JP3705432B2 - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP3705432B2
JP3705432B2 JP2002152548A JP2002152548A JP3705432B2 JP 3705432 B2 JP3705432 B2 JP 3705432B2 JP 2002152548 A JP2002152548 A JP 2002152548A JP 2002152548 A JP2002152548 A JP 2002152548A JP 3705432 B2 JP3705432 B2 JP 3705432B2
Authority
JP
Japan
Prior art keywords
current
voltage
reference voltage
detection resistor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002152548A
Other languages
Japanese (ja)
Other versions
JP2003344461A (en
Inventor
直司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2002152548A priority Critical patent/JP3705432B2/en
Publication of JP2003344461A publication Critical patent/JP2003344461A/en
Application granted granted Critical
Publication of JP3705432B2 publication Critical patent/JP3705432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は電流測定装置に関し、特に電流検出用抵抗器に過電流が流れることを阻止する機能を付加した保護回路付電流測定装置の改良に関するものである。
【0002】
【従来の技術】
図8に従来の保護回路付電流測定装置の回路構成を示す。図中1は被測定電流iの入力端子、2はヒューズ、3は電流検出用抵抗器、4はこの電流検出用抵抗器3に発生する電圧を測定する電圧測定器、5は電流検出用抵抗器3に過電流及び過電圧が印加されることを阻止するためのダイオード対を示す。
被測定電流iの測定は以下の如くして行なわれる。入力端子1に被測定電流iが印加され、この被測定電流iが電流検出用抵抗器3に流れることにより、電流検出用抵抗器3の両端に電圧V1が発生する。電流検出用抵抗器3の抵抗値は予め既知RSであるものとするから、この電圧V1を電圧測定器4で測定することで被測定電流iは、
i=V1/Rs
により求められる。
【0003】
入力端子1に被測定電流iを印加する際に、電流検出用抵抗器3の両端の電圧Vがダイオード対を構成するダイオードD1、D2の導通電圧+VE又は‐VEより大きい値になったとき、ダイオードD1又はD2が導通し、電流検出用抵抗器3に流れる電流を制限し、電流検出用抵抗器3を保護する。被測定電流iが更に大きくなると、ヒューズ2が溶断し、電流検出用抵抗器3およびダイオードD1,D2を保護する。
図8に示した保護回路の欠点はヒューズ2が溶断した場合にヒューズ2を交換しなければならない。つまり、復旧させるために手間が掛る欠点が生じる。
【0004】
この欠点を解消することができる保護回路の例を図9に示す。図9に示す回路では平素は電流検出用抵抗器3に発生する電圧V1は基準電圧源8に設定した基準電圧eより低い範囲e>V1で電流の測定が行なわれる。つまり、電流検出用抵抗器3に発生する電圧V1が基準電圧eより低い e>V1の状態では電圧比較器7は電圧比較出力として正電圧を出力し、この正電圧によって能動素子6が充分オンの状態に維持されて電流iの測定が支障なく行われる。
電流検出用抵抗器3に発生する電圧V1が基準電圧eと同じ電圧e≒V1になると、電圧比較器7は電流iが
i=e/Rs
となる様に能動素子6を制御し、定電流回路として動作する。この定電流動作により電流検出用抵抗器3に過電流が流れることを阻止する。但し、e>V1の状態に戻れば能動素子6はオンの状態に復帰し、通常の電流測定モードに戻ることができる。
【0005】
図9に示した保護回路付電流測定装置によればヒューズの存在がなくとも電流検出用抵抗器3を安全に保護することができることと、無操作でも元の測定モードに復帰できる利点がある。
然し乍ら、この回路では電流制限状態で能動素子6で消費される電力Pは、
P=(V0−V1)i
となり、V0が高くなるほど能動素子6は大きな消費電力を消費し、それだけ電力容量の大きい能動素子を用いる必要がある。更に、発熱も大きくなることから放熱手段も装備しなくてはならないため、コストが高くなる欠点がある。
【0006】
この発明の目的は能動素子における電力消費量を抑制し、電力量の小さい能動素子を用いて安全に保護動作を行なわせることができる電流測定装置を提供しようとするものである。
【0007】
【発明が解決しようとする課題】
この発明では電流検出用抵抗器に被測定電流を印加し、電流検出用抵抗器に発生する電圧を測定して被測定電流の値を測定する電流測定装置において、電流検用抵抗器に発生する電圧と、予め設定した基準電圧とを比較し、電流検出用抵抗器に流れる電流が設定値に一致したことを検出する電圧比較器と、電流検出用抵抗器と直列接続され、電圧比較器の比較出力により抵抗値が制御されて電流検出用抵抗器に流れる電流が設定値に一致した状態で電流検出用抵抗器に流れる電流を制限する能電素子と、能電素子と電流検出用抵抗器によって構成される直列回路に印加される電圧が設定値を超えたことを検出する過電圧検出手段と、この過電圧検出手段が過電圧を検出し、直列回路に印加される電圧が更に上昇すると基準電圧の電圧値を漸次低下させる基準電圧制御手段とを付加した構成とした電流測定装置を提案する。
【0008】
この発明では更に請求項1記載の電流測定装置において、直列回路に正極性の電圧を印加し、電流検出用抵抗器に流れる正極性の電流を測定する電流測定装置にあっては、能電素子はNチャンネル型電界効果トランジスタ又はNPN型トランジスタが用いられ、電圧比較器に与える基準電圧は正極性の基準電圧とされ、基準電圧制御手段は電圧比較器に与える正極性の基準電圧を過電流検出時は共通電位に近ずける制御を行なう構成とした電流測定装置を提案する。
【0009】
この発明では更に請求項1記載の電流測定装置において、直列回路に負極性の電圧を印加し、電流検出用抵抗器を流れる負極性の電流を測定する電流測定装置にあっては、能電素子はPチャンネル型電界効果トランジスタ或はPNP型トランジスタが用いられ、電圧比較器に与える基準電圧は負極性の基準電圧とされ、基準電圧制御手段は電圧比較器に与える負極性の基準電圧を共通電位に近づける制御を行なう構成としたことを特徴とした電流測定装置を提案する。
