口24は、周方向に複数個形成してもよいし、図1に示すように環状の捕集室23における下部に1つだけ設けてもよい。
【0024】
この異物除去構造においても、図2の構造とほぼ同様の効果を得ることができる。すなわち、空気A中に含まれている異物Eは、空気Aの旋回による遠心力と湾曲通路21に沿った曲がりによる慣性力とを受けて、湾曲通路21から径方向外方に外れて捕集口22内に進入し、捕集室23内に貯留される。この異物除去構造においても、湾曲通路21の曲がり角度がほぼ90°と比較的大きいので、慣性力によって異物Eを捕集する効果が大きく、小さな異物Eであってもほぼ確実に捕集室23内に捕集することができる。
【0025】
図4は、本発明の第1実施形態に係る変形例の異物除去構造を示す。この異物除去構造は、図1に示す2段の遠心圧縮機1を備えたガスタービンエンジンに適用したものであり、図2の捕集室18に代えて、2段の圧縮段2,3の間に形成されている既存の密閉空間を捕集室28として利用している。この捕集室28はエンジンの軸心25(図1)と同心の環状の空間になっている。湾曲通路14の径方向外周部には、空気A中の異物Eを進入させて湾曲通路14外へ導出する捕集口29を有して捕集室28に連通する捕集通路30が、回転軸10の軸心25(図1)と同心の環状に形成されている。この捕集通路30と捕集室28との間には、外部に連通するねじ孔からなる取出口31が形成されており、その取出口31にはボルトからなるプラグ32が着脱自在に螺着されている。取出口31は、周方向に複数個形成してもよいし、環状の捕集室28における下部に1つだけ設けてもよい。
【0026】
この異物除去構造は、図2とほぼ同様の構成になっているので、図2の構造で説明したと同様に作用する。すなわち、空気A中に含まれている異物Eは、空気Aの旋回による遠心力と湾曲通路14の曲がりによる慣性力とを受けて、湾曲通路14から径方向外方に外れて捕集口29内に進入したのち、捕集通路30を通って捕集室28内に貯留される。
【0027】
また、この異物除去構造は、既存の湾曲通路14と遠心圧縮機1の両圧縮段2,3間の密閉空間とを利用して、この湾曲通路14の径方向外周部に捕集口29と捕集通路30とを設けるだけでよいので、コンパクトに構成できるとともに、コストアップを招くこともない。また、捕集室28内に貯留されている異物Eは、エンジンの停止時に下方のプラグ(図示せず)を取り外すか、エンジンの駆動中において何れかのプラグ32を取り外せば、空気圧によって取出口31から外部に排出することができる。なお、この異物除去構造は、容積の大きい捕集室28を備えているので、貯留中の異物Eの排出頻度を少なくできる利点もある。
【0028】
図5は、本発明の第2実施形態に係る異物除去構造を備えたガスタービンエンジンの要部構成を示す縦断面図である。この異物除去構造は、図1に示したガスタービンエンジンの燃焼器4に設けるものであり、図1と同一または同等のものには同一の符号を付してある。図1の燃焼器4の内筒8の頂部8bには、燃料ノズル13を取り囲むようにしてスワーラ34が装着されており、遠心圧縮機1からの圧縮空気CAは、導入通路12を経てその一部が内筒8の燃焼用または希釈用の空気孔33から燃焼室C内に流入し、他の一部が導入通路12からUターンし、スワーラ34を通ることによって旋回しながら燃焼室C内に流入する。
【0029】
この実施形態の異物除去構造は、外筒11の頂壁37と周壁38との境界部に、圧縮空気CA中に含まれる異物Eを進入させて導入通路12外へ導出する捕集口39が形成され、捕集口39の奥部にあたる周壁38に捕集室40が設けられた構成になっている。さらに、捕集室40には、下方外部に連通するねじ孔からなる取出口41が形成されており、その取出口41にはボルトからなるプラグ42が着脱自在に螺着されている。
【0030】
一般に、導入通路12を流動中の圧縮空気CAは、圧縮機1によって付加された旋回成分を有しているので、この圧縮空気CA中に異物Eが含まれていると、この異物Eには、旋回による遠心力と、外筒11の頂壁37によって直角に変更されることにより生じる慣性力とが作用する。そのため、圧縮空気CAよりも重い異物Eは、圧縮空気CAから分離して捕集口39内に進入し、捕集室40内に貯留される。
【0031】
前記の異物除去構造では、異物Eに作用する慣性力および旋回力が共に大きいので、小さな異物Eであってもほぼ確実に捕集口39から導入通路12外へ導出して捕集室40内に捕集することができる。また、この異物除去構造は、流路を特別に大きく曲げる従来の異物除去手段とは異なり、既存の導入通路12を利用して、この導入通路12の突き当たり箇所の外側にあたる前記境界部に、捕集口39を有する捕集室40を設けるだけでよいので、コンパクトに構成できるとともに、コストアップを招くこともない。
【0032】
捕集室40内に貯留されている異物Eは、エンジンの停止時または駆動時にプラグ42を取り外せば、取出口41から外部に排出することができる。また、エンジン停止時には、頂壁37を取り外して異物Eを除去することも容易である。なお、この異物除去構造では、二点鎖線で示すように、頂壁37の下面における捕集口39の径方向内側に、断面湾曲形状の凹んだガイド凹所43を形成すれば、圧縮空気CA中の異物Eを円滑に捕集口39内に導くことができる。
【0033】
図6は、本発明に含まれない参考例に係る異物除去構造を備えたガスタービンエンジンの概略構成を示す一部破断した側面図である。まず、このガスタービンエンジンの構成について簡単に説明する。
【0034】
このガスタービンエンジンは、軸流圧縮機44で空気Aを圧縮して燃焼器47に導くとともに、ガス燃料または液体燃料を、燃焼器47に噴射して燃焼させ、その高温高圧の燃焼ガスGによりタービン48を駆動する構成になっている。軸流圧縮機44は、回転軸49の外周に取り付けられた複数個の動翼50と、この軸流圧縮機44の空気通路67の外周壁を形成する圧縮機シュラウド51の内周面に複数段に配置された静翼52との組み合わせにより、吸気ダクト53から吸入した空気Aを圧縮して、その圧縮空気CAを、環状に形成された車室54に送給する。
【0035】
燃焼器47は、環状の車室54に、その周方向に沿って複数個(例えば6個)が等間隔に配置されており、車室54に送給された圧縮空気CAが、矢印a,bで示すように、ほぼ円筒形の外筒56を通って、ほぼ円筒形の内筒57内の燃焼室58に導かれる。一方、燃焼器47には,燃料ノズル59から燃料Fが燃焼室58内に噴射され、この燃料Fが圧縮空気CAと混合されて燃焼し、その高温高圧の燃焼ガスGが内筒57の下流側に接続された移送ダクト60を通ってタービン48に送られる。
【0036】
図7は、図6のVII 部の拡大図であって、前記ガスタービンエンジンの異物除去構造を示す。この異物除去構造は、軸流圧縮機44における最終段の動翼50の後方近傍箇所で、圧縮機シュラウド51に、空気A中の異物Eを進入させて空気通路67外へ導出する捕集口61が、回転軸49の軸心、つまりガスタービンエンジンの軸心25(図6)と同心の環状に形成されており、その捕集口61の奥部に異物Eの捕集室62が設けられている。さらに、捕集室62には、外部に連通するねじ孔からなる取出口63が形成されており、その取出口63にはボルトからなるプラグ64が着脱自在に螺着されている。このプラグ64の着脱により開閉される取出口63は、周方向に複数個形成してもよいし、図6に示すように環状の捕集室62における下部に1つだけ設けてもよい。
【0037】
軸流圧縮機44では、空気Aに動翼50によって旋回が与えられるので、この空気A中に異物Eが含まれていると、この異物Eには、旋回による遠心力が作用する。そのため、空気Aは空気通路67に沿いながら流動していくが、空気Aよりも重い異物Eは、比較的大きな遠心力が作用することから、空気通路67から径方向外方へ外れて捕集口61内に進入し、捕集室62内に貯留される。
【0038】
また、この異物除去構造は、既存の圧縮機シュラウド51の一部に捕集口61を有する捕集室62を設けるだけでよいので、コンパクトに構成できるとともに、コストアップを招くこともない。
【0039】
さらに、捕集室62内に貯留されている異物Eは、エンジンの停止時に図6に示す下方のプラグ64を取り外せば、取出口63から外部に自然落下させて排出することができるほかに、エンジンの駆動中において何れかのプラグ54を取り外せば、空気圧によって取出口63に向け吹き飛ばして外部に排出することもできる。
【0040】
【発明の効果】
以上のように、本発明のガスタービンエンジンによれば、遠心圧縮機のディフューザの下流に接続されている既存の湾曲通路、燃焼器に既存の外筒あるいは軸流圧縮機に既存の圧縮機シュラウドに、空気中に含まれて空気よりも重い異物を旋回力と慣性力とを利用して進入させる捕集口を設けた構成としたので、ガスタービンエンジンに既存の部品を利用したコンパクトな異物除去構造を安価に構成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る異物除去構造を備えたガスタービンエンジンの概略構成を示す縦断面図である。
【図2】図1のII部の拡大図である。
【図3】図1のIII 部の拡大図である。
【図4】同上の実施形態に係る変形例の異物除去構造を備えたガスタービンエンジンの要部構成を示す縦断面図である。
【図5】本発明の第2実施形態に係る異物除去構造を備えたガスタービンエンジンの要部構成を示す縦断面図である。
【図6】 本発明に含まれない参考例に係る異物除去構造を備えたガスタービンエンジンの概略構成を示す一部破断した側面図である。
【図7】図6のVII 部の拡大図である。
【符号の説明】
1…遠心圧縮機、2b,3b…ディフューザ、4,47,58…燃焼器、8…内筒、11…外筒、12…導入通路、14,21…湾曲通路、17,22,29、39,61…捕集口、19,24,41,63…取出口、20,27,42,64…プラグ、25…軸心、37…頂壁、38…周壁、44…軸流圧縮機、51…圧縮機シュラウド、58…燃焼室、67…空気通路、A…空気、E…異物、C…燃焼室。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a gas turbine engine mainly used as a power source of an aircraft such as a helicopter, a drive source of a generator, and the like, and easily collects and removes foreign matter that has entered the engine with a simple configuration. It is related with the thing provided with the foreign substance removal structure which can do.
[0002]
[Prior art]
In a gas turbine engine used for the above-described applications, foreign matters such as sand, pebbles, metal pieces or twigs are likely to enter the engine in a state where they are contained in the intake air. If it collides with a turbine blade, the engine may be damaged due to damage caused by the impact received during the collision. In particular, in an engine having ceramic turbine blades that are brittle against impacts, even fine foreign matters that have not been a problem in the past are damaged and cause failure. That is, in an engine equipped with ceramic turbine blades, not only foreign matters contained in the intake air but also foreign matters such as cutting powder and carbon lump generated inside cause damage.
[0003]
Therefore, conventionally, the inhaled air is swirled or passed through a curved passage, and then introduced into the engine so that foreign matter heavier than air is led out in the direction away from the air flow path by centrifugal force. IPS (inlet particle separator) that removes the air and sucks only air into the engine is widely used.
[0004]
[Problems to be solved by the invention]
However, with the conventional foreign matter removing means (IPS), it is difficult to prevent foreign matter having a small weight from entering the engine, and it is impossible to remove foreign matter that has once entered the engine. Further, with a conventional means such as IPS, the collected foreign matter cannot be taken out until the engine is disassembled at the time of periodic inspection.
[0005]
Therefore, the present invention has been made in view of the above-described conventional problems, and a foreign matter removal structure can be provided in a compact and inexpensive manner using existing parts in the engine, and the collected foreign matter can be arbitrarily selected. An object of the present invention is to provide a gas turbine engine that can be taken out.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a gas turbine engine according to a first configuration of the present invention is configured such that the air from the diffuser is directed downstream in the axial direction from the radially outward to the downstream of the diffuser of the centrifugal compressor in the gas turbine engine. curved path to be diverted radially inward through is formed, radially outer peripheral portion of the curved path, the collection port to derive the said curved path outside by entering the foreign matter in the air is formed .
[0007]
According to this configuration, since the air discharged from the diffuser flows with a swirling component, the foreign matter contained in the air resists the centrifugal force due to the swirling of air and the bending of the curved passage. And inertial force to flow. For this reason, air forcibly flows along the curved passage, whereas foreign substances heavier than air act from large centrifugal force and inertial force, so that they come out of the curved passage and enter the collection port. Removed from the air. In general, the curved passage downstream of the centrifugal compressor has a relatively large bending angle, so that the effect of collecting foreign matter by the inertial force acting on it is extremely large, and even small foreign matter is almost certainly collected. Can do. Further, this foreign matter removing structure is different from the conventional foreign matter removing means in which the flow path is bent to be particularly large for removing the foreign matter, and the existing curved passage is used to form the outer circumferential portion of the curved passage. Since it is only necessary to provide a collection port, it can be made compact and does not cause an increase in cost.
[0008]
A gas turbine engine according to a second configuration of the present invention includes an inner cylinder in which a combustor in the gas turbine engine forms a combustion chamber, an outer cylinder that covers an outer peripheral portion and a top part of the inner cylinder, and the inner cylinder and the outer cylinder. Between the top wall and the peripheral wall of the outer cylinder, and an introduction passage that introduces air from the compressor in a direction opposite to the flow direction of the combustion gas in the inner cylinder. In addition, a collection port for allowing foreign matter in the air to enter and leading out of the introduction passage is formed.
[0009]
According to this configuration, since the compressed air flowing through the introduction passage has a swirling component, foreign matter contained in the compressed air is caused by centrifugal force due to swirling and the top wall of the outer cylinder. Inertial force generated by turning to a right angle acts. Therefore, the foreign matter is separated from the compressed air and enters the collection port and is collected. In addition, this foreign matter removing structure can be provided by using an existing introduction passage without bending the compressed air flow path to a large extent, and merely providing a collection port at the boundary portion outside the abutting portion of the introduction passage. Since it is good, it can be configured compactly and does not cause an increase in cost.
[0012]
In the first and second configurations, the collection port is preferably formed in an annular shape that is concentric with the shaft center of the engine, whereby foreign objects can be collected over the entire circumference of the air passage.
[0013]
In the first and second configurations, it is preferable that an outlet for taking out the collected foreign matter to the outside of the engine and a plug for opening and closing the outlet are provided. As a result, the collected foreign matter can be discharged to the outside simply by opening the outlet with the plug without disassembling the engine.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a gas turbine engine provided with a foreign matter removing structure according to a first embodiment of the present invention.
[0015]
This gas turbine engine includes a two-stage centrifugal compressor 1 that sucks and compresses air A from an air inlet IN, a combustor 4 that supplies fuel to the compressed air A for combustion, and a combustion gas G. And a turbine 7 to be driven. The compressor 1 and the turbine 7 are accommodated in a housing 13, and the combustor 4 protrudes from the housing 13. The combustion gas G generated in the combustion chamber C of the combustor 4 is guided to the turbine 7 via the scroll 9 to rotate the turbine 7, and the two-stage centrifugal compressor connected to the turbine 7 by the rotating shaft 10. 1 and a rotational load L such as a generator or helicopter rotor.
[0016]
The combustor 4 is a single can type (may be a multi-can type), and is provided so as to protrude in a substantially radial direction of the turbine 7. The combustor 4 includes an inner cylinder 8 that forms a combustion chamber C, and an outer cylinder 11 that covers the outer peripheral portion 8a and the top 8b of the inner cylinder 8, and between the inner cylinder 8 and the outer cylinder 11, An introduction passage 12 for introducing the compressed air CA from the compressor 1 in the direction opposite to the flow direction of the combustion gas G in the inner cylinder 8 is formed. The compressed air CA supplied from the compressor 1 flows in the introduction passage 12 toward the tip side of the combustor 4, is turned toward the center side of the combustor 4 and enters the inner cylinder 8, and the inner cylinder mixed with fuel nozzle or we supplied fuel burned After a combustion gas G in the 8, it flows toward the base end side of the combustor 4. The two compression stages 2 and 3 constituting the centrifugal compressor 1 are fixed to the rotating impeller rotors 2a and 3a and the housing 13 on the downstream side thereof to suppress the swirling of the air A and convert the dynamic pressure to static pressure. And diffusers 2b and 3b for increasing the static pressure.
[0017]
Between the discharge port 2ex of the first compression stage 2, that is, the downstream end of the diffuser 2b, and the suction port 3in of the second compression stage 3, that is, between the suction end of the impeller rotor 3a, the diffuser 2b A curved passage 14 is formed for turning the air A so as to make a U-turn from the radially outward direction of the gas turbine engine to the radially inward direction.
[0018]
As shown in FIG. 2, which is an enlarged view of a portion II in FIG. 1, foreign matter E in the air A is caused to enter the engine housing 13 that forms the radially outer peripheral portion of the curved passage 14 to the outside of the curved passage 14. The collection port 17 to be led out is formed in an annular shape concentric with the shaft center of the rotating shaft 10 (FIG. 1), that is, the shaft center 25 of the gas turbine engine. A collection chamber 18 is provided. Further, the collection chamber 18 is formed with an outlet 19 formed of a screw hole communicating with the outside, and a plug 20 made of a bolt is detachably screwed into the outlet 19. A plurality of outlets 19 that are opened and closed by the attachment and detachment of the plug 20 may be formed in the circumferential direction, or only one may be provided at the lower part of the annular collection chamber 18 as shown in FIG.
[0019]
In general, the air A discharged from the diffuser 2b flows with a swirling component. Therefore, if the foreign matter E is included in the air A, the foreign matter E is centrifuged by the swirling of the air A. Force and inertial force due to bending along the curved path 14 are applied. Therefore, the foreign matter E heavier than the air A moves radially outward from the curved passage 14, enters the collection port 17 in FIG. 2, and is stored in the collection chamber 18.
[0020]
In the foreign matter removing structure, since the bending angle of the curved passage 14 is as large as about 180 °, the effect of collecting the foreign matter E by inertia force is extremely large, and even in the small foreign matter E, the inside of the collecting chamber 18 is almost certainly obtained. Can be collected. Further, this foreign matter removing structure is different from the conventional foreign matter removing means that bends the flow path particularly greatly, and has a collecting port 17 in the radially outer peripheral portion of the curved passage 14 using the existing curved passage 14. Since only the collection chamber 18 needs to be provided, it can be configured in a compact manner and the cost is not increased.
[0021]
In addition, the foreign matter E stored in the collection chamber 18 can be naturally dropped from the outlet 19 to the outside if the lower plug 20 shown in FIG. 1 is removed when the engine is stopped. During driving of the engine, even if the upper plug 20 is removed, it can be blown off toward the outlet 19 by air pressure and discharged to the outside. Note that if the outlet 19 can be automatically opened and closed by a solenoid valve or the like instead of the plug 20, it can be easily opened even during operation of the engine and foreign matter can be discharged.
[0022]
FIG. 3 is an enlarged view of a portion III in FIG. 1, and the air A from the diffuser 3b is introduced into the discharge port 3ex of the second compression stage 3 from the radially outward direction of the gas turbine engine to the axial direction of the engine. A curved passage 21 is formed to turn rearwardly (to the right in the figure).
[0023]
The engine housing 13 forming the radially outer peripheral portion of the curved passage 21 has a collection port 22 through which foreign matter E in the air A enters and leads out of the curved passage 21, and is a shaft of the rotary shaft 10 (FIG. 1). It is formed in an annular shape concentric with the core 25, and a collection chamber 23 for foreign matter E is provided at the back of the collection port 22. Further, the collection chamber 23 is formed with an outlet 24 made of a screw hole communicating with the outside, and a plug 27 made of a bolt is detachably screwed into the outlet 24. A plurality of outlets 24 that are opened and closed by attaching and detaching the plug 27 may be formed in the circumferential direction, or only one may be provided in the lower part of the annular collection chamber 23 as shown in FIG.
[0024]
In this foreign matter removing structure, substantially the same effect as the structure of FIG. 2 can be obtained. That is, the foreign matter E contained in the air A receives the centrifugal force due to the swirling of the air A and the inertial force due to the bending along the curved passage 21, and is collected from the curved passage 21 outward in the radial direction. It enters into the mouth 22 and is stored in the collection chamber 23. Also in this foreign matter removing structure, since the bending angle of the curved passage 21 is relatively large at about 90 °, the effect of collecting the foreign matter E by inertia force is great, and even the small foreign matter E is almost certainly collected. Can be collected inside.
[0025]
FIG. 4 shows a foreign matter removal structure according to a modification of the first embodiment of the present invention. This foreign matter removing structure is applied to a gas turbine engine equipped with the two-stage centrifugal compressor 1 shown in FIG. 1, and instead of the collection chamber 18 of FIG. An existing sealed space formed therebetween is used as the collection chamber 28. The collection chamber 28 is an annular space concentric with the engine shaft 25 (FIG. 1). A collection passage 30 communicating with the collection chamber 28 having a collection port 29 through which foreign matter E in the air A enters and leads out of the curved passage 14 is rotated at the outer periphery in the radial direction of the curved passage 14. It is formed in an annular shape concentric with the shaft center 25 (FIG. 1) of the shaft 10. Between the collection passage 30 and the collection chamber 28, there is formed an outlet 31 made of a screw hole communicating with the outside, and a plug 32 made of a bolt is detachably screwed into the outlet 31. Has been. A plurality of outlets 31 may be formed in the circumferential direction, or only one outlet 31 may be provided in the lower part of the annular collection chamber 28.
[0026]
Since this foreign matter removing structure has substantially the same structure as that shown in FIG. 2, it operates in the same manner as described with reference to the structure shown in FIG. That is, the foreign substance E contained in the air A receives the centrifugal force due to the swirling of the air A and the inertial force due to the bending of the curved passage 14, and comes off radially outward from the curved passage 14 and the collection port 29. After entering the interior, it is stored in the collection chamber 28 through the collection passage 30.
[0027]
In addition, this foreign matter removing structure uses an existing curved passage 14 and a sealed space between both compression stages 2 and 3 of the centrifugal compressor 1, and a collection port 29 is provided at the radially outer peripheral portion of the curved passage 14. Since it is only necessary to provide the collecting passage 30, it can be made compact and does not cause an increase in cost. Further, the foreign matter E stored in the collection chamber 28 is removed by air pressure if a lower plug (not shown) is removed when the engine is stopped or if any plug 32 is removed while the engine is running. 31 can be discharged to the outside. In addition, since this foreign material removal structure is equipped with the collection chamber 28 with a large volume, there also exists an advantage which can reduce the discharge frequency of the foreign material E in storage.
[0028]
FIG. 5 is a longitudinal cross-sectional view showing a main configuration of a gas turbine engine having a foreign matter removing structure according to a second embodiment of the present invention. This foreign matter removing structure is provided in the combustor 4 of the gas turbine engine shown in FIG. 1, and the same or equivalent parts as those in FIG. A swirler 34 is attached to the top 8 b of the inner cylinder 8 of the combustor 4 in FIG. 1 so as to surround the fuel nozzle 13, and the compressed air CA from the centrifugal compressor 1 passes through the introduction passage 12 and is one of them. The part flows into the combustion chamber C from the air hole 33 for combustion or dilution of the inner cylinder 8, and the other part makes a U-turn from the introduction passage 12 and turns inside by passing through the swirler 34. Flow into.
[0029]
In the foreign matter removing structure of this embodiment, the collection port 39 through which the foreign matter E contained in the compressed air CA enters the boundary portion between the top wall 37 and the peripheral wall 38 of the outer cylinder 11 and leads out of the introduction passage 12 is provided. The collection chamber 40 is provided in the peripheral wall 38 that is formed and corresponds to the inner part of the collection port 39. Further, the collection chamber 40 is formed with an outlet 41 formed of a screw hole communicating with the lower outside, and a plug 42 formed of a bolt is detachably screwed into the outlet 41.
[0030]
In general, the compressed air CA flowing in the introduction passage 12 has a swirling component added by the compressor 1, and therefore, if the foreign air E is included in the compressed air CA, The centrifugal force due to the turning and the inertial force generated by being changed to a right angle by the top wall 37 of the outer cylinder 11 act. Therefore, the foreign matter E heavier than the compressed air CA is separated from the compressed air CA, enters the collection port 39, and is stored in the collection chamber 40.
[0031]
In the foreign matter removing structure, since both the inertial force and the turning force acting on the foreign matter E are large, even the small foreign matter E is almost certainly led out of the introduction passage 12 from the collection port 39 and inside the collection chamber 40. Can be collected. Further, this foreign matter removing structure is different from the conventional foreign matter removing means that bends the flow path particularly greatly, and uses the existing introduction passage 12 to capture the boundary portion outside the abutting portion of the introduction passage 12. Since it is only necessary to provide the collection chamber 40 having the collection port 39, it can be made compact, and the cost is not increased.
[0032]
The foreign matter E stored in the collection chamber 40 can be discharged from the outlet 41 by removing the plug 42 when the engine is stopped or driven. Further, when the engine is stopped, it is easy to remove the foreign matter E by removing the top wall 37. In this foreign matter removal structure, as shown by a two-dot chain line, if a guide recess 43 having a concave cross-sectional shape is formed on the inner side in the radial direction of the collection port 39 on the lower surface of the top wall 37, the compressed air CA The foreign matter E inside can be smoothly guided into the collection port 39.
[0033]
FIG. 6 is a partially broken side view showing a schematic configuration of a gas turbine engine including a foreign matter removing structure according to a reference example not included in the present invention. First, the configuration of this gas turbine engine will be briefly described.
[0034]
This gas turbine engine compresses air A with an axial flow compressor 44 and guides it to a combustor 47, and injects and burns gas fuel or liquid fuel into the combustor 47, and the high-temperature and high-pressure combustion gas G The turbine 48 is driven. The axial flow compressor 44 includes a plurality of moving blades 50 attached to the outer periphery of the rotary shaft 49 and a plurality of compressors on the inner peripheral surface of the compressor shroud 51 that forms the outer peripheral wall of the air passage 67 of the axial flow compressor 44. The air A sucked from the intake duct 53 is compressed by a combination with the stationary blades 52 arranged in stages, and the compressed air CA is supplied to the annularly formed vehicle compartment 54.
[0035]
A plurality of (for example, six) combustors 47 are arranged in the annular casing 54 along the circumferential direction at equal intervals. The compressed air CA supplied to the casing 54 is indicated by arrows a, As shown by b, it passes through the substantially cylindrical outer cylinder 56 and is guided to the combustion chamber 58 in the substantially cylindrical inner cylinder 57. On the other hand, fuel F is injected into the combustor 47 from the fuel nozzle 59 into the combustion chamber 58, the fuel F is mixed with the compressed air CA and burned, and the high-temperature and high-pressure combustion gas G is downstream of the inner cylinder 57. It is sent to the turbine 48 through a transfer duct 60 connected to the side.
[0036]
FIG. 7 is an enlarged view of a portion VII in FIG. 6 and shows the foreign matter removing structure of the gas turbine engine. This foreign matter removing structure is a collection port through which foreign matter E in the air A enters the compressor shroud 51 and leads out of the air passage 67 at a location near the rear of the moving blade 50 in the final stage of the axial compressor 44. 61 is formed in an annular shape that is concentric with the axis of the rotating shaft 49, that is, the axis 25 (FIG. 6) of the gas turbine engine, and a collection chamber 62 for foreign matter E is provided at the back of the collection port 61. It has been. Further, the collection chamber 62 is formed with an outlet 63 made of a screw hole communicating with the outside, and a plug 64 made of a bolt is detachably screwed into the outlet 63. A plurality of outlets 63 that are opened and closed by attaching and detaching the plug 64 may be formed in the circumferential direction, or only one may be provided in the lower part of the annular collection chamber 62 as shown in FIG.
[0037]
In the axial flow compressor 44, since the air A is swirled by the moving blade 50, if the foreign matter E is contained in the air A, centrifugal force due to the swirling acts on the foreign matter E. Therefore, the air A flows along the air passage 67, but the foreign matter E heavier than the air A is collected by separating from the air passage 67 radially outward because a relatively large centrifugal force acts. It enters into the mouth 61 and is stored in the collection chamber 62.
[0038]
In addition, this foreign matter removing structure is only required to provide the collection chamber 62 having the collection port 61 in a part of the existing compressor shroud 51, so that it can be made compact and does not cause an increase in cost.
[0039]
Furthermore, the foreign matter E stored in the collection chamber 62 can be naturally discharged from the outlet 63 and discharged by removing the lower plug 64 shown in FIG. 6 when the engine is stopped. If one of the plugs 54 is removed while the engine is running, it can be blown off toward the outlet 63 by air pressure and discharged to the outside.
[0040]
【The invention's effect】
As described above, according to the gas turbine engine of the present invention, the existing curved passage connected downstream of the diffuser of the centrifugal compressor, the existing outer cylinder in the combustor, or the existing compressor shroud in the axial compressor In addition, because it has a configuration that has a collection port that allows foreign matter contained in the air to enter using the turning force and inertial force, it is a compact foreign matter that uses existing parts in the gas turbine engine. The removal structure can be configured at low cost.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a gas turbine engine provided with a foreign matter removing structure according to a first embodiment of the present invention.
FIG. 2 is an enlarged view of a portion II in FIG.
FIG. 3 is an enlarged view of part III in FIG.
FIG. 4 is a longitudinal sectional view showing a main configuration of a gas turbine engine provided with a foreign matter removing structure according to a modification according to the embodiment;
FIG. 5 is a longitudinal sectional view showing a main configuration of a gas turbine engine provided with a foreign matter removing structure according to a second embodiment of the present invention.
FIG. 6 is a partially cutaway side view showing a schematic configuration of a gas turbine engine having a foreign matter removing structure according to a reference example not included in the present invention.
7 is an enlarged view of a portion VII in FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Centrifugal compressor, 2b, 3b ... Diffuser, 4, 47, 58 ... Combustor, 8 ... Inner cylinder, 11 ... Outer cylinder, 12 ... Introduction passage, 14, 21 ... Curved passage, 17, 22, 29, 39 , 61 ... Collection port, 19, 24, 41, 63 ... Take-out port, 20, 27, 42, 64 ... Plug, 25 ... Axle, 37 ... Top wall, 38 ... Circumferential wall, 44 ... Axial flow compressor, 51 ... compressor shroud, 58 ... combustion chamber, 67 ... air passage, A ... air, E ... foreign matter, C ... combustion chamber.

Claims (4)

ガスタービンエンジンにおける遠心圧縮機のディフューザの下流に、前記ディフューザからの空気を径方向の外向きから軸方向の後ろ向きを経て径方向の内向きに変向させる湾曲通路が形成され、
前記湾曲通路における径方向外周部に、空気中の異物を進入させて前記湾曲通路外へ導出する捕集口が形成されているガスタービンエンジン。
Downstream of the diffuser of a centrifugal compressor in a gas turbine engine, a curved path to be deflected inwardly air in the radial direction from the outward axial direction in the radial direction through the backward from the diffuser is formed,
A gas turbine engine in which a collection port through which foreign matter in the air enters and leads out of the curved passage is formed in a radially outer peripheral portion of the curved passage .
ガスタービンエンジンにおける燃焼器が、燃焼室を形成する内筒と、この内筒の外周部および頂部を覆う外筒と、前記内筒と外筒との間に形成されて圧縮機からの空気を前記内筒内の燃焼ガスの流れ方向と逆方向に導入する導入通路とを有し、
前記外筒における頂壁と周壁との境界部に、空気中の異物を進入させて、前記導入通路外へ導出する捕集口が形成されているガスタービンエンジン。
A combustor in a gas turbine engine is formed between an inner cylinder that forms a combustion chamber, an outer cylinder that covers an outer peripheral portion and a top part of the inner cylinder, and the inner cylinder and the outer cylinder. An introduction passage for introducing the combustion gas in the inner cylinder in a direction opposite to the flow direction;
A gas turbine engine in which a foreign substance in the air is allowed to enter a boundary portion between a top wall and a peripheral wall of the outer cylinder and led out of the introduction passage.
請求項1または2において、前記捕集口はエンジンの軸心と同心の環状に形成されているガスタービンエンジン。 3. The gas turbine engine according to claim 1 , wherein the collection port is formed in an annular shape concentric with an engine shaft center. 請求項1から3のいずれか1項において、さらに、前記捕集された異物をエンジン外へ取り出す取出口と、この取出口を開閉するプラグとを備えているガスタービンエンジン。In any one of claims 1 3, further comprising: a takeout retrieving the collected foreign substances to the outside of the engine, a gas turbine engine and a plug for opening and closing the outlet.
JP2001042887A 2001-02-20 2001-02-20 Gas turbine engine with foreign matter removal structure Expired - Fee Related JP3711028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042887A JP3711028B2 (en) 2001-02-20 2001-02-20 Gas turbine engine with foreign matter removal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042887A JP3711028B2 (en) 2001-02-20 2001-02-20 Gas turbine engine with foreign matter removal structure

Publications (2)

Publication Number Publication Date
JP2002242699A JP2002242699A (en) 2002-08-28
JP3711028B2 true JP3711028B2 (en) 2005-10-26

Family

ID=18905132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042887A Expired - Fee Related JP3711028B2 (en) 2001-02-20 2001-02-20 Gas turbine engine with foreign matter removal structure

Country Status (1)

Country Link
JP (1) JP3711028B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062400B2 (en) 2008-06-25 2011-11-22 Dresser-Rand Company Dual body drum for rotary separators
US8061972B2 (en) 2009-03-24 2011-11-22 Dresser-Rand Company High pressure casing access cover
US8061737B2 (en) 2006-09-25 2011-11-22 Dresser-Rand Company Coupling guard system
US8075668B2 (en) 2005-03-29 2011-12-13 Dresser-Rand Company Drainage system for compressor separators
US8079805B2 (en) 2008-06-25 2011-12-20 Dresser-Rand Company Rotary separator and shaft coupler for compressors
US8079622B2 (en) 2006-09-25 2011-12-20 Dresser-Rand Company Axially moveable spool connector
US8087901B2 (en) 2009-03-20 2012-01-03 Dresser-Rand Company Fluid channeling device for back-to-back compressors
CN102444625A (en) * 2010-09-30 2012-05-09 株式会社神户制钢所 Foreign matter adhesion prevention structure on back surface of impeller of centrifugal compressor
US8210804B2 (en) 2009-03-20 2012-07-03 Dresser-Rand Company Slidable cover for casing access port
US8231336B2 (en) 2006-09-25 2012-07-31 Dresser-Rand Company Fluid deflector for fluid separator devices
US8267437B2 (en) 2006-09-25 2012-09-18 Dresser-Rand Company Access cover for pressurized connector spool
US8302779B2 (en) 2006-09-21 2012-11-06 Dresser-Rand Company Separator drum and compressor impeller assembly
US8408879B2 (en) 2008-03-05 2013-04-02 Dresser-Rand Company Compressor assembly including separator and ejector pump
US8414692B2 (en) 2009-09-15 2013-04-09 Dresser-Rand Company Density-based compact separator
US8596292B2 (en) 2010-09-09 2013-12-03 Dresser-Rand Company Flush-enabled controlled flow drain
US8657935B2 (en) 2010-07-20 2014-02-25 Dresser-Rand Company Combination of expansion and cooling to enhance separation
US8663483B2 (en) 2010-07-15 2014-03-04 Dresser-Rand Company Radial vane pack for rotary separators
US8673159B2 (en) 2010-07-15 2014-03-18 Dresser-Rand Company Enhanced in-line rotary separator
US8733726B2 (en) 2006-09-25 2014-05-27 Dresser-Rand Company Compressor mounting system
US8746464B2 (en) 2006-09-26 2014-06-10 Dresser-Rand Company Static fluid separator device
US8821362B2 (en) 2010-07-21 2014-09-02 Dresser-Rand Company Multiple modular in-line rotary separator bundle
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
US8876389B2 (en) 2011-05-27 2014-11-04 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
US9024493B2 (en) 2010-12-30 2015-05-05 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
US9095856B2 (en) 2010-02-10 2015-08-04 Dresser-Rand Company Separator fluid collector and method
US9551349B2 (en) 2011-04-08 2017-01-24 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279245B2 (en) 2004-12-06 2009-06-17 本田技研工業株式会社 Gas turbine engine
US7326031B2 (en) 2005-08-29 2008-02-05 United Technologies Corporation Access port for dirt removal for gas turbine engine
US7284953B2 (en) * 2005-08-29 2007-10-23 United Technologies Corporation Dirt separator for gas turbine air supply
ES2349418T3 (en) * 2006-03-27 2011-01-03 Siemens Aktiengesellschaft SEPARATOR DEVICE FOR SEPARATION OF PARTICLES.
GB0617769D0 (en) 2006-09-09 2006-10-18 Rolls Royce Plc An engine
MX2009002982A (en) 2006-09-19 2009-05-25 Dresser Rand Co Rotary separator drum seal.
JP4858268B2 (en) * 2007-03-29 2012-01-18 株式会社日立製作所 Gas turbine equipment
US7967554B2 (en) * 2007-06-18 2011-06-28 Honeywell International Inc. Turbine cooling air centrifugal particle separator
US7922218B2 (en) 2008-06-25 2011-04-12 Dresser-Rand Company Shear ring casing coupler device
WO2009157604A1 (en) * 2008-06-27 2009-12-30 Kturbo, Inc. Two-stage centrifugal compressor
US8092145B2 (en) * 2008-10-28 2012-01-10 Pratt & Whitney Canada Corp. Particle separator and separating method for gas turbine engine
JP5081268B2 (en) * 2010-03-31 2012-11-28 本田技研工業株式会社 Electric compressor
JP6111912B2 (en) 2013-07-10 2017-04-12 ダイキン工業株式会社 Turbo compressor and turbo refrigerator
US10267179B2 (en) 2014-12-31 2019-04-23 General Electric Company Dirt extraction apparatus for a gas turbine engine
JP6189890B2 (en) 2015-03-25 2017-08-30 ファナック株式会社 Blower equipped with a structure that suppresses damage to the shaft seal
US10208628B2 (en) * 2016-03-30 2019-02-19 Honeywell International Inc. Turbine engine designs for improved fine particle separation efficiency
US20180135516A1 (en) * 2016-11-16 2018-05-17 Honeywell International Inc. Scavenge methodologies for turbine engine particle separation concepts
US10816014B2 (en) 2018-07-25 2020-10-27 Honeywell International Inc. Systems and methods for turbine engine particle separation
US11421709B2 (en) * 2020-09-08 2022-08-23 Honeywell International Inc. Systems for interstage particle separation in multistage radial compressors of turbine engines

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075668B2 (en) 2005-03-29 2011-12-13 Dresser-Rand Company Drainage system for compressor separators
US8302779B2 (en) 2006-09-21 2012-11-06 Dresser-Rand Company Separator drum and compressor impeller assembly
US8267437B2 (en) 2006-09-25 2012-09-18 Dresser-Rand Company Access cover for pressurized connector spool
US8733726B2 (en) 2006-09-25 2014-05-27 Dresser-Rand Company Compressor mounting system
US8079622B2 (en) 2006-09-25 2011-12-20 Dresser-Rand Company Axially moveable spool connector
US8231336B2 (en) 2006-09-25 2012-07-31 Dresser-Rand Company Fluid deflector for fluid separator devices
US8061737B2 (en) 2006-09-25 2011-11-22 Dresser-Rand Company Coupling guard system
US8746464B2 (en) 2006-09-26 2014-06-10 Dresser-Rand Company Static fluid separator device
US8408879B2 (en) 2008-03-05 2013-04-02 Dresser-Rand Company Compressor assembly including separator and ejector pump
US8079805B2 (en) 2008-06-25 2011-12-20 Dresser-Rand Company Rotary separator and shaft coupler for compressors
US8062400B2 (en) 2008-06-25 2011-11-22 Dresser-Rand Company Dual body drum for rotary separators
US8087901B2 (en) 2009-03-20 2012-01-03 Dresser-Rand Company Fluid channeling device for back-to-back compressors
US8210804B2 (en) 2009-03-20 2012-07-03 Dresser-Rand Company Slidable cover for casing access port
US8061972B2 (en) 2009-03-24 2011-11-22 Dresser-Rand Company High pressure casing access cover
US8414692B2 (en) 2009-09-15 2013-04-09 Dresser-Rand Company Density-based compact separator
US9095856B2 (en) 2010-02-10 2015-08-04 Dresser-Rand Company Separator fluid collector and method
US8663483B2 (en) 2010-07-15 2014-03-04 Dresser-Rand Company Radial vane pack for rotary separators
US8673159B2 (en) 2010-07-15 2014-03-18 Dresser-Rand Company Enhanced in-line rotary separator
US8657935B2 (en) 2010-07-20 2014-02-25 Dresser-Rand Company Combination of expansion and cooling to enhance separation
US8821362B2 (en) 2010-07-21 2014-09-02 Dresser-Rand Company Multiple modular in-line rotary separator bundle
US8596292B2 (en) 2010-09-09 2013-12-03 Dresser-Rand Company Flush-enabled controlled flow drain
CN102444625A (en) * 2010-09-30 2012-05-09 株式会社神户制钢所 Foreign matter adhesion prevention structure on back surface of impeller of centrifugal compressor
CN102444625B (en) * 2010-09-30 2015-08-05 株式会社神户制钢所 The Centrufugal compressor impeller back side prevent foreign matter attaching structure
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
US9024493B2 (en) 2010-12-30 2015-05-05 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
US9551349B2 (en) 2011-04-08 2017-01-24 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
US8876389B2 (en) 2011-05-27 2014-11-04 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems

Also Published As

Publication number Publication date
JP2002242699A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3711028B2 (en) Gas turbine engine with foreign matter removal structure
US7958729B2 (en) Compressor in the intake tract of an internal combustion engine
US6666017B2 (en) Counterrotatable booster compressor assembly for a gas turbine engine
CN109477390B (en) Gas turbine with multiple particle separators
CA2671718C (en) Particle separator and separating method for gas turbine engine
EP1367250B1 (en) Counter-rotatable booster compressor assembly for a gas turbine engine
KR100818839B1 (en) Exhaust gas turbine supercharger
US8438854B2 (en) Pre-diffuser for centrifugal compressor
US7691164B2 (en) Suction device
CN109475800B (en) Fine scrap multistage separation system
CN109477432B (en) High pressure gas cyclone separator for turbomachinery
WO2006061929A1 (en) Gas turbine engine having foreign matter removal passage
CN106948943A (en) Cyclone separator for turbogenerator
CA2903998A1 (en) Cyclonic dirt separating turbine accelerator
US3751907A (en) Inertial air cleaner for gas turbine
US11499478B2 (en) Asymmetric inlet particle separator for gas turbine engine
US11371434B2 (en) Compressor particle separator for gas turbine engine
US4993220A (en) Axial flow gas turbine engine combustor
US6920754B2 (en) High-pressure ratio turbocharger
EP0493004B1 (en) Gas generator for a gas turbine
KR101187889B1 (en) Integrated inlet guide vane assembly structure for a compressor
JPH0123660B2 (en)
JP2002242695A (en) Gas turbine engine provided with foreign material removing structure
JP2005042973A (en) Gas turbine with swirl type combustor
US5088276A (en) Turbo-compressor engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3711028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees