JP3708270B2 - Electronic level - Google Patents

Electronic level Download PDF

Info

Publication number
JP3708270B2
JP3708270B2 JP02071097A JP2071097A JP3708270B2 JP 3708270 B2 JP3708270 B2 JP 3708270B2 JP 02071097 A JP02071097 A JP 02071097A JP 2071097 A JP2071097 A JP 2071097A JP 3708270 B2 JP3708270 B2 JP 3708270B2
Authority
JP
Japan
Prior art keywords
scale
value
scale value
displayed
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02071097A
Other languages
Japanese (ja)
Other versions
JPH10221067A (en
Inventor
真之 木下
Original Assignee
株式会社ソキア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソキア filed Critical 株式会社ソキア
Priority to JP02071097A priority Critical patent/JP3708270B2/en
Priority to CN98104318.6A priority patent/CN1090755C/en
Priority to US09/017,053 priority patent/US6108920A/en
Priority to DE19804198A priority patent/DE19804198B4/en
Publication of JPH10221067A publication Critical patent/JPH10221067A/en
Application granted granted Critical
Publication of JP3708270B2 publication Critical patent/JP3708270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、視準した標尺の目盛数値を自動的に識別し視準位置を求める電子レベルに関する。
【0002】
【従来の技術】
上記従来の電子レベルとして、例えば特開平5−272970号公報により、縦方向に所定のピッチで配列された目盛パターンと、目盛パターンに対応して配置された1種類の大きさの目盛数値とが表示された標尺を視準する望遠鏡と、該望遠鏡により視準された標尺の画像を画像信号に変換する二次元センサとを備え、該画像信号と予め記憶された画像データとを付き合わせて目盛数値を識別し標尺上の視準位置を自動的に演算するようにしたものが知られている。
【0003】
【発明が解決しようとする課題】
上記従来のものでは、1種類の大きさの目盛数値しか表示されていないため標尺までの距離が長くなると画像信号内の目盛数値が小さくなり識別できなくなる。一方、標尺に表示する目盛数値の大きさを大きくすれば標尺までの距離が長い場合にはよいが逆に標尺までの距離が短い場合には目盛数値が視野からはみ出し識別できない。
【0004】
そこで本発明は、上記の問題点に鑑み、標尺までの距離の長短にかかわらず目盛数値を識別し得る電子レベルを提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために本発明は、縦方向に所定のピッチで配列された目盛パターンと、目盛パターンに対応して配置された目盛数値とが表示された標尺を視準する望遠鏡と、該望遠鏡により視準された標尺の画像を画像信号に変換する二次元センサとを備え、該画像信号と予め記憶された画像データとを付き合わせて目盛数値を識別し標尺上の視準位置を自動的に演算する電子レベルにおいて、標尺が、横幅方向に、区別可能なオーダーの異なる一桁の大きい目盛数値を表示した第1の目盛数値と、等間隔のピッチで配置された第1の目盛パターンと、第1の目盛パターンより長いピッチで等間隔に配置された第2の目盛パターンと、第1の目盛数値よりも小さい目盛数値を表示した第2の目盛数値とを有しており、画像信号における目盛パターンのピッチの大きさから標尺までの距離を演算し、距離に応じていずれの大きさの目盛数値を認識するかを決定することを特徴とする。
【0006】
目盛パターンは一定のピッチで表示されている。従って、画像信号中の目盛パターンのピッチは標尺までの距離が長くなると短くなり、逆に標尺までの距離が短くなると長くなる。そこで、大きさの異なる目盛数値の内標尺までの距離に応じて最適な大きさの目盛数値を識別するようにすれば標尺までの距離の長短にかかわらず目盛数値を識別することができる。
【0007】
ところで、目盛パターンのピッチを求める具体的手段としては、画像信号を目盛パターンの配列方向に沿ってフーリエ変換することが考えられる。周期関数はフーリエ級数展開により基本波周波数の整数倍の正弦波の集合として表させるので、周波数スペクトラムは不連続なスペクトラムになり、かつスペクトラムの周波数の最大値は高くなる。即ち、画像信号中の目盛パターンのピッチが短くなるとスペクトラムの周波数の最大値は高くなり、逆にピッチが長くなると該周波数の最大値は低くなる。そこで、該周波数の最大値から標尺までの距離を求めることができる。
【0008】
一方、小さな目盛数値は標尺までの距離の長短にかかわらず視野からはみ出すことはない。そこで、先ず優先して小さな目盛数値を対象として識別処理を行い、画像信号中の該小さな目盛数値が小さすぎて識別できない場合には標尺までの距離が長いものと判断し、より大きな目盛数値を識別対象に変更するようにしてもよい。
【0009】
【発明の実施の形態】
図1を参照して、1は望遠鏡であり、前方の測定点に垂直に配置された標尺2を視準するものである。該望遠鏡1は標尺2の画像を電気信号である画像信号に変換し、演算処理部3に出力する。本発明にかかる電子レベルは望遠鏡1と演算処理部3とにより構成されている。望遠鏡1内には前方から接眼レンズ11・合焦レンズ12・コンペンセータ13・焦点板14・接眼レンズ15の順に配置され、望遠鏡1が前後に多少傾いてもコンペンセータ13で補償され標尺2を視準できるようになっている。尚、図示しないが合焦レンズ12には十字状の視準線が設けられている。また、該望遠鏡1内にはコンペンセータ13と焦点板14との間にビームスプリッタ16が配置されており、望遠鏡1の光軸に対して側方に配置された二次元センサであるCCDカメラ17に標尺2の画像を分岐するように構成されている。該CCDカメラ17は視準されている標尺2の画像を電気信号である画像信号に変換し、演算処理部3へと出力する。CCDカメラ17からの画像信号はA/D変換器31でデジタル化された後画像メモリ32に格納される。該演算処理部3には演算処理を行うCPU30に対してバスラインを介して上記画像メモリ32の他にROM33及びRAM34が接続されている。また、演算処置部3内での演算結果や標尺2の画像はドライバ回路35を介して液晶画面36に表示されるように構成されている。尚、二次元センサとしてCCDカメラの他に例えばMOS型FETを用いてもよい。
【0010】
ところで、標尺の表面には、図2に示すように、縦方向に所定のピッチで等間隔に配置された目盛パターンM1M2が隣接して表示されている。尚、本実施の形態では目盛パターンM1のピッチを目盛パターンM2のピッチの半分に設定している。また、両目盛パターンM1M2の右側には3桁の目盛数値Bを表示した。該目盛数値Bは縦方向の大きさが4mmであり、10mm毎に表示されており、例えば300の表示は標尺2の下端から300cmの位置であることを示している。左側には目盛数値Bより大きな目盛数値Aを表示した。該目盛数値Aは縦方向の大きさが4cmであり、10cmオーダーを示す黒色の目盛数値AFと1mオーダーを示す白抜きの目盛数値ARとが表示されている。即ち、白抜きの目盛数値ARである3は3mの位置を示し、その上に印されている黒色の目盛数値AFである1は3m10cmの位置を示している。そして、このような標尺の画像はデジタル化された画像信号として画像メモリ32に格納される。CPU30はROM33内の演算処理プログラムに従って画像信号を目盛パターンM1M2の配列方向である縦方向に沿ってフーリエ変換する。ところで周期関数をフーリエ変換すると高い周波数のスペクトラムが得られ、非周期関数からは低い周波数のスペクトラムしか得られない。従って、図3に示すように周期性の強い目盛パターンM1の部分についてフーリエ変換すると高い周波数f1のスペクトラムが得られる。目盛パターンM2の部分についてフーリエ変換するとピッチが2倍であるためf1の1/2の周波数f2のスペクトラムが得られる。目盛数値ABの部分は周期性が低いので低い周波数群f0のスペクトラムしか得られない。このフーリエ変換を標尺2の画像信号について左側から順次右方向へと連続して行うと、各フーリエ変換により得られるスペクトラムの周波数の最大値は図4に示すようになる。該図4から明らかなように、標尺2の横方向全幅にわたってフーリエ変換を繰り返すことにより目盛パターンM1M2の位置を求めることができる。このようにして目盛パターンM1M2の位置が求められると、その位置を基準に目盛数値ABの何れかの画像信号とRAM33内に格納されている数値パターンデータとを付き合わせ、目盛数値を文字認識する。ところで、標尺2までの距離が長いと目盛パターンM1M2に対応する画像信号のピッチが細かくなるため上記周波数f1f2は共に高くなり、逆に標尺2までの距離が短い場合には周波数f1f2は低くなる。そこで、周波数f1f2から標尺2までの距離を求め、その距離が予め設定した所定距離より長い場合には大きい方の目盛数値Aを識別し、所定距離より短い場合には小さい方の目盛数値Bを識別することにより文字認識の精度を高くするようにしている。