【0010】
この発明では更に請求項1記載の電流測定装置において、電流検出用抵抗器にNチャンネル型電界効果トランジスタとPチャンネル型電界効果トランジスタを直列接続し、Nチャンネル型電界効果トランジスタは電流検出用抵抗器に発生する電圧と正極性の基準電圧との比較結果により抵抗値を制御し、Pチャンネル型電界効果トランジスタは電流検出用抵抗器に発生する電圧と負極性の基準電圧との比較結果により抵抗値を制御する構成とした電流測定装置を提案する。
【0011】
作用
この発明による電流測定装置によれば電流検出用抵抗器に発生する電圧が電圧比較器に印加する基準電圧と同じ電圧に至ると、能動素子と電圧比較器とにより定電流動作が実行される。これと共に、入力端子に印加される電圧V0が設定値より高くなると過電検出手段が過電圧を検出し、この過電圧の検出により基準電圧制御手段は電圧比較器に印加している基準電圧を共通電位に近ずける方向に制御する。
【0012】
この結果、能動素子は定電流動作から漸次電流制限動作に入り、定電流状態から電流値を低下させる方向に動作する。入力端子に印加される電圧V0が過電圧検出時点より更に上昇すると能動素子の抵抗値が増大し、電流を制限し、最終的にはオフの状態に至る。
従って、この発明によれば入力端子に印加される電圧V0が設定値を超えた時点から、能動素子を流れる電流が制限され電流値を漸次減少させるから、能動素子で消費される電力は抑制され、電力容量の小さい能動素子でも充分耐えることができる。また、発熱量も少なくできるため放熱手段を設ける必要がなく、全体として安価なコストで作ることができる利点が得られる。
【0013】
【発明の実施の形態】
図1にこの発明による電力測定装置の一実施例を示す。図中10は図9を用いて説明した従来の電流測定回路を示す。つまり、入力端子1に印加された被測定電流iは能動素子6を通じて電流検出用抵抗器3に入力され、この電流検出用抵抗器3に発生する電圧V1を電圧測定器4で測定し、電流iを、
i=V1・RS :RSは電流検出用抵抗器の抵抗値、
で求める。
【0014】
平素の電流測定状態では電圧比較器7に印加される基準電圧V2は電圧検出用抵抗器3に発生する電圧V1より充分大きい正側の電位に設定される。従って、電圧比較器7は正電位の比較出力電圧V3を出力し、この正電位の比較出力電圧V3によりこの例ではNチャンネル型電界効果トランジスタで構成された能動素子6がオンの状態に維持される。
【0015】
この発明では電圧比較器7の基準電圧印加端子9と基準電圧源8との間に基準電圧制御手段20を接続すると共に入力端子1に印加される電圧V0が予め定めた設定値以上の過電圧に上昇したことを、この基準電圧制御手段20に通知するための過電圧検出手段30を入力端子1と基準電圧制御手段20との間に接続した構成を特徴とするものである。
【0016】
電圧比較器7は一般に知られている演算増幅器が用いられ、その反転入力端子に電流検出用抵抗器3に発生する電圧V1を入力する。非反転入力端子は基準電圧印加端子9に接続する。
基準電圧制御手段20は非反転入力端子が共通電位に接続された演算増幅器21と、この演算増幅器21の反転入力端子と基準電圧源8との間に接続した入力用抵抗器22と、演算増幅器21の反転入力端子と出力端子との間に接続した帰還用抵抗器23とによって構成され、演算増幅器21の出力端子と帰還用抵抗器23との接続点を基準電圧印加端子9に接続する。基準電圧源8はここでは負の基準電圧−eを発生し、この負の基準電圧−eが演算増幅器21で極性反転され、基準電圧印加端子9には正極性の基準電圧V2が印加される。
【0017】
過電圧検出手段30は定電圧ダイオード31と、この定電圧ダイオード31と直列接続した電流制限用抵抗器32とによって構成される。電流制限用抵抗器32と定電圧ダイオード31とによって構成される直列回路を入力端子1と基準電圧制御手段20を構成する演算増幅器21の反転入力端子との間に接続し、入力端子1に印加される電圧V0が定電圧ダイオード31の導通電圧Vzを超えると定電圧ダイオード31が導通し、その導通電流を基準電圧制御手段20に印加し、過電圧が入力されたことを基準電圧制御手段20に伝達する。
【0018】
ここで、電流検出用抵抗器3の抵抗値をRs、これに発生する電圧をV1、基準電圧印加端子9に印加される基準電圧をV2、電圧比較器7の比較出力電圧をV3、基準電圧制御手段20を構成する入力用抵抗器22と、帰還用抵抗器23の各抵抗値をR1、R2、過電圧検出手段30を構成する定電圧ダイオード31の導通電圧をVz、電流制限用抵抗器32の抵抗値をR3として基準電圧制御手段20と過電圧検出手段30の動作を説明する。
【0019】
▲1▼入力電圧V0と定電圧ダイオード31の導通電圧V2との間の関係がV0<Vzの場合、基準電圧印加端子9に印加される基準電圧V2は、
2=(−R2/R1)(−e)=(R2/R1)e
i<(R2/R1・Rs)eの間(図2に示す▲1▼)この状態ではV2>V1なので電圧比較器7の比較出力電圧V3は正電位方向に充分飽和しているため能動端子6は完全に導通状態にある。入力端子1の電圧V0は、
0=Rs・i
で定められる。
▲2▼i=(R2/R1・Rs)eになると、電圧比較器7と能動素子6は定電流動作に入る。この状態では電流検出用抵抗器3に流れる電流は一定となる(図2▲2▼)。入力端子1の電圧は外部から印加される電圧と一致する。
▲3▼V0≧Vzになると、過電圧検出手段30に電流が流れ、基準電圧V2を低下させる。過電流検出手段30に流れる電流を無視すると、
i=(−(R2/R3)V0+R2(e/R1+Vz/R3))/Rs
となり、電流iは電圧V0の上昇と共に低下する(図2▲3▼)
▲4▼V0がVA=((R3/R1)e+Vz)になると、基準電圧V2はV2=0となり、この結果能動素子6はオフ、i=0となる(図2▲4▼)。
【0020】
以上説明した各状態は図2に示す▲1▼、▲2▼、▲3▼、▲4▼に対応し、電流iが設定値(R2/R1・Rs)eに達すると、定電流特性を呈し、電圧V0が定電圧ダイオード31の導通電圧Vzを超えると電流iは減少を始める。
図3に電圧V0対電力Pの関係を示す。図3に示す電力Pは能動素子6に掛る電力と等価である。能動素子6に掛る電力は図3でも明らかなように、VA/2の時最大値となり、V0≧VAで能動素子6はオフとなり、V0がVA以上に上昇しても電力ほぼ0を維持する。V0がV0<Vzの状態に戻れば能動素子6はオンの状態に復帰する。
【0021】
従って、この発明によれば過電圧保護状態からの復帰は自動復帰であり電流検出用抵抗器3は過電流及び過電圧から保護され、また電力消費量も一定以上にならない。これにより能動素子6としては従来より電力容量が小さい素子を用いることができる。また、発熱量も小さくできるから放熱器を付設する必要がない、よってこの種の電流測定装置を安価に製造することができる利点が得られる。
図4は能動素子6としてNPN型のトランジスタを用いた実施例を示す。この場合には能動素子6として動作するトランジスタのベースにベース電流制限用抵抗器11を接続した点が図1と異なるだけである。
【0022】
図5はこの説明の更に他の実施例を示す。この実施例では基準電圧源8を基準電圧制御手段20を構成する演算増幅器21の非反転入力端子と共通電位との間に接続した場合を示す。この場合には演算増幅器21の非反転入力端子には正極性の基準電圧eを印加すると、基準電圧印加端子9に正電圧の基準電圧V2が出力される。
図5に示す構成によっても電圧検出手段30が過電圧を検出すると、基準電圧印加端子9に与えられる基準電圧V2は共通電位側に低下し、能動素子6を流れる電流iを抑制することができる。
【0023】
図6はこの発明の更に他の実施例を示す。この実施例では能動素子6としてPチャンネル型電界効果トランジスタを用いた場合を示す。つまり、この実施例では負極性の電流−iを測定する電流測定装置を構成するものである。このために、基準電圧源8は正極性の基準電圧eを基準電圧制御手段20を構成する演算増幅器21の反転入力端子に与え、基準電圧印加端子9には負極性の基準電圧−V2を印加する。過電圧検出手段30を構成する定電圧ダイオード31は図1、図4、図5に示した実施例とは逆向きに接続される。
【0024】
電流検出用抵抗器3には負極性の電圧−V1が発生し、この電圧−V1と基準電圧−V2とが電圧比較器7で比較される。平素の電流測定モードでは−V1>−V2とされ、電圧比較器7の比較出力電圧は負極性の電圧−V3が出力される。この負極性の比較出力電圧−V3によりPチャンネル型電界効果トランジスタ6はオンの状態に維持され電流測定が実行できる。
入力電流iが増加し、−V1≒−V2の状態に達すると、能動素子6と電圧比較器7は定電流回路を構成し、電流検出用抵抗器3に流れる電流を一定電流に制限する。入力端子1の電圧は外部から印加される電圧と一致する。
【0025】
入力電圧−V0が−V0≦−Vzに達すると、過電流検出手段30が過電圧の印加状態を検出し、基準電圧制御手段20に導通電流を流すから、この時点から入力電圧−V0が更に負方向に偏倚する毎に電流iは減少し、最終的には能動素子6はオフの状態に至る。
従って、負方向の電流測定装置でも電流検出抵抗器3は保護され、また能動素子6にかかる電力も一定値以上にならず、所定の範囲に制限される。
図7はこの発明の更に他の実施例を示す。この実施例では図1に示した正方向の電流測定と、図6に示した負方向の電流測定の双方を実行できる双方向型の電流測定装置を構成した例を示す。
【0026】
6NはNチャンネル型電界効果トランジスタ、6PはPチャンネル型電界効果トランジスタを示す。これらの電界効果トランジスタ6N、6Pを入力端子と電流検出用抵抗器3との間に直列接続する。
7Nは能動素子6Nに電圧比較出力+V3を印加する電圧比較器、7Pは能動素子6Pに電圧比較出力−V3を印加する電圧比較器を示す。8Nは基準電圧制御手段20Nを通じて基準電圧印加端子9Nに基準電圧+V2を印加するための基準電圧源、8Pは基準電圧制御手段20Pを通じて基準電圧印加端子9Pに基準電圧−V2を印加するための基準電圧源を示す。
【0027】
30Nは基準電圧制御手段20Nに過電圧検出出力を印加する過電圧検出手段、30Pは基準電圧制御手段20Pに過電圧の検出出力を印加する過電圧検出手段を示す。
これらの構成により、入力端子1には正極性の電圧+V0を印加した状態の電流測定でも、負電圧−V0を印加した状態の電流測定でも行なうことができる双方向の電流測定装置が構成される。
【0028】
【発明の効果】
以上説明したように、この説明によれば電流検出用抵抗器3を保護する動作と、能動素子6に掛る電力を制限する動作の双方を実行することができ、これにより安価なコストで取り扱いが安易な電流測定装置を得ることができる利点が得られる。
【図面の簡単な説明】
【図1】この説明の一実施例を説明するための接続図。
【図2】図1に示した実施例の動作を説明するためのグラフ。
【図3】図2と同様のグラフ。
【図4】この発明の変形実施例を説明するための接続図。
【図5】この発明の更に他の実施例を説明するための接続図。
【図6】この発明の更に他の実施例を説明するための接続図。
【図7】この発明の更に他の実施例を説明するための接続図。
【図8】従来の技術を説明するための接続図。
【図9】従来の技術の他の例を説明するための接続図。
【符号の説明】
1 入力端子 8 基準電圧源
3 電流検出用抵抗器 9 基準電圧印加端子
4 電圧測定器 10 電流測定回路
6 能動素子 20 基準電圧制御手段
7 電圧比較器 30 過電圧検出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current measuring device, and more particularly to an improvement in a current measuring device with a protection circuit to which a function for preventing an overcurrent from flowing in a current detecting resistor is added.
[0002]
[Prior art]
FIG. 8 shows a circuit configuration of a conventional current measuring device with a protection circuit. In the figure, reference numeral 1 is an input terminal for the current to be measured i, 2 is a fuse, 3 is a resistor for current detection, 4 is a voltage measurement device for measuring a voltage generated in the current detection resistor 3, and 5 is a resistor for current detection. 3 shows a diode pair for preventing overcurrent and overvoltage from being applied to the device 3.
The current to be measured i is measured as follows. When the current to be measured i is applied to the input terminal 1 and the current to be measured i flows through the current detecting resistor 3, a voltage V 1 is generated at both ends of the current detecting resistor 3. Since the resistance value of the current detecting resistor 3 is assumed to be a known RS in advance, by measuring the voltage V 1 with the voltage measuring device 4, the current to be measured i is
i = V 1 / Rs
Is required.
[0003]
When applying the measured current i to the input terminal 1, when in a conducting voltage + VE or -VE greater than the diodes D1, D2 of the voltage V 1 of the two ends of the current detecting resistor 3 constitute a diode pair The diode D1 or D2 becomes conductive, restricts the current flowing through the current detection resistor 3, and protects the current detection resistor 3. When the current to be measured i further increases, the fuse 2 is blown to protect the current detection resistor 3 and the diodes D1 and D2.
The disadvantage of the protection circuit shown in FIG. 8 is that when the fuse 2 is blown, the fuse 2 must be replaced. That is, there is a drawback that it takes time to recover.
[0004]
FIG. 9 shows an example of a protection circuit that can eliminate this drawback. In the circuit shown in FIG. 9, the current is measured in the range e> V 1 where the voltage V 1 generated in the current detection resistor 3 is lower than the reference voltage e set in the reference voltage source 8. That is, the voltage V 1 generated in the current detection resistor 3 is lower than the reference voltage e. When e> V 1 , the voltage comparator 7 outputs a positive voltage as a voltage comparison output, and the positive voltage causes the active element 6 to The current i is measured without any trouble while being kept sufficiently on.
When the voltage V 1 generated in the current detection resistor 3 becomes the same voltage e≈V 1 as the reference voltage e, the voltage comparator 7 determines that the current i is i = e / Rs.
Thus, the active element 6 is controlled so as to operate as a constant current circuit. This constant current operation prevents overcurrent from flowing through the current detection resistor 3. However, if the state returns to the state of e> V 1, the active element 6 returns to the on state and can return to the normal current measurement mode.
[0005]
The current measuring device with a protection circuit shown in FIG. 9 has an advantage that the current detecting resistor 3 can be safely protected without the presence of a fuse and that the original measuring mode can be restored without any operation.
However, in this circuit, the power P consumed by the active element 6 in the current limited state is
P = (V 0 −V 1 ) i
Thus, as V 0 increases, the active element 6 consumes a large amount of power, and it is necessary to use an active element having a large power capacity. Further, since heat generation is increased, a heat dissipating means must be provided.
[0006]
An object of the present invention is to provide a current measuring device capable of suppressing power consumption in an active element and performing a protective operation safely using an active element having a small amount of power.
[0007]
[Problems to be solved by the invention]
According to the present invention, in a current measuring device that applies a current to be measured to a current detecting resistor, measures a voltage generated in the current detecting resistor, and measures a value of the current to be measured, it is generated in the current detecting resistor. A voltage comparator that compares the voltage with a preset reference voltage and detects that the current flowing through the current detection resistor matches the set value and a current detection resistor are connected in series, and the voltage comparator An active element that limits the current flowing through the current detection resistor in a state where the resistance value is controlled by the comparison output and the current flowing through the current detection resistor matches the set value, and the active element and the current detection resistor Overvoltage detection means for detecting that the voltage applied to the series circuit constituted by the circuit exceeds a set value, and when the overvoltage detection means detects the overvoltage and the voltage applied to the series circuit further increases, the reference voltage Gradually voltage value Proposed configuration obtained by adding the reference voltage control means for Do and the current measuring device.
[0008]
According to the present invention, in the current measuring device according to claim 1, in the current measuring device for applying a positive voltage to the series circuit and measuring the positive current flowing in the current detection resistor, an active element N-channel field effect transistor or NPN transistor is used, the reference voltage supplied to the voltage comparator is a positive reference voltage, and the reference voltage control means detects the positive reference voltage supplied to the voltage comparator overcurrent. We propose a current measurement device that is configured to control close to the common potential.
[0009]
According to the present invention, in the current measuring device according to claim 1, in the current measuring device for applying a negative voltage to the series circuit and measuring the negative current flowing through the current detection resistor, a current-generating element is provided. Is a P-channel field effect transistor or PNP transistor, the reference voltage applied to the voltage comparator is a negative reference voltage, and the reference voltage control means uses the negative reference voltage applied to the voltage comparator as a common potential. Proposed is a current measuring device characterized in that it is configured to perform control close to.
[0010]
According to the present invention, in the current measuring device according to claim 1, an N-channel field effect transistor and a P-channel field effect transistor are connected in series to the current detection resistor, and the N-channel field effect transistor is a current detection resistor. The resistance value is controlled based on the comparison result between the voltage generated at the positive electrode and the positive reference voltage, and the resistance value of the P-channel field effect transistor is determined according to the comparison result between the voltage generated at the current detection resistor and the negative reference voltage. A current measuring device configured to control the current is proposed.
[0011]
Action According to the current measuring device of the present invention, when the voltage generated in the current detection resistor reaches the same voltage as the reference voltage applied to the voltage comparator, the active element and the voltage comparator operate at a constant current. Is executed. At the same time, when the voltage V 0 applied to the input terminal becomes higher than the set value, the overpower detection means detects the overvoltage, and the reference voltage control means shares the reference voltage applied to the voltage comparator by detecting this overvoltage. Control in the direction approaching the potential.
[0012]
As a result, the active element gradually enters the current limiting operation from the constant current operation, and operates in the direction of decreasing the current value from the constant current state. When the voltage V 0 applied to the input terminal further rises from the point of overvoltage detection, the resistance value of the active element increases, limiting the current, and finally turning off.
Therefore, according to the present invention, since the current flowing through the active element is limited and the current value is gradually reduced from when the voltage V 0 applied to the input terminal exceeds the set value, the power consumed by the active element is suppressed. Therefore, even an active element having a small power capacity can sufficiently withstand. Further, since the amount of heat generated can be reduced, there is no need to provide a heat dissipating means, and there is an advantage that it can be manufactured at a low cost as a whole.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a power measuring apparatus according to the present invention. In the figure, reference numeral 10 denotes a conventional current measuring circuit described with reference to FIG. That is, the current to be measured i applied to the input terminal 1 is input to the current detecting resistor 3 through the active element 6, and the voltage V 1 generated in the current detecting resistor 3 is measured by the voltage measuring device 4. The current i,
i = V 1 · RS: RS is the resistance value of the current detection resistor,
Ask for.
[0014]
In the normal current measurement state, the reference voltage V 2 applied to the voltage comparator 7 is set to a positive potential sufficiently higher than the voltage V 1 generated in the voltage detection resistor 3. Therefore, the voltage comparator 7 outputs a comparison output voltage V 3 of the positive potential, this by the positive potential comparison output voltage V 3 of the active element 6 constituted by N-channel field effect transistor in this example is on state Maintained.
[0015]
In the present invention, the reference voltage control means 20 is connected between the reference voltage application terminal 9 and the reference voltage source 8 of the voltage comparator 7 and the voltage V 0 applied to the input terminal 1 is an overvoltage equal to or higher than a predetermined set value. The overvoltage detection means 30 for notifying the reference voltage control means 20 that the voltage has risen is connected between the input terminal 1 and the reference voltage control means 20.
[0016]
A generally known operational amplifier is used as the voltage comparator 7, and the voltage V 1 generated in the current detection resistor 3 is input to its inverting input terminal. The non-inverting input terminal is connected to the reference voltage application terminal 9.
The reference voltage control means 20 includes an operational amplifier 21 having a non-inverting input terminal connected to a common potential, an input resistor 22 connected between the inverting input terminal of the operational amplifier 21 and the reference voltage source 8, and an operational amplifier. The feedback resistor 23 is connected between the inverting input terminal 21 and the output terminal 21, and the connection point between the output terminal of the operational amplifier 21 and the feedback resistor 23 is connected to the reference voltage application terminal 9. Here, the reference voltage source 8 generates a negative reference voltage −e, the polarity of the negative reference voltage −e is inverted by the operational amplifier 21, and a positive reference voltage V 2 is applied to the reference voltage application terminal 9. The
[0017]
The overvoltage detection means 30 includes a constant voltage diode 31 and a current limiting resistor 32 connected in series with the constant voltage diode 31. A series circuit composed of a current limiting resistor 32 and a constant voltage diode 31 is connected between the input terminal 1 and the inverting input terminal of the operational amplifier 21 constituting the reference voltage control means 20 and applied to the input terminal 1. When the applied voltage V 0 exceeds the conduction voltage Vz of the constant voltage diode 31, the constant voltage diode 31 becomes conductive, the conduction current is applied to the reference voltage control means 20, and the reference voltage control means 20 indicates that an overvoltage has been input. To communicate.
[0018]
Here, the resistance value of the current detection resistor 3 is Rs, the voltage generated at this is V 1 , the reference voltage applied to the reference voltage application terminal 9 is V 2 , and the comparison output voltage of the voltage comparator 7 is V 3. The resistance values of the input resistor 22 and the feedback resistor 23 constituting the reference voltage control means 20 are R 1 and R 2 , the conduction voltage of the constant voltage diode 31 constituting the overvoltage detection means 30 is Vz, and the current The operation of the reference voltage control means 20 and the overvoltage detection means 30 will be described with the resistance value of the limiting resistor 32 as R 3 .
[0019]
(1) When the relationship between the input voltage V 0 and the conduction voltage V 2 of the constant voltage diode 31 is V 0 <Vz, the reference voltage V 2 applied to the reference voltage application terminal 9 is
V 2 = (- R 2 / R 1) (- e) = (R 2 / R 1) e
i <(R 2 / R 1 · Rs) e ((1) shown in FIG. 2) In this state, since V 2 > V 1 , the comparison output voltage V 3 of the voltage comparator 7 is sufficiently saturated in the positive potential direction. Therefore, the active terminal 6 is completely conductive. The voltage V 0 of the input terminal 1 is
V 0 = Rs · i
Determined by
( 2 ) When i = (R 2 / R 1 · Rs) e, the voltage comparator 7 and the active element 6 enter a constant current operation. In this state, the current flowing through the current detection resistor 3 is constant ((2) in FIG. 2). The voltage at the input terminal 1 matches the voltage applied from the outside.
(3) When V 0 ≧ Vz, a current flows through the overvoltage detecting means 30 and the reference voltage V 2 is lowered. If the current flowing through the overcurrent detection means 30 is ignored,
i = (− (R 2 / R 3 ) V 0 + R 2 (e / R 1 + Vz / R 3 )) / Rs
The current i decreases as the voltage V 0 increases ((3) in FIG. 2).
(4) When V 0 becomes V A = ((R 3 / R 1 ) e + Vz), the reference voltage V 2 becomes V 2 = 0. As a result, the active element 6 is turned off and i = 0 (FIG. 2). 4 ▼).
[0020]
Each state described above corresponds to ( 1 ), ( 2 ), (3), and (4) shown in FIG. 2, and when the current i reaches the set value (R 2 / R 1 · Rs) e, the constant current When the voltage V 0 exceeds the conduction voltage Vz of the constant voltage diode 31, the current i starts to decrease.
FIG. 3 shows the relationship between the voltage V 0 and the power P. The power P shown in FIG. 3 is equivalent to the power applied to the active element 6. As is apparent from FIG. 3, the power applied to the active element 6 becomes a maximum value when V A / 2, and when V 0 ≧ V A , the active element 6 is turned off, and even if V 0 rises above V A, the power is increased. Maintain almost zero. When V 0 returns to the state of V 0 <Vz, the active element 6 returns to the on state.
[0021]
Therefore, according to the present invention, recovery from the overvoltage protection state is automatic recovery, and the current detection resistor 3 is protected from overcurrent and overvoltage, and the power consumption does not exceed a certain level. As a result, an element having a smaller power capacity than the conventional element can be used as the active element 6. In addition, since the amount of heat generated can be reduced, there is no need to add a radiator, and therefore an advantage that this type of current measuring device can be manufactured at low cost is obtained.
FIG. 4 shows an embodiment using an NPN transistor as the active element 6. In this case, the only difference is that the base current limiting resistor 11 is connected to the base of the transistor operating as the active element 6.
[0022]
FIG. 5 shows yet another embodiment of this description. In this embodiment, the reference voltage source 8 is connected between the non-inverting input terminal of the operational amplifier 21 constituting the reference voltage control means 20 and the common potential. In this case, when a positive reference voltage e is applied to the non-inverting input terminal of the operational amplifier 21, a positive reference voltage V 2 is output to the reference voltage application terminal 9.
Even when the voltage detection means 30 detects an overvoltage in the configuration shown in FIG. 5, the reference voltage V 2 applied to the reference voltage application terminal 9 decreases to the common potential side, and the current i flowing through the active element 6 can be suppressed. .
[0023]
FIG. 6 shows still another embodiment of the present invention. In this embodiment, a case where a P-channel field effect transistor is used as the active element 6 is shown. That is, in this embodiment, a current measuring device for measuring the negative current -i is configured. For this purpose, the reference voltage source 8 applies a positive reference voltage e to the inverting input terminal of the operational amplifier 21 constituting the reference voltage control means 20, and a negative reference voltage −V 2 is applied to the reference voltage application terminal 9. Apply. The constant voltage diode 31 constituting the overvoltage detection means 30 is connected in the opposite direction to the embodiment shown in FIGS.
[0024]
The current detecting resistor 3 and the voltage -V 1 negative polarity is generated, and this voltage -V 1 and the reference voltage -V 2 is compared by the voltage comparator 7. In the plain current measurement mode, −V 1 > −V 2 is satisfied, and the negative output voltage −V 3 is output as the comparison output voltage of the voltage comparator 7. The negative channel comparison output voltage −V 3 maintains the P-channel field effect transistor 6 in the ON state, and current measurement can be performed.
When the input current i increases and reaches the state of −V 1 ≈−V 2 , the active element 6 and the voltage comparator 7 constitute a constant current circuit, and the current flowing through the current detection resistor 3 is limited to a constant current. To do. The voltage at the input terminal 1 matches the voltage applied from the outside.
[0025]
When the input voltage -V 0 reaches -V 0 ≦ -Vz, overcurrent detection means 30 detects the applied state of the overvoltage, since flow conducting current to the reference voltage control unit 20, input from the time the voltage -V 0 Each time the current i is further deviated in the negative direction, the current i decreases, and the active element 6 is finally turned off.
Therefore, the current detection resistor 3 is protected even in the current measuring device in the negative direction, and the power applied to the active element 6 does not exceed a predetermined value and is limited to a predetermined range.
FIG. 7 shows still another embodiment of the present invention. In this embodiment, an example is shown in which a bidirectional current measuring apparatus capable of performing both the current measurement in the positive direction shown in FIG. 1 and the current measurement in the negative direction shown in FIG. 6 is configured.
[0026]
6N represents an N-channel field effect transistor, and 6P represents a P-channel field effect transistor. These field effect transistors 6N and 6P are connected in series between the input terminal and the current detection resistor 3.
7N denotes a voltage comparator that applies a voltage comparison output + V 3 to the active element 6N, and 7P denotes a voltage comparator that applies a voltage comparison output −V 3 to the active element 6P. 8N is a reference voltage source for applying the reference voltage + V 2 to the reference voltage application terminal 9N through the reference voltage control means 20N, and 8P is for applying the reference voltage −V 2 to the reference voltage application terminal 9P through the reference voltage control means 20P. The reference voltage source is shown.
[0027]
30N represents an overvoltage detection means for applying an overvoltage detection output to the reference voltage control means 20N, and 30P represents an overvoltage detection means for applying an overvoltage detection output to the reference voltage control means 20P.
With these configurations, a bidirectional current measuring device that can perform both current measurement in a state where a positive voltage + V 0 is applied to the input terminal 1 and current measurement in a state where a negative voltage −V 0 is applied to the input terminal 1 is configured. Is done.
[0028]
【The invention's effect】
As described above, according to this description, both the operation for protecting the current detection resistor 3 and the operation for limiting the power applied to the active element 6 can be executed. There is an advantage that an easy current measuring device can be obtained.
[Brief description of the drawings]
FIG. 1 is a connection diagram for explaining one embodiment of this explanation.
FIG. 2 is a graph for explaining the operation of the embodiment shown in FIG. 1;
FIG. 3 is a graph similar to FIG.
FIG. 4 is a connection diagram for explaining a modified embodiment of the present invention.
FIG. 5 is a connection diagram for explaining still another embodiment of the present invention.
FIG. 6 is a connection diagram for explaining still another embodiment of the present invention.
FIG. 7 is a connection diagram for explaining still another embodiment of the present invention.
FIG. 8 is a connection diagram for explaining a conventional technique.
FIG. 9 is a connection diagram for explaining another example of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input terminal 8 Reference voltage source 3 Current detection resistor 9 Reference voltage application terminal 4 Voltage measurement device 10 Current measurement circuit 6 Active element 20 Reference voltage control means 7 Voltage comparator 30 Overvoltage detection means

Claims (4)

電流検出用抵抗器に被測定電流を印加し、電流検出用抵抗器に発生する電圧を測定して被測定電流の値を測定する電流測定装置において、
上記電流検出用抵抗器に発生する電圧と、予め設定した基準電圧とを比較し、上記電流検出用抵抗器に流れる電流が設定値に一致したことを検出する電圧比較器と、
上記電流検出用抵抗器と直列接続され、上記電圧比較器の比較出力により抵抗値が制御されて上記電流検出用抵抗器に流れる電流が設定値に一致した状態で上記電流検出用抵抗器に流れる電流を制限する能電素子と、
上記能電素子と電流検出用抵抗器によって構成される直列回路に印加される電圧が設定値を超えたことを検出する過電圧検出手段と、
この過電圧検出手段が過電圧を検出し、上記直列回路に印加される電圧が更に上昇すると上記基準電圧の電圧値を漸次低下させる基準電圧制御手段と、
を付加した構成としたことを特徴とする電流測定装置。
In a current measuring device that applies a current to be measured to a current detecting resistor, measures a voltage generated in the current detecting resistor, and measures a value of the current to be measured.
A voltage comparator that compares the voltage generated in the current detection resistor with a preset reference voltage and detects that the current flowing in the current detection resistor matches a set value;
The current detection resistor is connected in series with the current detection resistor, the resistance value is controlled by the comparison output of the voltage comparator, and the current flowing through the current detection resistor flows through the current detection resistor in a state where the current matches the set value. An active element that limits the current;
An overvoltage detecting means for detecting that a voltage applied to a series circuit constituted by the active element and the current detecting resistor exceeds a set value;
A reference voltage control means for detecting an overvoltage by the overvoltage detection means and gradually lowering the voltage value of the reference voltage when the voltage applied to the series circuit further increases;
A current measuring device characterized by having a configuration to which is added.
請求項1記載の電流測定装置において、上記直列回路に正極性の電圧を印加し、上記電流検出用抵抗器に流れる正極性の電流を測定する電流測定装置にあっては、上記能電素子はNチャンネル型電界効果トランジスタ又はNPN型トランジスタが用いられ、上記電圧比較器に与える基準電圧は正極性の基準電圧とされ、上記基準電圧制御手段は上記電圧比較器に与える正極性の基準電圧を過電流検出時は共通電位に近ずける制御を行なう構成としたことを特徴とする電流測定装置。2. The current measuring device according to claim 1, wherein a positive voltage is applied to the series circuit to measure a positive current flowing through the current detection resistor. An N-channel field effect transistor or an NPN transistor is used, the reference voltage supplied to the voltage comparator is a positive reference voltage, and the reference voltage control means exceeds the positive reference voltage supplied to the voltage comparator. A current measuring device having a configuration in which control close to a common potential is performed during current detection. 請求項1記載の電流測定装置において、上記直列回路に負極性の電圧を印加し、上記電流検出用抵抗器を流れる負極性の電流を測定する電流測定装置にあっては、上記能電素子はPチャンネル型電界効果トランジスタ或はPNP型トランジスタが用いられ、上記電圧比較器に与える基準電圧は負極性の基準電圧とされ、上記基準電圧制御手段は上記電圧比較器に与える負極性の基準電圧を共通電位に近づける制御を行なう構成としたことを特徴とする電流測定装置。2. The current measuring device according to claim 1, wherein a negative voltage is applied to the series circuit to measure a negative current flowing through the current detection resistor. A P-channel field effect transistor or a PNP transistor is used, and the reference voltage supplied to the voltage comparator is a negative reference voltage. The reference voltage control means uses a negative reference voltage supplied to the voltage comparator. A current measuring device characterized in that it is configured to perform control close to a common potential. 請求項1記載の電流測定装置において、上記電流検出用抵抗器にNチャンネル型電界効果トランジスタとPチャンネル型電界効果トランジスタを直列接続し、上記Nチャンネル型電界効果トランジスタは上記電流検出用抵抗器に発生する電圧と正極性の基準電圧との比較結果により抵抗値を制御し、上記Pチャンネル型電界効果トランジスタは上記電流検出用抵抗器に発生する電圧と負極性の基準電圧との比較結果により抵抗値を制御する構成としたことを特徴とする電流測定装置。2. The current measuring device according to claim 1, wherein an N-channel field effect transistor and a P-channel field effect transistor are connected in series to the current detection resistor, and the N-channel field effect transistor is connected to the current detection resistor. The resistance value is controlled by a comparison result between the generated voltage and the positive reference voltage, and the P-channel field effect transistor has a resistance according to a comparison result between the voltage generated in the current detection resistor and the negative reference voltage. A current measuring device characterized in that the value is controlled.
JP2002152548A 2002-05-27 2002-05-27 Current measuring device Expired - Fee Related JP3705432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152548A JP3705432B2 (en) 2002-05-27 2002-05-27 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152548A JP3705432B2 (en) 2002-05-27 2002-05-27 Current measuring device

Publications (2)

Publication Number Publication Date
JP2003344461A JP2003344461A (en) 2003-12-03
JP3705432B2 true JP3705432B2 (en) 2005-10-12

Family

ID=29769855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152548A Expired - Fee Related JP3705432B2 (en) 2002-05-27 2002-05-27 Current measuring device

Country Status (1)

Country Link
JP (1) JP3705432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370915B2 (en) * 2009-02-24 2013-12-18 ダイキン工業株式会社 Voltage limiting circuit
JP5251943B2 (en) * 2010-09-09 2013-07-31 株式会社デンソー Battery charge / discharge current detector

Also Published As

Publication number Publication date
JP2003344461A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP2019533961A (en) Current sensing and control for transistor power switches
JP3761507B2 (en) DC stabilized power supply
US8598859B2 (en) Power supply controller
JP4810631B2 (en) Current monitoring system using two-way current sensor
KR101972604B1 (en) Semiconductor device
JP4398312B2 (en) Semiconductor switch control device
JP4263685B2 (en) Protection circuit
TWI258909B (en) Overcurrent protection device
JP2005241463A (en) Current detection circuit and protection circuit
JP3822781B2 (en) Stabilized power circuit
JP3705432B2 (en) Current measuring device
JP2003114726A (en) Semiconductor integrated circuit
JP2001157356A (en) Power control circuit for short-circuit detection and overcurrent protection and method thereof
JP3022861B1 (en) Input circuit of DC-DC converter
JP4025580B2 (en) Charging device and control method of charging device
JP6234729B2 (en) Sensor device
JP2000236621A (en) Power supply control circuit
KR20050015387A (en) Protection circuit system for motor control unit in electric vehicle
JP5293083B2 (en) Semiconductor device
JP2001267899A (en) Load driving circuit
JP3983754B2 (en) Semiconductor device having overheat protection circuit and electronic circuit using the same
JP2007097333A (en) Short-circuit protecting circuit
JP2010093434A (en) Protection device for load circuit
JP3900731B2 (en) Power switch circuit
JP2005224088A (en) Load protection circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees