JP3706722B2 - Chlorine generator - Google Patents

Chlorine generator Download PDF

Info

Publication number
JP3706722B2
JP3706722B2 JP32476197A JP32476197A JP3706722B2 JP 3706722 B2 JP3706722 B2 JP 3706722B2 JP 32476197 A JP32476197 A JP 32476197A JP 32476197 A JP32476197 A JP 32476197A JP 3706722 B2 JP3706722 B2 JP 3706722B2
Authority
JP
Japan
Prior art keywords
water
chlorine
time
electrode
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32476197A
Other languages
Japanese (ja)
Other versions
JPH11156362A (en
Inventor
一重 渡邊
元春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP32476197A priority Critical patent/JP3706722B2/en
Priority to US09/168,170 priority patent/US6126797A/en
Priority to MYPI98004599A priority patent/MY126571A/en
Priority to IDP981341A priority patent/ID21008A/en
Publication of JPH11156362A publication Critical patent/JPH11156362A/en
Application granted granted Critical
Publication of JP3706722B2 publication Critical patent/JP3706722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水道水や地下水等の原水を塩素により殺菌して一般家庭用或いは業務用の飲料水として供給する塩素発生器に関するものである。
【0002】
【従来の技術】
従来、この種の塩素発生器として、シスターン内に陽極と陰極で構成された一対の平板の電極を設置したものが一般的に知られている。この塩素発生器によれば、タイマにより所定のインターバルで各電極に直流電圧を印加し、シスターン内の飲料水を電気分解し、殺菌に有効な成分である次亜塩素酸を発生させている。
【0003】
しかしながら、この塩素発生器では、シスターンに一旦飲料水を貯留し、この貯留した水に次亜塩素酸を付加した後に、蛇口、飲料機等の端末に給送するため、端末までの配管が長くなるときは、この飲料の供給手段としてポンプが必要不可欠となっていたし、また、その配管長によっては極めて大きなポンプを設置する必要があり、コスト的に不利なものとなっていた。また、飲料供給量に見合う殺菌された水を常時確保するためには、シスターンの大型化が避けられず、塩素発生器の小型化が困難となっていた。
【0004】
そこで、このような問題点を解決するため、出願人は特願平9ー277333号に係る塩素発生器を出願している。この塩素発生器は、給水管路を通じて圧送された水道水等の塩素イオン含有水を貯留する貯水容器と、この貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、貯水容器内の水を内外の各電極間に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、各電極に直流電圧を印加して塩素イオン含有水を電気分解し、これにより、有効塩素を含む水を生成する塩素発生器である。
【0005】
この塩素発生器によれば、停水時に貯水容器内に貯留された水に次亜塩素酸を含ませるシスターン型の塩素発生器と、水供給時に次亜塩素酸を含ませる流水型の塩素発生器との両者の機能を備えているため、殺菌生成された水を安定的に供給でき、また、シスターン型の塩素発生器と比較し小型にできる。
【0006】
【発明が解決しようとする課題】
ところで、この塩素発生器により生成された塩素濃度が殺菌に充分な濃度となっているときは、飲料の販売に支障はないが、この塩素発生器の末端に接続されている飲料供給機の販売待機時が長時間になると、塩素発生器内に含まれる塩素が化学反応や自己分解等により、塩素濃度が低下するという問題点を有している。
【0007】
特に、塩素濃度の低下は水温に影響されること、即ち、水温が高いときは塩素の分解等が活発で、また、水温が低いときは塩素の分解等が僅かであるため、水温により塩素発生器内の塩素のバラツキが大きく、その塩素濃度が低いときは充分な殺菌効果が得られなかったり、逆に塩素濃度が高すぎるときは塩素の臭いが強すぎて飲料の味に影響するという問題点を有していた。
【0008】
本発明の目的は前記従来の課題に鑑み、塩素イオン含有水の塩素濃度の低下を防止し、更には水温に対応するよう通電制御し所望の塩素濃度の水を得ることができる塩素発生器を提供することにある。
【0009】
【課題を解決するための手段】
本発明は前記従来の課題を解決するため、請求項1の発明は、給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する密閉された貯水容器と、貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、貯水容器内の水を内外の各電極間に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、各電極に直流電圧を印加して塩素イオン含有水を電気分解し有効塩素を含む水を生成する塩素発生器において、各電極への直流電圧を印加する時刻及び通電時間を設定するタイマ手段を有する構造となっている。
【0010】
請求項1の発明によれば、例えばこの塩素発生器を飲料供給機に搭載しているときは、停水状態が継続する時間帯、即ち深夜の時刻に電圧印加時刻を設定する。これにより、設定時刻に貯水容器内の塩素イオン含有水が電気分解するため、停水状態の継続による貯水容器内の塩素濃度の低下が防止され、飲料販売時において有効塩素濃度の水を供給できる。
【0011】
請求項2の発明は、給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する密閉された貯水容器と、貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、貯水容器内の水を内外の各電極間に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、各電極に直流電圧を印加して塩素イオン含有水を電気分解し有効塩素を含む水を生成する塩素発生器において、貯水容器への塩素イオン含有水の給水の有無を検知する給水検知センサと、給水検知センサからの給水信号に基づき給水開始時からの経過時間を計時するタイマ手段と、給水開始時からインターバル設定時間経過したとき電極に電圧を印加する通電制御手段とを有する構造となっている。
【0012】
請求項2の発明によれば、給水開始時からインターバル設定時間が経過したときに電極に電圧が印加されるため、インターバル設定時間の経過、即ち停水状態の継続により貯水容器内の塩素濃度が低下したときは、電圧印加により塩素濃度を上昇させ有効塩素濃度に維持できる。
【0013】
請求項3の発明は、請求項2に係る塩素発生器において、インターバル設定時間を2以上有するため、貯水容器内の水に含まれる塩素が分解されやすい夏期は、インターバル設定時間を短くして電圧印加の回数を多く、一方、それ以外の時期はインターバル設定時間を長くして電圧印加回数を少なくし、これにより、塩素の分解状態に対応した制御が可能となる。
【0014】
請求項4は、給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する密閉された貯水容器と、貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、貯水容器内の水を内外の各電極間に通す通水管路と、通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、各電極に直流電圧を印加して塩素イオン含有水を電気分解し有効塩素を含む水を生成する塩素発生器において、貯水容器への塩素イオン含有水の給水の有無を検知する給水検知センサと、給水検知センサからの給水信号に基づき給水開始時からの経過時間を計時するタイマ手段と、貯水容器に給水された塩素イオン含有水の温度を検知する温度センサと、温度センサの検知温度に基づき給水開始時から電極への電圧印加時までのインターバル時間を設定するインターバル時間設定手段と、インターバル設定時間を経過したとき及び該給水検知センサが給水を検知したとき電極に電圧を印加する通電制御手段とを有する構造となっている。
