JP3707675B2 - Tool wear control flake graphite cast iron - Google Patents

Tool wear control flake graphite cast iron Download PDF

Info

Publication number
JP3707675B2
JP3707675B2 JP2001321190A JP2001321190A JP3707675B2 JP 3707675 B2 JP3707675 B2 JP 3707675B2 JP 2001321190 A JP2001321190 A JP 2001321190A JP 2001321190 A JP2001321190 A JP 2001321190A JP 3707675 B2 JP3707675 B2 JP 3707675B2
Authority
JP
Japan
Prior art keywords
tool
cutting
cast iron
wear
flake graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001321190A
Other languages
Japanese (ja)
Other versions
JP2003129167A (en
Inventor
諭 古屋
公紀 佐藤
伸明 尾添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2001321190A priority Critical patent/JP3707675B2/en
Publication of JP2003129167A publication Critical patent/JP2003129167A/en
Application granted granted Critical
Publication of JP3707675B2 publication Critical patent/JP3707675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
この本発明は、主として高い切削速度領域での切削加工時において、工具摩耗抑制効果をもたらす付着物層が工具表面に生成するよう、Mg,Alを微量に添加して製作する工具摩耗抑制片状黒鉛鋳鉄に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
一般に鋳鉄製品の出荷に至るまでに要するコストの中でも、切削加工工程におけるコストはその占める割合も大きくまた低減の余地を残している。特に製造方法の面でも大きな投資を要することなく、高速切削速度領域における工具摩耗の抑制等により切削加工工程におけるコスト低減を可能にする鋳鉄材料が求められている。
【0003】
これに対し、従来切削工具の耐摩耗性を向上させる片状黒鉛鋳鉄として、鋳鉄溶湯にSi,Al,Ca等を接種剤として添加するものは、特開平9−291333号公報に示されるように公知である。
【0004】
しかし上記のような従来技術においては、添加剤の種類及び鋳鉄に対する添加量も多く、高速切削域における工具の耐摩耗性が不十分であり、これらの点の改善が求められていた。
【0005】
この発明は少種類の添加物を少量添加することで、特に高速域でも切削工具の十分な耐摩耗性を付与する片状黒鉛鋳鉄を提供せんとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明の鋳鉄は、第1に鋳鉄の溶解に際し、鋳鉄の切削加工性を改善するために添加物を添加するものにおいて、微量の Mn 及び S を含む鋳鉄に対し、添加物として0.005重量%以上0.025重量%未満(0.005%を除く)の範囲でMgを残留させるべく添加してなることを特徴としている。
【0007】
第2に、添加物として0.005重量%以上0.02重量%以下(0.006%以下を除く)の範囲でAlを残留させるべく添加してなることを特徴としている。
【0008】
第3に、Mg又はMg及びAlにより鋳鉄の高速切削時において切削工具表面に高融点の保護皮膜の形成を可能としたことを特徴としている。
【0009】
【発明の実施の形態】
本発明の鋳鉄は、主に高い切削速度領域での切削加工時において工具摩耗抑制効果をもたらす付着物層が工具表面に生成するように、Mg,Alを微量に添加して製作した片状黒鉛鋳鉄材料である。本発明における鋳鉄の製造過程において微量に添加したMg,Alの各元素は、材料中に酸化物等の非金属介在物として存在する。
【0010】
これに対し、TiCやSi3N4などを主成分とする切削工具を用いた、主に高速切削速度条件下の切削時においては、これらが材料中に存在するSiO2など他の非金属介在物とともに工具表面に選択的に付着堆積することで保護皮膜を形成し、工具と材料との反応を妨げることにより切削工具の摩耗を抑制するものである。 このようにMg、Alを添加することで、工具表面に形成される保護皮膜の溶融温度が高くなるため、特に切削温度上昇をともなう高速切削時において工具摩耗抑制効果をもつものである。
【0011】
さらにこの発明の特徴を具体的に説明すると、この発明は、Mgを0.005重量%以上0.025重量%未満、Alを0.005重量%以上0.02重量%以下の範囲で残留するよう、Mgを単独もしくはMg、Alの両方を鋳鉄溶湯に添加して製造した、片状黒鉛鋳鉄(FC系)である。特に高速切削速度領域で工具すくい面および逃げ面の摩耗進行抑制効果を持つ点に特徴がある。
【0012】
実際にMgを約0.01重量%、Alを約0.01重量%残留するよう添加して製造したJIS FC200相当材料を、市販のサーメット工具、窒化珪素系セラミック工具等を用いて切削速度400、600、800、1000m/minで乾式旋削した結果、従来の片状黒鉛鋳鉄切削時に比べ、特に高速切削速度領域で工具すくい面および逃げ面の摩耗進行が大幅に抑制される効果を確認することができた。
【0013】
そしてこの発明では、片状黒鉛鋳鉄の機械的性能を得るために制御する在来使用の元素以外にMg、Alを微量に添加して製造するため、従来の片状黒鉛鋳鉄と比べ機械的性質および鋳造性に影響がなく、製造方法も従来の鋳鉄製造方法と比べ大差なくかつ大きな投資を要することがないことも特徴である。
【0014】
【実施例】
以下本発明の具体的実施例につき説明すると、表1は本実施例と他の2つの比較例の資料の成分表であり、表2は上記各資料の機械的性質を表した表である。表3は各資料の切削試験の実験条件を表している。
【0015】
【表1】

Figure 0003707675
【0016】
表1における比較例1は一般的な片状黒鉛鋳鉄FC材、比較例2は、Alが材料に0.01重量%残留するよう比較例1と同一溶湯にAlを微量添加し製作した材料である。実施例は、AlおよびMgが、ともに0.01重量%残留するよう比較例1と同一溶湯にAlを微量添加し製作した材料である。
【0017】
【表2】
Figure 0003707675
【0018】
表2に示す数値は概ね同程度にあり、各材料の機械的性質(引張り強さ、硬さ)に大差はないことが明らかである。その結果本実験で行ったAl,Mg微量添加による成分調整は、材料の機械的性質に影響を及ぼしていないと考えることができる。
【0019】
【表3】
Figure 0003707675
【0020】
本実験で用いた切削工具は、サーメット工具と超硬工具P10種(TiCを含有)、および窒化珪素系セラミック工具(Si3N4)の、いずれも市販の切削工具3種類である。これらの工具を用いて各材料を切削速度400〜1000m/minの範囲で高速乾式旋削加工した。
【0021】
図1〜図3はそれぞれ比較例1,同2及び実施例の組織写真を示し、各材料の黒鉛形状および基地組織に大差なく(Mgを添加している実施例についても黒鉛形状は球状化していない)、各材料とも片状黒鉛鋳鉄であることがわかる。本実験で行ったAl、Mg微量添加による成分調整は、材料の黒鉛形状および基地組織に影響を及ぼしていないと考えることができる。
【0022】
図4は各材料をサーメット工具で切削した時の工具逃げ面平行部摩耗幅(切削距離:1300m)を、図5は各材料をサーメット工具で切削した時の工具すくい面クレータ摩耗深さ(切削距離:1300m)をそれぞれ示している。
【0023】
これらの図から明らかなように、比較例1を切削した場合では工具は大きく摩耗しており、また工具すくい面の摩耗は切削速度の増加に伴い大きくなる傾向にある。比較例2を切削した場合では、比較例1の切削時に比べ摩耗は抑制されており、また切削速度の増加に伴い摩耗量が小さくなるという、比較例1の切削時とは逆の傾向にある。
【0024】
実施例を切削した場合、比較例2をの切削時よりもさらに摩耗量は抑制されており、特に高速切削速度領域において工具摩耗の進行が大幅に抑制され1000m/minという高い切削速度においても工具摩耗量は非常に小さい。また切削速度の増加に伴い摩耗量が小さくなる傾向も大きく現れている。
【0025】
図6は各材料を窒化けい素系セラミック工具で切削した時の工具逃げ面平行部摩耗幅(切削距離:1300m)を示し、図7は各材料を窒化けい素系セラミック工具で切削した時の工具すくい面クレータ摩耗深さ(切削距離:1300m)を示している。
【0026】
図示するように、窒化珪素系セラミック工具での切削においては、サーメット工具に比べ工具摩耗量は小さい。また切削速度の変化に伴う摩耗量の違いは小さい傾向にあるといえる。比較例1の切削時では、各切削速度において、工具すくい面および逃げ面で工具摩耗の進行が確認できる。
【0027】
比較例2を切削した場合では、比較例1の切削時に比べ摩耗は抑制されている。特に工具すくい面摩耗の抑制効果が高いことがわかる。実施例を切削した場合ではサーメット工具の切削時と同様に、比較例2の切削時よりもさらに摩耗量は抑制されており、特に高速切削速度領域において工具摩耗の進行が大幅に抑制されるという傾向が現れている。また工具すくい面に関しては、切削速度を問わず摩耗が生じていないことがわかる。
【0028】
図8は各材料を超硬工具P10種で切削した時の工具逃げ面平行部摩耗幅(切削距離:250m)を示し、図9は各材料を超硬工具P10種で切削した時の工具すくい面クレータ摩耗深さ(切削距離:250m)をそれぞれ示している。
【0029】
図示されるように、超硬工具P10種での切削では、他の2つの工具に比べ工具は大きく摩耗している。比較例1の切削時では、各切削速度において工具すくい面および逃げ面で工具は大きく摩耗している。切削速度1000m/minでは著しく摩耗しているように、切削速度の増加に伴い摩耗が大きくなるという傾向が強く現れている。
【0030】
比較例2を切削した場合では、比較例1の切削時に比べ摩耗は抑制されているが、大幅な抑制効果をもたらすには至っていないといえる。実施例を切削した場合では、工具摩耗は大幅に抑制されており、特に高速切削速度領域における工具摩耗の抑制効果が高いことがわかる。
【0031】
図10(A)〜(D)は実施例をサーメット工具で切削した時の工具逃げ面SE像およびEDSによるO,Al,Mgの各面分析結果(切削速度:1000m/min)を示し、図11(A)〜(D)は実施例をサーメット工具で切削した時の工具すくい面SE像およびEDSによるO,Al,Mgの各面分析結果(切削速度:1000m/min)を示している。
【0032】
図より切削により被削材と接触する箇所、すなわち工具摩耗が生じる箇所には、Al、Mg、Oが同一箇所に検出されていることがわかる。この結果から、微量に添加した元素からなる酸化物(Al23 MgO)を主体とした複合的な保護皮膜が工具表面に形成され、工具摩耗の抑制に寄与しているものと考えられる。
【0033】
【実験結果からの考察】
1.限られた試料片による実験結果とその判断について
片状黒鉛鋳鉄切削時において、材料中に存在する非金属介在物による複合的な保護皮膜を工具表面に形成させ工具摩耗を抑制させるという効果は、材料的観点では、切削時における切りくず形態の変化、すなわち切削機構の変化を伴うような組成的な材料特性の変化が生じない限り同様に得られるものと考えられる。本発明の実施例で採用したMg,Alの各元素の成分割合は微量であり、黒鉛形状の球状化など鋳鉄の材料性質を著しく変化させるものではない。
【0034】
また鋳鉄は、製造方法の違いにより材料特性に違いが生じやすい材料である。微量元素を添加した成分調整材料のもつ効果を評価するためには、同一溶湯により同一方法で同時に製造する等同一の実験条件下で製造された材料を比較対象に用いなければならない。
【0035】
即ち、実験条件の異なる他の実施例を本実験結果に付加して比較評価することは、同一ロットから製造されていないことから好ましい評価方法ではなく、他の実施例の実験結果を示すためには、その都度、同一溶湯による比較例を製作し同様に実験することで評価する必要がある。
【0036】
この点に関し、本実験では全て上記の実験条件を満たした材料を用いて望ましい結果を得ているものの、限られた予算と期間内での実験であるために、実施例における試料例も限られている。したがってこの実施例の効果の及ぶ範囲は上記実験結果の傾向から判断する他はない。
以下Mg添加の独自の効果及びMg,Alの添加量につき実験結果に基づいて考察する。
【0037】
2.Mg添加による独自の効果について
本発明はMg、Alの添加により、切削時においてこれらを成分とした溶融温度の高い保護皮膜を工具表面に形成させることで、特に切削温度上昇をともなう高速切削時において工具摩耗抑制効果をもたらすものと考えられる。
【0038】
本実験では、実施例としてMg、Alの両方を添加した材料の切削を行っているが、工具摩耗状況の観察から、本実験の範囲では両元素ともに工具摩耗を促進させるというような工具に対する害作用は確認されていない。そして工具表面の成分分析結果では、Alよりも強い強度でMgが検出されている。工具表面には、添加元素を成分とした非金属介在物および材料中に存在する他の非金属介在物を成分とした複合的な保護皮膜が形成されているが、その皮膜の成分のなかでもMgOはAl2O3に比べ優先的に形成されていると認められる。したがってMgを単独で添加した場合においても、Alを単独で添加したもの(比較例2)以上の工具摩耗抑制効果をもたらす保護皮膜が形成されることが推察できる。
【0039】
保護皮膜の形成状況は、切削時の雰囲気、被削材成分、切削工具成分、切削機構に加え、切削温度に大きく影響される。切削で発生する熱により、成分となる材料中の各非金属介在物が適度の流動性を得ることで、複合した組成の保護皮膜が生成される。MgO単体の融点はAl2O3単体の融点よりも高いため、MgOを主体とした保護皮膜はAl2O3を主体としたものに比べ溶融温度が高く、切削温度の上昇を伴う高速切削により適応したものである。このことからもMgを単独で添加した場合の方が、Alを単独で添加したもの(比較例2)以上の高速切切削速度領域での工具摩耗抑制効果をもつものと考えられる。
またAlの添加は機械的強度の低下や鋳造欠陥を招くことが懸念されるため、材料の品質を考えた場合、過剰添加は好ましくない。
【0040】
3.Mg,Al添加量について
Mgは鋳鉄を適正な条件で処理すると黒鉛の形状を球状にし,このことにより機械的性質を鋼並に強くすることから、球状黒鉛鋳鉄を製造するときに用いられる元素である。この時に必要な残留Mg量はS量にも影響されるがほぼ0.04%以上必要とされる。また、近年片状黒鉛鋳鉄と球状黒鉛鋳鉄の中間的な性質を持つCV黒鉛鋳鉄が開発され、この鋳鉄に必要な必要な残留Mg量は0.025〜0.04%である。従って、黒鉛形状を変化させず片状黒鉛であるためには残留Mg量の上限は0.025%未満となる。片状黒鉛鋳鉄切削時に工具表面に酸化物層が形成されるにはAl単独添加の例から推察されるように0.005%以上必要である。
【0041】
一般的にAlを添加した鋳鉄には,耐熱性(耐酸化性)を目的としたアルミニウム鋳鉄がある。これは、Alの含有量が1%〜数%のものであり本発明とはその添加量の範囲に大差がある。
【0042】
片状黒鉛鋳鉄では先に述べたように機械的性質改善のため接種と言われる工程がある。これは接種剤であるFe-Si合金中のSiが炭素の活量を増大させ炭素を黒鉛として晶出する効果による。Alは添加量が微量の場合、片状黒鉛鋳鉄ではSiと同じく黒鉛化傾向の強い元素であり同等の効果を示す。また、SiとAlが共存すると接種効果がより高くなることが知られており、Al添加の接種剤も市販されている。通常の接種剤はFe-Si合金でありこの時の残留Al量は不純物として含有する微量であり、Al入り接種剤を用いたときの残留Al量はほぼ0.005%以下である。
【0043】
一方,Alの含有量が増すと黒鉛化傾向の強い元素であることから黒鉛が粗大化し,基地のパーライト組織がフェライト化することから機械的強度が低下する上に種々の鋳造欠陥の原因となる。また、酸化保護皮膜層の形成には微量で十分なことから経済的要因も含めその含有量の上限は0.02%である。
【0044】
【発明の効果】
以上のように構成される本発明によれば、切削工具による鋳鉄の切削時、特に高速切削に際し、工具表面に耐摩耗性の保護皮膜を形成することにより、切削工具の摩耗を抑制し工具寿命の延長及びそれに伴う加工コスト低減の実現を図ることができる。
【0045】
また本発明では、片状黒鉛鋳鉄の機械的性能を得るために制御する元素以外にMg、Alを微量に添加するだけで、容易に且つ低コストで上記効果を達成することができるほか、従来の片状黒鉛鋳鉄と比べ機械的性質および鋳造性に影響がない。さらに製造方法は、従来の鋳鉄製造方法と比べ大差なくかつ大きな投資を要することがない等の利点がある。
【図面の簡単な説明】
【図1】比較例1の組織写真である。
【図2】比較例2の組織写真である。
【図3】実施例の組織写真である。
【図4】各材料をサーメット工具で切削した時の工具逃げ面平行部摩耗幅を示すグラフである。
【図5】各材料をサーメット工具で切削した時の工具すくい面クレータ摩耗深さを示すグラフである。
【図6】各材料を窒化けい素系セラミック工具で切削した時の工具逃げ面平行部摩耗幅を示すグラフである。
【図7】各材料を窒化けい素系セラミック工具で切削した時の工具すくい面クレータ摩耗深さを示すグラフである。
【図8】各材料を超硬工具P10種で切削した時の工具逃げ面平行部摩耗幅を示すグラフである。
【図9】各材料を超硬工具P10種で切削した時の工具すくい面クレータ摩耗深さを示すグラフである。
【図10】実施例をサーメット工具で切削した時の工具逃げ面SE像およびEDSによる面分析結果を示す写真である。
【図11】実施例をサーメット工具で切削した時の工具すくい面SE像およびEDSによる面分析結果を示す写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a tool wear-suppressing piece formed by adding a small amount of Mg and Al so that an adhesion layer that has a tool wear-suppressing effect is formed on the tool surface during cutting mainly in a high cutting speed region. It relates to graphite cast iron.
[0002]
[Prior art and problems to be solved by the invention]
In general, among the costs required to ship cast iron products, the cost in the cutting process is large, and there is still room for reduction. In particular, there is a need for a cast iron material that enables cost reduction in the cutting process by suppressing tool wear in the high-speed cutting speed region without requiring a large investment in terms of the manufacturing method.
[0003]
On the other hand, as a flake graphite cast iron for improving the wear resistance of a conventional cutting tool, one in which Si, Al, Ca or the like is added to a cast iron melt as an inoculum is disclosed in JP-A-9-291333. It is known.
[0004]
However, in the prior art as described above, the type of additive and the amount added to cast iron are also large, and the wear resistance of the tool in the high-speed cutting region is insufficient, and improvement of these points has been demanded.
[0005]
The present invention is intended to provide flake graphite cast iron that imparts sufficient wear resistance of a cutting tool even at a high speed by adding a small amount of a small amount of additives.
[0006]
[Means for Solving the Problems]
The cast iron of the present invention for solving the above-mentioned problems is as follows. First, when the cast iron is melted, an additive is added to improve the machinability of the cast iron. For cast iron containing a small amount of Mn and S , As an additive, Mg is added so as to remain in the range of 0.005% by weight or more and less than 0.025% by weight (excluding 0.005%) .
[0007]
Second, it is characterized in that Al is added as an additive in the range of 0.005 wt% or more and 0.02 wt% or less (excluding 0.006% or less) .
[0008]
Third, Mg or Mg and Al make it possible to form a high melting point protective film on the cutting tool surface during high speed cutting of cast iron.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The cast iron of the present invention is flake graphite produced by adding a small amount of Mg and Al so that an adhering layer that has a tool wear-inhibiting effect is formed on the tool surface during cutting mainly in a high cutting speed region. Cast iron material. Each element of Mg and Al added in a trace amount in the production process of cast iron in the present invention exists in the material as non-metallic inclusions such as oxides.
[0010]
On the other hand, when using cutting tools mainly composed of TiC or Si 3 N 4 and cutting mainly under high-speed cutting speed conditions, these non-metallic inclusions such as SiO 2 exist in the material. A protective film is formed by selectively depositing and depositing on the tool surface together with an object, and the wear of the cutting tool is suppressed by preventing the reaction between the tool and the material. By adding Mg and Al in this way, the melting temperature of the protective film formed on the tool surface is increased, so that it has an effect of suppressing tool wear particularly during high-speed cutting with an increase in cutting temperature.
[0011]
Further, the characteristics of the present invention will be specifically described. In the present invention, Mg is used alone or Mg so that Mg remains in the range of 0.005 wt% or more and less than 0.025 wt% and Al in the range of 0.005 wt% or more and 0.02 wt% or less. It is flake graphite cast iron (FC type) produced by adding both Al to the cast iron melt. It is particularly characterized in that it has the effect of suppressing the progress of wear on the tool rake face and flank face in the high-speed cutting speed region.
[0012]
Actually, JIS FC200 equivalent material manufactured by adding about 0.01% by weight of Mg and about 0.01% by weight of Al, using commercially available cermet tools, silicon nitride ceramic tools, etc., cutting speeds of 400, 600, 800 As a result of dry turning at 1000 m / min, it was confirmed that the progress of wear on the tool rake face and the flank face was greatly suppressed, especially in the high-speed cutting speed region, compared to the conventional flake graphite cast iron cutting.
[0013]
And in this invention, in addition to the conventional elements that are controlled to obtain the mechanical performance of flake graphite cast iron, it is manufactured by adding a small amount of Mg, Al, so mechanical properties compared to conventional flake graphite cast iron Also, there is no influence on the castability, and the manufacturing method is not much different from the conventional cast iron manufacturing method, and it does not require a large investment.
[0014]
【Example】
Hereinafter, specific examples of the present invention will be described. Table 1 is a component table of materials of this example and the other two comparative examples, and Table 2 is a table showing the mechanical properties of each of the above materials. Table 3 shows the experimental conditions of the cutting test for each material.
[0015]
[Table 1]
Figure 0003707675
[0016]
Comparative Example 1 in Table 1 is a general flake graphite cast iron FC material, and Comparative Example 2 is a material manufactured by adding a small amount of Al to the same molten metal as Comparative Example 1 so that Al remains 0.01% by weight in the material. The example is a material manufactured by adding a small amount of Al to the same molten metal as Comparative Example 1 so that both Al and Mg remain at 0.01% by weight.
[0017]
[Table 2]
Figure 0003707675
[0018]
The numerical values shown in Table 2 are approximately the same, and it is clear that there is no great difference in the mechanical properties (tensile strength, hardness) of each material. As a result, it can be considered that the component adjustment by the addition of trace amounts of Al and Mg performed in this experiment does not affect the mechanical properties of the material.
[0019]
[Table 3]
Figure 0003707675
[0020]
The cutting tools used in this experiment are three types of commercially available cutting tools: a cermet tool, a carbide tool P10 (containing TiC), and a silicon nitride ceramic tool (Si 3 N 4 ). Using these tools, each material was subjected to high speed dry turning at a cutting speed of 400 to 1000 m / min.
[0021]
1 to 3 show structural photographs of Comparative Examples 1, 2 and Examples, respectively, and there is no great difference in the graphite shape and base structure of each material (the graphite shape is also spheroidized in Examples where Mg is added). It is clear that each material is flake graphite cast iron. It can be considered that the component adjustment by addition of trace amounts of Al and Mg performed in this experiment does not affect the graphite shape and matrix structure of the material.
[0022]
Fig. 4 shows the wear width of the tool flank parallel part (cutting distance: 1300m) when each material is cut with a cermet tool, and Fig. 5 shows the tool rake face crater wear depth (cutting) when each material is cut with a cermet tool. (Distance: 1300m).
[0023]
As is clear from these figures, when the comparative example 1 is cut, the tool is greatly worn, and the wear of the tool rake face tends to increase as the cutting speed increases. In the case of cutting Comparative Example 2, the wear is suppressed compared to the cutting of Comparative Example 1, and the amount of wear decreases as the cutting speed increases, which tends to be the reverse of the cutting of Comparative Example 1. .
[0024]
When the example was cut, the amount of wear was further suppressed compared to the cutting of Comparative Example 2, and the progress of tool wear was greatly suppressed, especially in the high-speed cutting speed region, and the tool was also used at a high cutting speed of 1000 m / min. The amount of wear is very small. In addition, there is a large tendency that the amount of wear decreases as the cutting speed increases.
[0025]
Fig. 6 shows the wear width of the tool flank parallel part (cutting distance: 1300m) when each material is cut with a silicon nitride ceramic tool, and Fig. 7 shows when each material is cut with a silicon nitride ceramic tool. Tool rake face crater wear depth (cutting distance: 1300m) is shown.
[0026]
As shown in the figure, in the cutting with a silicon nitride ceramic tool, the amount of tool wear is smaller than that of the cermet tool. Moreover, it can be said that the difference in the amount of wear accompanying the change in the cutting speed tends to be small. At the time of cutting in Comparative Example 1, the progress of tool wear can be confirmed on the tool rake face and flank face at each cutting speed.
[0027]
When the comparative example 2 is cut, the wear is suppressed as compared with the cutting of the comparative example 1. It can be seen that the effect of suppressing tool rake face wear is particularly high. In the case of cutting the example, the amount of wear is further suppressed as compared with the cutting of Comparative Example 2 as with the cutting of the cermet tool, and the progress of the tool wear is greatly suppressed particularly in the high-speed cutting speed region. A trend is emerging. It can also be seen that the tool rake face is not worn regardless of the cutting speed.
[0028]
Fig. 8 shows the wear width of the tool flank parallel part (cutting distance: 250m) when each material is cut with the carbide tool P10, and Fig. 9 shows the tool rake when each material is cut with the carbide tool P10. The surface crater wear depth (cutting distance: 250 m) is shown.
[0029]
As shown in the figure, in cutting with the carbide tool P10, the tool is significantly worn compared to the other two tools. At the time of cutting in Comparative Example 1, the tool is greatly worn on the tool rake face and the flank face at each cutting speed. There is a strong tendency that wear increases as the cutting speed increases, as the cutting speed is 1000 m / min.
[0030]
In the case of cutting Comparative Example 2, it can be said that the wear is suppressed as compared with the cutting of Comparative Example 1, but it does not bring about a significant suppression effect. In the case of cutting the example, the tool wear is greatly suppressed, and it can be seen that the effect of suppressing the tool wear is particularly high in the high-speed cutting speed region.
[0031]
FIGS. 10A to 10D show the tool flank SE image and the ODS, Al, and Mg surface analysis results (cutting speed: 1000 m / min) by EDS when the embodiment was cut with a cermet tool. 11 (A) to (D) show the tool rake face SE image and the ODS, Al, and Mg surface analysis results (cutting speed: 1000 m / min) by EDS when the embodiment was cut with a cermet tool.
[0032]
From the figure, it can be seen that Al, Mg, and O are detected at the same location at a location where the workpiece comes into contact with cutting, that is, a location where tool wear occurs. From this result, it is considered that a composite protective film mainly composed of oxides (Al 2 O 3 , MgO) composed of a small amount of added elements is formed on the tool surface, contributing to the suppression of tool wear. .
[0033]
[Discussion from experimental results]
1. About the experimental results with limited sample pieces and their judgment When cutting flake graphite cast iron, the effect of suppressing tool wear by forming a composite protective film on the tool surface with non-metallic inclusions present in the material is From the viewpoint of materials, it is considered that the same can be obtained as long as there is no change in chip shape during cutting, that is, no change in compositional material characteristics accompanied by a change in cutting mechanism. The component ratio of each element of Mg and Al employed in the examples of the present invention is very small, and does not remarkably change the material properties of cast iron such as spheroidizing graphite.
[0034]
Further, cast iron is a material that easily causes differences in material properties due to differences in manufacturing methods. In order to evaluate the effect of the component adjustment material to which a trace element is added, a material manufactured under the same experimental conditions, such as simultaneously manufacturing with the same molten metal in the same method, must be used for comparison.
[0035]
That is, adding other examples with different experimental conditions to the present experimental results for comparative evaluation is not a preferable evaluation method because they are not manufactured from the same lot, but to show the experimental results of other examples. Each time, it is necessary to evaluate by producing a comparative example using the same molten metal and carrying out a similar experiment.
[0036]
In this regard, all the experiments in this experiment have obtained desirable results using materials that satisfy the above-mentioned experimental conditions. However, because the experiments were performed within a limited budget and period, sample examples in the examples were also limited. ing. Therefore, the range of the effect of this embodiment can only be judged from the tendency of the experimental results.
In the following, the unique effects of Mg addition and the addition amounts of Mg and Al are discussed based on the experimental results.
[0037]
2. About the unique effect of adding Mg By adding Mg and Al, the present invention forms a protective film with a high melting temperature on the tool surface during cutting, especially during high-speed cutting with an increase in cutting temperature. This is considered to bring about a tool wear suppression effect.
[0038]
In this experiment, cutting was performed on a material to which both Mg and Al were added as an example, but from the observation of the tool wear situation, damage to the tool that both elements promote tool wear within the scope of this experiment. The effect has not been confirmed. As a result of component analysis on the tool surface, Mg is detected with a stronger strength than Al. On the surface of the tool, a composite protective film is formed that contains non-metallic inclusions containing additive elements as components and other non-metallic inclusions present in the material. It is recognized that MgO is preferentially formed compared to Al 2 O 3 . Therefore, even when Mg is added alone, it can be inferred that a protective film is formed that has a tool wear suppressing effect higher than that obtained by adding Al alone (Comparative Example 2).
[0039]
The formation of the protective film is greatly influenced by the cutting temperature in addition to the atmosphere during cutting, the work material component, the cutting tool component, and the cutting mechanism. The non-metallic inclusions in the component material obtain appropriate fluidity due to the heat generated by cutting, so that a protective film having a composite composition is generated. Since the melting point of MgO alone is higher than the melting point of Al 2 O 3 alone, the protective film mainly composed of MgO has a higher melting temperature than that mainly composed of Al 2 O 3 , and the high-speed cutting accompanied by an increase in the cutting temperature Adapted. From this, it can be considered that the case where Mg is added alone has a tool wear suppression effect in a high-speed cutting speed region higher than that obtained when Al is added alone (Comparative Example 2).
Moreover, since there is a concern that the addition of Al causes a decrease in mechanical strength and a casting defect, excessive addition is not preferable in view of the quality of the material.
[0040]
3. About the amount of Mg and Al added
Mg is an element used when producing spheroidal graphite cast iron because it casts the shape of graphite into a spherical shape when the cast iron is treated under appropriate conditions, thereby making the mechanical properties as strong as steel. At this time, the amount of residual Mg required is approximately 0.04% or more although it is affected by the amount of S. In recent years, CV graphite cast iron having intermediate properties between flake graphite cast iron and spheroidal graphite cast iron has been developed, and the necessary residual Mg amount required for this cast iron is 0.025 to 0.04%. Therefore, in order to make flake graphite without changing the graphite shape, the upper limit of the residual Mg amount is less than 0.025%. In order to form an oxide layer on the tool surface during flake graphite cast iron cutting, 0.005% or more is necessary as can be inferred from the case of adding Al alone.
[0041]
In general, cast iron to which Al is added includes cast aluminum for the purpose of heat resistance (oxidation resistance). This is because the Al content is 1% to several%, and there is a large difference in the range of the amount of addition from the present invention.
[0042]
As described above, flake graphite cast iron has a process called inoculation for improving mechanical properties. This is due to the effect that Si in the Fe-Si alloy as an inoculum increases the activity of carbon and crystallizes carbon as graphite. When Al is added in a very small amount, Al is an element that has a strong tendency to graphitize in the flake graphite cast iron like Si, and exhibits the same effect. In addition, it is known that the inoculation effect is higher when Si and Al coexist, and an inoculum containing Al is also commercially available. A normal inoculum is an Fe-Si alloy, and the amount of residual Al at this time is a trace amount contained as impurities, and the amount of residual Al when using an inoculum containing Al is approximately 0.005% or less.
[0043]
On the other hand, when the Al content increases, it is an element that has a strong tendency to graphitize, so that the graphite becomes coarse, and the pearlite structure of the base becomes ferritic, which decreases mechanical strength and causes various casting defects. . In addition, since a very small amount is sufficient for the formation of the oxidation protective coating layer, the upper limit of its content including economic factors is 0.02%.
[0044]
【The invention's effect】
According to the present invention configured as described above, the wear of the cutting tool is suppressed and the tool life is reduced by forming a wear-resistant protective film on the surface of the tool when cutting the cast iron by the cutting tool, particularly at high speed cutting. It is possible to realize an extension of the process and a reduction in processing costs associated therewith.
[0045]
In the present invention, besides the elements controlled to obtain the mechanical performance of flake graphite cast iron, the above effects can be achieved easily and at low cost by simply adding a small amount of Mg and Al. Compared with flake graphite cast iron, mechanical properties and castability are not affected. Furthermore, the manufacturing method has advantages such as not much difference from the conventional cast iron manufacturing method and requiring no large investment.
[Brief description of the drawings]
1 is a structural photograph of Comparative Example 1. FIG.
2 is a structure photograph of Comparative Example 2. FIG.
FIG. 3 is a structure photograph of an example.
FIG. 4 is a graph showing the wear width of a tool flank parallel portion when each material is cut with a cermet tool.
FIG. 5 is a graph showing tool rake face crater wear depth when each material is cut with a cermet tool.
FIG. 6 is a graph showing the wear width of the tool flank parallel portion when each material is cut with a silicon nitride ceramic tool.
FIG. 7 is a graph showing tool rake face crater wear depth when each material is cut with a silicon nitride ceramic tool.
FIG. 8 is a graph showing the wear width of the tool flank parallel portion when each material is cut with a carbide tool P10.
FIG. 9 is a graph showing tool rake face crater wear depth when each material is cut with a carbide tool P10.
FIG. 10 is a photograph showing a tool flank SE image and a surface analysis result by EDS when an example is cut with a cermet tool.
FIG. 11 is a photograph showing a tool rake face SE image and a surface analysis result by EDS when an example is cut with a cermet tool.

Claims (3)

鋳鉄の溶解に際し、鋳鉄の切削加工性を改善するために添加物を添加するものにおいて、微量の Mn 及び S を含む鋳鉄に対し、添加物として0.005重量%以上0.025重量%未満(0.005%を除く)の範囲でMgを残留させるべく添加してなる工具摩耗抑制片状黒鉛鋳鉄。When the cast iron is melted, an additive is added to improve the machinability of the cast iron. For cast iron containing a small amount of Mn and S , the additive is 0.005 wt% or more and less than 0.025 wt% ( Tool wear-suppressed flake graphite cast iron to which Mg is added so as to remain within a range of ( except 0.005%) . 添加物として0.005重量%以上0.02重量%以下(0.006%以下を除く)の範囲でAlを残留させるべく添加してなる請求項1の工具摩耗抑制片状黒鉛鋳鉄。The tool wear-suppressed flake graphite cast iron according to claim 1 , wherein Al is added as an additive in a range of 0.005 wt% to 0.02 wt% (excluding 0.006% or less). Mg又はMg及びAlにより鋳鉄の高速切削時において切削工具表面に高融点の保護皮膜の形成を可能とした請求項1又は2の工具摩耗抑制片状黒鉛鋳鉄。  3. The tool wear-suppressing flake graphite cast iron according to claim 1, wherein a high-melting point protective film can be formed on the cutting tool surface during high-speed cutting of cast iron with Mg or Mg and Al.
JP2001321190A 2001-10-18 2001-10-18 Tool wear control flake graphite cast iron Expired - Lifetime JP3707675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321190A JP3707675B2 (en) 2001-10-18 2001-10-18 Tool wear control flake graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321190A JP3707675B2 (en) 2001-10-18 2001-10-18 Tool wear control flake graphite cast iron

Publications (2)

Publication Number Publication Date
JP2003129167A JP2003129167A (en) 2003-05-08
JP3707675B2 true JP3707675B2 (en) 2005-10-19

Family

ID=19138454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321190A Expired - Lifetime JP3707675B2 (en) 2001-10-18 2001-10-18 Tool wear control flake graphite cast iron

Country Status (1)

Country Link
JP (1) JP3707675B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195993A (en) * 2007-02-09 2008-08-28 Kimura Chuzosho:Kk Flake graphite cast iron material having excellent weldability
JP7278157B2 (en) * 2019-06-26 2023-05-19 株式会社神戸製鋼所 Flaky graphite cast iron material and cutting method thereof, flake graphite cast iron member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003129167A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
TWI428452B (en) So that the cutting tool with excellent life of the mechanical structure of steel and its cutting method
JPS634903B2 (en)
JPS5952944B2 (en) Mn-Si intermetallic compound dispersed high-strength brass with toughness and wear resistance
JP3753054B2 (en) Free-cutting steel for machine structures with excellent carbide tool machinability
US6746550B1 (en) Compacted graphite cast iron alloy and its method of making
JP3707675B2 (en) Tool wear control flake graphite cast iron
JP2003049240A (en) Free-cutting steel
JP3343538B2 (en) Rolling roll
TWI282374B (en) Low carbon free cutting steel
US3829312A (en) Process for the manufacture of steel of good machinability
JPS626736B2 (en)
JP7278157B2 (en) Flaky graphite cast iron material and cutting method thereof, flake graphite cast iron member and manufacturing method thereof
JPH07173573A (en) Free-cutting steel excellent in machinability by carbide tool and internal quality
JPS626737B2 (en)
JPS59116348A (en) Wear-resistant cu alloy having high strength and high toughness
JP2004277818A (en) Free cutting steel for metal mold for molding plastic
JP2000319753A (en) Low carbon sulfur base free-cutting steel
JP3698656B2 (en) Cutting tools
JP6801541B2 (en) Mechanical steel and its cutting method
JP4264175B2 (en) Free-cutting steel bar with excellent machinability and its manufacturing method
JPS59116347A (en) Wear-resistant cu alloy with high strength and toughness
JP2001200335A (en) Roll for rolling
EP0250595B1 (en) Finish cutting tool and finish cutting method for steel
JP2003342691A (en) Free-cutting steel for metal mold
JPS6343453B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Ref document number: 3707675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250