JP3703959B2 - Relay control circuit - Google Patents

Relay control circuit Download PDF

Info

Publication number
JP3703959B2
JP3703959B2 JP07381798A JP7381798A JP3703959B2 JP 3703959 B2 JP3703959 B2 JP 3703959B2 JP 07381798 A JP07381798 A JP 07381798A JP 7381798 A JP7381798 A JP 7381798A JP 3703959 B2 JP3703959 B2 JP 3703959B2
Authority
JP
Japan
Prior art keywords
relay
contact
rebound
power supply
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07381798A
Other languages
Japanese (ja)
Other versions
JPH11273490A (en
Inventor
三彦 菊岡
悟 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07381798A priority Critical patent/JP3703959B2/en
Publication of JPH11273490A publication Critical patent/JPH11273490A/en
Application granted granted Critical
Publication of JP3703959B2 publication Critical patent/JP3703959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/001Means for preventing or breaking contact-welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits

Landscapes

  • Keying Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロコンピュータで交流電源の零点検出をしながら継電器の接点を零点制御で駆動する継電器の制御回路に関するものである。
【0002】
【従来の技術】
一般に継電器の接点で交流電源の負荷を零点制御する技術は、例えば特公平3−3325号公報に示されるようなものが知られており、図6のようにマイクロコンピュータで継電器の接点を零点制御するものであった。すなわち1は交流電源、2は直流電源、3は負荷、4は負荷3に直列に設けられた継電器の接点、5は交流電源1の零点に同期した信号を発生する電源同期発生手段、6は継電器の接点4が開閉した位相を検知する開閉位相検知手段、7はマイクロコンピュータよりなる制御回路部、8は制御部7からの出力信号によって継電器を駆動する駆動手段である。
【0003】
ここで電源同期信号発生手段5はダイオードブリッジ9、抵抗10,11、フォトカプラ12より構成されており、開閉位相検知手段6はダイオードブリッジ13、抵抗14,15、フォトカプラ16より構成されており、また継電器駆動手段8は継電器コイル17、トランジスタ18、ダイオード19、抵抗20より構成されている。
【0004】
制御部7は、CPU、ROM、RAM入出力ポート等により構成され、ROM内に前記電源同期信号発生手段5からの電源同期信号と、開閉位相検知手段6からの開閉信号とを入力し、その時間差を測定する時間差測定手段(図示せず)と、この時間差測定手段からの測定信号に基づき、前記継電器の駆動位相を決定する駆動位相決定手段(図示せず)とをもっている。
【0005】
図7にその動作を示すフローチャートにより、簡単に継電器が制御され接点が閉じる動作例を説明する。
【0006】
継電器の接点4が閉じる場合、電源同期信号の立ち下りが入力されると時間(位相)t0の測定をスタートし(ステップ1)、ステップ2でその時間t0がRAMに記憶している時間tonと一致した位相で継電器駆動信号を出力する。継電器接点が閉じられるとステップ3で開閉信号の立ち下りが入力され、時間t0の測定をストップする。この時間t0と電源同期信号の周期T1とを比較し等しくない場合のみ時間t0と周期T1の差を前記時間tonに加算し、その値を新しい時間tonとしてRAMに記憶する(ステップ4)。
【0007】
また接点4が開く場合は電源同期信号の立ち上りが入力されると、時間t0の測定をスタートし(ステップ5)、その時間t0がRAMに記憶している時間toffと一致した位相で継電器駆動信号の出力を停止する(ステップ6)というものであった。このように交流電源の零点で継電器の接点を制御するもので、零点同期信号の立ち下り時にon制御、立ち上り時にoff制御するものであった。
【0008】
【発明が解決しようとする課題】
従来例のごとく継電器を交流電源の零点付近で接点を開閉させると接点寿命が伸びることが知られている。しかし、小型継電器は接点の開離直後にリバウンドの出る可能性もあるため、継電器の接点を零点付近で開閉すると開離直後のリバウンドによって致命的なアーク放電が発生し著しく接点寿命を縮める恐れがある。
【0009】
このリバウンドとは、継電器の接点開離時にアーマチュアのバックストップへの衝突によって起こるバウンシング現象で開放接点が再閉成(継電器のコイル信号がなくても接点が再度ON)する過渡的応答のことをいう(本現象のことを以下リバウンドと表現する)。これが接点寿命に与える影響は、特に従来例のような接点の零点制御方式を採用したときに致命的な悪影響が顕在化しヒータ負荷等を制御する機器では安全上の問題が残るのである。
【0010】
すなわちリバウンドが発生すると、接点が零点制御された直後の交流電源半サイクル間に強力な接点間アーク放電を引き起こし、継続すると接点表面の異常加熱で溶着や接点金属の転移によるロッキングが発生するという課題を有していた。
【0011】
本発明は、このような課題を未然に解決するためのものであり、リバウンド発生を検出し、接点溶着(ロッキングも含む)が発生する前にメンテナンス警報および安全停止できる継電器の制御回路を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
この課題を解決するために、交流電源で駆動される負荷と、継電器の接点で制御する継電器の制御回路であって、前記交流電源の零点を検出するための零点検出手段と、前記零点検出手段の信号に基づき前記継電器の接点を前記交流電源の零点近傍で開閉するための制御手段と、前記継電器の接点の開閉を検出するための接点開閉検出手段と、前記継電器の接点の開離直後の半サイクル間に発生するリバウンドを検出するためのリバウンド検出手段とを備えて継電器の制御回路を構成したものである。
【0013】
本構成によれば継電器を駆動する際、接点の開離直後に発生するリバウンドを検出できるので、所定の回数発生した場合は警告信号を発し、さらに継続して発生する場合は、接点が溶着(ロッキングも含む)する前に継電器の駆動を強制的にストップさせる機能が付加できることによって安全確保が図れ本発明の目的が達成できるものである。
【0014】
【発明の実施の形態】
本発明の請求項1に記載の発明は、制御手段が、交流電源の零電位に同期した電源同期発生手段の出力信号である矩形波の立ち上り信号または立ち下り信号のいずれか一方の信号で接点開閉検知入力として接点の零点演算制御を行い、他方の信号でリバウンド検出を行う処理切り換えソフトアルゴリズムを有しており、この構成によれば、リバウンド検出が継電器の接点開閉毎に常時検出可能という効果を有するものである。
【0015】
本発明の請求項記載の発明は、制御手段、リバウンドの発生回数を所定回数カウントした際、継電器の異常報知のための警報手段を駆動させると共に、さらに継続する場合継電器の動作を強制停止させるものであり、かかる構成によれば、継電器の接点寿命延長化を阻害するリバウンドやロッキング現象による接点溶着問題を回避でき、接点の長寿命化が図れるという効果を有するものである。
【0018】
(実施の形態1)
図1は本発明の第1の実施の形態における継電器の制御回路の構成を示す。図1において、1は交流電源、2は回路駆動用の直流電源、3は交流電源1に接続された負荷である。4は負荷3を制御する継電器接点、5は交流電源の零点に同期した信号を発生する零点検出手段、6は継電器17の接点4が開閉した位相を検知する接点開閉検出手段と兼用になっているリバウンド検出手段である。7はマイクロコンピュータよりなる制御部、8は制御部7からの出力信号によって継電器17を駆動する継電器駆動手段である。
【0019】
ここで零点検出手段5は、トランジスタ9、トランジスタのベース・エミッタ間保護用ダイオード10、ベース抵抗11、コレクタ抵抗12で構成されている。また接点開閉検出手段と兼用のリバウンド検出手段6は、トランジスタ13、ベース・エミッタ間保護ダイオード14、ベース抵抗15、コレクタ抵抗16で構成されている。さらに制御部7はマイクロコンピューで構成されており、零点検出手段5の零点検知入力a、接点開閉検出手段と兼用になっているリバウンド検出手段6から得られる接点開閉検知入力と兼用のリバウンド検知入力b(ここでは接点開閉検知入力bと表現する)を有するとともに、リバウンドが所定回数発生したとき警報を出す警報出力dを有する。なお21はその警報手段を示し、22は警報のためのLED表示素子、23は電流制限抵抗である。また継電器駆動手段8は継電器駆動出力cで駆動され、継電器17、トランジスタ18、ベース抵抗19、継電器17の逆起電力吸収ダイオード20から構成されている。VRは継電器17の接点4の両端電圧を示す。
【0020】
以下にその動作を図1の構成に基づいた図2のタイミングチャートを用いて、説明する。後で説明するリバウンド検出モードと分けるため、図2は接点開閉検知入力bの取り込み動作モードを説明する。
【0021】
今、接点4がON状態にあるとき(継電器の接点両端電圧VRは信号が無い状態)、交流電源1の波形から零点検出手段5によって得られる零点検出入力aの立ち上り信号(イ)点からT1後に制御部7で計測演算された継電器駆動出力cで継電器駆動手段8をOFFする。継電器17はこの(ロ)点でコイル信号が遮断され、継電器17の接点4はT2後の(ハ)点でOFFする。ここで接点開閉検知入力bが制御部7のマイクロコンピュータに取り込まれ、交流電源1の零点検出入力aの立ち下り部(ニ)点までのT3を測定し、次回の演算制御に反映される。
【0022】
次に図3のタイミングチャートでリバウンド検知入力bの取り込みモードを説明する。回路は接点開閉手段と兼用になっているリバウンド検出手段6から得られる接点開閉検知入力と兼用のリバウンド検知入力bがある(ここではリバウンド検知入力bと表現する。)。今、接点4がON状態にあるとき、交流電源1の波形から零点検出手段5によって得られる零点検出入力aの立ち下り信号(ホ)点から、T4後に制御部7で前回計測されたT2と同じ継電器駆動出力cで継電器駆動手段8をOFFする。継電器17はこの(ヘ)点でコイル信号が遮断され、継電器17の接点4はT5後の(ト)点でOFFする。
【0023】
ここで前記接点開閉検知入力bの取り込みモードと異なる点は、この(ト)点から交流電源1の零点検出入力aの立ち上り信号(チ)点間はリバウンド検知入力bに信号が出ない点にある。これは零点検出入力aがLOWレベルにしており、接点開閉検知入力bが回路上取り込めないようにしているためである。正常時はこの後もリバウンド検知入力bに信号はこないのであるが、前記説明のごとくリバウンド現象は一度OFFした接点がアーマチュアのバックストップへの衝突跳ね返りによって起こるバウンシングで交流電源1の零点位置(チ)点からT7後にOFFした接点4が再閉成(リバウンドで接点が再ONすることの表現。)したポイントが(リ)点である。
【0024】
この前記T7は機械的なアーマチュアの衝突跳ね返りであるので、構造的な影響も強くT6の範囲内でおさまる場合もある。この場合は交流電源1の電圧も零点に近いので接点劣化の影響は無いので検出できなくても問題にはならない。しかし交流電源1の零点(チ)を少しでも超えた点で再閉成した場合は、アーク発生電圧VA点(一般的に通常の空気中で15Vぐらいから発生するといわれている)からアーク放電停止電圧VBの(ヌ)点までのT8の間、強力なアーク放電が接点間に発生する。いま交流電源1の零点を超えたところでリバウンドが発生すると、リバウンド検知入力bが(リ)点で検出され制御部7のマイクロコンピュータに取り込まれる。
【0025】
次に制御部7のマイクロコンピュータに取り込まれた信号の処理アルゴリズムを次の図4で説明する。
【0026】
図4は接点開閉検知入力とリバウンド検知入力を、信号処理アルゴリズムの中で切り換え処理できるようにしたマイクロコンピュータ内の動作フローチャートである。
【0027】
(1)は交流電源の負の半サイクルの零点検出入力に立ち上り信号があれば接点開閉検知入力モードに、立ち上り信号がなければリバウンド検知入力モードに切り換える部分である。したがって図2でも説明した零点検出入力aは、零点検出入力の立ち上り(フローチャートのYES)から接点開閉検知入力モードに入る。
【0028】
(2)は接点動作のモード(ONさせるか、OFFさせるか)の切り換え部分を示す。ここで前記より条件にしていた接点のON状態からの動作モードは(3)の部分に相当し、図2で示していたT1のタイマーを構成する部分である。(4)は継電器駆動出力cがOFFされてから接点が開くまでの時間T2を測定する部分である。以上のフローが接点開閉検知入力モードの処理部分となっている。
【0029】
(5)は接点がOFFからONになるモードの処理部分で今回のリバウンドには無関係の部分であるため説明は省く。
【0030】
次に、交流電源1の正の半サイクルの立ち下り部分(零点検出入力aでNO)のリバウンド検知入力モードを説明する。(6)は接点動作の切り換え(ONさせるか、OFFさせるか)部分を示す。(7)は図3でも説明した継電器駆動出力cを前回測定DATA(T2)をセットした駆動タイマーによりT4を作り出す部分である。
【0031】
(8)は交流電源1の零点検出入力aはハイレベル状態かを検知する部分である。(9)はそのハイレベル状態に基づいて、リバウンド検知期間を決めるタイマ部と後のリバウンド検知入力bの有無を判別する部分である。(10)はその中でリバウンド発生回数を数えるカウンター部と所定のカウントに達すると警報出力bをONさせる警報機能部を示す。更にリバウンドが継続して別のカウンター部が所定のカウントに達すると継電器駆動出力cがOFFし、継電器は強制停止される安全停止機能部を示す。
【0032】
(11)は継電器の接点をONさせる動作フローでリバウンドには関係しない部分であるので説明を省く。
【0033】
なお、本実施の形態では交流電源の負の半サイクルを接点開閉検知とし、正の半サイクルをリバウンド検知としてきたが、負の半サイクルをリバウンド検知、正の半サイクルを接点開閉検知としても同様の効果が得られる。その回路構成を図5に示す。6は図1にも示した接点開閉検出手段であるが、24のトランジスタをPNP型を採用することによって実現できるのは周知の通りである(当然図2〜図4も変わる)。25は保護ダイオード、26はベース抵抗、27はコレクタ抵抗である。
【0034】
また警報手段を設けて警報表示するとしたが、この部分にフォトカプラ等のアイソレーションできる素子(継電器も可能)を接続することによって、将来のセキュリティシステムへの情報伝達もでき、メンテナンス警報等にも利用できる効果が得られる。
【0035】
【発明の効果】
以上のようにして得られる継電器の制御回路は、継電器の接点OFF時のアーマチュアのバックストップからの跳ね返りによる接点再閉成が、接点の零点制御されるシステムに於いて致命的な接点劣化(接点溶着およびロッキング)が問題となるが、リバウンド検出手段を備えることによって、これを回避できるという効果が得られる。
【0036】
さらに本発明は、このリバウンド検出手段を特別に設けるのではなく、零点制御に必要不可欠な接点開閉検出手段の回路は兼用とし、ソフト処理で切り換えるアルゴリズムを提供することによって、経済的負担無くこれを実現することができるという効果が得られるのである。
【0037】
さらにもう一つの効果は、リバウンド検出手段で得られた結果をカウントするソフト処理を提供することによって、継電器の異常を警報すると共に、更に継続する場合は接点が溶着やロッキング発生前に動作を停止させるという安全確保の面からも有効な効果が得られるのである。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による回路構成図
【図2】同実施の形態の接点開閉動作説明用タイミングチャート
【図3】同実施の形態のリバウンド検出動作説明用タイミングチャート
【図4】同実施の形態の接点開閉動作とリバウンド検出切り換えソフトアルゴリズムを示すフローチャート
【図5】図2、図3の交流電源零点同期信号から得られる零点検出入力信号の立ち上がり、立ち下りを逆に利用した例の回路構成図
【図6】従来例の回路構成図
【図7】従来例の動作フローチャート
【符号の説明】
1 交流電源
2 回路駆動用直流電源
3 負荷
4 継電器の接点
5 零点検出手段
6 リバウンド検出手段
7 制御部
8 継電器駆動手段
9 トランジスタ
10 保護用ダイオード
11 ベース抵抗
12 コレクタ抵抗
13 リバウンド検出手段のトランジスタ
14 保護用ダイオード
15 ベース抵抗
16 コレクタ抵抗
17 継電器コイル
18 トランジスタ
19 ベース抵抗
20 逆起電力吸収ダイオード
21 警報手段
22 LED表示素子
23 LED表示素子の電流制限抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a relay control circuit for driving a relay contact by zero point control while detecting a zero point of an AC power supply with a microcomputer.
[0002]
[Prior art]
In general, a technique for controlling the zero point of the load of the AC power source with the contact of the relay is known, for example, as shown in Japanese Patent Publication No. 3-3325, and the contact point of the relay is controlled by the microcomputer as shown in FIG. It was something to do. That is, 1 is an AC power supply, 2 is a DC power supply, 3 is a load, 4 is a contact of a relay provided in series with the load 3, 5 is a power supply synchronization generating means for generating a signal synchronized with the zero point of the AC power supply 1, Opening / closing phase detecting means for detecting the phase at which the contact 4 of the relay is opened / closed, 7 is a control circuit section comprising a microcomputer, and 8 is a driving means for driving the relay by an output signal from the control section 7.
[0003]
Here, the power supply synchronizing signal generating means 5 is composed of a diode bridge 9, resistors 10 and 11, and a photocoupler 12, and the open / close phase detecting means 6 is composed of a diode bridge 13, resistors 14 and 15 and a photocoupler 16. The relay driving means 8 includes a relay coil 17, a transistor 18, a diode 19, and a resistor 20.
[0004]
The control unit 7 includes a CPU, a ROM, a RAM input / output port, and the like, and inputs a power supply synchronization signal from the power supply synchronization signal generating unit 5 and an open / close signal from the open / close phase detection unit 6 into the ROM. A time difference measuring means (not shown) for measuring the time difference and a driving phase determining means (not shown) for determining the driving phase of the relay based on a measurement signal from the time difference measuring means are provided.
[0005]
An operation example in which the relay is simply controlled and the contact is closed will be described with reference to the flowchart shown in FIG.
[0006]
When the contact 4 of the relay is closed, the measurement of the time (phase) t0 is started when the falling edge of the power supply synchronization signal is input (step 1), and the time t0 stored in the RAM in step 2 is the time ton. The relay drive signal is output with the matched phase. When the relay contact is closed, the fall of the open / close signal is input in step 3, and the measurement of time t0 is stopped. Only when the time t0 and the period T1 of the power supply synchronizing signal are not equal, the difference between the time t0 and the period T1 is added to the time ton, and the value is stored in the RAM as a new time ton (step 4).
[0007]
When the contact 4 is opened, when the rising edge of the power supply synchronizing signal is input, the measurement of the time t0 is started (step 5), and the relay drive signal has a phase that coincides with the time toff stored in the RAM. Is stopped (step 6). Thus, the contact of the relay is controlled at the zero point of the AC power supply, and the on control is performed when the zero point synchronization signal falls and the off control is performed when the zero point synchronization signal rises.
[0008]
[Problems to be solved by the invention]
It is known that the contact life is extended when the contact is opened and closed near the zero point of the AC power supply as in the conventional example. However, since a small relay may rebound immediately after the contact is opened, if the relay contact is opened and closed near the zero point, a fatal arc discharge may occur due to rebound immediately after the break and the contact life may be shortened remarkably. is there.
[0009]
This rebound is a transient response that causes the open contact to reclose (contact is turned on again even if there is no relay coil signal) due to the bouncing phenomenon caused by the armature backstop collision when the contact of the relay is released. (This phenomenon is expressed as rebound below.) The influence of this on the contact life is particularly serious when a contact zero-point control method as in the conventional example is adopted, and a safety problem remains in a device that controls a heater load or the like.
[0010]
In other words, when rebound occurs, strong inter-contact arc discharge occurs during the half cycle of AC power supply immediately after the zero point control of the contact, and if it continues, rocking due to welding or transition of contact metal occurs due to abnormal heating of the contact surface Had.
[0011]
The present invention is to solve such a problem in advance, and provides a relay control circuit that detects a rebound occurrence and can perform a maintenance alarm and a safety stop before contact welding (including locking) occurs. It is for the purpose.
[0012]
[Means for Solving the Problems]
In order to solve this problem, there is provided a relay control circuit controlled by a load driven by an AC power source and a contact of the relay, a zero point detecting unit for detecting a zero point of the AC power source, and the zero point detecting unit Control means for opening and closing the contact of the relay near the zero point of the AC power source based on the signal of the contact, contact opening and closing detection means for detecting the opening and closing of the contact of the relay, and immediately after the opening of the contact of the relay The relay control circuit includes a rebound detecting means for detecting a rebound generated during a half cycle.
[0013]
According to this configuration, when driving the relay, it is possible to detect rebound that occurs immediately after the opening of the contact, so if a predetermined number of occurrences occur, a warning signal is issued, and if it occurs continuously, the contact is welded ( By adding a function of forcibly stopping the driving of the relay before locking (including locking), safety can be ensured and the object of the present invention can be achieved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, the control means, the contact with one of the signal of the rectangular wave rising signal or falling signal is the output signal of the power-supply sync generating means synchronized to the zero potential of an AC power source It has a processing switching software algorithm that performs zero-point calculation control of contacts as an open / close detection input and detects rebound with the other signal. According to this configuration, rebound detection can always be detected every time the relay contacts are opened or closed. It is what has.
[0015]
The invention according to claim 2 of the present invention, the control means, when the predetermined number of times counted number of occurrences of the rebound, Rutotomoni drives the alarm means for abnormality notification relay, the operation of the relay if the continued According to such a configuration, the problem of contact welding due to rebound or locking phenomenon that hinders the extension of the contact life of the relay can be avoided , and the contact life can be extended .
[0018]
(Embodiment 1)
FIG. 1 shows the configuration of a relay control circuit according to the first embodiment of the present invention. In FIG. 1, 1 is an AC power source, 2 is a DC power source for circuit driving, and 3 is a load connected to the AC power source 1. 4 is a relay contact for controlling the load 3, 5 is a zero point detection means for generating a signal synchronized with the zero point of the AC power supply, and 6 is also used as a contact open / close detection means for detecting the phase at which the contact 4 of the relay 17 is opened and closed. It is a rebound detection means. Reference numeral 7 denotes a control unit composed of a microcomputer, and 8 denotes relay drive means for driving the relay 17 by an output signal from the control unit 7.
[0019]
Here, the zero point detection means 5 includes a transistor 9, a base-emitter protection diode 10 of the transistor, a base resistor 11, and a collector resistor 12. The rebound detecting means 6 also serving as the contact opening / closing detecting means includes a transistor 13, a base-emitter protective diode 14, a base resistor 15, and a collector resistor 16. Further, the control unit 7 is constituted by a microcomputer, and the rebound detection is also used as the zero point detection input a of the zero point detection means 5 and the contact opening / closing detection input obtained from the rebound detection means 6 which is also used as the contact opening / closing detection means. It has an input b (herein expressed as a contact open / close detection input b) and an alarm output d that issues an alarm when rebound occurs a predetermined number of times. Reference numeral 21 denotes the alarm means, 22 an LED display element for alarm, and 23 a current limiting resistor. The relay driving means 8 is driven by the relay driving output c, and includes a relay 17, a transistor 18, a base resistor 19, and a back electromotive force absorption diode 20 of the relay 17. VR represents the voltage across the contact 4 of the relay 17.
[0020]
The operation will be described below with reference to the timing chart of FIG. 2 based on the configuration of FIG. In order to distinguish from the rebound detection mode, which will be described later, FIG. 2 illustrates the operation mode for taking in the contact opening / closing detection input b.
[0021]
Now, when the contact 4 is in the ON state (the voltage VR between the contact points of the relay has no signal), T1 from the rising signal (A) point of the zero detection input a obtained from the waveform of the AC power supply 1 by the zero detection means 5 The relay drive means 8 is turned off with the relay drive output c measured and calculated by the control unit 7 later. The relay 17 has the coil signal cut off at this point (B), and the contact 4 of the relay 17 is turned OFF at the point (c) after T2. Here, the contact opening / closing detection input b is taken into the microcomputer of the control unit 7, T3 up to the falling point (d) of the zero point detection input a of the AC power supply 1 is measured, and is reflected in the next calculation control.
[0022]
Next, the capture mode of the rebound detection input b will be described with reference to the timing chart of FIG. The circuit has a contact opening / closing detection input b which is also used as a contact opening / closing detection input 6 which is also used as a contact opening / closing means 6 (represented as a rebound detection input b here). Now, when the contact point 4 is in the ON state, from the falling signal (e) point of the zero point detection input a obtained from the waveform of the AC power source 1 by the zero point detection means 5, T2 measured by the control unit 7 last time after T4 and The relay drive means 8 is turned off with the same relay drive output c. In the relay 17, the coil signal is cut off at this point (f), and the contact 4 of the relay 17 is turned off at the point (g) after T5.
[0023]
Here, the difference from the contact open / close detection input b capture mode is that no signal is output to the rebound detection input b between this point (g) and the rising signal (h) point of the zero detection input a of the AC power supply 1. is there. This is because the zero point detection input a is at the LOW level and the contact open / close detection input b is not captured on the circuit. In normal operation, no signal is received after the rebound detection input b. However, as described above, the rebound phenomenon is caused by bouncing caused by the collision of the contact point once turned off to the back stop of the armature. ) The point at which the contact 4 turned off after T7 from the point is closed again (expression that the contact is turned on again by rebound) is the (re) point.
[0024]
Since the T7 is a mechanical armature collision rebound, the structural influence is strong and may be within the range of T6. In this case, since the voltage of the AC power supply 1 is also close to the zero point, there is no influence of contact deterioration, so it does not matter if it cannot be detected. However, if the AC power supply 1 is re-closed at a point slightly beyond the zero point (H), the arc discharge is stopped from the arc generation voltage VA point (generally said to be generated from about 15 V in normal air). During T8 up to the point (V) of the voltage VB, a strong arc discharge occurs between the contacts. If rebound occurs at a point where the zero point of the AC power source 1 is exceeded, the rebound detection input b is detected at the (re) point and is taken into the microcomputer of the control unit 7.
[0025]
Next, the processing algorithm of the signal taken into the microcomputer of the control unit 7 will be described with reference to FIG.
[0026]
FIG. 4 is an operation flowchart in the microcomputer in which the contact open / close detection input and the rebound detection input can be switched in the signal processing algorithm.
[0027]
(1) is a part for switching to the contact opening / closing detection input mode if there is a rising signal in the negative half cycle zero point detection input of the AC power supply, and to the rebound detection input mode if there is no rising signal. Therefore, the zero detection input a described with reference to FIG. 2 enters the contact open / close detection input mode from the rise of the zero detection input (YES in the flowchart).
[0028]
(2) shows the switching part of the contact operation mode (ON or OFF). Here, the operation mode from the ON state of the contact, which is the above condition, corresponds to the part (3), and constitutes the T1 timer shown in FIG. (4) is a part for measuring a time T2 from when the relay drive output c is turned off until the contact is opened. The above flow is the processing part of the contact open / close detection input mode.
[0029]
(5) is the processing part of the mode in which the contact is turned from OFF to ON, and is not related to the current rebound, so the explanation is omitted.
[0030]
Next, the rebound detection input mode of the falling part of the positive half cycle of the AC power supply 1 (NO at the zero detection input a) will be described. (6) shows a contact operation switching (turning ON or OFF) part. (7) is a part for generating T4 by the driving timer set with the previous measurement DATA (T2) from the relay driving output c described in FIG.
[0031]
(8) is a part for detecting whether the zero point detection input a of the AC power source 1 is in a high level state. (9) is a part for discriminating whether or not there is a timer unit for determining a rebound detection period and a subsequent rebound detection input b based on the high level state. (10) shows a counter unit for counting the number of occurrences of rebound, and an alarm function unit for turning on the alarm output b when a predetermined count is reached. Further, when the rebound continues and another counter unit reaches a predetermined count, the relay drive output c is turned OFF, and the relay indicates a safety stop function unit that is forcibly stopped.
[0032]
(11) is an operation flow for turning on the contact of the relay and is not related to the rebound, so the description is omitted.
[0033]
In this embodiment, the negative half cycle of the AC power supply is used as contact open / close detection and the positive half cycle is used as rebound detection. However, the negative half cycle is used as rebound detection, and the positive half cycle is used as contact open / close detection. The effect is obtained. The circuit configuration is shown in FIG. 6 is the contact open / close detecting means shown in FIG. 1, but it is well known that 24 transistors can be realized by adopting a PNP type (of course, FIGS. 2 to 4 are also changed). Reference numeral 25 denotes a protective diode, 26 denotes a base resistance, and 27 denotes a collector resistance.
[0034]
In addition, an alarm means is provided to display an alarm, but by connecting an element that can be isolated (such as a relay) such as a photocoupler to this part, information can be transmitted to the future security system, and maintenance alarms can be used. Useful effects are obtained.
[0035]
【The invention's effect】
The relay control circuit obtained as described above has a fatal contact deterioration (contact point) in a system in which contact reclosing due to rebound from the armature backstop when the relay contact point is OFF is controlled by the zero point of the contact point. (Welding and locking) is a problem, but by providing the rebound detection means, an effect of avoiding this can be obtained.
[0036]
Furthermore, the present invention does not provide this rebound detection means specially, but also provides an algorithm for switching by means of software processing, which is shared with the circuit of the contact open / close detection means essential for zero point control. The effect that it can be realized is obtained.
[0037]
Yet another effect is to provide a software process that counts the results obtained by the rebound detection means, alerting the relay to abnormalities, and if further continued, the contact stops operating before welding or locking occurs. An effective effect is also obtained from the aspect of ensuring safety.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram according to a first embodiment of the present invention. FIG. 2 is a timing chart for explaining a contact opening / closing operation according to the embodiment. FIG. 3 is a timing chart for explaining a rebound detection operation according to the embodiment. FIG. 4 is a flowchart showing a contact opening / closing operation and a rebound detection switching software algorithm according to the embodiment. FIG. 5 reverses rising and falling of a zero detection input signal obtained from the AC power supply zero synchronization signal of FIGS. Circuit diagram of the used example [FIG. 6] Circuit diagram of the conventional example [FIG. 7] Operation flowchart of the conventional example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AC power source 2 Circuit drive DC power source 3 Load 4 Relay contact 5 Zero point detection means 6 Rebound detection means 7 Control unit 8 Relay drive means 9 Transistor 10 Protection diode 11 Base resistance 12 Collector resistance 13 Rebound detection means transistor 14 Protection Diode 15 Base resistance 16 Collector resistance 17 Relay coil 18 Transistor 19 Base resistance 20 Back electromotive force absorption diode 21 Alarm means 22 LED display element 23 Current limiting resistance of LED display element

Claims (2)

交流電源で駆動される負荷と、この負荷への通電を継電器の接点で制御する継電器の制御回路であって、前記交流電源の零点に同期した矩形波を発生する電源同期発生手段と、前記電源同期発生手段の信号に基づき前記継電器の接点を前記交流電源の零点近傍で開閉する制御手段と、前記継電器の接点の開閉を検出すると共に前記接点開離直後に再閉成する現象(以下、リバウンドと記載する)を検出するリバウンド検出手段とを備え
前記制御手段が、前記電源同期発生手段の立ち上り信号または立ち下り信号に基づき接点開閉検出とリバウンド検出を切り換えて行う継電器の制御回路。
A load driven by an AC power supply, a relay control circuit for controlling energization of the load at a contact of the relay, a power supply synchronization generating means for generating a rectangular wave synchronized with a zero point of the AC power supply, and the power supply phenomenon and control means for opening and closing the contacts of the relay based on the signal of the synchronous generator at the zero point vicinity of the alternating current power supply, the contact and detects the opening and closing of the contacts of the relay is re-closed immediately after separable (hereinafter, Rebound detection means for detecting ) ,
A relay control circuit in which the control means switches between contact opening / closing detection and rebound detection based on a rising signal or a falling signal of the power supply synchronization generating means .
制御手段が、リバウンド検出手段からの検出信号に基づき、リバウンドの発生回数をカウントすると共に、所定回数カウントした際に警報手段を駆動させることを特徴とする請求項1記載の継電器の制御回路。Control means, based on a detection signal from the rebound detection means and for counting the number of occurrences of rebound, the control circuit of the relay according to claim 1, wherein the driving the alarm means upon a predetermined number of times counted.
JP07381798A 1998-03-23 1998-03-23 Relay control circuit Expired - Fee Related JP3703959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07381798A JP3703959B2 (en) 1998-03-23 1998-03-23 Relay control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07381798A JP3703959B2 (en) 1998-03-23 1998-03-23 Relay control circuit

Publications (2)

Publication Number Publication Date
JPH11273490A JPH11273490A (en) 1999-10-08
JP3703959B2 true JP3703959B2 (en) 2005-10-05

Family

ID=13529100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07381798A Expired - Fee Related JP3703959B2 (en) 1998-03-23 1998-03-23 Relay control circuit

Country Status (1)

Country Link
JP (1) JP3703959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830734B2 (en) * 2006-09-07 2011-12-07 パナソニック株式会社 Relay and electronic device using the same
CN109324287B (en) * 2018-11-22 2024-07-30 深圳市中晶微电子技术开发有限公司 Electromagnetic relay contact closing detection circuit

Also Published As

Publication number Publication date
JPH11273490A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP4180597B2 (en) Abnormality detection device for power supply circuit
JP6638069B2 (en) System and method for preventing abnormal opening of contactor through real-time operation detection
JPH07201266A (en) Hybrid switch
JPH07241096A (en) Motor controller
KR101809944B1 (en) Arcless DC Circuit Breaker using Semiconductor Switch
JP3185128B2 (en) Overload protection device
JPH0870580A (en) Alarm circuit
JP3703959B2 (en) Relay control circuit
JP2011509065A (en) Non-volatile status indicator switch
JP2003317598A (en) Circuit breaker
JPH09233836A (en) Inverter device
JPH0613353U (en) Uninterruptible power system
KR20180116625A (en) Integratied active fuse module and method for preventing overvoltage using there of
JP2005003626A (en) Connection status judging method of three-phase power source and device therefor
JPH04181176A (en) Detecting circuit for disconnection
KR930002120Y1 (en) Exhaust fan control device for boiler
JPH10225134A (en) Abnormality detecting circuit for inverter
JPH0555435U (en) Output switch status detection circuit
JPH09185932A (en) Relay control circuit
JP2004027987A (en) Fan life detecting device
JP3412228B2 (en) Gas shut-off device
JPH09240391A (en) Power source diagnosing device for automobile
JP2532473B2 (en) Temperature control device for heating equipment
JP3599846B2 (en) Air conditioner power supply
JP2001292568A (en) Short-circuit detecting circuit in dc converter power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees