JP3710277B2 - Imaging lens using floating and imaging device having the same - Google Patents
Imaging lens using floating and imaging device having the same Download PDFInfo
- Publication number
- JP3710277B2 JP3710277B2 JP05443798A JP5443798A JP3710277B2 JP 3710277 B2 JP3710277 B2 JP 3710277B2 JP 05443798 A JP05443798 A JP 05443798A JP 5443798 A JP5443798 A JP 5443798A JP 3710277 B2 JP3710277 B2 JP 3710277B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- floating
- positive
- negative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は写真用カメラ、ビデオカメラ、そして電子スチルカメラ等の撮像装置に好適な撮影画角24度程度、Fナンバー3.5程度のフローティングを利用した撮影レンズに関し、特に無限遠物体から等倍率近傍の近距離物体に至る広範囲の物体に対して焦点合わせをする際の収差補正を良好に行った高性能なものである。
【0002】
【従来の技術】
従来より写真用カメラやビデオカメラそして電子スチルカメラ等において、近距離物体の撮影を主たる目的とした撮影レンズにマクロレンズ又はマイクロレンズ(以下「マクロレンズ」という。)と呼ばれるものがある。
【0003】
マクロレンズは一般の標準レンズや望遠レンズ等の他の撮影レンズに比べて、特に近距離物体において高い光学性能が得られるように設計されている。またマクロレンズは多くの場合、近距離物体に限らず近距離物体から無限遠物体に至る広範囲の物体に対しても使用されている。一般にマクロレンズにおいて物体距離範囲(撮影倍率範囲)の拡大を図ろうとすると、特に近接撮影である高倍率の方へ拡大するとフォーカスに伴う収差変動が増大してくる。
【0004】
従来よりフォーカスに伴う収差変動を少なくする方法として、フォーカスの際に、少なくとも2つのレンズ群を独立に移動させる、所謂フローティングを利用したフォーカス方法がある。フローティングを利用した撮影レンズは、例えば本出願人が特開昭63−179308号公報で提案している。
【0005】
【発明が解決しようとする課題】
一般にマクロレンズにおいて撮影倍率範囲を拡大すると、特に高倍率の方に拡大すると撮影倍率の変化に伴い収差変動が多くなり、これを良好に補正するのが難しくなってくる。
【0006】
例えば、撮影倍率1/10を基準に設計されたマクロレンズを撮影倍率が等倍へと高倍率の方へ拡大して撮影しようとすると、球面収差、像面弯曲そしてコマ収差等が著しく多く発生してくる。
【0007】
フローティングを利用すればフォーカスの際の収差変動を少なくすることができる。しかしながら、フォーカスの際に移動させるレンズ群が大型で高重量であると、例えば自動焦点検出機構を有したカメラ等ではレンズ駆動モータの負荷が大きくなり、高速なフォーカスが難しくなるという問題点が生じてくる。
【0008】
本発明は、無限遠物体から近距離物体に至る、特に撮影倍率が等倍付近に至る広範囲の物体に対して焦点合わせ(フォーカス)をする際の収差変動を良好に補正したFナンバー3.5程度、撮影画角24度程度の高い光学性能を有したフローティングを利用した撮影レンズ及びそれを有する撮像装置の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明のフローティングを利用した撮影レンズは、
(1−1)物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群から成り、無限遠物体から近距離物体へのフォーカスを、第1,第4群を固定とし、該第2群を像面側へ、該第3群を物体側へ移動させ、最大撮影倍率時において該第2群と第3群の間隔は最小となり、該第i群の焦点距離をfi、全系の焦点距離をfとしたとき
0.45<f1/f< 0.6 ‥‥‥(1)
−0.48<f2/f<−0.29 ‥‥‥(2)
0.76<f3/f< 1.85 ‥‥‥(3)
なる条件を満足することを特徴としている。
本発明の撮像装置は、構成(1−1)のフローティングを利用した撮影レンズを用いて像を固体撮像素子に形成していることを特徴としている。
【0010】
【発明の実施の形態】
図1〜図4は各々本発明の数値実施例1〜4のレンズ断面図である。図5〜図8は各々本発明の数値実施例1〜4の諸収差図である。
【0011】
レンズ断面図と収差図において、(A)は無限遠物体、(B)は撮影倍率等倍である。レンズ断面図において、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は正の屈折力の第4群である。SPは絞りであり第2群L2と第3群L3との間に配置している。
【0012】
IPは像面である。無限遠物体から至近物体へのフォーカスに際して、矢印の如く、第1,第4群を固定とし、第2群を像面側、第3群を物体側へ移動させている。最大撮影倍率(等倍)において第2群と第3群の間隔が最小となるようにしている。
【0013】
本実施例では以上のようにレンズ構成を特定すると共に、第1〜第3群の屈折力を条件式(1)〜(3)の如く設定し、これにより撮影倍率の変化に伴う収差変動を少なくし、無限遠物体から近距離物体に至る広範囲の物体に対して良好なる収差補正を可能としている。特に無限遠物体から撮影倍率等倍の近距離物体に至る広範囲の物体に対して良好なる収差補正を可能としている。
【0014】
条件式(1)は第1群のパワー(屈折力)に関する。条件式(1)の下限値を超えると第1群のパワーが強くなりすぎ、レンズ系のコンパクト化には有利であるが、フォーカシングに伴う球面収差、色収差による収差変動を補正することが困難となる。
【0015】
逆に上限値を超えると収差補正には有利であるが、レンズ系全体のコンパクト化が難しくなってくる。
【0016】
条件式(2)は第2群のパワーに関する。条件式(2)の下限値を超えて第2群のパワーが強くなりすぎると、フォーカシング時の第2群の移動量を小さくすることができるが、第2群を通過した光線の発散作用が強まり、第3群の径が大きくなりオートフォーカスに不利となる。
【0017】
また第2群自体の収差も増大するためフォーカシング時の収差変動を良好に補正することが困難となる。逆に上限値を超えると収差補正には有利となるが、フォーカシング時の移動量が増大するとともに、高い撮影倍率を得ることが困難となる。
【0018】
条件式(3)は第3群のパワーに関する。条件式(3)の下限値を超えて第3群のパワーが強くなりすぎると、フォーカシング時の移動量の点では移動量が少なくなり有利となるが、相対的に第2群の発散作用が強まり第3群の径が大となってくる。また上限値を超えて第3群のパワーが弱くなりすぎると相対的に第2群の負のパワーも弱まり、高い撮影倍率を得るには大きな移動スペースを要してくるので良くない。
【0019】
本発明のフローティングを有した撮影レンズでは以上の諸条件を満足させることにより達成されるが、更に撮影倍率の変化に伴う収差変動を少なくし、物体距離全般にわたり、高い光学性能を得るには次の諸条件のうち少なくとも1つを満足させるのが良い。
【0020】
(a1)無限遠物体から最至近物体へのフォーカスの際の前記第2群と第3群の移動量(像面側への移動量を正とし、その逆を負とする)を各々ΔS2,ΔS3としたとき
−2.98<Δs2/Δs3<−0.43 ‥‥‥(4)
なる条件を満足することである。
【0021】
条件式(4)はフォーカシング時の第2群及び第3群の移動量(ここで像面側方向の移動量を正とし、その逆を負としている)のバランスに関する。条件式(4)の下限値を超えて第2群の移動量が第3群の移動量に比べ大きくなりすぎると、相対的に第3群の移動量を小さくすることができ、また至近撮影での第4群に入射する軸上光の光線高を高くでき球面収差補正には有利であるが、第2群への変倍分担が大きくなるため、第2群に絶対値の大きなパワーが必要となり収差補正上、不利となる。
【0022】
一方、上限値を超えて至近撮影での第3群の移動量が大きくなりすぎると第4群の径が増大するとともに第4群を通過する軸上光の光線高の低下により球面収差の補正が困難となる。
【0023】
(a2)前記第2群と第3群との間にフォーカスの際に固定の絞りを配置していることである。
【0024】
絞り位置をフォーカシング中、固定することによってメカ構造を容易にできる。また絞り位置を第2群と第3群の中間にとることで等倍率撮影時においても十分な光量を確保するとともにコンパクトでありながら口径比を小さくした明るい撮影レンズを実現している。
【0025】
(a3)前記第2群は負レンズと正レンズとを接合した貼り合わせレンズを有していることである。
【0026】
第2群中に含まれる負レンズ、正レンズからなる貼り合わせレンズ面によって第2群自体がもつ色収差の絶対値を小さく抑えることができ、フォーカシングにともなう収差変動を良好に補正している。
【0027】
(a4)前記第1群は両レンズ面が凸面の正レンズ、物体側に凸面を向けたメニスカス状の負レンズ、そして物体側に凸面を向けたメニスカス状の正レンズより成っていることである。
【0028】
(a5)前記第2群は両レンズ面が凹面の負レンズ、物体側へ凸面を向けたメニスカス状の負レンズ、そして物体側へ凸面を向けたメニスカス状の正レンズより成っていることである。
【0029】
(a6)前記第3群は像面側へ凸面を向けたメニスカス状の正レンズ、両レンズ面が凸面の正レンズ、そして両レンズ面が凹面の負レンズより成っていることである。
【0030】
(a7)前記第4群は像面側へ凸面を向けたメニスカス状の負レンズ、両レンズ面が凸面の正レンズより成っていることである。
【0031】
条件(a4)〜(a7)の如く、各レンズ群を構成することによってフォーカスの際の収差変動を少なくし、物体距離全般にわたり諸収差をバランス良く補正し、良好なる光学性能を得ている。
【0032】
次に本発明の数値実施例を示す。数値実施例においてriは物体側より順に第i番目のレンズ面の曲率半径、diは物体側より第i番目のレンズ厚及び空気間隔、niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。又前述の各条件式と数値実施例における諸数値との関係を表−1に示す。
【0033】
【外1】
【0034】
【外2】
【0035】
【外3】
【0036】
【外4】
【0037】
【表1】
【0038】
【発明の効果】
本発明によれば以上のように、各レンズ群を構成することにより、無限遠物体から近距離物体に至る、特に撮影倍率が等倍付近に至る広範囲の物体に対して焦点合わせ(フォーカス)をする際の収差変動を良好に補正したFナンバー3.5程度、撮影画角24度程度の高い光学性能を有したフローティングを利用した撮影レンズ及びそれを有する撮像装置を達成することができる。
【図面の簡単な説明】
【図1】本発明の数値実施例1のレンズ断面図
【図2】本発明の数値実施例2のレンズ断面図
【図3】本発明の数値実施例3のレンズ断面図
【図4】本発明の数値実施例4のレンズ断面図
【図5】本発明の数値実施例1の収差図
【図6】本発明の数値実施例2の収差図
【図7】本発明の数値実施例3の収差図
【図8】本発明の数値実施例4の収差図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
d d線
g g線
S.C 正弦条件
ΔS サジタル像面
ΔM メリディオナル像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photographic lens using a floating having a field angle of about 24 degrees and an F number of about 3.5 suitable for an imaging apparatus such as a photographic camera, a video camera, and an electronic still camera. This is a high-performance lens that has satisfactorily corrected for aberrations when focusing on a wide range of objects ranging from nearby objects at close distances.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a photographic camera, a video camera, an electronic still camera, and the like, there is a so-called macro lens or a micro lens (hereinafter referred to as a “macro lens”) as a photographing lens mainly intended for photographing a short distance object.
[0003]
The macro lens is designed so as to obtain high optical performance particularly in a short distance object as compared with other photographing lenses such as a general standard lens and a telephoto lens. In many cases, the macro lens is used not only for a short distance object but also for a wide range of objects ranging from a short distance object to an infinite object. In general, when an attempt is made to expand the object distance range (imaging magnification range) in a macro lens, especially when the magnification is enlarged toward high magnification, which is close-up imaging, fluctuations in aberrations associated with focus increase.
[0004]
As a conventional method for reducing aberration fluctuations caused by focusing, there is a focusing method using so-called floating in which at least two lens groups are independently moved during focusing. For example, the applicant of the present invention has proposed a photographing lens using floating in Japanese Patent Laid-Open No. 63-179308.
[0005]
[Problems to be solved by the invention]
In general, when the photographing magnification range is enlarged in a macro lens, especially when the magnification is enlarged to a higher magnification, aberration variation increases with a change in photographing magnification, and it becomes difficult to correct this well.
[0006]
For example, if you attempt to shoot a macro lens designed based on a shooting magnification of 1/10 with the shooting magnification enlarged to the same magnification to a higher magnification, spherical aberration, field curvature, coma, etc. will remarkably occur. Come on.
[0007]
If floating is used, fluctuations in aberrations during focusing can be reduced. However, if the lens group to be moved at the time of focusing is large and heavy, for example, a camera having an automatic focus detection mechanism increases the load on the lens driving motor, which makes it difficult to focus at high speed. Come.
[0008]
The present invention is an F-number 3.5 in which aberration variation is well corrected when focusing on a wide range of objects ranging from an object at infinity to an object at a short distance, in particular, a photographing magnification close to the same magnification. An object of the present invention is to provide a photographic lens using a floating lens having a high optical performance of about 24 degrees, and an imaging apparatus having the same.
[0009]
[Means for Solving the Problems]
The photographic lens using the floating of the present invention,
(1-1) Four lens groups of a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power in order from the object side. made, focusing from infinity to a close object, the first, the fourth group is fixed and the second group to the image plane side, to move the third group toward the object side, at maximum magnification In this case, the distance between the second group and the third group is minimum, and when the focal length of the i-th group is fi and the focal length of the entire system is f, 0.45 <f1 / f <0.6 ( 1)
−0.48 <f2 / f <−0.29 (2)
0.76 <f3 / f <1.85 (3)
It is characterized by satisfying the following conditions.
The image pickup apparatus of the present invention is characterized in that an image is formed on a solid-state image pickup device using a photographing lens using the floating structure (1-1).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 are lens sectional views of Numerical Examples 1 to 4 of the present invention. 5 to 8 are aberration diagrams of Numerical Examples 1 to 4 of the present invention.
[0011]
In the lens cross-sectional view and aberration diagram, (A) is an object at infinity, and (B) is an imaging magnification of the same magnification. In the lens cross-sectional view, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. . SP is a stop, which is disposed between the second group L2 and the third group L3.
[0012]
IP is the image plane. When focusing from an object at infinity to a close object, the first and fourth groups are fixed, the second group is moved to the image plane side, and the third group is moved to the object side, as shown by arrows. The distance between the second group and the third group is minimized at the maximum photographing magnification (equal magnification).
[0013]
In this embodiment, the lens configuration is specified as described above, and the refractive powers of the first to third groups are set as in the conditional expressions (1) to (3). It is possible to reduce aberrations and correct aberrations for a wide range of objects from infinity to short-range objects. In particular, good aberration correction is possible for a wide range of objects ranging from an infinitely distant object to a short distance object with the same magnification as the photographing magnification.
[0014]
Conditional expression (1) relates to the power (refractive power) of the first group. If the lower limit of conditional expression (1) is exceeded, the power of the first group becomes too strong, which is advantageous for making the lens system compact. However, it is difficult to correct aberration variations due to spherical aberration and chromatic aberration associated with focusing. Become.
[0015]
Conversely, if the upper limit is exceeded, it is advantageous for aberration correction, but it becomes difficult to make the entire lens system compact.
[0016]
Conditional expression (2) relates to the power of the second group. If the power of the second group becomes too strong beyond the lower limit value of conditional expression (2), the amount of movement of the second group during focusing can be reduced, but the diverging action of the light rays that have passed through the second group is reduced. Strengthened, the diameter of the third group becomes large, which is disadvantageous for autofocus.
[0017]
In addition, since the aberration of the second group itself also increases, it is difficult to satisfactorily correct aberration fluctuations during focusing. Conversely, if the upper limit is exceeded, it is advantageous for aberration correction, but the amount of movement during focusing increases and it becomes difficult to obtain a high photographing magnification.
[0018]
Conditional expression (3) relates to the power of the third group. If the power of the third group becomes too strong beyond the lower limit value of the conditional expression (3), the amount of movement becomes less advantageous in terms of the amount of movement during focusing, but the divergence of the second group is relatively large. The diameter of the third group becomes stronger and larger. Also, if the power of the third group becomes too weak beyond the upper limit, the negative power of the second group also becomes relatively weak, which is not good because a large moving space is required to obtain a high photographing magnification.
[0019]
This is achieved by satisfying the above conditions in the photographic lens having the floating of the present invention. Further, in order to reduce aberration fluctuations associated with changes in photographic magnification and to obtain high optical performance over the entire object distance, It is preferable to satisfy at least one of these conditions.
[0020]
(A1) The movement amounts of the second group and the third group at the time of focusing from the object at infinity to the closest object (the movement amount toward the image plane side is positive and the opposite is negative) are ΔS2, Assuming ΔS3, −2.98 <Δs2 / Δs3 <−0.43 (4)
To satisfy the following conditions.
[0021]
Conditional expression (4) relates to the balance of the amount of movement of the second group and the third group during focusing (where the amount of movement in the image plane direction is positive and the opposite is negative). If the amount of movement of the second group becomes too large compared to the amount of movement of the third group beyond the lower limit value of conditional expression (4), the amount of movement of the third group can be relatively reduced, and close-up photography is performed. The height of the axial light incident on the fourth group in this lens can be increased, which is advantageous for spherical aberration correction. However, since the variable power sharing to the second group becomes large, the second group has a large absolute power. This is necessary and disadvantageous in terms of aberration correction.
[0022]
On the other hand, if the amount of movement of the third lens unit in the close-up shooting exceeds the upper limit value, the diameter of the fourth lens unit increases, and the spherical aberration is corrected due to a decrease in the height of axial light passing through the fourth lens unit. It becomes difficult.
[0023]
(A2) A fixed stop is disposed between the second group and the third group at the time of focusing.
[0024]
By fixing the aperture position during focusing, the mechanical structure can be facilitated. In addition, by taking the aperture position between the second group and the third group, a bright photographing lens that secures a sufficient amount of light even at the same magnification photographing and has a small aperture ratio while being compact is realized.
[0025]
(A3) The second group includes a bonded lens obtained by bonding a negative lens and a positive lens.
[0026]
The absolute value of the chromatic aberration of the second group itself can be kept small by the cemented lens surface consisting of the negative lens and the positive lens included in the second group, and aberration fluctuations due to focusing are corrected well.
[0027]
(A4) The first group is composed of a positive lens whose convex surfaces are convex, a meniscus negative lens having a convex surface facing the object side, and a meniscus positive lens having a convex surface facing the object side. .
[0028]
(A5) The second group consists of a negative lens whose concave surfaces are concave, a negative meniscus lens whose convex surface faces the object side, and a meniscus positive lens whose convex surface faces the object side. .
[0029]
(A6) The third group consists of a meniscus positive lens having a convex surface directed toward the image surface side, a positive lens having convex surfaces on both lens surfaces, and a negative lens having concave surfaces on both lens surfaces.
[0030]
(A7) The fourth group consists of a meniscus negative lens having a convex surface directed toward the image surface, and a positive lens having both lens surfaces convex.
[0031]
As in the conditions (a4) to (a7), each lens group is configured to reduce aberration fluctuations during focusing, correct various aberrations in a well-balanced manner over the entire object distance, and obtain good optical performance.
[0032]
Next, numerical examples of the present invention will be shown. In the numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air spacing from the object side, and ni and νi are respectively the i-th lens in order from the object side. Refractive index and Abbe number of glass. Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.
[0033]
[Outside 1]
[0034]
[Outside 2]
[0035]
[Outside 3]
[0036]
[Outside 4]
[0037]
[Table 1]
[0038]
【The invention's effect】
According to the present invention, by configuring each lens group as described above, focusing is performed on a wide range of objects ranging from an object at infinity to an object at a short distance, in particular, an imaging magnification close to the same magnification. It is possible to achieve a photographic lens using a floating lens having a high optical performance with an F number of approximately 3.5 and a photographic field angle of approximately 24 degrees, in which aberration fluctuations are corrected well, and an imaging apparatus having the same .
[Brief description of the drawings]
1 is a lens cross-sectional view of Numerical Example 1 of the present invention. FIG. 2 is a lens cross-sectional view of Numerical Example 2 of the present invention. FIG. 3 is a lens cross-sectional view of Numerical Example 3 of the present invention. FIG. 5 is an aberration diagram of Numerical Example 1 of the present invention. FIG. 6 is an aberration diagram of Numerical Example 2 of the present invention. FIG. 7 is a numerical example of Numerical Example 3 of the present invention. Aberration diagram [FIG. 8] Aberration diagram of Numerical Example 4 of the present invention [Explanation of symbols]
L1 1st group L2 2nd group L3 3rd group L4 4th group dd line g g line S.L C Sine condition ΔS Sagittal image plane ΔM Meridional image plane
Claims (9)
0.45<f1/f< 0.6
−0.48<f2/f<−0.29
0.76<f3/f< 1.85
なる条件を満足することを特徴とするフローティングを利用した撮影レンズ。It consists of four lens groups in order from the object side: a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. Focus from an object to a short distance object, the first and fourth groups are fixed, the second group is moved to the image plane side, the third group is moved to the object side, and the second group is at the maximum photographing magnification. When the focal length of the i-th group is fi and the focal length of the entire system is f, 0.45 <f1 / f <0.6
−0.48 <f2 / f <−0.29
0.76 <f3 / f <1.85
A photographic lens using a floating lens that satisfies the following conditions.
−2.98<Δs2/Δs3<−0.43
なる条件を満足することを特徴とする請求項1のフローティングを利用した撮影レンズ。ΔS2 and ΔS3 are the movement amounts of the second group and the third group at the time of focusing from the object at infinity to the closest object (the movement amount to the image plane side is positive and the opposite is negative), respectively. --2.98 <Δs2 / Δs3 <−0.43
The photographic lens using a floating according to claim 1, wherein the following condition is satisfied.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05443798A JP3710277B2 (en) | 1998-02-19 | 1998-02-19 | Imaging lens using floating and imaging device having the same |
US09/251,493 US6246833B1 (en) | 1998-02-19 | 1999-02-17 | Photographic lens and photographing apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05443798A JP3710277B2 (en) | 1998-02-19 | 1998-02-19 | Imaging lens using floating and imaging device having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11237544A JPH11237544A (en) | 1999-08-31 |
JP3710277B2 true JP3710277B2 (en) | 2005-10-26 |
Family
ID=12970698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05443798A Expired - Fee Related JP3710277B2 (en) | 1998-02-19 | 1998-02-19 | Imaging lens using floating and imaging device having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3710277B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2725406A2 (en) | 2012-10-25 | 2014-04-30 | Ricoh Imaging Company, Ltd. | Zoom lens system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101612444B1 (en) | 2009-10-28 | 2016-04-26 | 삼성전자주식회사 | Macro lens system and pickup device having the same |
JP5796973B2 (en) | 2011-03-10 | 2015-10-21 | オリンパス株式会社 | Lens system or imaging apparatus equipped with the same |
JP6454968B2 (en) * | 2014-03-05 | 2019-01-23 | 株式会社リコー | Imaging optical system, stereo camera device, and in-vehicle camera device |
-
1998
- 1998-02-19 JP JP05443798A patent/JP3710277B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2725406A2 (en) | 2012-10-25 | 2014-04-30 | Ricoh Imaging Company, Ltd. | Zoom lens system |
US9696530B2 (en) | 2012-10-25 | 2017-07-04 | Ricoh Imaging Company, Ltd. | Zoom lens system |
Also Published As
Publication number | Publication date |
---|---|
JPH11237544A (en) | 1999-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6325284B2 (en) | Inner focus lens | |
JP3822268B2 (en) | Zoom lens | |
JP3506691B2 (en) | High magnification zoom lens | |
JP2000009997A (en) | Zoom lens | |
CN110501810B (en) | Optical system and imaging apparatus | |
JP6216246B2 (en) | Inner focus lens | |
JP7094550B2 (en) | Imaging optical system | |
JP2015163928A (en) | Inner focus lens | |
JP4366063B2 (en) | Zoom lens and camera having the same | |
WO2017094660A1 (en) | Variable power optical system, optical device, and method for producing variable power optical system | |
JP2003287677A (en) | Wide-angle zoom lens | |
JP6325285B2 (en) | Inner focus lens | |
JP2000180722A (en) | Rear focusing type zoom lens | |
WO2017094665A1 (en) | Variable power optical system, optical device, and method for producing variable power optical system | |
JPH0660971B2 (en) | Zoom lenses | |
CN106019541B (en) | Internal focusing lens | |
JP2012042792A (en) | Zoom lens and image pickup device having the same | |
JP3672829B2 (en) | High magnification zoom lens | |
JPH08179196A (en) | Retrofocus type lens | |
JP6786473B2 (en) | Zoom lens | |
JP3710277B2 (en) | Imaging lens using floating and imaging device having the same | |
WO2014069077A1 (en) | Inner focus type lens | |
JP4955875B2 (en) | Zoom lens and optical apparatus having the same | |
JP2003149552A (en) | Zoom lens and optical equipment having the same | |
JP2004101739A (en) | Large aperture zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080819 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100819 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130819 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |