JP3704297B2 - Discharge flow rate measurement method for electromagnetic plunger pump - Google Patents

Discharge flow rate measurement method for electromagnetic plunger pump Download PDF

Info

Publication number
JP3704297B2
JP3704297B2 JP2001176990A JP2001176990A JP3704297B2 JP 3704297 B2 JP3704297 B2 JP 3704297B2 JP 2001176990 A JP2001176990 A JP 2001176990A JP 2001176990 A JP2001176990 A JP 2001176990A JP 3704297 B2 JP3704297 B2 JP 3704297B2
Authority
JP
Japan
Prior art keywords
flow rate
discharge
pump
electromagnetic plunger
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001176990A
Other languages
Japanese (ja)
Other versions
JP2002371956A (en
Inventor
正剛 木村
泰常 千葉
Original Assignee
太産工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太産工業株式会社 filed Critical 太産工業株式会社
Priority to JP2001176990A priority Critical patent/JP3704297B2/en
Publication of JP2002371956A publication Critical patent/JP2002371956A/en
Application granted granted Critical
Publication of JP3704297B2 publication Critical patent/JP3704297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば暖房機、湯沸機など民生用の主として小形石油燃焼器へ灯油などの液体燃料を所定量供給するために、これに組付けられる用途に供する比較的低吐出圧力低吐出流量の電磁プランジャポンプの吐出性能調整検査を含む製造時の流量測定装置による吐出流量計測方法に関する。
【0002】
【従来の技術】
上記したこの種の電磁プランジャポンプは図5に示す電磁プランジャポンプ1が最も知られている。その構成は殊更説明するまでもなく周知であるが、一応簡単に説明する。電磁コイル51を捲装したボビン52の軸心縦貫孔に挿嵌され、上部の下流側に吐出口70を有する上磁路と一体の吐出継手71を、下部の上流側には吸入口63を開口した吸入孔64を有する吸入継手65と一体の本体68をそれぞれ外嵌するシリンダ53の内部には、上下のばね55、56に挟持され、摺動往復自在に嵌装され、かつ吸入弁座62に吸入弁ばね60により押圧されてこれを閉塞する吸入弁体61が係設されてなる吸入弁機構を内蔵する電磁プランジャ54を備える。
【0003】
前記吐出継手71内には、吐出弁座59に吐出弁ばね57により押圧されて、これを閉塞する吐出弁体58が係設された吐出弁機構が備えられる。そして、この吐出弁座59と、前記本体要部に備える下ばね座67との間に、前記上下のばね55、56により電磁プランジャ54が挟設される。前記ボビン52の下部には、シリンダ53の下端部を筒状に突出させてこれに外嵌する磁路座金73が本体68との間に介設され、前記吐出継手71と本体68との間とを囲む外枠継鉄72を組付小ねじ69により螺締結して、ボビン52と共に挟着固定する。吸入継手65の吸入口63を覆うフィルタ66を備える。
【0004】
電磁コイル51に、図示しないが、駆動電源から断続パルス電流を付勢すると、そこに発生する磁力と通電周期の非導通期間に消滅した磁力に代わって反発する上ばね55の反発力によって、電磁プランジャ54の往復運動と、前記吸入、吐出弁機構の協同作用により、流体は矢印aのように吸入口63から吸引され、矢印bのように吐出口70から吐出されるわけである。
【0005】
前記したように、電磁プランジャ54は上下のばね55、56に挟設されたフリーピストンである。
【0006】
電磁プランジャポンプは、電磁コイル51の捲数と電流値の積の、いわゆるアンペアターンによる磁気吸引力が定まる。ポンプの吐出圧力を高めるためには、電流値を高める必要があり、吐出流量を増加させるためには、断続パルス電流の周波数を高めて電磁プランジャの単位時間あたりの衝程数を増加させるか、または電流値を増してアンペアターンを高めて電磁プランジャの衝程長を伸長させなければならない。 断続パルス電流の電流値を加減するのは、抵抗値を加減したり変圧して電磁コイルへの印加電圧を加減調整するか、電流の周波数を加減調整するか、または周期中の導通期間を加減し、いわゆるデューテイ比制御するか、位相制御するなどの方法があり、これらがこの種の電磁ポンプにおける電気的な吐出制御方法であり、これは周知である。
【0007】
このような構成の電磁プランジャポンプ1の電磁コイル51に前述した断続パルス電流を付勢すると、電磁プランジャ54はシリンダ53内を往復運動して吸入弁体61と吐出弁体58との協同作用のもとにポンプ作用を営み、吸入口63から矢印aのように吸入された流体はポンプ内を縦貫して吐出口70から矢印bに示すように吐出される。
【0008】
図6に示すのは、この電磁プランジャポンプ(以下単に電磁ポンプと称す)201により燃焼器222に燃料油を供給する装置の構成図である。
【0009】
燃料油槽211内の燃料油212は、電磁ポンプ201により矢印aのように吸引され、矢印bのように吐出されて送油管213により気化器220に導かれて、ここで電気ヒータ221により加熱気化されて、ノズル孔224から燃焼器222へ噴出し、燃焼用空気と混合し、着火されて燃焼する。
【0010】
ノズル孔224には、電磁弁225の電磁可動片226と連結連動するニードル223が係合して燃焼時には開口している。燃焼停止時には、電磁弁225も切電されて電磁可動片226は移動して、前記ニードル弁223がノズル孔224を閉じると共に、その反対側では戻り管227の開口部を開き、未燃燃料は戻り管227から矢印jのように油槽に戻される。図6に示す燃焼器は、いわゆるブンゼン方式の燃焼器であるが、エアジェット方式、ロータリ方式、ポット式の石油気化燃焼器であっても、燃焼時に火炉内の圧力が上昇かつ変動することはその程度の差はあるが同様である。
【0011】
一般に、ポンプの吐出側に例えば大気圧以上の雰囲気の圧力が存在する場合には、予めその圧力を考慮して、その圧力下で所定値の流量を確保するためにポンプの吐出能力を調整するように製造工程で実施するが、それでも実際に使用時には燃焼状態により流量の変動がある。特に燃料を気化するために、気化器で加熱してこれを燃焼させるブンゼン方式の燃焼器のようにポンプの吐出側の雰囲気圧力が比較的高い場合は、図4に示すような流量測定装置が調整および検査のために、製造工程において利用されていた。
【0012】
図4は、従来の流量測定装置の構成を示す説明図である。図において、電磁ポンプ1は油槽111の燃料油112を矢印aに示すように吸入して、矢印bのように吐出し、接続管113により調圧弁133に至り、吐出管130の流下口131から矢印b′で示すように、漏斗132からビューレット管122に入り、光センサ124から光センサ123に至る所定容量を満たす時間を測定して、分または時間あたりの流量を算出するのである。測定後ビューレット管内の液体は、電磁弁115を切電開成して矢印cに示すようにドレンが排出される。流量測定開始時には、電磁弁115は通電閉塞される。
【0013】
調圧弁133の構成は、弁本体134の弁座136に調圧螺桿139を回動加減することにより調圧ばね138の撓みを変えて調圧弁体137を押圧し、それによって前記ポンプの吐出側の雰囲気、すなわち燃焼器の内部圧力に相応した圧力の負荷状態に調圧するものである。
【0014】
【発明が解決しようとする課題】
しかし、この従来技術のポンプの流量測定装置には、次のような問題点がある。
(1) 電磁ポンプの吐出圧力流量は電流のパルスにより作動する脈動的動圧であり、この脈動の動圧の波高値付近で前記調圧弁133の調圧ばね138の荷重を超えて調圧弁体137を開成する荷重と平衡するのであるから、したがって実機の燃焼器の気化器および火炉の常に変動している内圧、すなわちポンプの吐出側の雰囲気負荷状態とは相違があり、したがって燃料の吐出流量も変動がある。
(2) また、ポンプの吐出側の雰囲気圧力が小さい場合、例えばエアジェット方式の燃焼器の場合に用いるのにもまた正確な流量設定が困難になる。
(3) 調圧ばね、調圧弁体、調圧弁座を備えた調圧弁による圧力調整器をポンプと流量測定装置、例えばビューレット管との間に備えたものは、流路が複雑になり、エアかみ込みを生じやすく、したがって正確な流量の計測が困難である。
(4) 大量生産で多数のポンプ、例えば20連で同時に流量を調整するときには、ポンプ毎に圧力調整器を備えかつその調整も必要で不経済であり、しかも構造複雑で取付けスペースも増す。
(5) ポンプの吐出側に調圧弁の弁機構があるためにポンプ自体の吐出弁が作動不良で閉止不能となったときにも、調圧弁の弁がポンプの吐出弁として作動し、正常な吐出状態を得るので、ポンプの機能不良を検知できない。
(6) 調圧弁の作動音が高く、被測定物であるポンプの作動音の検査の判定ができない。
【0015】
比較的燃焼器におけるポンプの吐出側の雰囲気圧力の低い方式のものには、実機の配管をこの検査装置に利用することもできるが、大量生産の場合、長時間にわたって多数のポンプの流量を測定する場合には、配管の内部にゴミ詰まりを生じ、流量設定か変動することおよび燃焼器の機種ごとに実機配管を変換しなければならず、しかもその配管の内径、内部表面アラサ、その他レイノルズ数により流動抵抗を考慮して標準の実機配管を選定してこれを取り付ける手数が煩雑である。
(7) また、燃焼器はポンプの吐出側の火炉等の雰囲気圧力のみならず、吸入側の配管の吸入ヘッドその他の負圧を生じる条件も吐出流量の変化を生ずるから、これに対処した措置も必要である。
【0016】
【課題を解決するための手段】
上記の問題点を解決する課題は、本発明により解決できる。すなわち、燃料槽から燃料を接続管を介して、燃焼器へ供給用のフリーピストン状に往復自在の電磁プランジャを備えた電磁プランジャポンプの吐出側と、流量測定装置の一方の開口部とを接続し、その下流の他方の開口部からは、前記燃焼器の燃焼時に気化燃料と燃焼空気等とにより加圧負荷されるものとほぼ同等の圧力を加えて前記電磁プランジャの作動に対して圧力抵抗を付与した負荷環境内における吐出流量を所定値に設定するために前記流量測定装置により前記ポンプの吐出性能調整検査を含む製造工程時に可変調整することを特徴とする電磁プランジャポンプの吐出流量計測方法により解決できる。
【0017】
また、本発明の好ましい実施の形態において、前記電磁ポンプの吐出側を流量測定装置の一方の開口部に連通させ、かつその開口部ならびにその下流の他方の開口部を含む一体の前記流量測定装置および前記接続管の吐出側もしくはその流下口側を気密をもって収容して、前記燃焼器内が燃焼時に気化燃料と燃焼空気等により加圧負荷されるのとほぼ同等の圧力を加え得る加圧空気室を設けて、前記電磁プランジャの作動に圧力抵抗を負荷した上、前記流量測定装置により、吐出性能調整検査を含む前記ポンプ製造時の圧力負荷環境内における吐出流量を可変調整して所定値に設定することを特徴とする。
【0018】
さらに、本発明の好ましい実施の形態において、前記流量測定装置はビューレット管を含み、その上下にその液位を検知する光センサを備えて、その間のビューレット管内の所定容量を満たす時間を計測して単位時間あたりのポンプの吐出流量を演算して求め、さらにそれによって前記圧力負荷環境下における吐出流量を可変調整して所定値に設定することを特徴とする。
【0019】
【発明の実施の形態】
以下、添付した図面を用いて本発明の実施の形態について詳細に説明する。
【0020】
図1は本発明の計測方法における流量測定装置の一実施の形態の構成説明図である。
【0021】
流量計測部には、4ヵ所の開口部があり、電磁ポンプ1によって油槽11の燃料油は矢印aのように吸入され、矢印bのようにその吐出側に接続された接続管13を経て第一の開口部14から流量計測部のビューレット管22の下部に連通する一方で、流量計測時に閉塞し、計測後に矢印Cで示されるように開成するドレン排出用の電磁弁15に接続されている。ビューレット管22の上部には、接手27が連結しており、これに設けられた第2、第3、第4の開口部16、17、18には、それぞれポンプの吐出側に負荷されるべき加圧空気供給用の電磁弁20、排気開閉用の電磁弁19、圧力計21がそれぞれ接続される。
【0022】
例えば、燃焼器の燃焼時に気化燃料と燃焼空気等とほぼ同等の負荷圧力を加えるときに、さらに燃料供給パイプの内径の大きさ、すなわち断面積、内面のアラサ程度、パイプの長さの相違、液体の粘度および温度変化によるその相違などレイノルズ数の変換に基づく流動抵抗の変動が影響する損失を換算して前記加圧負荷する圧力に加えることも考慮する必要がある。この加圧負荷する圧力側には、図示しないが、もちろん常に所定圧力を保持する調圧機構を備えなければならない。
【0023】
ポンプの吐出流量調整設定のため、流量計測時にポンプ1の始動と共に電磁弁20を開き、加圧空気を矢印eのように流量測定装置2に流入させると共に、電磁弁15、電磁弁19を閉塞して内部に負荷圧力を充填し、燃料油12をビューレット管22に流入させる。ビューレット管22の上下の管状小径部には、それぞれ光センサ23および24を備え、液体すなわち燃料油が光センサ24通過し、光センサ23に到達する所定容積を充満する時間を計測して例えばコンピュータで演算処理し、単位時間すなわち1時間もしくは1分あたりのポンプの吐出流量を計測するのである。流量計測後、電磁弁20を閉じ、電磁弁19を開いて矢印fのように排気し、さらに電磁弁15も開いて矢印cのようにドレンを排出する。圧力計21は計測時の流量測定装置の内部圧力を測定表示するものである。
【0024】
電磁プランジャポンプの大量生産の場合に、多数のポンプを同時に併列して流量を計測するときには、ビューレット管と電磁弁およびポンプ等の接続アタッチメントを多数配置し、空気圧供給用電磁弁20を一括してそれぞれのポンプの吐出側に圧力を負荷するようにすればよい。
【0025】
図2は、本発明の計測方法における流量測定装置の他の実施の形態の構成説明図である。図において、ビューレット管22を含む流量計測部分は加圧空気室30により密閉されており、これに加圧空気用電磁弁20、排気用電磁弁19、ドレン排出用電磁弁25、圧力計21がそれぞれ気密を保って取付け接続されている。
【0026】
ビューレット管22の流入側の開口部14に接続された計測時遮断兼ドレン排出用電磁弁15が備えられる。
【0027】
前記電磁弁20から図示しない圧力調整された加圧給気が加圧空気室30に矢印eのように弁開成時に供給される。流量測定終了時には、電磁弁20は閉塞、電磁弁19は開成して矢印fのように排気され、電磁弁15、25は共に開成して矢印c、矢印kのようにドレンは排出される。その他の符号の部品は図1に示したものと作用も共に同様である。
【0028】
図2に示すものも、図1のものと同様にポンプを多数同時に併列して流量を計測する場合は、加圧空気室30を共用の大きなものとして前記電磁弁19、20、25および圧力計21は共用となる。
【0029】
また、加圧給気用電磁弁20と排気用電磁弁19は1個の3方電磁弁を利用することも差し支えない。
【0030】
図3に示すものは、本発明の計測方法における流量測定装置のさらに他の実施の形態の構成説明図である。
【0031】
この場合には、電磁ポンプ1の吐出側の接続管の下流側の加圧空気室30に挿入されてビューレット管22に臨む流下口31に対向し、該ビューレット管22の上端部に形成した漏斗32を備えたものである。
【0032】
電磁ポンプ1により油槽11の燃料油12は矢印aより矢印bのように接続管13を経て流下口31から漏斗32に入り、ビューレット管22に至って前記説明通り流量が計測される。その他同一符号を付したものはその名称、作用共に前記した図1、図2のものと同様であり、多数併列して流量を計測する場合についても同様である。
【0033】
また、前記した電磁弁の一部または全部を手動の弁やコックを利用することも差し支えないが、手間がかかり、非能率的である。
【0034】
次に、本発明の計測方法の効果について、電磁プランジャポンプの流量計測を、従来の調圧弁式流量測定装置と比較実験を行い、流量計測装置としての性能を比較した。
【0035】
以下、本発明による計測方法を、流量測定装置として電磁プランジャポンプの吐出側に電磁プランジャの作動に対して圧力抵抗を付与するために加圧給気による負荷環境を設けた畧して空圧式流量測定検査方式とし、図4に示した従来の計測方法を調圧弁式流量測定検査方式としてその実績を以下対比説明する。
【0036】
先ず、計測器としての測定誤差を検証するために、同一のポンプを、各々の測定装置において、測定装置の負荷圧力を段階的に変化させたときの、それぞれの負荷圧力における計測流量との相関を見る、いわゆる圧力−流量特性における直線性を試験した。
【0037】
【表1】

Figure 0003704297
【0038】
表1は負荷圧力がそれぞれ0 Kpa (無負荷) 、4.9 Kpa 、9.8 Kpa 、14 Kpa、19.1 Kpa 、24 Kpa 、29.1 Kpa における計測流量を、各々の測定装置ごとに示し、さらにそれぞれの圧力と計測流量より、統計的手法を用いて近似直線、いわゆる線形回帰直線を求めるための回帰計数(a) 、(b) および相関係数 (γ)を求めた。
【0039】
ちなみに、線形回帰直線とは、変数X1,X2,X3--- XnとY1,Y2,Y3・・・Ynの2変数を最小二乗法により、Y=aX+bとして表したものであり、(a) をその回帰直線の傾斜、(b) をその回帰直線の切片と呼ぶ。
【0040】
また、相関係数( γ)は変数X1,X2,X3・・・XnとY1,Y2,Y3・・・Ynの2変数についてXとYの共分散を、Xの標準偏差とYの標準偏差との積で割ったものであり、相関係数は−1から1までの間にあり、−1または1のときは、2変数間に完全な直線関係があることを示すものである。
【0041】
【表2】
Figure 0003704297
【0042】
表2は、表1で求めた相関係数、(a) 、(b) を、前記した線形回帰直線の式Y=aX+bに代入し、変数Xである負荷圧力に対する、直線としての変数Yである計測流量値を求めたものであり、計測誤差がゼロであるときの計測流量値を示すものである。
【0043】
【表3】
Figure 0003704297
【0044】
表3は表1に示す実測流量値の、表2で示す、計測誤差がゼロであるときの計測流量値に対する偏差を示したものであり、これが計測誤差である。
【0045】
図7は、表3に示す試験結果をグラフに表したものであり、明らかに本発明である、空圧式検査方式の方が誤差が小さい。
【0046】
次に、計測器としての安定性を検証するために、同一のポンプを、各々の測定装置において、一定の負荷圧力を加えて、流量を計測し、同一条件でこれを3回繰り返した。
【0047】
これを、負荷圧力が 0 Kpa (無負荷) 、9.8 Kpa 、19.1 Kpa、29.1 Kpa の5種類の圧力において実験した。
【0048】
【表4】
Figure 0003704297
【0049】
【表5】
Figure 0003704297
【0050】
【表6】
Figure 0003704297
【0051】
【表7】
Figure 0003704297
【0052】
表4、表5、表6および表7は、それぞれ負荷圧力が 0 Kpa (無負荷) 、9.8 Kpa 、19.1 Kpa、29.1 Kpa における、3回の繰り返し測定の計測流量および1回目の計測流量に対する2回目、3回目の偏差を示したものである。
【0053】
さらに、3回の計測流量の平均値から、3回の計測流量のうちの最大のものと最小のものとの差を減じ、それを、3回の計測流量の平均値で除算した、いわゆる再現率を示した。
【0054】
再現率は、全ての負荷圧力での実験結果において、本発明である、空圧式検査方式の方が大きい値を示し、本発明の計測方法が、安定性が良く、信頼性の高いことが証明された。
【0055】
【発明の効果】
以上説明したように、本発明による電磁プランジャポンプの吐出流量計測方法は、該ポンプの吐出性能調整検査を含む製造工程時に所定の吐出流量に可変調整して設定するに当たり、従来の調圧弁を利用する図4に示す従来方法に比較して、図7および前記各表に示す通りその正確性を含むすべての点で優れている。もちろん、前記従来技術の問題点も解決した。
【0056】
そして次のような効果がある。
【0057】
(a) ポンプの吐出側に負荷を加える方法が空気圧で静圧なので、燃焼器の実機の燃焼時に近い負荷を加えて燃料油の流量の計測ができる。特に低負荷において安定した負荷状態を得る。
【0058】
(b) 前記負荷が流量測定時にのみ加わり、ポンプの予備運転時には負荷から開放されるので、ポンプの内部および計測流路の空気の排出が良好で、エアカミのロックが無いので、燃料油吐出流量計測の精度が高い。
【0059】
(c) ポンプの大量生産時に、同時に多数を併列その流量を計測する場合に、一括して同一圧力をその吐出側に加えることができるので、該負荷圧力の調節が簡単であり、そのバラツキも生じない。また、この圧力の調整制御、吐出流量の計測をすべて電気的に操作できるので、コンピュータによる自動計測、演算が容易である。
【0060】
(d) ポンプの吐出流路途中に弁機構を有する圧力調整器を介在させていないので、ポンプの吐出弁に異常があったときもその不良検出が確実に行い得る。
【0061】
(e) 前記負荷圧力調整器をポンプの近くに配設する必要がないので、該調整器の作動音の影響を受けることがなく、ポンプの作動音に異常音が発生したときに良否判定が容易である。
【図面の簡単な説明】
【図1】本発明の電磁プランジャポンプの吐出流量計測方法に用いられる流量測定装置の一実施の形態の構成説明図である。
【図2】同じく流量測定装置の他の実施の形態の構成説明図である。
【図3】同じく流量測定装置のさらに他の実施の形態の構成説明図である。
【図4】従来の流量測定装置の構成説明図である。
【図5】本発明の吐出流量測定装置によって流量を計測される電磁プランジャポンプの一例の一部断面を表す縦断説明図である。
【図6】 電磁プランジャポンプにより燃焼器に燃料油を供給する装置の一例の構成図である。
【図7】 横軸にポンプの吐出側の雰囲気環境のいわゆる負荷圧力Kpa をとり、縦軸にポンプの吐出流量の偏差%をとったグラフであり、実測流量に対する変化率が直線性を表すことを示す。
【符号の説明】
1 電磁プランジャポンプ
2 流量測定装置
11 油槽
12 燃料油
13 接続管
15,19,20 電磁弁
22 ビューレット管
23,24 光センサ
25 電磁弁
30 加圧空気室[0001]
BACKGROUND OF THE INVENTION
In order to supply a predetermined amount of liquid fuel such as kerosene to a consumer-use mainly small oil combustor such as a heater or a water heater, the present invention is used for a relatively low discharge pressure and a low discharge flow rate provided for the use assembled therein. The present invention relates to a discharge flow rate measuring method using a flow rate measuring device at the time of manufacture including a discharge performance adjustment inspection of the electromagnetic plunger pump.
[0002]
[Prior art]
As this kind of electromagnetic plunger pump, the electromagnetic plunger pump 1 shown in FIG. 5 is most known. The configuration is well known without need for further explanation, but will be explained briefly. A discharge joint 71 integral with an upper magnetic path having a discharge port 70 on the downstream side of the upper part is inserted into a longitudinal through-hole of the bobbin 52 equipped with the electromagnetic coil 51, and a suction port 63 is provided on the lower upstream side. Inside cylinders 53 that externally fit a main body 68 integral with a suction joint 65 having an open suction hole 64, are sandwiched by upper and lower springs 55, 56 and are slidably reciprocated, and a suction valve seat. 62 includes an electromagnetic plunger 54 having a built-in suction valve mechanism in which a suction valve body 61 that is pressed by the suction valve spring 60 and closes the suction valve spring 61 is provided.
[0003]
The discharge joint 71 is provided with a discharge valve mechanism in which a discharge valve body 58 is pressed against the discharge valve seat 59 by a discharge valve spring 57 and closes it. An electromagnetic plunger 54 is sandwiched between the upper and lower springs 55 and 56 between the discharge valve seat 59 and a lower spring seat 67 provided in the main part of the main body. A magnetic path washer 73 is provided between the discharge joint 71 and the main body 68 at a lower portion of the bobbin 52. The outer frame yoke 72 surrounding each other is screwed together by an assembly machine screw 69 and clamped together with the bobbin 52. A filter 66 that covers the suction port 63 of the suction joint 65 is provided.
[0004]
Although not shown in the figure, when an intermittent pulse current is energized to the electromagnetic coil 51, the electromagnetic force is generated by the repulsive force of the upper spring 55 that repels instead of the magnetic force generated there and the magnetic force disappeared during the non-conduction period of the energization cycle. Due to the reciprocating motion of the plunger 54 and the cooperative action of the suction and discharge valve mechanisms, the fluid is sucked from the suction port 63 as indicated by the arrow a and discharged from the discharge port 70 as indicated by the arrow b.
[0005]
As described above, the electromagnetic plunger 54 is a free piston sandwiched between the upper and lower springs 55 and 56.
[0006]
In the electromagnetic plunger pump, a magnetic attractive force is determined by a so-called ampere turn, which is the product of the number of electromagnetic coils 51 and the current value. In order to increase the discharge pressure of the pump, it is necessary to increase the current value, and in order to increase the discharge flow rate, the frequency of the intermittent pulse current is increased to increase the number of strokes per unit time of the electromagnetic plunger, or The current value must be increased to increase the ampere turn, and the electromagnetic plunger stroke length must be extended. The current value of the intermittent pulse current can be adjusted by adjusting the resistance value or transforming it to adjust the voltage applied to the electromagnetic coil, adjusting the frequency of the current, or adjusting the conduction period during the cycle. There are methods such as so-called duty ratio control or phase control, which are electrical discharge control methods in this type of electromagnetic pump, which are well known.
[0007]
When the above-described intermittent pulse current is energized to the electromagnetic coil 51 of the electromagnetic plunger pump 1 having such a configuration, the electromagnetic plunger 54 reciprocates in the cylinder 53 and the cooperative action of the suction valve body 61 and the discharge valve body 58 is achieved. The pump works originally, and the fluid sucked from the suction port 63 as shown by the arrow a passes through the pump and is discharged from the discharge port 70 as shown by the arrow b.
[0008]
FIG. 6 is a configuration diagram of an apparatus for supplying fuel oil to the combustor 222 by this electromagnetic plunger pump (hereinafter simply referred to as an electromagnetic pump) 201.
[0009]
The fuel oil 212 in the fuel oil tank 211 is sucked by the electromagnetic pump 201 as indicated by the arrow a, discharged as indicated by the arrow b, and guided to the vaporizer 220 by the oil feeding pipe 213, where it is heated and vaporized by the electric heater 221. Then, it is ejected from the nozzle hole 224 to the combustor 222, mixed with the combustion air, ignited and burned.
[0010]
The nozzle hole 224 is engaged with a needle 223 that is linked and interlocked with the electromagnetic movable piece 226 of the electromagnetic valve 225 and is open during combustion. When the combustion is stopped, the electromagnetic valve 225 is also turned off and the electromagnetic movable piece 226 moves, the needle valve 223 closes the nozzle hole 224, and on the opposite side, the opening of the return pipe 227 is opened. The return pipe 227 is returned to the oil tank as indicated by an arrow j. The combustor shown in FIG. 6 is a so-called Bunsen type combustor, but even in the case of an air jet type, rotary type, or pot type oil vaporization combustor, the pressure in the furnace rises and fluctuates during combustion. It is the same although there is a difference in the degree.
[0011]
In general, when there is a pressure in an atmosphere of, for example, atmospheric pressure or higher on the discharge side of the pump, the discharge capacity of the pump is adjusted in order to ensure a predetermined flow rate under that pressure in advance. However, the flow rate varies depending on the combustion state even when actually used. In particular, when the atmospheric pressure on the discharge side of the pump is relatively high, such as a Bunsen type combustor that is heated by a vaporizer and combusted in order to vaporize the fuel, a flow measuring device as shown in FIG. Used in the manufacturing process for adjustment and inspection.
[0012]
FIG. 4 is an explanatory diagram showing a configuration of a conventional flow rate measuring apparatus. In the figure, the electromagnetic pump 1 sucks fuel oil 112 in an oil tank 111 as shown by an arrow a, discharges it as shown by an arrow b, reaches a pressure regulating valve 133 through a connecting pipe 113, and flows from a flow-down port 131 of a discharge pipe 130. As indicated by the arrow b ′, the time for satisfying a predetermined capacity from the funnel 132 to the burette tube 122 and from the optical sensor 124 to the optical sensor 123 is measured, and the flow rate per minute or hour is calculated. After the measurement, the liquid in the burette tube is opened by turning off the electromagnetic valve 115 and drained as shown by the arrow c. At the start of flow measurement, the solenoid valve 115 is energized and closed.
[0013]
The pressure regulating valve 133 is configured by rotating the pressure regulating screw 139 to the valve seat 136 of the valve body 134 to change the deflection of the pressure regulating spring 138 to press the pressure regulating valve body 137, thereby the discharge side of the pump. Thus, the pressure is adjusted to a load state corresponding to the internal pressure of the combustor.
[0014]
[Problems to be solved by the invention]
However, this conventional pump flow rate measuring device has the following problems.
(1) The discharge pressure flow rate of the electromagnetic pump is a pulsating dynamic pressure that is actuated by a pulse of current, and the pressure regulating valve body exceeds the load of the pressure regulating spring 138 of the pressure regulating valve 133 near the peak value of the dynamic pressure of this pulsation. Therefore, there is a difference from the constantly changing internal pressure of the carburetor and furnace of the actual combustor, that is, the atmospheric load state on the discharge side of the pump, and therefore the fuel discharge flow rate. There are also fluctuations.
(2) In addition, when the atmospheric pressure on the discharge side of the pump is small, it is difficult to set an accurate flow rate for use in, for example, an air jet type combustor.
(3) A pressure regulator using a pressure regulating valve equipped with a pressure regulating spring, a pressure regulating valve body, and a pressure regulating valve seat is provided between the pump and a flow rate measuring device, for example, between the burette tube, and the flow path becomes complicated. Air entrapment tends to occur, and therefore accurate flow rate measurement is difficult.
(4) When a large number of pumps, for example, 20 stations, adjust the flow rate simultaneously in mass production, a pressure regulator is provided for each pump, and the adjustment is necessary and uneconomical, and the structure is complicated and the installation space increases.
(5) Even if the discharge valve of the pump itself cannot be closed due to a malfunction due to the valve mechanism of the pressure regulating valve on the discharge side of the pump, the pressure regulating valve operates as a pump discharge valve and operates normally. Since the discharge state is obtained, malfunction of the pump cannot be detected.
(6) The operation sound of the pressure regulating valve is high, and it is not possible to determine the inspection of the operation sound of the pump being measured.
[0015]
For the system with relatively low atmospheric pressure on the discharge side of the pump in the combustor, the piping of the actual machine can be used for this inspection device, but in the case of mass production, the flow rate of many pumps is measured over a long period of time. If this happens, the piping will become clogged with dust, the flow rate setting will fluctuate, and the actual piping must be converted for each combustor model. In addition, the inner diameter of the piping, the internal surface roughness, and other Reynolds numbers Therefore, it is troublesome to select a standard actual pipe in consideration of flow resistance.
(7) In addition, the combustor has not only the atmospheric pressure of the furnace on the discharge side of the pump, but also the conditions that generate negative pressure, such as the suction head of the suction side piping, cause changes in the discharge flow rate. Is also necessary.
[0016]
[Means for Solving the Problems]
The problem to solve the above problems can be solved by the present invention. That is, the discharge side of an electromagnetic plunger pump having a reciprocating electromagnetic plunger in the form of a free piston for supplying fuel from a fuel tank to a combustor is connected to one opening of the flow rate measuring device. From the other downstream opening, a pressure resistance is applied to the operation of the electromagnetic plunger by applying substantially the same pressure as that pressurized by the vaporized fuel and combustion air during combustion of the combustor. A discharge flow rate measurement method for an electromagnetic plunger pump, wherein the flow rate measurement device variably adjusts the discharge flow rate in a manufacturing process including a discharge performance adjustment test of the pump in order to set the discharge flow rate in a load environment to which the pressure is given. Can be solved.
[0017]
Also, in a preferred embodiment of the present invention, the integral flow rate measuring device including the discharge side of the electromagnetic pump communicating with one opening of the flow rate measuring device and including the opening and the other downstream of the opening And compressed air that can store the discharge side of the connecting pipe or the flow-down port side thereof in an airtight manner and can apply a pressure almost equal to that when the inside of the combustor is pressurized and loaded with vaporized fuel and combustion air during combustion. A chamber is provided to apply pressure resistance to the operation of the electromagnetic plunger, and the flow rate measuring device variably adjusts the discharge flow rate in the pressure load environment at the time of manufacturing the pump including discharge performance adjustment inspection to a predetermined value. It is characterized by setting.
[0018]
Furthermore, in a preferred embodiment of the present invention, the flow rate measuring device includes a burette tube, and includes optical sensors that detect the liquid level above and below the burette tube, and measures a time that satisfies a predetermined capacity in the burette tube therebetween. Then, the discharge flow rate of the pump per unit time is calculated and obtained, and the discharge flow rate under the pressure load environment is variably adjusted and set to a predetermined value.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
FIG. 1 is a diagram illustrating the configuration of an embodiment of a flow rate measuring device in the measurement method of the present invention.
[0021]
The flow rate measuring unit has four openings, and the fuel oil in the oil tank 11 is sucked in by the electromagnetic pump 1 as shown by an arrow a, and is connected via a connecting pipe 13 connected to the discharge side as shown by an arrow b. One of the openings 14 communicates with the lower part of the burette tube 22 of the flow rate measurement unit, while being closed at the time of flow rate measurement and connected to a drain discharge electromagnetic valve 15 that opens as shown by an arrow C after the measurement. Yes. A joint 27 is connected to the upper portion of the burette tube 22, and the second, third, and fourth openings 16, 17, and 18 provided on the joint 27 are loaded on the discharge side of the pump, respectively. A solenoid valve 20 for supplying pressurized air, a solenoid valve 19 for opening and closing the exhaust, and a pressure gauge 21 are respectively connected.
[0022]
For example, when applying almost the same load pressure as vaporized fuel and combustion air during combustion in the combustor, the size of the inner diameter of the fuel supply pipe, that is, the cross-sectional area, the roughness of the inner surface, the difference in the length of the pipe, It is also necessary to consider adding a loss, which is affected by fluctuations in flow resistance based on Reynolds number conversion, such as the difference in viscosity and temperature change of the liquid, to the pressure under pressure. Although not shown in the figure, the pressure side to be pressurized must be provided with a pressure regulating mechanism that always maintains a predetermined pressure.
[0023]
In order to adjust the discharge flow rate of the pump, the solenoid valve 20 is opened when the pump 1 is started at the time of measuring the flow rate, and pressurized air is allowed to flow into the flow rate measuring device 2 as indicated by an arrow e, and the solenoid valves 15 and 19 are closed. Then, the inside is filled with the load pressure, and the fuel oil 12 is caused to flow into the burette tube 22. The upper and lower tubular small-diameter portions of the burette tube 22 are provided with optical sensors 23 and 24, respectively, and the time during which a liquid, that is, fuel oil passes through the optical sensor 24 and fills a predetermined volume reaching the optical sensor 23 is measured. It is processed by a computer, and the discharge flow rate of the pump per unit time, that is, one hour or one minute is measured. After measuring the flow rate, the solenoid valve 20 is closed, the solenoid valve 19 is opened and exhausted as indicated by the arrow f, and the solenoid valve 15 is also opened and drain is discharged as indicated by the arrow c. The pressure gauge 21 measures and displays the internal pressure of the flow rate measuring device at the time of measurement.
[0024]
In the case of mass production of electromagnetic plunger pumps, when measuring the flow rate by arranging a large number of pumps at the same time, a large number of connection attachments such as a burette tube, a solenoid valve, and a pump are arranged, and the solenoid valve 20 for supplying air pressure is bundled. Thus, the pressure may be applied to the discharge side of each pump.
[0025]
FIG. 2 is a diagram illustrating the configuration of another embodiment of the flow rate measuring device in the measurement method of the present invention. In the figure, the flow rate measurement portion including the burette tube 22 is sealed by a pressurized air chamber 30, which includes a pressurized air solenoid valve 20, an exhaust solenoid valve 19, a drain discharge solenoid valve 25, and a pressure gauge 21. Are installed and connected in an airtight manner.
[0026]
A solenoid valve 15 for interrupting and discharging drain connected to the inlet 14 of the inlet side of the burette tube 22 is provided.
[0027]
Pressurized air whose pressure is not shown is supplied from the electromagnetic valve 20 to the pressurized air chamber 30 when the valve is opened as indicated by an arrow e. At the end of the flow rate measurement, the solenoid valve 20 is closed, the solenoid valve 19 is opened and exhausted as indicated by arrow f, and the solenoid valves 15 and 25 are both opened and drain is discharged as indicated by arrows c and k. Other components are the same as those shown in FIG.
[0028]
In the case shown in FIG. 2 as well, in the case where a large number of pumps are juxtaposed and the flow rate is measured in the same manner as in FIG. 1, the solenoid valve 19, 20, 25 and the pressure gauge are used with the pressurized air chamber 30 as a large one. 21 is shared.
[0029]
The pressurized air supply solenoid valve 20 and the exhaust solenoid valve 19 may use a single three-way solenoid valve.
[0030]
What is shown in FIG. 3 is a configuration explanatory view of still another embodiment of the flow rate measuring device in the measuring method of the present invention.
[0031]
In this case, it is inserted into the pressurized air chamber 30 on the downstream side of the connection pipe on the discharge side of the electromagnetic pump 1 so as to face the downstream port 31 facing the burette pipe 22 and formed at the upper end of the burette pipe 22. The funnel 32 is provided.
[0032]
The electromagnetic pump 1 causes the fuel oil 12 in the oil tank 11 to enter the funnel 32 from the flow-down port 31 through the connecting pipe 13 as indicated by the arrow a to arrow b, reach the burette pipe 22 and measure the flow rate as described above. Other components having the same reference numerals are the same in name and action as those in FIGS. 1 and 2 described above, and the same applies to the case of measuring the flow rate in parallel.
[0033]
In addition, it is possible to use a manual valve or cock for a part or all of the above-described electromagnetic valve, but it takes time and is inefficient.
[0034]
Next, regarding the effect of the measurement method of the present invention, the flow measurement of the electromagnetic plunger pump was compared with a conventional pressure regulating valve flow measurement device, and the performance as a flow measurement device was compared.
[0035]
In the following, the measurement method according to the present invention is a flow rate measuring device provided with a load environment by pressurized air supply to give pressure resistance to the operation of the electromagnetic plunger on the discharge side of the electromagnetic plunger pump. The measurement and inspection method will be described below, and the conventional measurement method shown in FIG. 4 will be described as a pressure regulating valve type flow rate measurement and inspection method.
[0036]
First, in order to verify the measurement error as a measuring instrument, the correlation between the same pump and the measured flow rate at each load pressure when the load pressure of the measurement device is changed stepwise in each measurement device. The so-called pressure-flow characteristics were tested for linearity.
[0037]
[Table 1]
Figure 0003704297
[0038]
Table 1 shows the measured flow rates at load pressures of 0 Kpa (no load), 4.9 Kpa, 9.8 Kpa, 14 Kpa, 19.1 Kpa, 24 Kpa, and 29.1 Kpa for each measuring device. From the flow rate, regression coefficients (a) and (b) and a correlation coefficient (γ) for obtaining an approximate line, a so-called linear regression line, were obtained using statistical methods.
[0039]
Incidentally, the linear regression line is a variable X1, X2, X3 --- Xn and Y1, Y2, Y3... Yn expressed as Y = aX + b by the least square method, (a) Is called the slope of the regression line, and (b) is called the intercept of the regression line.
[0040]
Further, the correlation coefficient (γ) is the covariance of X and Y for the two variables X1, X2, X3... Xn and Y1, Y2, Y3. The correlation coefficient is between -1 and 1, and when it is -1 or 1, it indicates that there is a complete linear relationship between the two variables.
[0041]
[Table 2]
Figure 0003704297
[0042]
Table 2 substitutes the correlation coefficients (a) and (b) obtained in Table 1 into the equation Y = aX + b of the linear regression line described above, and is a variable Y as a straight line with respect to the load pressure as the variable X. A certain measured flow value is obtained, and the measured flow value when the measurement error is zero is shown.
[0043]
[Table 3]
Figure 0003704297
[0044]
Table 3 shows the deviation of the measured flow rate value shown in Table 1 from the measured flow rate value shown in Table 2 when the measurement error is zero. This is the measurement error.
[0045]
FIG. 7 is a graph showing the test results shown in Table 3, and the air pressure type inspection method, which is clearly the present invention, has a smaller error.
[0046]
Next, in order to verify the stability as a measuring instrument, a constant load pressure was applied to the same pump in each measuring device, the flow rate was measured, and this was repeated three times under the same conditions.
[0047]
This was tested at five pressures of 0 Kpa (no load), 9.8 Kpa, 19.1 Kpa, and 29.1 Kpa.
[0048]
[Table 4]
Figure 0003704297
[0049]
[Table 5]
Figure 0003704297
[0050]
[Table 6]
Figure 0003704297
[0051]
[Table 7]
Figure 0003704297
[0052]
Table 4, Table 5, Table 6 and Table 7 show the values for the measured flow rate of the three repeated measurements and the first measured flow rate when the load pressure is 0 Kpa (no load), 9.8 Kpa, 19.1 Kpa and 29.1 Kpa, respectively. The deviations of the third time and the third time are shown.
[0053]
In addition, the difference between the maximum and minimum of the three measured flow rates is subtracted from the average value of the three measured flow rates, and this is divided by the average value of the three measured flow rates. Showed the rate.
[0054]
In the experimental results at all load pressures, the reproducibility shows a larger value in the pneumatic inspection method, which is the present invention, and proves that the measurement method of the present invention has good stability and high reliability. It was done.
[0055]
【The invention's effect】
As described above, the discharge flow rate measuring method of the electromagnetic plunger pump according to the present invention uses a conventional pressure regulating valve to variably adjust and set the predetermined discharge flow rate during the manufacturing process including the discharge performance adjustment inspection of the pump. Compared to the conventional method shown in FIG. 4, the method is superior in all respects including accuracy as shown in FIG. 7 and the respective tables. Of course, the problems of the prior art were also solved.
[0056]
And there are the following effects.
[0057]
(a) Since the method of applying a load to the discharge side of the pump is air pressure and static pressure, it is possible to measure the flow rate of fuel oil by applying a load close to the actual combustion time of the combustor. In particular, a stable load state is obtained at a low load.
[0058]
(b) Since the load is applied only during flow rate measurement and is released from the load during the preliminary operation of the pump, the inside of the pump and the measurement flow path have good air discharge, and there is no air cradle lock. High accuracy of measurement.
[0059]
(c) When pumps are mass-produced and the flow rate is measured at the same time, the same pressure can be applied to the discharge side all at once, making it easy to adjust the load pressure, and variations Does not occur. In addition, since all the pressure adjustment control and discharge flow rate measurement can be electrically operated, automatic measurement and calculation by a computer are easy.
[0060]
(d) Since a pressure regulator having a valve mechanism is not interposed in the middle of the discharge flow path of the pump, even when there is an abnormality in the pump discharge valve, the failure can be reliably detected.
[0061]
(e) Since it is not necessary to dispose the load pressure regulator close to the pump, it is not affected by the operating noise of the regulator, and the pass / fail judgment is made when an abnormal noise is generated in the pump operating noise. Easy.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view of an embodiment of a flow rate measuring device used in a discharge flow rate measuring method of an electromagnetic plunger pump of the present invention.
FIG. 2 is a diagram illustrating the configuration of another embodiment of the flow rate measuring device.
FIG. 3 is a configuration explanatory view of still another embodiment of the flow rate measuring device.
FIG. 4 is a diagram illustrating the configuration of a conventional flow rate measuring device.
FIG. 5 is a longitudinal explanatory view showing a partial cross section of an example of an electromagnetic plunger pump whose flow rate is measured by the discharge flow rate measuring device of the present invention.
FIG. 6 is a configuration diagram of an example of an apparatus for supplying fuel oil to a combustor by an electromagnetic plunger pump.
FIG. 7 is a graph in which the horizontal axis represents the so-called load pressure Kpa of the ambient environment on the discharge side of the pump, and the vertical axis represents the deviation% of the pump discharge flow rate. Indicates.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electromagnetic plunger pump 2 Flow measuring device 11 Oil tank 12 Fuel oil 13 Connecting pipe 15, 19, 20 Electromagnetic valve 22 Viewlet pipe 23, 24 Optical sensor 25 Electromagnetic valve 30 Pressurized air chamber

Claims (3)

燃料槽から燃料を接続管を介して、燃焼器へ供給用のフリーピストン状に往復自在の電磁プランジャを備えた電磁プランジャポンプの吐出側と、流量測定装置の一方の開口部とを接続し、その下流の他方の開口部からは、前記燃焼器の燃焼時に気化燃料と燃焼空気等とにより加圧負荷されるものとほぼ同等の圧力を加えて前記電磁プランジャの作動に対して圧力抵抗を付与した負荷環境内における吐出流量を所定値に設定するために前記流量測定装置により前記ポンプの吐出性能調整検査を含む製造工程時に可変調整することを特徴とする電磁プランジャポンプの吐出流量計測方法。The discharge side of an electromagnetic plunger pump provided with a reciprocating electromagnetic plunger in the form of a free piston for supplying fuel from a fuel tank to a combustor is connected to one opening of the flow rate measuring device, From the other downstream opening, a pressure resistance is applied to the operation of the electromagnetic plunger by applying substantially the same pressure as that pressurized by the vaporized fuel and combustion air during combustion of the combustor. A discharge flow rate measuring method for an electromagnetic plunger pump, wherein the flow rate measuring device variably adjusts during a manufacturing process including a discharge performance adjustment test of the pump in order to set a discharge flow rate in a loaded environment to a predetermined value. 燃料槽から燃料を接続管を介して燃焼器に供給用のフリーピストン状に往復作動自在の電磁プランジャを備えた電磁プランジャポンプの吐出側を流量測定装置の一方の開口部に連通させ、かつその開口部ならびにその下流の他方の開口部を含む一体の前記流量測定装置および前記接続管の吐出側もしくはその流下口側を気密をもって収容して、前記燃焼器内が燃焼時に気化燃料と燃焼空気等により加圧負荷されるのとほぼ同等の圧力を加え得る加圧空気室を設けて、前記電磁プランジャの作動に圧力抵抗を負荷した上、前記流量測定装置により、吐出性能調整検査を含む前記ポンプ製造時の圧力負荷環境内における吐出流量を可変調整して所定値に設定することを特徴とする電磁プランジャポンプの吐出流量計測方法。The discharge side of an electromagnetic plunger pump provided with a free piston-like reciprocating electromagnetic plunger for supplying fuel from a fuel tank to a combustor via a connecting pipe is connected to one opening of the flow rate measuring device, and The integrated flow rate measuring device including the opening and the other opening downstream thereof and the discharge side of the connecting pipe or the flow-down side of the connecting pipe are hermetically accommodated so that the inside of the combustor is vaporized fuel, combustion air, etc. The pump includes a pressurized air chamber capable of applying a pressure substantially equal to that pressurized by the pressure load, loads a pressure resistance to the operation of the electromagnetic plunger, and includes a discharge performance adjustment test by the flow rate measuring device. A discharge flow rate measuring method for an electromagnetic plunger pump, wherein the discharge flow rate in a pressure load environment at the time of manufacture is variably adjusted and set to a predetermined value. 前記流量測定装置はビューレット管を含み、その上下にその液位を検知する光センサを備えて、その間のビューレット管内の所定容量を満たす時間を計測して単位時間あたりのポンプの吐出流量を演算して求め、さらにそれによって前記圧力負荷環境下における吐出流量を可変調整して所定値に設定することを特徴とする請求項1または請求項2に記載の電磁プランジャポンプの吐出流量計測方法。The flow rate measuring device includes a burette tube, and is provided with optical sensors for detecting the liquid level above and below the burette tube, and measures the time for satisfying a predetermined capacity in the burette tube between them to determine the pump discharge flow rate per unit time 3. A method for measuring a discharge flow rate of an electromagnetic plunger pump according to claim 1, wherein the discharge flow rate under the pressure load environment is variably adjusted and set to a predetermined value.
JP2001176990A 2001-06-12 2001-06-12 Discharge flow rate measurement method for electromagnetic plunger pump Expired - Lifetime JP3704297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176990A JP3704297B2 (en) 2001-06-12 2001-06-12 Discharge flow rate measurement method for electromagnetic plunger pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176990A JP3704297B2 (en) 2001-06-12 2001-06-12 Discharge flow rate measurement method for electromagnetic plunger pump

Publications (2)

Publication Number Publication Date
JP2002371956A JP2002371956A (en) 2002-12-26
JP3704297B2 true JP3704297B2 (en) 2005-10-12

Family

ID=19017904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176990A Expired - Lifetime JP3704297B2 (en) 2001-06-12 2001-06-12 Discharge flow rate measurement method for electromagnetic plunger pump

Country Status (1)

Country Link
JP (1) JP3704297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247404A (en) * 2011-05-31 2012-12-13 Daihatsu Motor Co Ltd Torque measuring method of oil pump and flow rate measuring method
CN108612646A (en) * 2016-12-12 2018-10-02 大陆汽车电子(芜湖)有限公司 Jet pump test device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311913C (en) * 2004-10-28 2007-04-25 博奥生物有限公司 Trace amount liquid jet system
CN106124189A (en) * 2016-08-29 2016-11-16 中国人民解放军空军第航空学院 Novel emergency oil pump detection device
CN114718857B (en) * 2022-04-19 2023-09-05 宁波市产品食品质量检验研究院(宁波市纤维检验所) Plunger pump noise test platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247404A (en) * 2011-05-31 2012-12-13 Daihatsu Motor Co Ltd Torque measuring method of oil pump and flow rate measuring method
CN108612646A (en) * 2016-12-12 2018-10-02 大陆汽车电子(芜湖)有限公司 Jet pump test device

Also Published As

Publication number Publication date
JP2002371956A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP4547007B2 (en) Method and apparatus for leak checking of fuel injection valves of internal combustion engines
EP1264228B1 (en) High volume electronic gas regulator
JP3795724B2 (en) Fuel injection apparatus and injection characteristic adjusting method thereof
EP1250528B1 (en) Fuel injector
JP5518723B2 (en) Control method for fuel injection device of internal combustion engine, computer program for control, and internal combustion engine
WO2009037489A3 (en) Vapour measurement
JP3704297B2 (en) Discharge flow rate measurement method for electromagnetic plunger pump
JP6810615B2 (en) Manufacturing method of fuel injection valve
JP4083230B2 (en) Valve inspection and adjustment method and apparatus
JP3863292B2 (en) Liquid supply device
US8695899B2 (en) Fuel injector
US6567755B1 (en) Metering equipment
US5562428A (en) Fuel injection pump having an adjustable inlet poppet valve
US6817233B2 (en) Injection-amount measuring unit
JP3896997B2 (en) Fuel supply device
EP1382830A2 (en) Compressed gas pressure regulator designed for engine fuelling
TWI257973B (en) Fuel supply device
JP2019027286A (en) Relief valve mechanism adjustment device, manufacturing method thereof, and manufacturing method of high-pressure fuel supply pump
CN116124442A (en) Valve dynamic characteristic test system of reciprocating liquid pump
JPH09217665A (en) Fuel injection device
JP3528128B2 (en) Fuel flow control device for oil burner burner
JP2001173908A (en) Fuel flow rate control device for oil combustor burner
RU2379543C2 (en) Electromagnetic metering valve
JPH0521659Y2 (en)
RU2161726C1 (en) Method for adjusting fuel pressure controller

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R150 Certificate of patent or registration of utility model

Ref document number: 3704297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term