【0011】
尚、図5に示すように、最終的に求めたい視準位置は水平な視準線Kの位置である。そこで、目盛パターンM1を用いる場合には標尺2上における該目盛パターンM1のピッチP1(例えば5mm)を内挿し、目盛パターンM2を用いる場合には標尺2上における該目盛パターンM2のピッチP2(例えば10mm)を内挿し、寸法Lを求める。寸法Lが2.5mmであるとすると目盛数値Bの自動読み取りにより識別される302cmに2.5mmをたして視準線Kによる視準位置として302.25cmを得る。
【0012】
上述の実施の形態の他に、図6に示すように、標尺2までの距離を求めることなく、小さい方の目盛数値Bを優先的に識別し(S1)、識別できたら上記図5を参照して説明した内挿演算処理を行い(S3)、視準位置の高さを求める。標尺2までの距離が長いため目盛数値Bを識別できない場合には、識別対象を目盛数値Aに切り替え目盛数値Aを識別した後(S2)、同じく内挿演算処理を行なうようにしてもよい(S3)。
【0013】
【発明の効果】
以上の説明から明らかなように、本発明によれば、標尺までの距離の長短にかかわらず目盛数値を識別することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の構成を示すブロック図
【図2】標尺の表示の一例を示す図
【図3】フーリエ変換により得られるスペクトラムの最大周波数の例を示す図
【図4】標尺の横方向全幅でのスペクトラムの最大周波数の変化を示す図
【図5】視準線の位置を求める内挿方法を説明する図
【図6】他の実施の形態の処理内容を示すフロー図
【符号の説明】
1 望遠鏡
2 標尺
3 演算処理部
17 CCDカメラ(二次元センサ)
A 目盛数値
B 目盛数値
M1 目盛パターン
M2 目盛パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic level for automatically identifying a scale value of a collimated scale and obtaining a collimation position.
[0002]
[Prior art]
As the conventional electronic level, for example, according to Japanese Patent Laid-Open No. 5-272970, there are scale patterns arranged at a predetermined pitch in the vertical direction and scale values of one kind of size arranged corresponding to the scale patterns. A telescope that collimates the displayed scale and a two-dimensional sensor that converts an image of the scale collimated by the telescope into an image signal, and the image signal and prestored image data are scaled together. There is known one that identifies a numerical value and automatically calculates a collimation position on a staff.
[0003]
[Problems to be solved by the invention]
In the above conventional apparatus, only one kind of scale value is displayed. Therefore, if the distance to the scale is increased, the scale value in the image signal becomes smaller and cannot be identified. On the other hand, if the scale value displayed on the scale is increased, the scale value is good when the distance to the scale is long. Conversely, when the distance to the scale is short, the scale value cannot be distinguished from the field of view.
[0004]
In view of the above problems, an object of the present invention is to provide an electronic level capable of identifying a scale value regardless of the length of the distance to the scale.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a telescope for collimating a scale on which scale patterns arranged at a predetermined pitch in the vertical direction and scale values arranged in correspondence with the scale patterns are displayed, A two-dimensional sensor that converts an image of a scale collimated by a telescope into an image signal, and automatically identifies the collimated position on the scale by identifying the scale value by combining the image signal and pre-stored image data The first scale pattern in which the scale is arranged at an equally spaced pitch and the first scale value indicating a single-digit large scale value with a different order of distinction in the width direction in the electronic level to be calculated automatically And a second scale pattern arranged at equal intervals with a longer pitch than the first scale pattern, and a second scale value indicating a scale value smaller than the first scale value, and an image Eyes in signal It calculates the distance from the size of the pitch of the pattern to the staff, and determining whether to recognize any size of the scale numeric according to the distance.
[0006]
The scale pattern is displayed at a constant pitch. Therefore, the pitch of the scale pattern in the image signal becomes shorter as the distance to the staff becomes longer, and conversely becomes longer as the distance to the staff becomes shorter. Therefore, if the scale value having the optimum size is identified in accordance with the distance to the internal scale of scale values having different sizes, the scale value can be identified regardless of the length of the distance to the scale.
[0007]
By the way, as a specific means for obtaining the pitch of the scale pattern, it is conceivable to Fourier-transform the image signal along the array direction of the scale pattern. Since the periodic function is expressed as a set of sine waves that are integral multiples of the fundamental frequency by Fourier series expansion, the frequency spectrum is a discontinuous spectrum and the maximum value of the spectrum frequency is high. That is, when the pitch of the scale pattern in the image signal is shortened, the maximum value of the spectrum frequency is increased. Conversely, when the pitch is increased, the maximum value of the frequency is decreased. Therefore, the distance from the maximum value of the frequency to the staff can be obtained.
[0008]
On the other hand, small scale values do not protrude from the field of view regardless of the distance to the scale. Therefore, first, identification processing is performed on a small scale value with priority, and if the small scale value in the image signal is too small to be identified, it is determined that the distance to the scale is long, and a larger scale value is set. You may make it change into identification object.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a telescope, which collimates a staff 2 arranged perpendicular to a front measurement point. The telescope 1 converts the image of the staff 2 into an image signal that is an electrical signal and outputs the image signal to the arithmetic processing unit 3. The electronic level according to the present invention is constituted by the telescope 1 and the arithmetic processing unit 3. In the telescope 1, an eyepiece 11, a focusing lens 12, a compensator 13, a focusing screen 14, and an eyepiece 15 are arranged in this order from the front. It can be done. Although not shown, the focusing lens 12 is provided with a cross-shaped collimation line. In addition, a beam splitter 16 is disposed between the compensator 13 and the focusing screen 14 in the telescope 1, and a CCD camera 17 that is a two-dimensional sensor disposed laterally with respect to the optical axis of the telescope 1. The image of the scale 2 is configured to branch. The CCD camera 17 converts the collimated image of the staff 2 into an image signal, which is an electrical signal, and outputs it to the arithmetic processing unit 3. The image signal from the CCD camera 17 is digitized by the A / D converter 31 and then stored in the image memory 32. In addition to the image memory 32, a ROM 33 and a RAM 34 are connected to the arithmetic processing unit 3 via a bus line with respect to the CPU 30 that performs arithmetic processing. Further, the calculation result in the calculation processing section 3 and the image of the staff 2 are configured to be displayed on the liquid crystal screen 36 via the driver circuit 35. For example, a MOS FET may be used as the two-dimensional sensor in addition to the CCD camera.
[0010]
On the surface of the scale 2, as shown in FIG. 2, scale patterns M1 and M2 arranged at equal intervals in the vertical direction are displayed adjacent to each other. In the present embodiment, the pitch of the scale pattern M1 is set to half the pitch of the scale pattern M2. Also, a three-digit scale value B is displayed on the right side of both scale patterns M1 and M2. The scale value B is 4 mm in the vertical direction and is displayed every 10 mm. For example, the display of 300 indicates that the position is 300 cm from the lower end of the scale 2. A scale value A larger than the scale value B is displayed on the left side. The scale value A has a vertical size of 4 cm, and black scale value AF indicating the order of 10 cm and white scale value AR indicating the order of 1 m are displayed. That is, a white scale value AR of 3 indicates a position of 3 m, and a black scale value AF of 1 marked thereon indicates a position of 3 m10 cm. Such an image of the staff 2 is stored in the image memory 32 as a digitized image signal. The CPU 30 Fourier transforms the image signal along the vertical direction which is the arrangement direction of the scale patterns M1 and M2 in accordance with the arithmetic processing program in the ROM 33. By the way, if a periodic function is Fourier transformed, a high frequency spectrum is obtained, and only a low frequency spectrum is obtained from an aperiodic function. Therefore, as shown in FIG. 3, when the Fourier transform is performed on the portion of the scale pattern M1 having a strong periodicity, a spectrum having a high frequency f1 is obtained. When the Fourier transform is performed on the portion of the scale pattern M2, the pitch is twice, so that a spectrum having a frequency f2 that is 1/2 of f1 is obtained. Since the scale values A and B have low periodicity, only the spectrum of the low frequency group f0 can be obtained. When this Fourier transform is continuously performed on the image signal of the scale 2 from the left to the right sequentially, the maximum value of the spectrum frequency obtained by each Fourier transform is as shown in FIG. As is clear from FIG. 4 , the positions of the scale patterns M1 and M2 can be obtained by repeating the Fourier transform over the full width of the scale 2 in the horizontal direction. When the positions of the scale patterns M1 and M2 are obtained in this way, any one of the scale numerical values A and B and the numerical pattern data stored in the RAM 33 are added to the scale values based on the positions. Character recognition. By the way, if the distance to the scale 2 is long, the pitches of the image signals corresponding to the scale patterns M1 and M2 become fine, so both the frequencies f1 and f2 become high. Conversely, when the distance to the scale 2 is short, the frequency f1 , F2 becomes low. Therefore, the distances from the frequencies f1 and f2 to the staff 2 are obtained, and when the distance is longer than a predetermined distance, the larger scale value A is identified, and when the distance is shorter than the predetermined distance, the smaller scale value is identified. By identifying B, the accuracy of character recognition is increased.
[0011]
As shown in FIG. 5, the collimation position to be finally obtained is the position of the horizontal collimation line K. Therefore, when the scale pattern M1 is used, the pitch P1 (for example, 5 mm) of the scale pattern M1 on the scale 2 is interpolated, and when the scale pattern M2 is used, the pitch P2 of the scale pattern M2 on the scale 2 (for example, 10 mm) is interpolated to determine the dimension L. When the dimension L is 2.5 mm, the collimation position by the collimation line K is obtained as 302.25 cm by adding 2.5 mm to 302 cm identified by automatic reading of the scale value B.
[0012]
In addition to the above-described embodiment, as shown in FIG. 6, the smaller scale value B is preferentially identified without obtaining the distance to the scale 2 (S1), and if it can be identified, refer to FIG. The interpolation calculation process described above is performed (S3), and the height of the collimation position is obtained. If the scale value B cannot be identified because the distance to the scale 2 is long, the identification target may be switched to the scale value A (S2), and then the interpolation calculation process may be performed (S2). S3).
[0013]
【The invention's effect】
As is clear from the above description, according to the present invention, scale values can be identified regardless of the length of the distance to the scale.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. FIG. 2 is a diagram showing an example of display of a scale. FIG. 3 is a diagram showing an example of the maximum frequency of a spectrum obtained by Fourier transform. FIG. 5 is a diagram showing a change in the maximum frequency of the spectrum in the full width in the horizontal direction of the staff. FIG. 5 is a diagram for explaining an interpolation method for obtaining the position of the line of sight. FIG. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Telescope 2 Standard 3 Operation processing part 17 CCD camera (two-dimensional sensor)
A Scale value B Scale value M1 Scale pattern M2 Scale pattern

Claims (3)

縦方向に所定のピッチで配列された目盛パターンと、目盛パターンに対応して配置された目盛数値とが表示された標尺を視準する望遠鏡と、該望遠鏡により視準された標尺の画像を画像信号に変換する二次元センサとを備え、該画像信号と予め記憶された画像データとを付き合わせて目盛数値を識別し標尺上の視準位置を自動的に演算する電子レベルにおいて、
上記標尺が、横幅方向に、区別可能なオーダーの異なる大きい目盛数値を表示した第1の目盛数値と、等間隔のピッチで配置された第1の目盛パターンと、この第1の目盛パターンより長いピッチで等間隔に配置された第2の目盛パターンと、上記第1の目盛数値よりも小さい目盛数値を表示した第2の目盛数値とを有しており、
上記画像信号における上記目盛パターンのピッチの大きさから標尺までの距離を演算し、該距離に応じて上記第1の目盛数値及び上記第2の目盛数値のいずれの大きさの目盛数値を認識するかを決定することを特徴とする電子レベル。
A telescope that collimates a scale on which scale patterns arranged at a predetermined pitch in the vertical direction and scale values arranged corresponding to the scale patterns are displayed, and an image of the scale collimated by the telescope A two-dimensional sensor that converts the signal into an electronic level that identifies the scale value by automatically combining the image signal and pre-stored image data and automatically calculates the collimation position on the scale,
The said scale is longer than this 1st scale pattern and the 1st scale value which displayed the 1st scale value which displayed the large scale value from which an order which can be distinguished differs in the width direction, and the pitch of equal intervals A second scale pattern arranged at equal intervals with a pitch, and a second scale value indicating a scale value smaller than the first scale value,
It calculates the distance from the size of the pitch of the scale pattern in the image signal to staff recognizes the scale value of any magnitude of the first scale values and the second scale numerical depending on the distance An electronic level characterized by determining what.
記画像信号を、目盛パターンの配列方向に沿ってフーリエ変換して得られるスペクトラムの周波数から標尺までの距離を演算することを特徴とする請求項1記載の電子レベル。The pre-Symbol image signal, an electronic level according to claim 1, wherein the calculating a distance from the frequency spectrum obtained by Fourier transform to staff in the arrangement direction of the scale pattern. 縦方向に所定のピッチで配列された目盛パターンと、目盛パターンに対応して配置された目盛数値とが表示された標尺を視準する望遠鏡と、該望遠鏡により視準された標尺の画像を画像信号に変換する二次元センサとを備え、該画像信号と予め記憶された画像データとを付き合わせて目盛数値を識別し標尺上の視準位置を自動的に演算する電子レベルにおいて、
上記標尺には大きさの異なる複数種類の目盛数値が表示され、優先的に小さい目盛数値を識別し、識別不能の場合に順に大きな目盛数値へと識別対象を変更することを特徴とする電子レベル。
A telescope that collimates a scale on which scale patterns arranged at a predetermined pitch in the vertical direction and scale values arranged corresponding to the scale patterns are displayed, and an image of the scale collimated by the telescope A two-dimensional sensor that converts the signal into an electronic level that identifies the scale value by automatically combining the image signal and pre-stored image data and automatically calculates the collimation position on the scale,
An electronic level characterized in that a plurality of types of scale values of different sizes are displayed on the measuring scale, a small scale value is identified preferentially, and if the identification is impossible, the identification target is changed to a large scale value in order. .
JP02071097A 1997-02-03 1997-02-03 Electronic level Expired - Fee Related JP3708270B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02071097A JP3708270B2 (en) 1997-02-03 1997-02-03 Electronic level
CN98104318.6A CN1090755C (en) 1997-02-03 1998-01-25 Electronic level
US09/017,053 US6108920A (en) 1997-02-03 1998-01-27 Electronic level
DE19804198A DE19804198B4 (en) 1997-02-03 1998-02-03 Electronic leveling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02071097A JP3708270B2 (en) 1997-02-03 1997-02-03 Electronic level

Publications (2)

Publication Number Publication Date
JPH10221067A JPH10221067A (en) 1998-08-21
JP3708270B2 true JP3708270B2 (en) 2005-10-19

Family

ID=12034711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02071097A Expired - Fee Related JP3708270B2 (en) 1997-02-03 1997-02-03 Electronic level

Country Status (1)

Country Link
JP (1) JP3708270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884612B2 (en) * 2001-09-03 2012-02-29 台灣儀器行股▲分▼有限公司 Surveyor equipped with an automatic character reading device
JP2003083746A (en) * 2001-09-12 2003-03-19 Pentax Precision Co Ltd Optical range finder
JP4648033B2 (en) * 2005-02-25 2011-03-09 株式会社 ソキア・トプコン Surveyor autofocus mechanism

Also Published As

Publication number Publication date
JPH10221067A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US6108920A (en) Electronic level
KR930004880B1 (en) Tracking type vehicle-distance measuring apparatus
JP3508369B2 (en) Image measuring machine
JP3683350B2 (en) Electronic level gauge and electronic level
US5139327A (en) Vehicle following apparatus with a distance measuring function
EP0596749B1 (en) Ophtalmologic apparatus
JP3789625B2 (en) Electronic level gauge and electronic level
US20090225167A1 (en) Gauge line position measuring device, program for measuring a gauge line position, and gauge line mark
EP3548838B1 (en) Wire rope measuring device and wire rope measuring method
JPH0450611A (en) Apparatus for measuring distance
KR19980018429A (en) Distance detection method using image
JP2002039750A (en) Automatic survey system
JP3708270B2 (en) Electronic level
JP3698846B2 (en) Electronic level
JP3795190B2 (en) Electronic level
JP3508368B2 (en) Image measuring machine
JP2003083746A (en) Optical range finder
JPH03235007A (en) Speckle length measuring instrument
KR0181993B1 (en) Apparatus and method for measuring visual size of material
JPH0754253B2 (en) Tracking type inter-vehicle distance measuring device
JPH0251038A (en) Testing device of resolution of lens barrel
JPH0933248A (en) Passive triangulation-type range finder
JP3708652B2 (en) Object recognition device
EP1998148A2 (en) Absolute angle calculation apparatus
JP2730682B2 (en) Image processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees