JP3710997B2 - Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme - Google Patents

Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme Download PDF

Info

Publication number
JP3710997B2
JP3710997B2 JP2000210497A JP2000210497A JP3710997B2 JP 3710997 B2 JP3710997 B2 JP 3710997B2 JP 2000210497 A JP2000210497 A JP 2000210497A JP 2000210497 A JP2000210497 A JP 2000210497A JP 3710997 B2 JP3710997 B2 JP 3710997B2
Authority
JP
Japan
Prior art keywords
available
acid
utilization
production
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000210497A
Other languages
Japanese (ja)
Other versions
JP2001086981A (en
Inventor
浩 亦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menicon Co Ltd
Original Assignee
Menicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menicon Co Ltd filed Critical Menicon Co Ltd
Priority to JP2000210497A priority Critical patent/JP3710997B2/en
Publication of JP2001086981A publication Critical patent/JP2001086981A/en
Application granted granted Critical
Publication of JP3710997B2 publication Critical patent/JP3710997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セルロモナス(Cellulomonas)属に属する新規微生物K32A株、および同微生物が産生する繊維性多糖類分解酵素に関する。また本発明は、同微生物の菌体、菌体培養液、菌体もしくは菌体培養液の処理物またはそれらから分離した繊維性多糖類分解酵素を用いる植物繊維分解方法に関する。
【0002】
【従来の技術】
農作物の収穫後の植物体などの植物繊維性廃棄物は、従来、おもに焼却などにより処分されている。しかしながら、植物繊維性廃棄物を焼却処分することについては、種々問題点が指摘されている。たとえば、コメの生産における稲ワラや籾殻は収穫後には不用物となり、コンバインなどで細かく裁断したのちに焼却処分されてきたが、焼却の際の噴煙などによる公害が生じており、社会問題として焼却処分の禁止などが検討されている。
【0003】
植物繊維性廃棄物の焼却処分にかわる処分方法として、植物繊維性廃棄物を分解することができるセルラーゼなどの多糖類分解酵素やセルラーゼ産生菌などの微生物の利用による処理方法が注目されている。しかしながら、既存のセルラーゼなどの多糖類分解酵素およびそれら産生微生物では、植物繊維性廃棄物の分解能力が低く、所期の目的を達成するにはきわめて不充分であった。
【0004】
【発明が解決しようとする課題】
植物繊維性廃棄物を難分解性の構造にしているのが、セルロースおよびヘミセルロースである。植物繊維性廃棄物を処理して有効に利用するためには、第一段階としてセルロースおよび/またはヘミセルロースを部分的にでも加水分解することが必要となる。セルロースおよび/またはヘミセルロースを加水分解する方法としては、高濃度の酸による方法と酵素による方法があるが、田畑における分解方法としては酵素処理が望ましい。
【0005】
本発明は、セルロース、ヘミセルロースおよびキシロース等に対し強力な分解能を有する多糖類分解酵素を産生する新規な微生物、および同微生物が産生する繊維性多糖類分解酵素を提供することを目的とする。さらに本発明は、同微生物、その培養液または同微生物産生多糖類分解酵素を用いる植物繊維、たとえば植物繊維性廃棄物、の分解方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明にかかる微生物は、新潟県の水田土壌から分離されたセルロモナス属に属する新規微生物であり、当該微生物は植物繊維、たとえば植物繊維性廃棄物、に対し強力な分解能を示す酵素を産生するという産業上優れた有用性を有することを見出し、本発明を完成するにいたった。
【0007】
本発明にかかる当該セルロモナス属微生物の菌学的性質は、次に示すとおりである。
【0008】
A.形態的特徴
(1)グラム染色:陽性
(2)形態:培養初期においては、0.3〜0.5μm×2〜3μm内外の小さな桿菌であるが、培養期間が長くなるにつれて、分枝したり、球状の形態をとる多形性桿菌である。
(3)内生胞子:陰性
(4)運動性:有
(5)鞭毛の着生状態:極鞭毛
【0009】
B.各種培地における生育状態
(1)普通寒天培地:小さい凸状のスムースコロニーを形成。3日間以上の培養で黄色の色素を産生する。
(2)ペプトン・トリプトン・酵母エキス・グルコース寒天培地(PTYG寒天培地(ATCC Medium #464)であり、組成は培地1000mLあたりペプトン5g、トリプトン5g、酵母エキス5g、グルコース5g、寒天15gである。):盛り上がり厚いコロニーを形成。
【0010】
C.生理的性質
(1)最適発育温度:35〜40℃
(2)最適発育pH:6.8〜7.2
(3)普通寒天培地65℃での発育:65℃24時間では発育せず。
(4)基質の利用性
1.α−シクロデキストリン :利用できず
2.β−シクロデキストリン :利用
3.デキストリン :利用
4.グリコーゲン :利用
5.イヌリン :利用できず
6.マンナン :利用できず
7.ツイーン40 :利用できず
8.ツイーン80 :利用できず
9.N−アセチル−D−グルコサミン :利用できず
10.N−アセチル−D−マンノサミン :利用できず
11.アミグダリン :利用
12.L−アラビノース :利用
13.D−アラビトール :利用できず
14.アルブチン :利用
15.セロビオース :利用
16.D−フルクトース :利用
17.L−フコース :利用
18.D−ガラクトース :利用
19.D−ガラクツロン酸 :利用できず
20.ゲンチオビオース :利用
21.D−グルコン酸 :利用できず
22.α−D−グルコース :利用
23.m−イノシトール :利用できず
24.α−D−ラクトース :利用
25.ラクツロース :利用
26.マルトース :利用
27.マルトトリオース :利用
28.D−マンニトール :利用できず
29.D−マンノース :利用できず
30.D−メレジトース :利用できず
31.D−メリビオース :利用
32.α−メチル−D−ガラクトシド :利用
33.β−メチル−D−ガラクトシド :利用
34.3−メチルグルコース :利用
35.α−メチル−D−グルコシド :利用
36.β−メチル−D−グルコシド :利用
37.α−メチル−D−マンノシド :利用できず
38.パラチノース :利用
39.D−プシコース :利用
40.D−ラフィノース :利用できず
41.L−ラムノース :利用できず
42.D−リボース :利用
43.サリシン :利用
44.セドヘプツロサン :利用できず
45.D−ソルビトール :利用
46.スタキオース :利用できず
47.スクロース :利用
48.D−タガトース :利用できず
49.D−トレハロース :利用
50.ツラノース :利用
51.キシリトール :利用できず
52.D−キシロース :利用
53.酢酸 :利用
54.α−ヒドロキシ酪酸 :利用できず
55.β−ヒドロキシ酪酸 :利用できず
56.γ−ヒドロキシ酪酸 :利用できず
57.p−ヒドロキシフェニル酢酸 :利用できず
58.α−ケトグルタル酸 :利用できず
59.α−ケト吉草酸 :利用できず
60.ラクトアミド :利用できず
61.D−乳酸メチルエステル :利用できず
62.L−乳酸 :利用できず
63.D−リンゴ酸 :利用できず
64.L−リンゴ酸 :利用できず
65.ピルビン酸メチル :利用
66.コハク酸モノメチル :利用できず
67.プロピオン酸 :利用できず
68.ピルビン酸 :利用
69.スクシンアミド酸 :利用できず
70.コハク酸 :利用できず
71.N−アセチル−L−グルタミン酸 :利用
72.アラニンアミド :利用できず
73.D−アラニン :利用できず
74.L−アラニン :利用できず
75.L−アラニルグリシン :利用できず
76.L−アスパラギン :利用できず
77.L−グルタミン酸 :利用できず
78.グリシル−L−グルタミン酸 :利用できず
79.L−ピログルタミン酸 :利用できず
80.L−セリン :利用できず
81.プトレッシン :利用できず
82.2,3−ブタンジオール :利用できず
83.グリセロール :利用
84.アデノシン :利用
85.2’−デオキシアデノシン :利用
86.イノシン :利用
87.チミジン :利用
88.ウリジン :利用
89.アデノシン−5’−一リン酸 :利用
90.チミジン−5’−一リン酸 :利用
91.ウリジン−5’−一リン酸 :利用
92.フルクトース−6−リン酸 :利用できず
93.グルコース−1−リン酸 :利用できず
94.グルコース−6−リン酸 :利用できず
95.D−L−α−グリセロールリン酸 :利用できず
(5)ゼラチンの液化:液化する。
(6)デンプンの加水分解:分解する。
(7)セルラーゼの生成:生成
(8)キシラーゼの生成:生成
(9)メチルカルビノールアセチル反応(VP反応):陰性
(10)クリステンゼンのクエン酸ナトリウム培地(チトラーテ培地)における硫化水素の産生:陰性
(11)インドールの生成:陰性
(12)硝酸塩還元:還元
(13)尿素の分解:分解せず。
(14)酸素要求性:通性嫌気性
(15)カタラーゼの生成:生成
(16)オキシターゼの生成:生成
(17)DNエース(DNase)の生成:陰性
【0011】
D.遺伝的性質
DNAのGC含量(モル%):77.5〜78.5%(Tm)
【0012】
本発明にかかる当該微生物は、水田畑土壌、森林土壌、倒木腐朽部を採取し、これを滅菌した界面活性剤添加生理的食塩水に懸濁し、この懸濁液を、カルボキシメチルセルロースを添加した普通寒天培地に塗布後25〜30℃で培養し、カルボキシメチルセルロースを加水分解せしめるコロニーを、ハロー形成の有無により判断し、ハロー形成の認められたコロニーを選抜して分離することができる。また分離された当該微生物の単離・精製は、たとえばさらに必要に応じて、結晶性セルロース(商品名:Avicel PH−101、旭化成工業(株)製)をリン酸処理して得られたアモルファスセルロースを添加した培地で同様に選抜し、さらに結晶性セルロース(同上)を添加した培地で同様に選抜し、最後にキシランを添加した培地で同様に選抜するなど、4段階の選抜工程を経て、容易に実施することができる。
【0013】
本微生物の性質をバージーのシステマチック バクテリオロジー 2巻(Bergey's Manual of Systematic Bacteriology Vol.2)を参考に検索すると、前記A.形態的特徴およびC.生理的特徴からグラム陽性、セルラーゼ産生であると判断された。市販の基質利用性に基づいた微生物同定システム(微生物検索同定バイオログシステム、バイオログ社製)を用いた評価では、ジョネシア デニトリフィカンス(Jonesia denitrificans)が最も近縁であると考えられた。図1に前記同定システムにより作成した基質利用性に基づく系統樹を示す。しかしながら、DNAのGC含量は、ジョネシア デニトリフィカンスは40%程度であるのに対して、本微生物は既知のセルロモナス属のGC含量71−76%(Tm)をわずかに上回る77.5−78.5%(Tm)であり、明らかにジョネシア デニトリフィカンスとは異なる。
【0014】
一方、16S rRNAに相補的なDNA配列の相同性比較を基にした系統樹(図2)においては、本微生物は明らかにセルロモナス属に属する。そして、近縁菌としてはセルロモナス フラビゲナ(Cellulomonas flavigena)、セルロモナス ゲリダ(C. gelida)、セルロモナス フィミ(C. fimi)などが存在する。しかしながら、運動性の有無、D−リボース、D−グルコン酸などの各種基質利用性の点でセルロモナス フラビゲナとは異なり、また同様にラクトースの利用の点でセルロモナス ゲリダおよびセルロモナス フィミとも明らかに異なる。表1に16S rRNAに相補的なDNA配列の相同性比較を基にした系統樹(図2)により最も近縁であることが明らかになったセルロモナス フラビゲナと本微生物の基質利用性の違いを示す。
【0015】
【表1】

Figure 0003710997
【0016】
このように、16S rRNAに相補的なDNA配列の相同性では、いずれのセルロモナス属の既知の種とも一致せず、また、DNAのGC含量においては報告されているセルロモナス属のどの種よりも高い含有量(77.5−78.5%)を示す。しかしながら、電子顕微鏡による鞭毛の着生状態の観察からは(図3)、セルロモナス属に一般的な極鞭毛であることが認められ、本微生物はセルロモナス属微生物の一種であると考えられる。なお、図3において、1は本発明のセルロモナス属微生物を、2は鞭毛を示す。
【0017】
以上の点から、本微生物はセルロモナス属の微生物ではあるものの、既記載のセルロモナス属のいずれかの種に分類することが適当ではないと考えられる。これらのことから、本発明者は、本微生物を新規微生物と認定し、セルロモナス属微生物K32A株(Cellulomonas sp. K32A)と命名した。
本微生物は国際寄託機関である通商産業省工業技術院生命工学工業技術研究所に1999年6月25日に国際寄託されており、その菌受託番号はFERM BP−6766である。
【0018】
【発明の実施の形態】
本発明によれば、当該微生物は、通常この技術分野で用いられる培地および培養条件下で培養することができる。炭素源としては、濾紙、セルロース粉末などの各種繊維質原料を、窒素源としては硫酸アンモニウム、硝酸アンモニウム、酢酸アンモニウムなどのアンモニウム塩、硝酸塩およびペプトン、肉エキス、コーンスチープリカー、コーングルーテンミール、綿実油、脱脂大豆などの有機物を用いることができる。その他微量の無機金属類、ビタミン類、成長促進因子、たとえばチアミン、ビオチンを含む酵母エキスなどを添加してもよい。これらの培地成分は本微生物の生育を阻害しない濃度であればよく、炭素源は通常0.025〜0.5重量%用いるのが適当である。窒素源は通常0.05〜1重量%用いるのが適当である。培地は通常pH6.5〜8.5、好ましくはpH6.8〜7.5、さらに好ましくはpH7.0〜7.2に調整し、滅菌して使用する。培養温度の範囲は本微生物が生育し得る温度であればよく、通常20〜40℃が適当である。本微生物を液体培養するばあいは、振とう培養または通気撹拌培養するのが好ましい。培養時間は種々の培養条件によって異なるが、振とう培養または通気撹拌培養のばあいは1〜5日間、好ましくは2〜3日間が適当である。
【0019】
得られた培養液は、所望により、遠心分離または濾過することにより、粗酵素溶液を得ることができる。当該粗酵素溶液は、さらに所望とあれば、ウルトラフィルトレーションによる濃縮または硫安塩析法、溶媒沈殿法、透析法などの公知の方法を適用して粗酵素粉末としてもよい。
【0020】
またさらに、当該培養液、粗酵素溶液および粗酵素は、イオン交換クロマトグラフィーによる吸着および溶出、分子量の差によるゲル濾過法等一般的酵素精製法を適宜選択、組み合わせて精製することもできる。前記培養液、粗酵素溶液または精製酵素として得られる本発明の繊維性多糖類分解酵素はセルロースのみではなく、農業上の稲ワラ、麦ワラなどの植物繊維性廃棄物を分解し、さらに、これまで分解が難しいとされた籾殻なども分解する強力なセルラーゼおよびキシラーゼを分泌するという特徴を有する。また、植物に含まれるヘミセルロースの本体であるキシロースやプルランをも分解し、これらの酵素が同時に働くことにより天然の多糖類を容易に分解することができるという特徴も有する。さらに当該多糖類分解酵素は、酵素活性の最適pHは中性域であるが、pH6〜10の間で活性の80%以上を維持し、温度に関しては、65℃まで活性を維持する。
【0021】
本微生物は、その産生酵素、とくにセルラーゼの作用により、セルロースをたとえばセロビオースにまで分解し、また稲ワラを基質として用いた場合にも、たとえば二単糖を生成させることができる。すなわち、本微生物を用いれば、従来産業廃棄物とされてきた植物繊維性廃棄物から単糖、または二単糖・三単糖その他のオリゴ糖を生産することができる。
【0022】
当該繊維性多糖類分解酵素の理化学的性質をより具体的に示すと、次のとおりである。
(1)作用:セルロース、キシロース、プルラン等の繊維質に作用し、これらを可溶化、分解する。
(2)基質特異性:カルボキシメチルセルロース、アモルファスセルロース、結晶性セルロース、キシラン、キチンによく作用する。
(3)至適pH:pH4〜11で優れた多糖類分解能を有する。カルボキシメチルセルロース分解活性の至適pHは、pH6〜9である。
(4)至適温度:20℃〜60℃で強いカルボキシメチルセルロース分解活性を示し、カルボキシメチルセルロース分解活性の至適温度は50℃である。
(5)酵素組成:9個の酵素の混合物である。本発明の前記培養液または粗酵素溶液をSDS−ポリアクリルアミドゲル電気泳動法で分画したところ、図6に示すとおり、CbpA、CbpB、CbpC、CbpD、CbpE、CbpF、CbpG、CbpH、CbpIの9個の画分を与えた。ここでCbpは、セルロース結合タンパク質(cellulose binding protein)を意味している。またこれら各画分のエンドグカナーゼ、エクソグルカナーゼおよびキシラナーゼ活性は表5記載のとおりである。
【0023】
さらに、分画された9個の酵素は、アミノ末端に次に示すアミノ酸配列を有する。アミノ酸配列の決定は、アクリルアミドゲルから各画分を採取し、公知の方法(Matudaira.P.、1987年、 J.Biol.Chem. 第262号、10035頁〜10038頁)で、アミノ酸分析装置(商品名:Procise 492 gas-phase sequencer、パーキン−エルマー社(Perkin-Elmer)製)により分析した。その結果を表2に示す。
【0024】
【表2】
Figure 0003710997
【0025】
(6)分子量:SDS−ポリアクリルアミドゲル電気泳動で測定した推定分子量は、CbpA 130kDa、CbpB 100kDa、CbpC 90kDa、CbpD 80kDa、CbpE 73kDa、CbpF 65kDa、CbpG 62kDa、CbpH 53kDa、CbpI 45kDaである。
【0026】
本発明によれば、植物繊維の分解反応は、前記培養によって得た微生物の菌体、菌体培養液またはそれらの処理物、あるいは菌体もしくは菌体培養液から分離した繊維性多糖類分解酵素に基質となる植物繊維を作用させて実施することができる。当該分解反応において、菌体の処理物としては、たとえば洗浄菌体、乾燥菌体、菌体磨砕物、菌体の自己消化物、超音波処理物、菌体抽出物等をいずれも使用でき、また培養処理液としては、遠心分離、濾過または共沈等の慣用手段によって培養液から菌体細胞壁などの不溶物を除去したもの、ないしそれらの濃縮液をいずれも使用することができる。菌体もしくは菌体培養液から分離された繊維性多糖類分解酵素は、通常、前記9種の混合物のまま用いるのが好ましく、また所望とあれば、9種の酵素混合物のうち任意の組合せからなる酵素混合物として用いてもよい。一方、当該分解反応に際し、基質としては、植物繊維を主な構成成分とするものであればとくに限定されることはなく、幅広く使用することができる。このような基質の具体例としては、稲作や小麦生産、とうもろこし、サトウキビ等の穀物、豆類、芋類の生産において排出される植物繊維性廃棄物、たとえば稲ワラ、籾殻、麦ワラ、バッカス(サトウキビの絞り粕、トウモロコシの芯)、芋のつる等、さらには落葉を挙げることができる。また、現在大量に消費されている紙、板紙および紙製品、またはパルプ、ビスコース、木材、木粉、綿毛等を基質として用いることもできる。当該分解反応の反応条件は、たとえば酵素の使用量、基質の種類に応じて適宜選択すれば良く、溶媒としては、通常、水、含水アルコール等を用いるのが好ましい。
【0027】
当該分解反応は、pH約6〜約9で実施することができる。また反応温度にとくに制約はなく、一般的には室温、たとえば約25℃〜約30℃で好適に実施することができる。
【0028】
【実施例】
本発明を以下に実施例をあげて説明するが、本発明はこれらの実施例に限定されるものではない。
【0029】
実施例1
前培養には50mLのL−Broth(酵母エキス 5g/L、ペプトン 10g/L、塩化ナトリウム 5g/L)を用いた。該前培養培地にK32A株のシングルコロニーを接種し、旋回振とう機(商品名:G10 Gyrotory shaker、ニューブランスウィックサイエンティフィック社(New Brunswick scientific)製)にて37℃で一晩かけて振とう培養(250rpm、振幅10mm)することにより、前培養液を得る。本培養の培地には、0.05%アビセル(商品名)を添加した1/5PTY培地(酵母エキス1g/L、トリプトン 1g/L、塩化ナトリウム 1g/L)250mLを用いた。該本培養培地に前培養液を1%接種して、基質のアビセルが消失するまで37℃で振とう培養(250rpm、振幅10mm)する(約72時間)。培養終了後、遠心分離(6000rpm、10分間)して培養上清を得る。培養上清をろ過滅菌し、硫安を加えて80%飽和硫安とし上清中のタンパク質を沈殿させた。沈殿したタンパク質を50mM モルホリンプロパンスルホン酸(MOPS)、10mM CaCl2および1mM NaN3の緩衝液に溶解透析し、これを粗酵素溶液とした。調製した粗酵素溶液中のタンパク質濃度は2mg/mLであった。
【0030】
実施例2
実施例1と同様にして粗酵素溶液を得る。該粗酵素溶液に含まれる多糖類分解酵素の酵素活性のpH依存性の測定は、50mMリン酸−クエン酸緩衝液、50mMリン酸緩衝液または50mMトリス塩酸緩衝液を用いて37℃で行なった。基質として0.1gのカルボキシメチルセルロースを用い、粗酵素溶液10mL(タンパク質濃度5μg/mL)と30分間反応させ、還元糖の産生量を測定した。その結果、図4に示すとおり、少なくともpH4〜11の範囲で明らかな活性が認められ、最適pHは6〜9であった。
【0031】
実施例3
実施例1と同様にして粗酵素溶液を得る。該粗酵素溶液に含まれる多糖類分解酵素の酵素活性の温度依存性は、10mLの粗酵素溶液(タンパク質濃度5μg/mL)、基質として0.1gのカルボキシメチルセルロースを用い、pH7.0の50mMリン酸−クエン酸緩衝液またはpH10の50mMトリス塩酸緩衝液を用いて、20℃〜70℃で30分間反応させ、還元糖の産生量を測定した。その結果、図5に示すとおり、20℃〜60℃にわたって明らかな活性が認められ、最適温度は50℃であった。
【0032】
実施例4
実施例1と同様にして粗酵素溶液を得る。50mM モルホリンプロパンスルホン酸(MOPS)緩衝液(pH7.0)、10mM CaCl2、1mM NaN3および1%の基質からなる10mLの反応溶液を調製する。この反応溶液を30℃でプレインキュベーションした後、100μgの粗酵素を加え、37℃で30分間反応を行なった。反応終了後、1mLのサンプルを採取し、遠心(15000×g、5分間)して不溶物を除き、3,5−ジニトロサリチル酸法により上清の還元糖の産生量を測定した。結果を表3に示す。なお、スタンダードはグルコースを用いた。
【0033】
【表3】
Figure 0003710997
【0034】
実施例5
実施例1と同様にして粗酵素溶液を得る。50mM モルホリンプロパンスルホン酸(MOPS)緩衝液(pH7.0)、10mM CaCl2、1mM NaN3および1%の基質からなる10mLの反応溶液を調製する。この反応溶液を30℃でプレインキュベーションした後、100μgの粗酵素を加え、37℃で反応を開始した。反応開始後、15分間毎に1mLのサンプルを採取し、遠心(15000×g、5分間)して不溶物を除き、3,5−ジニトロサリチル酸法により上清の還元糖の産生量を測定した。結果を表4に示す。なお、スタンダードはグルコースを用いた。
【0035】
【表4】
Figure 0003710997
【0036】
実施例6
実施例1と同様にして粗酵素溶液を得る。該粗酵素溶液にアビセル(商品名)を1g加え、氷温で10分間結合させる。ついで、遠心(4500×g、5分間)で沈殿物を集め、これに5mLの1M NaCl添加50mMリン酸−12mMクエン酸緩衝液pH7.0を加え撹拌し、再度遠心操作を行なう。次に5mLの50mMリン酸−12mMクエン酸緩衝液pH7.0を加えて撹拌遠心を2回実施し、最後に5mLの滅菌水で同様に洗浄を1回行なう。セルラーゼが結合したアビセル(商品名)に2mLのエチレングリコールを加え、結合した画分を溶出し、この画分をバインディングフラクションとした。このバインディングフラクションを8%のゲルを用いてSDS−ポリアクリルアミドゲル電気泳動により展開し、クーマシーブリリアントブルー(CBB)染色によって展開されたタンパク質を検出した。
【0037】
その結果、当該粗酵素溶液に含まれる多糖類分解酵素は、図6に示すとおり、CbpA、CbpB、CbpC、CbpD、CbpE、CbpF、CbpG、CbpHおよびCbpIからなる9個のバンドとして検出された。
【0038】
さらに、各タンパク質の定性を行なった。各バンドを採取し、それぞれのエンドグルカナーゼ活性およびキシラナーゼ活性を従来法(Walfgang. H. 1987年、Anatical Biochem.、第164号、72頁〜77頁)により測定した。エンドグルカナーゼ活性の測定には基質としてカルボキシメチルセルロースを用い、キシラナーゼ活性の測定には基質としてOst−speltキシランを用いた。またエクソグルカナーゼ活性は、基質を含まないSDS−ポリアクリルアミドゲル電気泳動を実施した後、前記の従来法にしたがってSDSを除いた。ついで、これに蛍光基質である4−メチルウンベリフェリルd−セルロバイオサイド(4-methylumbelliferyl d-cellobioside)を作用させ、ブラックライト(360nm)で観察し、蛍光が観察されたタンパク質バンドをエクソグルカナーゼ活性ありと判断した。これらの結果を表5に示す。
【0039】
【表5】
Figure 0003710997
【0040】
実施例7
実施例1にしたがって粗酵素溶液を調製した。粗酵素溶液5mL中に基質として1gの稲ワラまたは籾殻を加え、指定の温度で72時間および1週間反応させた。反応終了後に遠心(3500rpm、2000×gで15分間)し、得られた沈殿物に滅菌水を加えて遠心機(商品名:KN−70、クボタ製)で遠心(3500rpm、15分間)することにより3回洗浄し、凍結乾燥後に沈殿物の重量を天秤で測定した。反応後の重量を初期重量から引いた重量が初期重量に占める百分率を除去率とした。この結果を表6および表7に示す。
【0041】
【表6】
Figure 0003710997
【0042】
【表7】
Figure 0003710997
【0043】
実施例8
10mM CaCl2および1mM NaN3を含んだ50mM モルホリンプロパンスルホン酸(MOPS)緩衝液(pH 7.0)に基質として籾殻を1%加えたもの50mLに、K32A株の粗酵素溶液をタンパク質量として1mg加え、50℃で24時間保温した。保温後、遠心分離し、沈殿画分を凍結乾燥して、乾燥重量を対照群(粗酵素溶液を加えなかったもの)と比較した。その結果、粗酵素溶液を加えたものは対照群に比較しその重量が30−32%減少していた。また、目視により遠心分離前の溶液を観察すると、籾殻が一部溶解していることが観察された。
【0044】
【発明の効果】
本発明によれば、植物繊維を難分解性にしているセルロース、ヘミセルロースおよびキシラン等に対し強い分解能を有する繊維性多糖類分解酵素を産生する新規な微生物、ならびに同微生物が産生する繊維性多糖類分解酵素を提供することができる。また当該微生物およびその産生酵素は室温または室温付近において植物繊維に対し強力な分解能を有するため、植物繊維性廃棄物を輸送することなく、分解処理することができる。
【0045】
さらに当該微生物またはその産生酵素を用いることにより、稲ワラ、籾殻、麦ワラ、バッカス(サトウキビの絞り粕、とうもろこしの芯)、芋のつる、落葉などの植物繊維性廃棄物などを強力に分解することも可能となり、農業に関する分野にとどまらず、現在社会で大量に消費・廃棄されている植物繊維物質を効率よく分解処理することができる。
【0046】
その上、これらの分解処理物は、単糖、または二単糖・三単糖その他のオリゴ糖などであるため、糖原料として再利用することもできる。
【0047】
【配列表フリーテキスト】
配列番号1:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号2:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号3:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号4:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号5:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号6:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号7:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号8:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
配列番号9:セルロース結合タンパク質として同定されたアミノ末端アミノ酸配列
【配列表】
Figure 0003710997
Figure 0003710997
Figure 0003710997
Figure 0003710997
Figure 0003710997

【図面の簡単な説明】
【図1】セルロモナス属微生物K32A株の基質利用性に基づき、バイオログ社データベースを用いて作成した系統樹を示す図である。
【図2】セルロモナス属微生物K32A株の16S rRNAに相補的なDNA配列の相同性比較に基づき、BLAST(データベース)を用いて作成した系統樹を示す図である。
【図3】セルロモナス属微生物K32A株の鞭毛の着生状態(倍率:1万倍)を示す図である。
【図4】セルロモナス属微生物K32A株産生セルラーゼ活性のpH依存性を示すグラフである。
【図5】セルロモナス属微生物K32A株産生セルラーゼ活性の温度依存性を示すグラフである。
【図6】K32A産生多糖類分解酵素とアビセルとの結合実験を示す図である。
【符号の説明】
1 セルロモナス属微生物K32A株
2 鞭毛[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel microorganism K32A strain belonging to the genus Cellulomonas and a fibrous polysaccharide-degrading enzyme produced by the microorganism. The present invention also relates to a method for decomposing plant fibers using the cells of the same microorganism, a cell culture solution, a treated product of the cells or the cell culture solution, or a fibrous polysaccharide-degrading enzyme separated therefrom.
[0002]
[Prior art]
Conventionally, plant fiber wastes such as plants after harvesting crops have been disposed of mainly by incineration. However, various problems have been pointed out regarding incineration of plant fiber waste. For example, rice straw and rice husks in rice production become waste after harvesting and have been incinerated after finely cutting with a combine harvester, etc., but due to pollution caused by smoke from the incineration, incineration is a social problem. Prohibition of disposal is being considered.
[0003]
As a disposal method replacing the incineration of plant fiber waste, a treatment method using a polysaccharide-degrading enzyme such as cellulase capable of decomposing plant fiber waste or a microorganism such as cellulase-producing bacteria has attracted attention. However, existing polysaccharide-degrading enzymes such as cellulases and their producing microorganisms have a low ability of decomposing plant fiber waste, and are extremely insufficient to achieve the intended purpose.
[0004]
[Problems to be solved by the invention]
It is cellulose and hemicellulose that make plant fiber waste into a hardly degradable structure. In order to treat and effectively use plant fiber waste, it is necessary to partially hydrolyze cellulose and / or hemicellulose as a first step. As a method for hydrolyzing cellulose and / or hemicellulose, there are a method using a high-concentration acid and a method using an enzyme. As a decomposition method in Tabata, an enzyme treatment is desirable.
[0005]
An object of the present invention is to provide a novel microorganism that produces a polysaccharide-degrading enzyme having strong resolution with respect to cellulose, hemicellulose, xylose and the like, and a fibrous polysaccharide-degrading enzyme produced by the microorganism. A further object of the present invention is to provide a method for decomposing plant fibers, for example, plant fiber wastes, using the microorganism, a culture solution thereof or a polysaccharide-degrading enzyme of the microorganism.
[0006]
[Means for Solving the Problems]
The microorganism according to the present invention is a novel microorganism belonging to the genus Cellulomonas isolated from paddy soil in Niigata Prefecture, and the microorganism produces an enzyme exhibiting a strong resolution with respect to plant fibers, such as plant fiber wastes. It has been found that it has industrially excellent utility, and the present invention has been completed.
[0007]
The mycological properties of the Cellulomonas microorganisms according to the present invention are as follows.
[0008]
A. Morphological features (1) Gram staining: positive (2) Morphology: 0.3 to 0.5 μm × 2 to 3 μm small gonococci at the beginning of culture, but as the culture period becomes longer It is a polymorphic gonococcus that takes a spherical form.
(3) Endospores: Negative (4) Motility: Existence (5) Flagellar state: Polar flagella
B. Growth state in various media (1) Ordinary agar medium: Forms small convex smooth colonies. A yellow pigment is produced by culturing for 3 days or more.
(2) Peptone / tryptone / yeast extract / glucose agar medium (PTYG agar medium (ATCC Medium # 464), composition is 5 g peptone, 5 g tryptone, 5 g yeast extract, 5 g glucose, 15 g agar per 1000 mL medium) : Raises and forms a thick colony.
[0010]
C. Physiological properties (1) Optimal growth temperature: 35-40 ° C
(2) Optimal growth pH: 6.8-7.2
(3) Normal agar medium Growth at 65 ° C .: No growth at 65 ° C. for 24 hours.
(4) Usability of substrate α-cyclodextrin: Not available β-cyclodextrin: utilization 3. Dextrin: Use 4. Glycogen: Use 5. Inulin: Not available 6. Mannan: Not available Tween 40: Not available 8. Tween 80: Unavailable 9. N-acetyl-D-glucosamine: Not available
Ten. N-acetyl-D-mannosamine: not available
11. Amygdalin: Use
12. L-arabinose: Use
13. D-arabitol: Not available
14. Arbutin: Use
15. Cellobiose: Use
16. D-fructose: Use
17. L-Fucose: Use
18. D-galactose: use
19. D-galacturonic acid: not available
20. Gentiobiose: Use
twenty one. D-Gluconic acid: Not available
twenty two. α-D-glucose: utilization
twenty three. m-Inositol: Not available
twenty four. α-D-Lactose: Use
twenty five. Lactulose: Use
26. Maltose: Use
27. Mult Triose: Use
28. D-mannitol: Not available
29. D-Mannose: Not available
30. D-Melletose: Not available
31. D-melibiose: Use
32. α-methyl-D-galactoside: utilization
33. β-methyl-D-galactoside: utilization
34.3-Methylglucose: Utilization
35. α-methyl-D-glucoside: utilization
36. β-methyl-D-glucoside: utilization
37. α-Methyl-D-mannoside: Not available
38. Palatinose: Use
39. D-Pushi Course: Use
40. D-Raffinose: Not available
41. L-Rhamnose: Not available
42. D-ribose: Use
43. Salicin: Use
44. Sedohepturosan: Not available
45. D-sorbitol: Use
46. Stachiose: Not available
47. Sucrose: Use
48. D-Tagatose: Not available
49. D-trehalose: use
50. Tula North: Use
51. Xylitol: Not available
52. D-xylose: use
53. Acetic acid: Use
54. α-Hydroxybutyric acid: Not available
55. β-hydroxybutyric acid: not available
56. γ-hydroxybutyric acid: not available
57. p-hydroxyphenylacetic acid: not available
58. α-ketoglutaric acid: Not available
59. α-keto valeric acid: Not available
60. Lactamide: Not available
61. D-lactic acid methyl ester: not available
62. L-lactic acid: Not available
63. D-malic acid: Not available
64. L-malic acid: Not available
65. Methyl pyruvate: use
66. Monomethyl succinate: Not available
67. Propionic acid: Not available
68. Pyruvate: Use
69. Succinamic acid: Not available
70. Succinic acid: Not available
71. N-acetyl-L-glutamic acid: utilization
72. Alaninamide: Not available
73. D-alanine: Not available
74. L-alanine: Not available
75. L-alanylglycine: Not available
76. L-asparagine: Not available
77. L-glutamic acid: not available
78. Glycyl-L-glutamic acid: Not available
79. L-pyroglutamic acid: Not available
80. L-serine: Not available
81. Putrescine: Not available
82.2,3-Butanediol: Not available
83. Glycerol: Use
84. Adenosine: Use
85.2'-Deoxyadenosine: Use
86. Inosine: Use
87. Thymidine: Use
88. Uridine: Use
89. Adenosine-5'-monophosphate: utilization
90. Thymidine-5'-monophosphate: utilization
91. Uridine-5'-monophosphate: utilization
92. Fructose-6-phosphate: not available
93. Glucose-1-phosphate: Not available
94. Glucose-6-phosphate: not available
95. DL-α-glycerol phosphate: not available (5) Liquefaction of gelatin: Liquefaction.
(6) Starch hydrolysis: Decomposes.
(7) Cellulase production: Production (8) Xylase production: Production (9) Methyl carbinol acetyl reaction (VP reaction): Negative (10) Production of hydrogen sulfide in Christensen's sodium citrate medium (Titrate medium): Negative (11) Indole formation: Negative (12) Nitrate reduction: Reduction (13) Urea decomposition: No decomposition.
(14) Oxygen requirement: facultative anaerobic (15) production of catalase: production (16) production of oxidase: production (17) production of DN ace (DNase): negative
D. Genetic properties GC content of DNA (mol%): 77.5-78.5% (Tm)
[0012]
The microorganism according to the present invention is obtained by collecting paddy field soil, forest soil, and fallen tree decayed parts, suspending them in a sterilized surfactant-added physiological saline, and adding this suspension to a carboxymethylcellulose-added normal saline solution. Colonies that are applied to an agar medium and cultured at 25 to 30 ° C. to hydrolyze carboxymethylcellulose are judged based on the presence or absence of halo formation, and colonies in which halo formation is recognized can be selected and separated. The separated microorganisms can be isolated and purified by, for example, amorphous cellulose obtained by subjecting crystalline cellulose (trade name: Avicel PH-101, manufactured by Asahi Kasei Kogyo Co., Ltd.) to phosphoric acid treatment. In the same way, select in the medium added with the same, select in the same way in the medium added with crystalline cellulose (same as above), and then select in the same way in the medium added with xylan. Can be implemented.
[0013]
When the properties of this microorganism are searched with reference to Bergey's Manual of Systematic Bacteriology Vol. Morphological features and C.I. From physiological characteristics, it was judged to be gram positive and cellulase production. In the evaluation using a commercially available microorganism identification system based on substrate availability (microorganism search identification biolog system, manufactured by Biolog), it was considered that Jonesia denitrificans was most closely related. FIG. 1 shows a phylogenetic tree based on substrate availability created by the identification system. However, the GC content of DNA is about 40% for Johnesia denitrificans, whereas this microorganism is 77.5-78, which is slightly higher than the known Cellulomonas genus GC content of 71-76% (Tm). .5% (Tm), clearly different from Johnesia denitrificans.
[0014]
On the other hand, in the phylogenetic tree (FIG. 2) based on the homology comparison of DNA sequences complementary to 16S rRNA, this microorganism clearly belongs to the genus Cellulomonas. Examples of related bacteria include Cellulomonas flavigena, C. gelida, and C. fimi. However, it is different from Cellulomonas flavigena in the presence or absence of motility and the utilization of various substrates such as D-ribose and D-gluconic acid, and is also clearly different from Cellulomonas gelida and Cellulomonas fimi in the use of lactose as well. Table 1 shows the difference in substrate utilization between Cellulomonas flavigena and this microorganism, which was found to be the most closely related by the phylogenetic tree based on the homology comparison of DNA sequences complementary to 16S rRNA (Fig. 2). .
[0015]
[Table 1]
Figure 0003710997
[0016]
Thus, the homology of the DNA sequence complementary to 16S rRNA does not agree with any known species of the genus Cellulomonas, and the GC content of DNA is higher than any reported species of genus Cellulomonas Content (77.5-78.5%) is indicated. However, from observation of the flagellar state with an electron microscope (FIG. 3), it is recognized that the flagellum is a common polar flagellum in the genus Cellulomonas, and this microorganism is considered to be a kind of microorganism in the genus Cellulomonas. In FIG. 3, 1 indicates a Cellulomonas microorganism of the present invention, and 2 indicates flagella.
[0017]
From the above points, although the present microorganism is a microorganism belonging to the genus Cellulomonas, it is considered that it is not appropriate to classify it into any species of the genus Cellulomonas described above. Based on these facts, the present inventors have identified this microorganism as a novel microorganism and named it the Cellulomonas sp. Strain K32A (Cellulomonas sp. K32A).
This microorganism has been internationally deposited on June 25, 1999 at the Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry, which is an international depositary organization, and the bacterial accession number is FERM BP-6766.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, the microorganism can be cultured under the medium and culture conditions normally used in this technical field. As carbon source, various fiber materials such as filter paper and cellulose powder, as nitrogen source, ammonium salt such as ammonium sulfate, ammonium nitrate, ammonium acetate, nitrate and peptone, meat extract, corn steep liquor, corn glue tenmeal, cottonseed oil, Organic substances such as defatted soybeans can be used. In addition, a small amount of inorganic metals, vitamins, growth promoting factors such as thiamine, yeast extract containing biotin and the like may be added. These medium components may be in concentrations that do not inhibit the growth of the microorganism, and it is appropriate to use a carbon source of usually 0.025 to 0.5% by weight. It is appropriate to use 0.05 to 1% by weight of nitrogen source. The medium is usually adjusted to pH 6.5 to 8.5, preferably pH 6.8 to 7.5, more preferably pH 7.0 to 7.2, and sterilized before use. The culture temperature may be any temperature at which the present microorganism can grow, and is usually 20 to 40 ° C. When the microorganism is subjected to liquid culture, it is preferable to perform shaking culture or aeration and agitation culture. Although the culture time varies depending on various culture conditions, 1 to 5 days, preferably 2 to 3 days are suitable for shaking culture or aeration and agitation culture.
[0019]
If necessary, the obtained culture solution can be centrifuged or filtered to obtain a crude enzyme solution. If desired, the crude enzyme solution may be made into a crude enzyme powder by applying a known method such as concentration by ultrafiltration or ammonium sulfate salting-out method, solvent precipitation method, dialysis method and the like.
[0020]
Furthermore, the culture solution, the crude enzyme solution and the crude enzyme can be purified by appropriately selecting and combining general enzyme purification methods such as adsorption and elution by ion exchange chromatography and gel filtration by molecular weight difference. The fibrous polysaccharide-degrading enzyme of the present invention obtained as the culture solution, crude enzyme solution or purified enzyme decomposes not only cellulose but also plant fibrous waste such as agricultural rice straw and wheat straw, It also has the characteristic of secreting strong cellulase and xylase that decomposes rice husks and the like that are considered difficult to decompose. It also has the feature that xylose and pullulan, which are the main components of hemicellulose contained in plants, can be decomposed and natural polysaccharides can be easily decomposed by the simultaneous action of these enzymes. Further, the polysaccharide-degrading enzyme maintains an optimum pH of enzyme activity in a neutral range, but maintains 80% or more of activity between pH 6 and 10, and maintains activity up to 65 ° C. with respect to temperature.
[0021]
The microorganism can decompose cellulose to cellobiose, for example, by the action of its production enzyme, particularly cellulase, and can produce, for example, a disaccharide even when rice straw is used as a substrate. That is, by using this microorganism, it is possible to produce monosaccharides, disaccharides, trimonosaccharides and other oligosaccharides from plant fiber wastes that have been conventionally regarded as industrial waste.
[0022]
More specifically, the physicochemical properties of the fibrous polysaccharide-degrading enzyme are as follows.
(1) Action: acts on fibers such as cellulose, xylose, pullulan, solubilizes and decomposes them.
(2) Substrate specificity: Works well on carboxymethylcellulose, amorphous cellulose, crystalline cellulose, xylan, and chitin.
(3) Optimum pH: Excellent polysaccharide resolution at pH 4-11. The optimum pH for carboxymethylcellulose decomposition activity is pH 6-9.
(4) Optimum temperature: Strong carboxymethylcellulose decomposition activity is exhibited at 20 ° C to 60 ° C, and the optimum temperature of carboxymethylcellulose decomposition activity is 50 ° C.
(5) Enzyme composition: a mixture of nine enzymes. When the culture solution or crude enzyme solution of the present invention was fractionated by SDS-polyacrylamide gel electrophoresis, as shown in FIG. 6, CbpA, CbpB, CbpC, CbpD, CbpE, CbpF, CbpG, CbpH, CbpI 9 Fractions were given. Here, Cbp means a cellulose binding protein. The endogcanase, exoglucanase and xylanase activities of these fractions are as shown in Table 5.
[0023]
Further, the nine fractionated enzymes have the amino acid sequences shown below at the amino terminus. The amino acid sequence was determined by collecting each fraction from an acrylamide gel, and using a known method (Matudaira. P., 1987, J. Biol. Chem. No. 262, pages 10035 to 10038) with an amino acid analyzer ( Trade name: Procise 492 gas-phase sequencer, manufactured by Perkin-Elmer). The results are shown in Table 2.
[0024]
[Table 2]
Figure 0003710997
[0025]
(6) Molecular weight: Estimated molecular weights measured by SDS-polyacrylamide gel electrophoresis are CbpA 130 kDa, CbpB 100 kDa, CbpC 90 kDa, CbpD 80 kDa, CbpE 73 kDa, CbpF 65 kDa, CbpG 62 kDa, CbpHD k45 Dk.
[0026]
According to the present invention, the degradation reaction of the plant fiber is carried out by microbial cells obtained by the culture, bacterial cell culture broth or treated products thereof, or a fibrous polysaccharide-degrading enzyme separated from the bacterial cells or bacterial cell culture. It can be carried out by allowing the plant fiber to act as a substrate to act. In the decomposition reaction, for example, washed cells, dried cells, pulverized cells, self-digested cells, sonicated products, cell extracts, etc. can be used as the processed cells. As the culture treatment solution, any of those obtained by removing insoluble matters such as cell walls from the culture solution by conventional means such as centrifugation, filtration or coprecipitation, or a concentrated solution thereof can be used. The fibrous polysaccharide-degrading enzyme separated from the microbial cells or the microbial cell culture solution is usually preferably used in the form of the above 9 types of mixture, and if desired, from any combination of the 9 types of enzyme mixture. May be used as an enzyme mixture. On the other hand, in the decomposition reaction, the substrate is not particularly limited as long as it contains plant fiber as a main constituent, and can be widely used. Specific examples of such substrates include plant fiber wastes discharged in the production of rice, wheat production, corn, sugarcane and other grains, beans, and potatoes, such as rice straw, rice husk, wheat straw, bacchus (sugarcane Squeezed rice cake, corn core), vine vine, etc., and fallen leaves. Further, paper, paperboard and paper products that are currently consumed in large quantities, or pulp, viscose, wood, wood flour, fluff and the like can also be used as a substrate. The reaction conditions for the decomposition reaction may be appropriately selected according to, for example, the amount of enzyme used and the type of substrate. Usually, water, hydrous alcohol, or the like is preferably used as the solvent.
[0027]
The decomposition reaction can be carried out at a pH of about 6 to about 9. Moreover, there is no restriction | limiting in particular in reaction temperature, Generally, it can implement suitably at room temperature, for example, about 25 degreeC-about 30 degreeC.
[0028]
【Example】
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
[0029]
Example 1
For preculture, 50 mL of L-Broth (yeast extract 5 g / L, peptone 10 g / L, sodium chloride 5 g / L) was used. The preculture medium is inoculated with a single colony of the K32A strain and shaken overnight at 37 ° C. with a swirling shaker (trade name: G10 Gyrotory shaker, manufactured by New Brunswick Scientific). A preculture is obtained by culturing (250 rpm, amplitude 10 mm). As the medium for main culture, 250 mL of 1/5 PTY medium (yeast extract 1 g / L, tryptone 1 g / L, sodium chloride 1 g / L) supplemented with 0.05% Avicel (trade name) was used. The main culture medium is inoculated with 1% of the preculture solution, and cultured with shaking (250 rpm, amplitude 10 mm) at 37 ° C. until the substrate Avicel disappears (about 72 hours). After completion of the culture, the culture supernatant is obtained by centrifugation (6000 rpm, 10 minutes). The culture supernatant was sterilized by filtration, and ammonium sulfate was added to 80% saturated ammonium sulfate to precipitate proteins in the supernatant. The precipitated protein was dissolved and dialyzed in a buffer solution of 50 mM morpholine propane sulfonic acid (MOPS), 10 mM CaCl 2 and 1 mM NaN 3 to obtain a crude enzyme solution. The protein concentration in the prepared crude enzyme solution was 2 mg / mL.
[0030]
Example 2
A crude enzyme solution is obtained in the same manner as in Example 1. The pH dependence of the enzyme activity of the polysaccharide-degrading enzyme contained in the crude enzyme solution was measured at 37 ° C. using 50 mM phosphate-citrate buffer, 50 mM phosphate buffer, or 50 mM Tris-HCl buffer. . Using 0.1 g of carboxymethylcellulose as a substrate, the reaction was performed with 10 mL of crude enzyme solution (protein concentration 5 μg / mL) for 30 minutes, and the amount of reducing sugar produced was measured. As a result, as shown in FIG. 4, clear activity was observed at least in the range of pH 4 to 11, and the optimum pH was 6 to 9.
[0031]
Example 3
A crude enzyme solution is obtained in the same manner as in Example 1. The temperature dependence of the enzyme activity of the polysaccharide-degrading enzyme contained in the crude enzyme solution was determined by using 10 mL of the crude enzyme solution (protein concentration 5 μg / mL), 0.1 g of carboxymethylcellulose as a substrate, and 50 mM phosphorus at pH 7.0. Using an acid-citrate buffer solution or a 50 mM Tris-HCl buffer solution having a pH of 10, reaction was carried out at 20 ° C. to 70 ° C. for 30 minutes, and the amount of reducing sugar produced was measured. As a result, as shown in FIG. 5, a clear activity was observed over 20 to 60 ° C., and the optimum temperature was 50 ° C.
[0032]
Example 4
A crude enzyme solution is obtained in the same manner as in Example 1. A 10 mL reaction solution consisting of 50 mM morpholine propane sulfonic acid (MOPS) buffer (pH 7.0), 10 mM CaCl 2 , 1 mM NaN 3 and 1% substrate is prepared. This reaction solution was preincubated at 30 ° C., 100 μg of crude enzyme was added, and the reaction was performed at 37 ° C. for 30 minutes. After completion of the reaction, a 1 mL sample was collected, centrifuged (15000 × g, 5 minutes) to remove insoluble matters, and the amount of reducing sugar produced in the supernatant was measured by the 3,5-dinitrosalicylic acid method. The results are shown in Table 3. Note that glucose was used as the standard.
[0033]
[Table 3]
Figure 0003710997
[0034]
Example 5
A crude enzyme solution is obtained in the same manner as in Example 1. A 10 mL reaction solution consisting of 50 mM morpholine propane sulfonic acid (MOPS) buffer (pH 7.0), 10 mM CaCl 2 , 1 mM NaN 3 and 1% substrate is prepared. This reaction solution was preincubated at 30 ° C., 100 μg of crude enzyme was added, and the reaction was started at 37 ° C. After starting the reaction, a 1 mL sample was taken every 15 minutes, centrifuged (15000 × g, 5 minutes) to remove insoluble matters, and the amount of reducing sugar produced in the supernatant was measured by the 3,5-dinitrosalicylic acid method. . The results are shown in Table 4. Note that glucose was used as the standard.
[0035]
[Table 4]
Figure 0003710997
[0036]
Example 6
A crude enzyme solution is obtained in the same manner as in Example 1. 1 g of Avicel (trade name) is added to the crude enzyme solution and allowed to bind at ice temperature for 10 minutes. Next, the precipitate is collected by centrifugation (4500 × g, 5 minutes), and 5 mL of 1 M NaCl-added 50 mM phosphate-12 mM citrate buffer pH 7.0 is added thereto and stirred, followed by centrifugation again. Next, 5 mL of 50 mM phosphate-12 mM citrate buffer pH 7.0 is added, and stirring and centrifugation are performed twice. Finally, washing is similarly performed once with 5 mL of sterile water. 2 mL of ethylene glycol was added to Avicel (trade name) to which cellulase was bound, and the bound fraction was eluted, and this fraction was used as a binding fraction. This binding fraction was developed by SDS-polyacrylamide gel electrophoresis using 8% gel, and the developed protein was detected by Coomassie Brilliant Blue (CBB) staining.
[0037]
As a result, the polysaccharide-degrading enzyme contained in the crude enzyme solution was detected as 9 bands consisting of CbpA, CbpB, CbpC, CbpD, CbpE, CbpF, CbpG, CbpH and CbpI as shown in FIG.
[0038]
Furthermore, qualitative analysis of each protein was performed. Each band was collected and its endoglucanase activity and xylanase activity were measured by a conventional method (Walfgang. H. 1987, Anatical Biochem., No. 164, pages 72-77). For measurement of endoglucanase activity, carboxymethylcellulose was used as a substrate, and for measurement of xylanase activity, Ost-spelt xylan was used as a substrate. The exoglucanase activity was determined by performing SDS-polyacrylamide gel electrophoresis without a substrate and then removing SDS according to the conventional method described above. Next, 4-methylumbelliferyl d-cellobioside, which is a fluorescent substrate, is allowed to act on this, and the protein band observed with black light (360 nm) is observed with exoglucanase. Judged active. These results are shown in Table 5.
[0039]
[Table 5]
Figure 0003710997
[0040]
Example 7
A crude enzyme solution was prepared according to Example 1. In 5 mL of the crude enzyme solution, 1 g of rice straw or rice husk was added as a substrate and reacted at the specified temperature for 72 hours and 1 week. After completion of the reaction, centrifuge (3500 rpm, 2000 × g for 15 minutes), add sterilized water to the resulting precipitate, and centrifuge (trade name: KN-70, manufactured by Kubota) (3500 rpm, 15 minutes). After washing three times, the weight of the precipitate was measured with a balance after lyophilization. The percentage of the initial weight after subtracting the weight after the reaction from the initial weight was taken as the removal rate. The results are shown in Tables 6 and 7.
[0041]
[Table 6]
Figure 0003710997
[0042]
[Table 7]
Figure 0003710997
[0043]
Example 8
To 50 mL of 50 mM morpholine propane sulfonic acid (MOPS) buffer solution (pH 7.0) containing 10 mM CaCl 2 and 1 mM NaN 3 with 1% rice husk as a substrate, 1 mg of crude enzyme solution of K32A strain as protein amount In addition, it was kept at 50 ° C. for 24 hours. After incubation, the mixture was centrifuged, the precipitate fraction was freeze-dried, and the dry weight was compared with that of the control group (the crude enzyme solution was not added). As a result, the weight of the crude enzyme solution added was reduced by 30-32% compared to the control group. Moreover, when the solution before centrifugation was visually observed, it was observed that rice husks were partially dissolved.
[0044]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, a novel microorganism that produces a fibrous polysaccharide-degrading enzyme having a strong resolution with respect to cellulose, hemicellulose, xylan and the like, which makes plant fibers difficult to degrade, and the fibrous polysaccharide produced by the microorganisms Degrading enzymes can be provided. Further, since the microorganism and its producing enzyme have a strong resolution with respect to plant fibers at or near room temperature, they can be decomposed without transporting plant fiber waste.
[0045]
Furthermore, by using the microorganism or its production enzyme, the plant fiber waste such as rice straw, rice husk, wheat straw, bacchus (sugar cane squeezed corn, corn core), vine vine, and fallen leaves is strongly decomposed. This makes it possible to efficiently decompose plant fiber materials that are not limited to agriculture but are currently consumed and disposed of in large quantities in society.
[0046]
In addition, since these decomposition products are monosaccharides, disaccharides, trimonosaccharides, and other oligosaccharides, they can be reused as sugar raw materials.
[0047]
[Sequence Listing Free Text]
SEQ ID NO: 1: amino terminal amino acid sequence identified as cellulose binding protein SEQ ID NO: 2: amino terminal amino acid sequence identified as cellulose binding protein SEQ ID NO: 3: amino terminal amino acid sequence identified as cellulose binding protein SEQ ID NO: 4: cellulose Amino terminal amino acid sequence identified as binding protein SEQ ID NO: 5: Amino terminal amino acid sequence identified as cellulose binding protein SEQ ID NO: 6: Amino terminal amino acid sequence identified as cellulose binding protein SEQ ID NO: 7: identified as cellulose binding protein Amino terminal amino acid sequence SEQ ID NO: 8: amino terminal amino acid sequence identified as cellulose binding protein SEQ ID NO: 9: amino terminal amino acid sequence identified as cellulose binding protein Sequence Listing]
Figure 0003710997
Figure 0003710997
Figure 0003710997
Figure 0003710997
Figure 0003710997

[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a phylogenetic tree created using a Biolog database based on the substrate availability of Cellulomonas sp. Strain K32A.
FIG. 2 is a diagram showing a phylogenetic tree created using BLAST (database) based on a homology comparison of DNA sequences complementary to 16S rRNA of Cellulomonas sp. Microorganism K32A strain.
FIG. 3 is a diagram showing the flagellar state (magnification: 10,000 times) of Cellulomonas sp. Microorganism K32A strain.
FIG. 4 is a graph showing the pH dependence of cellulase activity produced by the Cellulomonas sp. Microorganism K32A strain.
FIG. 5 is a graph showing the temperature dependence of cellulase activity produced by the Cellulomonas microorganism K32A strain.
FIG. 6 is a diagram showing a binding experiment between a K32A-producing polysaccharide-degrading enzyme and Avicel.
[Explanation of symbols]
1 Cellulomonas genus microorganism K32A strain 2 Flagella

Claims (5)

次の菌学的性質を有するセルロモナス属微生物K32A株。
A.形態的特徴
(1)グラム染色:陽性
(2)形態:培養初期においては、0.3〜0.5μm×2〜3μm内外の小さな桿菌であるが、培養期間が長くなるにつれて、分枝したり、球状の形態をとる多形性桿菌である。
(3)内生胞子:陰性
(4)運動性:有
(5)鞭毛の着生状態:極鞭毛
B.各種培地における生育状態
(1)普通寒天培地:小さい凸状のスムースコロニーを形成。3日間以上の培養で黄色の色素を産生する。
(2)ペプトン・トリプトン・酵母エキス・グルコース寒天培地:盛り上がり厚いコロニーを形成。
C.生理的性質
(1)最適発育温度:35〜40℃
(2)最適発育pH:6.8〜7.2
(3)普通寒天培地65℃での発育:65℃24時間では発育せず。
(4)基質の利用性
1.α−シクロデキストリン :利用できず
2.β−シクロデキストリン :利用
3.デキストリン :利用
4.グリコーゲン :利用
5.イヌリン :利用できず
6.マンナン :利用できず
7.ツイーン40 :利用できず
8.ツイーン80 :利用できず
9.N−アセチル−D−グルコサミン :利用できず
10.N−アセチル−D−マンノサミン :利用できず
11.アミグダリン :利用
12.L−アラビノース :利用
13.D−アラビトール :利用できず
14.アルブチン :利用
15.セロビオース :利用
16.D−フルクトース :利用
17.L−フコース :利用
18.D−ガラクトース :利用
19.D−ガラクツロン酸 :利用できず
20.ゲンチオビオース :利用
21.D−グルコン酸 :利用できず
22.α−D−グルコース :利用
23.m−イノシトール :利用できず
24.α−D−ラクトース :利用
25.ラクツロース :利用
26.マルトース :利用
27.マルトトリオース :利用
28.D−マンニトール :利用できず
29.D−マンノース :利用できず
30.D−メレジトース :利用できず
31.D−メリビオース :利用
32.α−メチル−D−ガラクトシド :利用
33.β−メチル−D−ガラクトシド :利用
34.3−メチルグルコース :利用
35.α−メチル−D−グルコシド :利用
36.β−メチル−D−グルコシド :利用
37.α−メチル−D−マンノシド :利用できず
38.パラチノース :利用
39.D−プシコース :利用
40.D−ラフィノース :利用できず
41.L−ラムノース :利用できず
42.D−リボース :利用
43.サリシン :利用
44.セドヘプツロサン :利用できず
45.D−ソルビトール :利用
46.スタキオース :利用できず
47.スクロース :利用
48.D−タガトース :利用できず
49.D−トレハロース :利用
50.ツラノース :利用
51.キシリトール :利用できず
52.D−キシロース :利用
53.酢酸 :利用
54.α−ヒドロキシ酪酸 :利用できず
55.β−ヒドロキシ酪酸 :利用できず
56.γ−ヒドロキシ酪酸 :利用できず
57.p−ヒドロキシフェニル酢酸 :利用できず
58.α−ケトグルタル酸 :利用できず
59.α−ケト吉草酸 :利用できず
60.ラクトアミド :利用できず
61.D−乳酸メチルエステル :利用できず
62.L−乳酸 :利用できず
63.D−リンゴ酸 :利用できず
64.L−リンゴ酸 :利用できず
65.ピルビン酸メチル :利用
66.コハク酸モノメチル :利用できず
67.プロピオン酸 :利用できず
68.ピルビン酸 :利用
69.スクシンアミド酸 :利用できず
70.コハク酸 :利用できず
71.N−アセチル−L−グルタミン酸 :利用
72.アラニンアミド :利用できず
73.D−アラニン :利用できず
74.L−アラニン :利用できず
75.L−アラニルグリシン :利用できず
76.L−アスパラギン :利用できず
77.L−グルタミン酸 :利用できず
78.グリシル−L−グルタミン酸 :利用できず
79.L−ピログルタミン酸 :利用できず
80.L−セリン :利用できず
81.プトレッシン :利用できず
82.2,3−ブタンジオール :利用できず
83.グリセロール :利用
84.アデノシン :利用
85.2’−デオキシアデノシン :利用
86.イノシン :利用
87.チミジン :利用
88.ウリジン :利用
89.アデノシン−5’−一リン酸 :利用
90.チミジン−5’−一リン酸 :利用
91.ウリジン−5’−一リン酸 :利用
92.フルクトース−6−リン酸 :利用できず
93.グルコース−1−リン酸 :利用できず
94.グルコース−6−リン酸 :利用できず
95.D−L−α−グリセロールリン酸 :利用できず
(5)ゼラチンの液化:液化する。
(6)デンプンの加水分解:分解する。
(7)セルラーゼの生成:生成
(8)キシラーゼの生成:生成
(9)メチルカルビノールアセチル反応(VP反応):陰性
(10)クリステンゼンのクエン酸ナトリウム培地(チトラーテ培地)における硫化水素の産生:陰性
(11)インドールの生成:陰性
(12)硝酸塩還元:還元
(13)尿素の分解:分解せず。
(14)酸素要求性:通性嫌気性
(15)カタラーゼの生成:生成
(16)オキシターゼの生成:生成
(17)DNエース(DNase)の生成:陰性
D.遺伝的性質
DNAのGC含量(モル%):77.5〜78.5%(Tm)
Cellulomonas microorganism K32A strain having the following mycological properties.
A. Morphological features (1) Gram staining: positive (2) Morphology: 0.3 to 0.5 μm × 2 to 3 μm small gonococci at the beginning of culture, but as the culture period becomes longer It is a polymorphic gonococcus that takes a spherical form.
(3) Endospores: Negative (4) Motility: Existence (5) Flagellar state: Polar flagellum Growth state in various media (1) Ordinary agar medium: Forms small convex smooth colonies. A yellow pigment is produced by culturing for 3 days or more.
(2) Peptone / tryptone / yeast extract / glucose agar medium: swelled to form a thick colony.
C. Physiological properties (1) Optimal growth temperature: 35-40 ° C
(2) Optimal growth pH: 6.8-7.2
(3) Normal agar medium Growth at 65 ° C .: No growth at 65 ° C. for 24 hours.
(4) Usability of substrate α-cyclodextrin: Not available β-cyclodextrin: utilization 3. Dextrin: Use 4. Glycogen: Use 5. Inulin: Not available 6. Mannan: Not available Tween 40: Not available 8. Tween 80: Unavailable 9. N-acetyl-D-glucosamine: Not available
Ten. N-acetyl-D-mannosamine: not available
11. Amygdalin: Use
12. L-arabinose: Use
13. D-arabitol: Not available
14. Arbutin: Use
15. Cellobiose: Use
16. D-fructose: Use
17. L-Fucose: Use
18. D-galactose: use
19. D-galacturonic acid: not available
20. Gentiobiose: Use
twenty one. D-Gluconic acid: Not available
twenty two. α-D-glucose: utilization
twenty three. m-Inositol: Not available
twenty four. α-D-Lactose: Use
twenty five. Lactulose: Use
26. Maltose: Use
27. Mult Triose: Use
28. D-mannitol: Not available
29. D-Mannose: Not available
30. D-Melletose: Not available
31. D-melibiose: Use
32. α-methyl-D-galactoside: utilization
33. β-methyl-D-galactoside: utilization
34.3-Methylglucose: Utilization
35. α-methyl-D-glucoside: utilization
36. β-methyl-D-glucoside: utilization
37. α-Methyl-D-mannoside: Not available
38. Palatinose: Use
39. D-Pushi Course: Use
40. D-Raffinose: Not available
41. L-Rhamnose: Not available
42. D-ribose: Use
43. Salicin: Use
44. Sedohepturosan: Not available
45. D-sorbitol: Use
46. Stachiose: Not available
47. Sucrose: Use
48. D-Tagatose: Not available
49. D-trehalose: use
50. Tula North: Use
51. Xylitol: Not available
52. D-xylose: use
53. Acetic acid: Use
54. α-Hydroxybutyric acid: Not available
55. β-hydroxybutyric acid: not available
56. γ-hydroxybutyric acid: not available
57. p-hydroxyphenylacetic acid: not available
58. α-ketoglutaric acid: Not available
59. α-keto valeric acid: Not available
60. Lactamide: Not available
61. D-lactic acid methyl ester: not available
62. L-lactic acid: Not available
63. D-malic acid: Not available
64. L-malic acid: Not available
65. Methyl pyruvate: use
66. Monomethyl succinate: Not available
67. Propionic acid: Not available
68. Pyruvate: Use
69. Succinamic acid: Not available
70. Succinic acid: Not available
71. N-acetyl-L-glutamic acid: utilization
72. Alaninamide: Not available
73. D-alanine: Not available
74. L-alanine: Not available
75. L-alanylglycine: Not available
76. L-asparagine: Not available
77. L-glutamic acid: not available
78. Glycyl-L-glutamic acid: Not available
79. L-pyroglutamic acid: Not available
80. L-serine: Not available
81. Putrescine: Not available
82.2,3-Butanediol: Not available
83. Glycerol: Use
84. Adenosine: Use
85.2'-Deoxyadenosine: Use
86. Inosine: Use
87. Thymidine: Use
88. Uridine: Use
89. Adenosine-5'-monophosphate: utilization
90. Thymidine-5'-monophosphate: utilization
91. Uridine-5'-monophosphate: utilization
92. Fructose-6-phosphate: not available
93. Glucose-1-phosphate: Not available
94. Glucose-6-phosphate: not available
95. DL-α-glycerol phosphate: not available (5) Liquefaction of gelatin: Liquefaction.
(6) Starch hydrolysis: Decomposes.
(7) Cellulase production: Production (8) Xylase production: Production (9) Methyl carbinol acetyl reaction (VP reaction): Negative (10) Production of hydrogen sulfide in Christensen's sodium citrate medium (Titrate medium): Negative (11) Indole formation: Negative (12) Nitrate reduction: Reduction (13) Urea decomposition: No decomposition.
(14) Oxygen requirement: facultative anaerobic (15) production of catalase: production (16) production of oxidase: production (17) production of DN ace (DNase): negative Genetic properties GC content of DNA (mol%): 77.5-78.5% (Tm)
セルロモナス属微生物K32A株が産生する多糖類分解酵素であって、次の理化学的性質を有する繊維性多糖類分解酵素
(1)作用:セルロース、キシロース、プルラン等の繊維質に作用し、これらを可溶化、分解する。
(2)基質特異性:カルボキシメチルセルロース、アモルファスセルロース、結晶性セルロース、キシラン、キチンによく作用する。
(3)至適pH:pH4〜11で優れた多糖類分解能を有する。カルボキシメチルセルロース分解活性の至適pHは、pH6〜9である。
(4)至適温度:20〜60℃で強いカルボキシメチルセルロース分解活性を示し、カルボキシメチルセルロース分解活性の至適温度は50℃である。
(5)酵素組成:9個の酵素の混合物である。
(6)分子量:SDS−ポリアクリルアミドゲル電気泳動法で測定した推定分子量は約130kDa、約100kDa、約90kDa、約80kDa、約73kDa、約65kDa、約62kDa、約53kDaおよび約45kDaである。
Polysaccharide-degrading enzyme produced by Cellulomonas sp. Strain K32A, which has the following physicochemical properties (1) Action: acts on fibers such as cellulose, xylose, pullulan, etc. Solubilizes and decomposes.
(2) Substrate specificity: Works well on carboxymethylcellulose, amorphous cellulose, crystalline cellulose, xylan, and chitin.
(3) Optimum pH: Excellent polysaccharide resolution at pH 4-11. The optimum pH for carboxymethylcellulose decomposition activity is pH 6-9.
(4) Optimum temperature: Strong carboxymethyl cellulose decomposition activity is exhibited at 20 to 60 ° C., and the optimum temperature of carboxymethyl cellulose decomposition activity is 50 ° C.
(5) Enzyme composition: a mixture of nine enzymes.
(6) Molecular weight: Estimated molecular weights measured by SDS-polyacrylamide gel electrophoresis are about 130 kDa, about 100 kDa, about 90 kDa, about 80 kDa, about 73 kDa, about 65 kDa, about 62 kDa, about 53 kDa and about 45 kDa.
セルロモナス属微生物K32A株の菌体、菌体培養液、菌体もしくは菌体培養液の処理物、またはそれらから分離された繊維性多糖類分解酵素を用いて植物性繊維を分解処理することを特徴とする植物繊維分解方法。  It is characterized by decomposing plant fibers using a cell body of cellulomonas genus microorganism K32A strain, a cell culture solution, a treated product of the cell or cell culture solution, or a fibrous polysaccharide-degrading enzyme separated therefrom. Plant fiber decomposition method. 植物繊維が稲ワラ、籾殻、麦ワラ、バッカス(サトウキビの絞り粕、とうもろこしの芯)、芋のつる、落葉から選ばれる植物繊維性廃棄物であることを特徴とする請求項記載の植物繊維分解方法。The plant fiber decomposition according to claim 3 , wherein the plant fiber is a plant fiber waste selected from rice straw, rice husk, wheat straw, bacchus (sugar cane squeezed corn, corn core), vine vine, and fallen leaves. Method. 植物繊維の分解処理をpH約6〜約9で実施することを特徴とする請求項または記載の植物繊維分解方法。The plant fiber decomposition method according to claim 3 or 4 , wherein the decomposition treatment of the plant fiber is performed at a pH of about 6 to about 9.
JP2000210497A 1999-07-16 2000-07-11 Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme Expired - Lifetime JP3710997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210497A JP3710997B2 (en) 1999-07-16 2000-07-11 Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-203730 1999-07-16
JP20373099 1999-07-16
JP2000210497A JP3710997B2 (en) 1999-07-16 2000-07-11 Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005168543A Division JP2005253476A (en) 1999-07-16 2005-06-08 Enzyme produced by novel microorganism

Publications (2)

Publication Number Publication Date
JP2001086981A JP2001086981A (en) 2001-04-03
JP3710997B2 true JP3710997B2 (en) 2005-10-26

Family

ID=26514084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210497A Expired - Lifetime JP3710997B2 (en) 1999-07-16 2000-07-11 Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme

Country Status (1)

Country Link
JP (1) JP3710997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384100B2 (en) 2006-03-31 2014-01-08 株式会社メニコン Biomass processing method and processing agent for biomass
CN114703110B (en) * 2022-05-10 2024-01-26 广东省科学院微生物研究所(广东省微生物分析检测中心) Culture medium and method for inducing acetic acid bacteria to enter VBNC state

Also Published As

Publication number Publication date
JP2001086981A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US3983002A (en) Process for preparation of cellulase
Taniguchi et al. Characterization of a potato starch-digesting bacterium and its production of amylase
Immanuel et al. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment
Han et al. Isolation and characterization of a cellulose-utilizing bacterium
Khianngam et al. Screening and identification of cellulase producing bacteria isolated from oil palm meal
Cazemier et al. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata
CA2149236C (en) Novel xylanase, process for producing the same, method for the treatment of pulp, and production of xylo-oligosaccharides
Odeniyi et al. Production characteristics and properties of cellulase/polygalacturonase by a Bacillus coagulans strain from a fermenting palm-fruit industrial residue
JP4077158B2 (en) Plant fiber degrading agent and method for treating plant waste using the same
Kuhad et al. Enhanced production of cellulases by Penicillium citrinum in solid state fermentation of cellulosic residue
Khera et al. Evaluation of culture requirements for cellulose production by Egyptian local isolate alongside reference strain gluconaceto-bacter hansenii ATCC 23769
JP3710997B2 (en) Novel microorganism, enzyme produced by the microorganism, and plant fiber decomposition method using the enzyme
CN114540252B (en) Microbacterium P6 for converting livestock and poultry breeding waste and application
Sirisena et al. Isolation and characterization of cellulolytic bacteria from decomposing rice straw
JPH09299093A (en) Production of arabinose from beet arabinan
JP2005253476A (en) Enzyme produced by novel microorganism
CN113201460B (en) Medicinal fungus trichoderma brevicompactum and application thereof
Sadhu et al. Characterization of a Bosea sp. strain SF5 (MTCC 10045) isolated from compost soil capable of producing cellulase
JP2894293B2 (en) Galactanase S-39 and Bacillus sp. S-39 producing the same
KR100625299B1 (en) Microorganism for decomposing Laminaria japonica and Undaria pinnatifida and a method for decomposing Laminaria japonica and Undaria pinnatifida using the same
JPH0523183A (en) New alpha-galactosidase and production of sugar using the same
JP3002140B2 (en) Novel chitinase and its production method
VINOTHA et al. Molecuar Characterization And Optimization Of Cellulase Producing Bacteria From Fruit & Vegetable Peel Wastes As A Substrate
JP2005304424A (en) Medium for white-rot fungus and method for culturing white-rot fungus
JP3022962B2 (en) Novel xylanase, method for producing the same, pulp treatment method using the xylanase, and method for producing xylo-oligosaccharide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3710997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term