【0015】
請求項4の発明によれば、インターバル設定時間が貯水容器内に給水される水温に基づき設定されるため、貯水容器内の塩素濃度に対応した電圧印加を実現することができる。また、貯水容器内に給水されているとき、例えば飲料供給機においては飲料販売がされているとき、電圧を印加するため、飲料供給機に給送される水に塩素成分が付加される。
【0016】
請求項5の発明は、請求項4に係る塩素発生器において、通電制御手段は温度センサの検知温度に基づき電極への通電時間を設定変更する構造となっているため、飲料供給機に給送される水の温度に対応した塩素を付加することができ、飲料供給機に給送される水が有効塩素を含む水となる。
【0017】
請求項6の発明は、請求項2乃至請求項5に係る塩素発生器において、インターバル時間の計時中に、給水検知手段が給水を検知したときは、インターバル時間を給水開始時から再度計時を開始するリセット手段を有する構造となっている。これにより、インターバル設定時間が給水開始の度に新たに設定され、貯水容器内の塩素濃度が実際に低くなったときのみ、塩素濃度を上昇させることとなる。
【0018】
【発明の実施の形態】
図1乃至図4は本発明に係る塩素発生器の第1実施形態を示すもので、図1は塩素発生器が搭載された飲料供給機の水回路図、図2は塩素発生器の断面図、図3は塩素発生器の駆動制御回路を示すブロック図、図4は塩素発生器の制御フローチャートである。
【0019】
まず、この飲料供給機を図1を参照して説明する。この飲料供給機は、希釈水を供給する希釈水ラインA、炭酸水を生成する炭酸水ラインB、及び、シロップが供給されるシロップラインCを有するもので、この各ラインA,B,Cからデイスペンシングバルブ(以下、バルブという)1に飲料が供給され、このバルブ1から炭酸飲料等がカップDに注がれる。
【0020】
この希釈水ラインAは、水道水を給水弁2を通して密閉型の塩素発生器3に供給され、販売動作の度に水ポンプ4で汲み上げられ、第1冷却コイル5aで冷却してバルブ1に供給される。また、炭酸水ラインBは、第1冷却コイル5aで冷却された水の一部をカーボネータ6に引き込み、その後、第2冷却コイル5bで冷却してバルブ1に供給する。ここで、このカーボネータ6には炭酸ボンベ7から炭酸ガスが供給されており、バルブ1に供給される水が炭酸水となっている。更に、シロップラインCはシロップタンク8から供給されたシロップを第3冷却コイル5cで冷却し、バルブ1に供給する。ここで、シロップタンク8には炭酸ガスを供給できるようになっており、炭酸入りのシロップとしてもバルブ1に供給できる。なお、バルブ1を開くとき(飲料販売するとき)、このバルブ1の開閉に伴う配管内の水流を流量センサ9により検知し、この水流を検知したとき、給水弁2を開き塩素発生器3に水道水(塩素イオン含有水)を供給するようになっている。
【0021】
次に、この塩素発生器3の構造を図2を参照して説明する。この塩素発生器3は密閉された円筒状の貯水容器30を有する。この貯水容器30は上部開口のハウジング31と、このハウジング31に螺合して密閉状態とする蓋体32とを有し、この蓋体32の周縁寄りには継手で構成された流入口32aを設け、水道水等の塩素イオン含有水を給水弁2を通じてハウジング31内に導いている。また、この蓋体32の中央側には継手で構成された流出口32bを設け、貯水容器30内の水を水ポンプ4を通じてバルブ1側に給送する。
【0022】
なお、この蓋体32は電気的絶縁体、例えば樹脂等で形成されている。また、塩素発生器3と給水弁2との間の配管には流量検知手段、例えば流量スイッチ9が設置されており、配管内の水の流量が所定値以上(ディスペンシングバルブが開)となったとき検知信号を出力するようになっている。
【0023】
このように構成された貯水容器30において、蓋体32には電極ユニット33が設置されている。この電極ユニット33は円筒状の内側電極33aとこの内側電極33aの外側に所定間隙(3〜5mm)をおいて同心円状に配置された外側電極33bとを有し、各電極33a,33bを例えばチタン材料をベースに白金或いは白金系(白金ーイリジウムも含む)をコーティングした電極材で形成している。また、この各電極33a,33b間の上部開口には環状の電極固定板34を填め込み、各電極33a,33bの間隙を適正に維持する一方、内側電極33aの下部開口には電極キャップ35を填め込み、内側電極33aの下部開口から水が流入しないようにしている。
【0024】
この電極固定板34には入口孔34aが形成される一方、内側電極33aの上部には出口孔34bが形成されており、貯水容器1内の水が入口孔34aを通じて各電極33a,33b間に流れ、更に出口孔34bを通じて内側電極33aの内側に流れるようになっている。この入口孔34a、各電極33a,33b間の間隙及び出口孔34bにより外側電極33bの外側の水を内側電極33aの内側に導く通水管路を構成している。また、各電極33a,33bの上部には電極用端子35a,35bが設けられており、この電極用端子35a,35bがシール状態で蓋体32を貫通して直流電源に接続している。
【0025】
次に、本実施形態に係る塩素発生器3の駆動制御回路を図3のブロック図を参照して説明する。
【0026】
この塩素発生器3は、マイクロコンピュータ等による制御装置36を備えて自動化されており、この制御装置36は中央演算装置(CPU)36a、制御プログラムを記憶しているメモリ36b、信号を入出力するI/Oポート36c,36dを有している。このI/Oポート36cはタイマ37の信号を入出力し、また、I/Oポート36dは電極スイッチ38を通じて各電極33a,33bへ信号を出力するようになっている。
【0027】
ここで、タイマ37は時刻設定及び各電極33a,33bへの通電時間を設定するもので、時刻設定として飲料供給機の停水状態(飲料販売が行われない状態)が継続する時間帯、即ち閉店後の数時間経過した深夜の時刻を設定し、また、通電時間として水の塩素濃度割合を20%程度上昇させる時間を設定している。
【0028】
以下、図4のフローチャートを参照して本実施形態に係る塩素発生器3の動作を説明する。即ち、タイマ37で設定された通電開始時刻になったか否かを検知し(S1,S2)、この時刻になったときは電極スイッチ38がオンし、タイマ37で設定された通電時間T1に亘って電極33a,33bに電圧を印加する(S3〜S5)。これにより、貯水容器30内の塩素イオン含有水が電気分解され、停水状態の継続により低下した塩素濃度が補充される。また、本実施形態では時刻設定を1つの時刻としているが、複数の時刻を設定し、貯水容器30内の塩素濃度のバラツキを防止するようにしても良い。
【0029】
図5及び図6は本発明に係る塩素発生器の第2実施形態を示すものである。この第2実施形態では、インターバル設定スイッチ39によりインターバル時間T2,T3を設定する一方、この時間T2,T3をタイマ37で監視している。また、タイマ37は前記第1実施形態と同様に各電極33a,33bへの通電開始から通電終了までの時間T4も設定及び監視している。
【0030】
ここで、インターバル時間T2,T3は貯水容器30への水道水の給水開始、即ち流量センサ9が水流を検知してから電極33a,33bへ通電するまでの時間であり、水温がさほど高くない時期に対応するため、インターバル時間T2を3時間と設定し、また、水温が非常に高くなる時期、即ち夏期に対応するためインターバル時間T3を例えば2時間と設定し、何れのインターバル時間T2,T3をも任意に選択できるようになっている。
【0031】
このような流量センサ9の検知信号及びインターバル設定時間T2,T3に基づき、電極スイッチ38を所定時間T4に亘ってオンする。
【0032】
この駆動制御を図6のフローチャートを参照して説明する。なお、この図6で時間T4は、前記第1実施形態と同様に電極33a,33bに通電するとき、シスターン31内の水の塩素濃度を20%程度上昇させる時間となっている。
【0033】
即ち、飲料販売の時期が夏期のときは、インターバル設定時間T3を選択し、それ以外の時期のときはインターバル設定時間T2を選択する(S1,S2)。ここで、インターバル時間がT2或いはT3の何れが設定されている場合でも、飲料販売(給水開始)、即ち流量センサ9が水流を検知したか否かを監視し、水流を検知したとき、インターバル時間T2であれば3時間経過したか、インターバル時間T3であれば2時間経過したかを監視する。この監視中に再度給水が開始されたときは、この計時を一旦リセットし再度計時を開始する(S3〜S10)。このような停水状態がインターバル時間T2或いはT3に亘って継続したときは、電極スイッチ38をT4に亘って通電し、貯水容器30内の水の塩素濃度を上昇させる(S11〜S13)。
【0034】
このように本実施形態によれば、水道水の給水開始時間を基準に電極33a,33bへの通電待ち時間を設定しているため、飲料が頻繁に販売され、貯水容器30に水道水が随時給水されているとき、即ち貯水容器30内の塩素濃度がさほど低くなっていないときは、各電極33a,33bに通電されることがなく、一方、飲料販売待機時間が長くなり塩素濃度が80%より低くなるおそれがあるときにのみ通電される。従って、貯水容器30内の水の塩素濃度を効率的に所定レベルに維持できる。
【0035】
また、本実施形態に係る塩素発生器は、通電待ち時間であるインターバル時間をT2,T3と長短2種類選択できるため、貯水容器30内の水の温度が上昇し、塩素が自然蒸散し易い時期、即ち夏期は待ち時間の短いインターバル設定時間T3を選択し、一方、それ以外の時期は待ち時間の長いインターバル設定時間T2を選択する。これにより、水温変化に従って変化する塩素濃度にも対応でき、貯水容器30内の塩素濃度を確実に所定レベル以上に維持できる。
【0036】
図7及び図8は本発明に係る塩素発生器の第3実施形態を示すものである。この実施形態では貯水容器30内の水温を検知する温度センサ40からの検知温度に基づき、給水開始時間から電圧印加までのインターバル設定時間T5を設定するものであり、水温が高いときはそのインターバル設定時間T5を短く、逆に水温が低いときはインターバル設定時間T5を長くするよう制御している。また、各電極33a,33bへの通電時間も水温に基づき制御するようになっており、水温が高いときは通電時間T6を長く、逆に水温が低いときは通電時間T6を短くするよう設定されている。なお、このような設定は例えば基準温度と検知水温との差を変数とした関数や、検知水温毎に予め用意されたデータを用いて行われる。
【0037】
この制御フローを図8を参照して説明する。まず、流量センサ9により給水が開始されたか否かを検知する(S1)。ここで、給水が開始されたときは、貯留容器30内に流入した水の温度を温度センサ40で検知し、この水温に対応するインターバル設定時間T5及び通電時間T6を設定する(S2〜S4)。この設定された通電時間T6に基づき各電極33a,33bに通電する(S5〜S7)。一方、インターバル設定時間T5に基づき給水停止状態で電圧が印加される(S8)。なお、この給水開始により水ポンプ4が駆動し、水道水が図2の矢印に示すように給水弁2→流入口32a→貯水容器30へと流れ、この貯水容器30内の水が入口孔34a→各電極33a,33b間→出口孔34b→流出口32bへと順次流れる。この流出口32bから流出した水は図1の矢印に示すように配管内を流れバルブ1に給送される。
【0038】
以上のように本実施形態ではこのバルブ1への給水工程での通電時間T6と、停水時でのインターバル設定時間T5がそれぞれ水温に基づき設定され、水温に基づく適正な通電時間が選択され、塩素濃度を適正な値に維持することができる。
【0039】
なお、前記第2実施形態では飲料が販売されているときは、貯水容器30内の水に電圧が印加されない構成となっているが、本実施形態では地域により水道水の塩素濃度が異なることに着目し、塩素濃度の低い地域等でも有効塩素濃度を得る構成としている。これにより、飲料販売時にも通電し、販売飲料に適正量の塩素を付加される。
【0040】
【発明の効果】
以上説明したように、本発明によれば、密閉された貯水容器内に貯留された塩素イオン含有水において、その塩素濃度の低下を防止し、更には水温に対応するよう通電制御し所望の塩素濃度を得ることができる等の利点を有する。
【図面の簡単な説明】
【図1】本発明に係る塩素発生器が搭載された飲料供給機の水回路図
【図2】第1実施形態に係る塩素発生器の断面図
【図3】第1実施形態に係る塩素発生器の駆動制御回路を示すブロック図
【図4】第1実施形態に係る塩素発生器の制御フローチャート
【図5】第2実施形態に係る塩素発生器の駆動制御回路を示すブロック図
【図6】第2実施形態に係る塩素発生器の制御フローチャート
【図7】第3実施形態に係る塩素発生器の駆動制御回路を示すブロック図
【図8】第3実施形態に係る塩素発生器の制御フローチャート
【符号の説明】
3…塩素発生器、30…貯水容器、33a,33b…電極、36…制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chlorine generator that sterilizes raw water such as tap water or groundwater with chlorine and supplies it as drinking water for general household use or business use.
[0002]
[Prior art]
Conventionally, as this type of chlorine generator, one in which a pair of flat plate electrodes composed of an anode and a cathode are installed in a cis-turn is generally known. According to this chlorine generator, a DC voltage is applied to each electrode at predetermined intervals by a timer to electrolyze the drinking water in the cistern, thereby generating hypochlorous acid, which is an effective component for sterilization.
[0003]
However, in this chlorine generator, since drinking water is temporarily stored in the cistern and hypochlorous acid is added to the stored water and then fed to terminals such as faucets and beverage machines, the piping to the terminals is long. In this case, a pump is indispensable as a means for supplying the beverage, and depending on the pipe length, it is necessary to install an extremely large pump, which is disadvantageous in terms of cost. Moreover, in order to always secure the sterilized water corresponding to the beverage supply amount, it is inevitable to increase the size of the cistern, and it is difficult to reduce the size of the chlorine generator.
[0004]
In order to solve such problems, the applicant has applied for a chlorine generator according to Japanese Patent Application No. 9-277333. The chlorine generator includes a water storage container for storing chlorine ion-containing water such as tap water pumped through a water supply pipe, and a pair of concentric circles arranged in the water storage container at a predetermined interval and applied with a DC voltage. A cylindrical electrode, a water conduit that passes the water in the water storage container between the inner and outer electrodes, and a water conduit that feeds the water that has passed through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator that applies a DC voltage to each electrode to electrolyze chlorine ion-containing water, thereby generating water containing effective chlorine.
[0005]
According to this chlorine generator, a cistern type chlorine generator that contains hypochlorous acid in the water stored in the water storage container when the water is stopped, and a flowing water type chlorine generation that contains hypochlorous acid when water is supplied. Since it has the functions of both of the sterilizer and water, the water produced by sterilization can be supplied stably, and the size can be reduced as compared with a cistern type chlorine generator.
[0006]
[Problems to be solved by the invention]
By the way, when the concentration of chlorine produced by this chlorine generator is sufficient for sterilization, there is no problem in the sale of beverages, but the sale of beverage supply machines connected to the end of this chlorine generator. When the standby time is long, chlorine contained in the chlorine generator has a problem that the chlorine concentration decreases due to chemical reaction, self-decomposition or the like.
[0007]
In particular, the decrease in chlorine concentration is affected by the water temperature. That is, when the water temperature is high, the decomposition of chlorine is active, and when the water temperature is low, the decomposition of chlorine is slight, so that the generation of chlorine due to the water temperature. If the chlorine variation in the vessel is large and the chlorine concentration is low, a sufficient bactericidal effect cannot be obtained. Conversely, if the chlorine concentration is too high, the smell of chlorine is too strong and affects the taste of the beverage. Had a point.
[0008]
An object of the present invention is to provide a chlorine generator capable of preventing a decrease in the chlorine concentration of chlorine ion-containing water, and further obtaining a water having a desired chlorine concentration by controlling energization so as to correspond to the water temperature. It is to provide.
[0009]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the present invention provides a sealed water storage container for storing chlorine ion-containing water such as tap water fed through a water supply pipe, and a predetermined amount in the water storage container. A pair of cylindrical electrodes arranged concentrically at intervals and applied with a DC voltage, a water conduit for passing water in the water storage container between the inner and outer electrodes, and water passing through the water conduit In a chlorine generator for generating water containing effective chlorine by electrolyzing chlorine ion-containing water by applying a DC voltage to each electrode by supplying water to the terminal side of a faucet, beverage machine, etc. It has a structure having timer means for setting the time of applying a DC voltage to the electrode and the energization time.
[0010]
According to the first aspect of the present invention, for example, when this chlorine generator is mounted on a beverage supply machine, the voltage application time is set in a time zone in which the water-stopping state continues, that is, at midnight. As a result, the chlorine ion-containing water in the water storage container is electrolyzed at the set time, so that a decrease in the chlorine concentration in the water storage container due to continued water stoppage is prevented, and water with an effective chlorine concentration can be supplied at the time of beverage sales. .
[0011]
The invention of claim 2 includes a sealed water storage container for storing chlorine ion-containing water such as tap water fed through a water supply pipe, and a concentric circle disposed at a predetermined interval in the water storage container. A pair of cylindrical electrodes to be applied, a water conduit for passing the water in the water storage container between the inner and outer electrodes, and a water supply for feeding the water that has passed through the water conduit to the terminal side of a faucet, a beverage machine, etc. In a chlorine generator that generates water containing effective chlorine by electrolyzing chlorine ion-containing water by applying a DC voltage to each electrode, whether or not to supply chlorine ion-containing water to a water storage container A water supply detection sensor for detecting, a timer means for measuring an elapsed time from the start of water supply based on a water supply signal from the water supply detection sensor, an energization control means for applying a voltage to the electrode when an interval set time has elapsed from the start of water supply, It has the structure which has.
[0012]
According to the invention of claim 2, since the voltage is applied to the electrode when the interval set time has elapsed since the start of water supply, the chlorine concentration in the water storage container is reduced by the elapse of the interval set time, that is, the continuation of the water stoppage state. When it decreases, the chlorine concentration can be increased by voltage application to maintain the effective chlorine concentration.
[0013]
The invention of claim 3 is the chlorine generator according to claim 2, which has an interval setting time of 2 or more. Therefore, in the summer when the chlorine contained in the water in the water reservoir is easily decomposed, the interval setting time is shortened and the voltage is reduced. On the other hand, the number of times of application is increased. On the other hand, the interval setting time is lengthened and the number of times of voltage application is reduced at other times, thereby enabling control corresponding to the decomposition state of chlorine.
[0014]
According to a fourth aspect of the present invention, there is provided a sealed water storage container for storing chlorine ion-containing water such as tap water fed through a water supply pipeline, and a concentric circle disposed at a predetermined interval in the water storage container, to which a DC voltage is applied. A pair of cylindrical electrodes, a water conduit that passes the water in the water storage container between the inner and outer electrodes, and a water conduit that feeds the water that has passed through the water conduit to the terminal side of a faucet, beverage machine, etc. In a chlorine generator that generates water containing effective chlorine by electrolyzing chlorine ion-containing water by applying a DC voltage to each electrode, the presence or absence of water supply of chlorine ion-containing water to the water storage container is detected A water supply detection sensor, a timer means for measuring the elapsed time from the start of water supply based on a water supply signal from the water supply detection sensor, a temperature sensor for detecting the temperature of chlorine ion-containing water supplied to the water storage container, and a temperature sensor Electrode from the start of water supply based on the detected temperature It has a structure having interval time setting means for setting an interval time until the voltage is applied, and energization control means for applying a voltage to the electrode when the interval setting time has elapsed and when the water supply detection sensor detects water supply. ing.
[0015]
According to the invention of claim 4, since the interval setting time is set based on the temperature of water supplied into the water storage container, voltage application corresponding to the chlorine concentration in the water storage container can be realized. Further, when water is supplied into the water storage container, for example, when beverages are sold in the beverage supply machine, a chlorine component is added to the water supplied to the beverage supply machine in order to apply a voltage.
[0016]
According to a fifth aspect of the present invention, in the chlorine generator according to the fourth aspect, since the energization control means is configured to change the energization time to the electrode based on the temperature detected by the temperature sensor, it is fed to the beverage supply machine. The chlorine corresponding to the temperature of the water to be added can be added, and the water fed to the beverage supply machine becomes water containing effective chlorine.
[0017]
According to a sixth aspect of the present invention, in the chlorine generator according to the second to fifth aspects, when the water supply detection means detects water supply during the time measurement of the interval time, the time measurement of the interval time is started again from the start of water supply. It has the structure which has the reset means to do. Thus, the interval setting time is newly set every time water supply is started, and the chlorine concentration is increased only when the chlorine concentration in the water storage container actually becomes low.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show a first embodiment of a chlorine generator according to the present invention. FIG. 1 is a water circuit diagram of a beverage supply machine equipped with a chlorine generator, and FIG. 2 is a sectional view of the chlorine generator. FIG. 3 is a block diagram showing a drive control circuit of the chlorine generator, and FIG. 4 is a control flowchart of the chlorine generator.
[0019]
First, this beverage supply machine will be described with reference to FIG. This beverage supply machine has a dilution water line A for supplying dilution water, a carbonated water line B for generating carbonated water, and a syrup line C for supplying syrup. From these lines A, B and C, A beverage is supplied to a dispensing valve (hereinafter referred to as a valve) 1, and carbonated beverage or the like is poured into the cup D from the valve 1.
[0020]
In this dilution water line A, tap water is supplied to the sealed chlorine generator 3 through the water supply valve 2, pumped up by the water pump 4 at every sales operation, cooled by the first cooling coil 5 a and supplied to the valve 1. Is done. Further, the carbonated water line B draws a part of the water cooled by the first cooling coil 5 a into the carbonator 6, and then cools it by the second cooling coil 5 b and supplies it to the valve 1. Here, the carbonator 6 is supplied with carbon dioxide gas from a carbon dioxide cylinder 7, and the water supplied to the valve 1 is carbonated water. Further, the syrup line C cools the syrup supplied from the syrup tank 8 by the third cooling coil 5 c and supplies it to the valve 1. Here, carbon dioxide gas can be supplied to the syrup tank 8 and can be supplied to the valve 1 as syrup containing carbonate. When opening the valve 1 (when selling beverages), the flow of water in the pipe accompanying opening and closing of the valve 1 is detected by the flow sensor 9, and when this water flow is detected, the water supply valve 2 is opened and the chlorine generator 3 is opened. Tap water (chlorine ion-containing water) is supplied.
[0021]
Next, the structure of the chlorine generator 3 will be described with reference to FIG. The chlorine generator 3 has a sealed cylindrical water storage container 30. This water storage container 30 has a housing 31 with an upper opening and a lid body 32 that is screwed into the housing 31 to be in a sealed state, and an inflow port 32a constituted by a joint is provided near the periphery of the lid body 32. And water containing chlorine ions such as tap water is introduced into the housing 31 through the water supply valve 2. In addition, an outlet 32 b made of a joint is provided on the center side of the lid 32, and water in the water storage container 30 is fed to the valve 1 side through the water pump 4.
[0022]
The lid 32 is made of an electrical insulator such as resin. Further, a flow rate detecting means, for example, a flow rate switch 9 is installed in the pipe between the chlorine generator 3 and the water supply valve 2 so that the flow rate of water in the pipe becomes a predetermined value or more (the dispensing valve is opened). A detection signal is output when
[0023]
In the water storage container 30 configured as described above, an electrode unit 33 is installed on the lid 32. The electrode unit 33 includes a cylindrical inner electrode 33a and an outer electrode 33b arranged concentrically with a predetermined gap (3 to 5 mm) outside the inner electrode 33a. The electrodes 33a and 33b are, for example, It is made of an electrode material in which a titanium material is coated with platinum or platinum-based (including platinum-iridium). Further, an annular electrode fixing plate 34 is fitted in the upper opening between the electrodes 33a and 33b, and the gap between the electrodes 33a and 33b is properly maintained, while an electrode cap 35 is provided in the lower opening of the inner electrode 33a. The water is prevented from flowing in from the lower opening of the inner electrode 33a.
[0024]
An entrance hole 34a is formed in the electrode fixing plate 34, and an exit hole 34b is formed in the upper part of the inner electrode 33a, and water in the water storage container 1 passes between the electrodes 33a and 33b through the entrance hole 34a. The flow further flows into the inner electrode 33a through the outlet hole 34b. The inlet hole 34a, the gap between the electrodes 33a and 33b, and the outlet hole 34b constitute a water conduit that guides water outside the outer electrode 33b to the inner side of the inner electrode 33a. Further, electrode terminals 35a and 35b are provided above the electrodes 33a and 33b. The electrode terminals 35a and 35b pass through the lid 32 in a sealed state and are connected to a DC power source.
[0025]
Next, the drive control circuit of the chlorine generator 3 according to this embodiment will be described with reference to the block diagram of FIG.
[0026]
The chlorine generator 3 is automated with a control device 36 such as a microcomputer. The control device 36 inputs and outputs signals from a central processing unit (CPU) 36a, a memory 36b storing a control program. I / O ports 36c and 36d are provided. The I / O port 36c inputs and outputs a signal of the timer 37, and the I / O port 36d outputs a signal to the electrodes 33a and 33b through the electrode switch 38.
[0027]
Here, the timer 37 sets the time setting and the energization time to each of the electrodes 33a and 33b. As a time setting, a time zone in which the water supply state of the beverage supply machine (a state where no beverage is sold) continues, that is, The time of midnight when several hours have passed since closing the store is set, and the time for increasing the chlorine concentration ratio of the water by about 20% is set as the energization time.
[0028]
Hereinafter, the operation of the chlorine generator 3 according to the present embodiment will be described with reference to the flowchart of FIG. That is, it is detected whether or not the energization start time set by the timer 37 has been reached (S1, S2), and at this time, the electrode switch 38 is turned on, and the energization time T1 set by the timer 37 is reached. Then, a voltage is applied to the electrodes 33a and 33b (S3 to S5). Thereby, the chlorine ion containing water in the water storage container 30 is electrolyzed, and the chlorine concentration reduced by the continuation of the water stoppage is replenished. Further, in this embodiment, the time setting is one time, but a plurality of times may be set to prevent variations in the chlorine concentration in the water storage container 30.
[0029]
5 and 6 show a second embodiment of the chlorine generator according to the present invention. In the second embodiment, the interval times T2 and T3 are set by the interval setting switch 39, while the times T2 and T3 are monitored by the timer 37. The timer 37 also sets and monitors the time T4 from the start of energization to the electrodes 33a and 33b until the end of energization, as in the first embodiment.
[0030]
Here, the interval times T2 and T3 are the time from the start of supplying tap water to the water storage container 30, that is, the time from when the flow sensor 9 detects the water flow until the electrodes 33a and 33b are energized, and the time when the water temperature is not so high. In order to correspond to the interval time T2, the interval time T2 is set to 3 hours, and the interval time T3 is set to 2 hours, for example, in order to correspond to the time when the water temperature becomes very high, that is, the summer season. Can also be selected arbitrarily.
[0031]
Based on the detection signal of the flow rate sensor 9 and the interval setting times T2 and T3, the electrode switch 38 is turned on for a predetermined time T4.
[0032]
This drive control will be described with reference to the flowchart of FIG. In FIG. 6, the time T4 is a time to increase the chlorine concentration of water in the cistern 31 by about 20% when the electrodes 33a and 33b are energized as in the first embodiment.
[0033]
That is, the interval setting time T3 is selected when the beverage sales are in the summer, and the interval setting time T2 is selected at other times (S1, S2). Here, regardless of whether the interval time T2 or T3 is set, beverage sales (water supply start), that is, whether or not the flow sensor 9 detects a water flow, and when the water flow is detected, the interval time It is monitored whether 3 hours have elapsed if T2 or 2 hours have elapsed if interval time T3. When water supply is started again during this monitoring, the timekeeping is once reset and timekeeping is started again (S3 to S10). When such a water stop state continues for the interval time T2 or T3, the electrode switch 38 is energized for T4 to increase the chlorine concentration of the water in the water storage container 30 (S11 to S13).
[0034]
As described above, according to the present embodiment, since the energization waiting time for the electrodes 33a and 33b is set based on the water supply start time of tap water, beverages are frequently sold, and tap water is stored in the water storage container 30 as needed. When water is supplied, that is, when the chlorine concentration in the water storage container 30 is not so low, the electrodes 33a and 33b are not energized, while the beverage sales standby time is increased and the chlorine concentration is 80%. Energized only when there is a risk of lowering. Therefore, the chlorine concentration of the water in the water storage container 30 can be efficiently maintained at a predetermined level.
[0035]
Moreover, since the chlorine generator which concerns on this embodiment can select two types of interval time which is energization waiting time T2, T3, long and short, the temperature of the water in the water storage container 30 rises, and the time when chlorine tends to evaporate naturally That is, the interval setting time T3 with a short waiting time is selected in summer, while the interval setting time T2 with a long waiting time is selected at other times. Thereby, it can respond to the chlorine concentration which changes according to a water temperature change, and can maintain the chlorine concentration in the water storage container 30 more than predetermined level reliably.
[0036]
7 and 8 show a third embodiment of the chlorine generator according to the present invention. In this embodiment, the interval setting time T5 from the water supply start time to voltage application is set based on the temperature detected from the temperature sensor 40 that detects the water temperature in the water storage container 30, and when the water temperature is high, the interval is set. When the time T5 is short and the water temperature is low, the interval set time T5 is controlled to be long. The energization time to each electrode 33a, 33b is also controlled based on the water temperature. The energization time T6 is increased when the water temperature is high, and conversely, the energization time T6 is shortened when the water temperature is low. ing. Such a setting is performed using, for example, a function having a difference between the reference temperature and the detected water temperature as a variable, or data prepared in advance for each detected water temperature.
[0037]
This control flow will be described with reference to FIG. First, it is detected by the flow sensor 9 whether water supply has started (S1). Here, when water supply is started, the temperature sensor 40 detects the temperature of the water that has flowed into the storage container 30, and the interval setting time T5 and the energization time T6 corresponding to this water temperature are set (S2 to S4). . The electrodes 33a and 33b are energized based on the set energization time T6 (S5 to S7). On the other hand, a voltage is applied in the water supply stop state based on the interval setting time T5 (S8). The water pump 4 is driven by the start of the water supply, and the tap water flows from the water supply valve 2 to the inlet 32a to the water storage container 30 as shown by the arrow in FIG. 2, and the water in the water storage container 30 flows into the inlet hole 34a. → Sequentially flows from the electrodes 33a and 33b to the outlet hole 34b to the outlet 32b. The water flowing out from the outlet 32b flows through the piping and is fed to the valve 1 as shown by the arrow in FIG.
[0038]
As described above, in this embodiment, the energization time T6 in the water supply process to the valve 1 and the interval setting time T5 at the time of water stop are set based on the water temperature, respectively, and an appropriate energization time based on the water temperature is selected. The chlorine concentration can be maintained at an appropriate value.
[0039]
In the second embodiment, when beverages are sold, the voltage is not applied to the water in the water storage container 30, but in this embodiment, the chlorine concentration of tap water differs depending on the region. Paying attention, it is configured to obtain effective chlorine concentration even in areas with low chlorine concentration. Thereby, it supplies with electricity also at the time of drink sales, and an appropriate quantity of chlorine is added to a drink sold.
[0040]
【The invention's effect】
As described above, according to the present invention, in the chlorine ion-containing water stored in the sealed water storage container, the decrease in the chlorine concentration is prevented, and further, the energization is controlled so as to correspond to the water temperature, and the desired chlorine It has the advantage that the concentration can be obtained.
[Brief description of the drawings]
FIG. 1 is a water circuit diagram of a beverage supply machine equipped with a chlorine generator according to the present invention. FIG. 2 is a sectional view of a chlorine generator according to a first embodiment. FIG. 3 is a chlorine generator according to the first embodiment. FIG. 4 is a control flowchart of the chlorine generator according to the first embodiment. FIG. 5 is a block diagram showing a drive control circuit of the chlorine generator according to the second embodiment. FIG. 7 is a block diagram showing a drive control circuit of the chlorine generator according to the third embodiment. FIG. 8 is a control flowchart of the chlorine generator according to the third embodiment. Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Chlorine generator, 30 ... Water storage container, 33a, 33b ... Electrode, 36 ... Control apparatus.

Claims (6)

給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する密閉された貯水容器と、該貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、該貯水容器内の水を内外の前記各電極間に通す通水管路と、該通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、該各電極に直流電圧を印加して塩素イオン含有水を電気分解し有効塩素を含む水を生成する塩素発生器において、
前記各電極へ直流電圧を印加する時刻及び該各電極への通電時間を設定するタイマ手段と、該タイマ手段の計時に基づき該各電極に電圧を印加する通電制御手段とをを有する
ことを特徴とする塩素発生器。
A sealed water storage container that stores chlorine ion-containing water such as tap water fed through a water supply pipe, and a pair of tubes that are concentrically arranged in the water storage container at a predetermined interval and to which a DC voltage is applied An electrode having a shape, a water conduit for passing water in the water storage container between the inner and outer electrodes, a water conduit for feeding water passing through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator for generating water containing effective chlorine by electrolyzing chlorine ion-containing water by applying a DC voltage to each electrode,
It has timer means for setting the time for applying a DC voltage to each electrode and the energization time for each electrode, and energization control means for applying a voltage to each electrode based on the time of the timer means. Chlorine generator.
給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する密閉された貯水容器と、該貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、該貯水容器内の水を内外の前記各電極間に通す通水管路と、該通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、該各電極に直流電圧を印加して塩素イオン含有水を電気分解し有効塩素を含む水を生成する塩素発生器において、
前記貯水容器への塩素イオン含有水の給水の有無を検知する給水検知センサと、該給水検知センサからの給水信号に基づき該給水開始時からの経過時間を計時するタイマ手段と、給水開始時からインターバル設定時間経過したとき前記電極に電圧を印加する通電制御手段とを有する
ことを特徴とする塩素発生器。
A sealed water storage container that stores chlorine ion-containing water such as tap water fed through a water supply pipe, and a pair of tubes that are concentrically arranged in the water storage container at a predetermined interval and to which a DC voltage is applied An electrode having a shape, a water conduit for passing water in the water storage container between the inner and outer electrodes, a water conduit for feeding water passing through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator for generating water containing effective chlorine by electrolyzing chlorine ion-containing water by applying a DC voltage to each electrode,
A water supply detection sensor for detecting whether or not chlorine ion-containing water is supplied to the water storage container; timer means for measuring an elapsed time from the start of water supply based on a water supply signal from the water supply detection sensor; A chlorine generator comprising: an energization control means for applying a voltage to the electrode when an interval set time has elapsed.
前記通電制御手段は、前記インターバル設定時間を2以上設定できる
ことを特徴とする請求項2記載の塩素発生器。
The chlorine generator according to claim 2, wherein the energization control means can set the interval setting time to two or more.
給水管路を通じて給送された水道水等の塩素イオン含有水を貯留する密閉された貯水容器と、該貯水容器内に所定間隔をおいて同心円状に配置され直流電圧が印加される一対の筒状の電極と、該貯水容器内の水を内外の前記各電極間に通す通水管路と、該通水管路内を通った水を蛇口、飲料機等の端末側に送水する送水管路とを有し、該各電極に直流電圧を印加して塩素イオン含有水を電気分解し有効塩素を含む水を生成する塩素発生器において、
前記貯水容器への塩素イオン含有水の給水の有無を検知する給水検知センサと、該給水検知センサからの給水信号に基づき該給水開始時からの経過時間を計時するタイマ手段と、該貯水容器に給水された塩素イオン含有水の温度を検知する温度センサと、該温度センサの検知温度に基づき給水開始時から該電極への電圧印加時までのインターバル時間を設定するインターバル時間設定手段と、インターバル設定時間を経過したとき又は該給水検知センサが給水を検知したとき該電極に電圧を印加する通電制御手段とを有する
ことを特徴とする塩素発生器。
A sealed water storage container that stores chlorine ion-containing water such as tap water fed through a water supply pipe, and a pair of tubes that are concentrically arranged in the water storage container at a predetermined interval and to which a DC voltage is applied An electrode having a shape, a water conduit for passing water in the water storage container between the inner and outer electrodes, a water conduit for feeding water passing through the water conduit to the terminal side of a faucet, a beverage machine, etc. A chlorine generator for generating water containing effective chlorine by electrolyzing chlorine ion-containing water by applying a DC voltage to each electrode,
A water supply detection sensor for detecting the presence or absence of supply of chlorine ion-containing water to the water storage container, timer means for measuring the elapsed time from the start of water supply based on a water supply signal from the water supply detection sensor, and A temperature sensor for detecting the temperature of the chlorine-containing water supplied, interval time setting means for setting an interval time from the start of water supply to voltage application to the electrode based on the temperature detected by the temperature sensor, and interval setting A chlorine generator, comprising: an energization control means for applying a voltage to the electrode when time elapses or when the water supply detection sensor detects water supply.
前記通電制御手段は前記温度センサの検知温度に基づき前記電極への通電時間を設定変更する
ことを特徴とする請求項4記載の塩素発生器。
The chlorine generator according to claim 4, wherein the energization control unit sets and changes the energization time to the electrode based on a temperature detected by the temperature sensor.
前記インターバル時間の計時中に、前記給水検知手段が給水を検知したときは、該インターバル時間を給水開始時から再度計時を開始するリセット手段を有する
ことを特徴とする請求項2乃至請求項5の何れか1項記載の塩素発生器。
6. The apparatus according to any one of claims 2 to 5, further comprising a reset unit that starts counting the interval time again from the start of water supply when the water supply detection unit detects water supply while measuring the interval time. The chlorine generator according to any one of claims.
JP32476197A 1997-10-09 1997-11-26 Chlorine generator Expired - Fee Related JP3706722B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32476197A JP3706722B2 (en) 1997-11-26 1997-11-26 Chlorine generator
US09/168,170 US6126797A (en) 1997-10-09 1998-10-08 Water purifying apparatus capable of effectively and reliably producing purified water with a small chlorine generator
MYPI98004599A MY126571A (en) 1997-10-09 1998-10-08 Water purifying apparatus capable of effectively and reliably producing purified water with a small chlorine generator
IDP981341A ID21008A (en) 1997-10-09 1998-10-08 WATER PURIFICATION EQUIPMENT THAT IS EFFECTIVE TO PRODUCE PURE WATER EFFECTIVELY AND CAN BE RELIABLE WITH A SMALL CHOICE OF EQUIPMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32476197A JP3706722B2 (en) 1997-11-26 1997-11-26 Chlorine generator

Publications (2)

Publication Number Publication Date
JPH11156362A JPH11156362A (en) 1999-06-15
JP3706722B2 true JP3706722B2 (en) 2005-10-19

Family

ID=18169391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32476197A Expired - Fee Related JP3706722B2 (en) 1997-10-09 1997-11-26 Chlorine generator

Country Status (1)

Country Link
JP (1) JP3706722B2 (en)

Also Published As

Publication number Publication date
JPH11156362A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US11421337B2 (en) Electrolytic on-site generator
US20130341285A1 (en) Assuring threshold ozone concentration in water delivered to an exit point
US20080173574A1 (en) System for Maintaining pH and Sanitizing Agent Levels of Water in a Water Feature
US20090229992A1 (en) Reverse Polarity Cleaning and Electronic Flow Control Systems for Low Intervention Electrolytic Chemical Generators
JP2001198573A (en) Device for supplying sterile water
JP3706722B2 (en) Chlorine generator
US9227860B1 (en) Dispensing systems
JPH11156363A (en) Chlorine generator
JPH06246271A (en) Device for producing electrolyte
JP3980720B2 (en) Chlorine generator
JP3964549B2 (en) Beverage supply equipment
JP2000334464A (en) Chlorine generator
JP3919936B2 (en) Beverage supply equipment
JP3655068B2 (en) Chlorine generator
JP2685070B2 (en) Drinking water sterilizer
JPH1190446A (en) Sterilization apparatus
JP4184537B2 (en) Chlorine generator
JP3502172B2 (en) Sterilization water generator
JP2000024665A (en) Drinking water supply machine
JP2000024670A (en) Chlorine generator
JP3448834B2 (en) ORP sensor for anode water measurement
JPH11342389A (en) Drink feeder
JP2001149939A (en) Sterilized water feeder
JP4050044B2 (en) Mineral water generator
JPH11192488A (en) Chlorine generator and drinking water supply machine using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees