JP3703406B2 - Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method - Google Patents

Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method Download PDF

Info

Publication number
JP3703406B2
JP3703406B2 JP2001165871A JP2001165871A JP3703406B2 JP 3703406 B2 JP3703406 B2 JP 3703406B2 JP 2001165871 A JP2001165871 A JP 2001165871A JP 2001165871 A JP2001165871 A JP 2001165871A JP 3703406 B2 JP3703406 B2 JP 3703406B2
Authority
JP
Japan
Prior art keywords
gas
reactive fluorine
treatment agent
carbon dioxide
gas removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001165871A
Other languages
Japanese (ja)
Other versions
JP2002363533A (en
Inventor
昭彦 新田
克人 枝澤
岳史 真鍋
浩三 大矢
修次 永野
賢一 八高
秀樹 安藤
正敏 後藤
隆章 記村
隆 上村
康司 中坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2001165871A priority Critical patent/JP3703406B2/en
Publication of JP2002363533A publication Critical patent/JP2002363533A/en
Application granted granted Critical
Publication of JP3703406B2 publication Critical patent/JP3703406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として半導体製造工程などで使用されるフッ化水素、フッ素、六フッ化タングステン、四フッ化珪素、及び三フッ化硼素等の反応性フッ素系ガスを排出するにあたって、この反応性フッ素系ガスを無害化する除害処理剤および除害方法に関する。
【0002】
【従来の技術】
半導体工業分野においては、CVD、真空蒸着、スパッタリング等による半導体の製造工程で反応性フッ素系ガスが使用されている。また、PFC(パーフルオロ化合物ガス)のような安定なフッ素化合物を使用する工程においても、プラズマによって反応性フッ素系ガスが副生される。
従来、この反応性フッ素系ガスを排出するにあたっては、この反応性フッ素系ガスを処理剤に接触させて吸収除去し無害化する除害処理が行われている。
この除害処理剤としては、水酸化カルシウム(Ca(OH)2)を主成分とするソーダライムが多く用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、この処理方法で使用されている除害処理剤では、その反応性フッ素系ガスの吸収処理能力が低いため、より処理能力の高い除害処理剤が望まれていた。
本発明は、上記した事情に鑑みなされたもので、反応性フッ素系ガスの除害処理能力に優れた反応性フッ素系ガスの除害処理剤および反応性フッ素系ガスの除害方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、水酸化カルシウムを主成分とする処理剤を、二酸化炭素濃度100ppm〜500ppmの二酸化炭素含有窒素ガスに接触させて処理して得られたものであることを特徴とする反応性フッ素系ガスの除害処理剤である。
【0005】
請求項2にかかる発明は、水酸化カルシウムを主成分とする処理剤を、二酸化炭素濃度100ppm〜500ppmの二酸化炭素含有窒素ガスに接触させて処理した後、該処理剤に、反応性フッ素系ガスを含有するガスを接触処理させることを特徴とする反応性フッ素系ガスの除害方法である。
【0006】
【発明の実施の形態】
本発明の反応性フッ素系ガスの除害処理剤は、半導体製造工程などから排出されるガス中に含まれる反応性フッ素系ガスを無害化する除害処理剤であって、水酸化カルシウムを主成分とする処理剤(以下、水酸化カルシウム含有処理剤または処理剤ということがある)を、二酸化炭素濃度100ppm〜500ppmの二酸化炭素含有窒素ガスと接触させて処理して得られたものである。水酸化カルシウム含有処理剤としては、ソーダライムを含むものを用いることができる。
【0009】
このとき、二酸化炭素(CO )含有窒素ガス中のCO 濃度を100ppm以上500ppm以下とすることで、反応性フッ素系ガスの除害処理能力を高めることができる。
これは、水酸化カルシウム含有処理剤の一部がCOによって炭酸カルシウムとなることによって、その表面に体積膨張により微細な割れが起き、表面積が大きくなることによるものと推測される。
CO濃度が上記範囲未満であると、除害処理能力を高める十分な効果が得られない。またCO濃度が上記範囲を越えると、水酸化カルシウム含有処理剤の炭酸カルシウム化が過剰となり、反応性フッ素系ガスの除害処理能力が低下する。
【0010】
以下、本発明の反応性フッ素系ガスの除害処理剤を用いて反応性フッ素系ガスを除害する方法の一例について説明する。
図1に示すように、充填筒1に、水酸化カルシウム含有処理剤(例えばソーダライム)Mを充填する。
弁2及び弁3を開にし、弁12及び13を閉にして、二酸化炭素含有窒素ガスNgを、管路4より弁2、管路5を介して充填筒1に導入し、管路6、弁3、管路7を介して導出する。これによって、充填筒1内の処理剤Mを二酸化炭素含有窒素ガスNgに接触させ、除害処理剤M0を得る。
処理剤Mを二酸化炭素含有窒素ガスに接触させることによって、処理剤Mを覆っている水分含有成分を除去することができる。このため、処理剤M表面が露出した除害処理剤M0が得られる。
【0011】
次いで、弁2、3を閉にし、二酸化炭素含有窒素ガスNgの充填筒1への導入を停止する。次いで、弁12、13を開にして、半導体製造工程等の被処理ガス源10から、反応性フッ素系ガスを含有する被処理ガスFgを、管路8、弁12、管路5を介して充填筒1に導入し、除害処理剤M0に接触させる。
除害処理剤M0は、上記二酸化炭素含有窒素ガス処理によって、水分含有成分が除去された状態となっているため、この水分含有成分に妨げられることなく、被処理ガスFg中の反応性フッ素系ガスを効率よく吸収する。
このため、充填筒1を経た被処理ガスFgは、反応性フッ素系ガスが除去されて無害化された状態で、管路6、9を通して放出ガスF0として導出される。
この除害処理を長時間行うことによって、除害処理剤M0は吸収能力が飽和に近づき、放出ガスF0中の反応性フッ素系ガス濃度が高くなり、許容値(例えば3ppm)に達した場合には、除害処理剤M0を新たな処理剤に交換し、この処理剤に上記二酸化炭素含有窒素ガス処理を施した後、被処理ガスFgの処理を行う。
【0012】
参考例1>
ソーダライムからなる処理剤Mを、直径40mmの充填筒1に高さ20cmとなるように充填した。
この充填筒1に、窒素Ngを24時間にわたって流量20L/minで導入し、この窒素を処理剤Mに接触させて除害処理剤M0を得た。
図1に示す装置を用い、以下に示す被処理ガスFgを充填筒1に空筒速度10cm/sの条件で流した。
・フッ化水素(HF):1.5容量%
・四フッ化珪素(SiF):0.6容量%
・窒素ガス(N):97.9容量%
管路9からの放出ガスF0中のフッ化水素(HF)濃度をガス検知器にて測定した結果、放出ガスF0のフッ化水素(HF)濃度が許容濃度(3ppm)に達するまでの時間(破過時間)は400時間であった。
【0013】
参考例2>
参考例1で用いたものと同様の処理剤Mを大気中に24時間放置した後、直径40mmの充填筒1に高さ20cmとなるように充填した。
この充填筒1に、窒素を流量20L/minで24時間にわたって導入して除害処理剤M0を得た。
参考例1で用いたものと同じ組成の被処理ガスFgを、参考例1と同じ空筒速度で充填筒1に流したところ、破過時間は530時間となった。
【0014】
参考例3>
参考例1で用いたものと同様の処理剤Mを、そのまま直径40mmの充填筒1に高さ20cmとなるように充填した。
この充填筒1に、乾燥空気を流量8L/minで24時間にわたって導入して除害処理剤M0を得た。
参考例1で用いたものと同じ組成の被処理ガスFgを、参考例1と同じ空筒速度で充填筒1に流したところ、破過時間は530時間となった。
【0015】
<実施例>
参考例1で用いたものと同様の処理剤Mを、そのまま直径40mmの充填筒1に高さ20cmとなるように充填した。
この充填筒1に、二酸化炭素100ppmを含む窒素ガスを、流量20L/minで24時間にわたって導入して除害処理剤M0を得た。
参考例1で用いたものと同じ組成の被処理ガスFgを、参考例1と同じ空筒速度で充填筒1に流したところ、破過時間は500時間となった。
【0016】
<比較例>
参考例1で用いたものと同様の処理剤Mを、そのまま直径40mmφの充填筒1に高さ20cmに充填した。
処理剤Mを二酸化炭素含有窒素ガスNgに接触させる処理を行わず、参考例1で用いたものと同じ組成の被処理ガスFgを、参考例1と同じ空筒速度で充填筒1に流したところ、破過時間は180時間となった。
【0017】
上記したように、二酸化炭素含有窒素ガス処理を行う実施例では、二酸化炭素含有窒素ガス処理を行わない比較例に比べ、除害処理剤M0の寿命が大幅に延びたことががわかった。
なお、本発明での処理対象となる反応性フッ素系ガスは、上記フッ化水素、四フッ化珪素に限定されるものでなく、フッ素、六フッ化タングステン、三フッ化硼素等の反応性のフッ素化合物であればいかなるものでも同様の除害処理効果を得ることができる。
【0018】
【発明の効果】
本発明の反応性フッ素系ガスの除害処理剤は、水酸化カルシウムを主成分とする処理剤を二酸化炭素濃度100ppm〜500ppmの二酸化炭素含有窒素ガスと接触させて処理して得られるものであるので、優れた除害能力を得ることができる。さらには、除害処理活用寿命を著しく延長させることが可能となり、運転コストを低減することができる。
【図面の簡単な説明】
【図1】 本発明の反応性フッ素系ガスの除害方法を実施可能な反応性フッ素系ガスの除害装置を示す系統図。
【符号の説明】
1…充填筒、10…被処理ガス源、M…水酸化カルシウムを主成分とする処理剤、M0…除害処理剤、Ng…窒素含有ガス(窒素を含むガス)、Fg…反応性フッ素系ガスを含有する被処理ガス、F0…放出ガス
[0001]
BACKGROUND OF THE INVENTION
In the present invention, when reactive fluorine-based gases such as hydrogen fluoride, fluorine, tungsten hexafluoride, silicon tetrafluoride, and boron trifluoride used mainly in semiconductor manufacturing processes are discharged, The present invention relates to an abatement treatment agent and an abatement method for detoxifying a system gas.
[0002]
[Prior art]
In the semiconductor industry, reactive fluorine-based gases are used in semiconductor manufacturing processes such as CVD, vacuum deposition, and sputtering. Also, in the process of using a stable fluorine compound such as PFC (perfluoro compound gas), a reactive fluorine-based gas is by-produced by plasma.
Conventionally, when the reactive fluorine-based gas is discharged, a detoxification process is performed in which the reactive fluorine-based gas is brought into contact with a treatment agent to be absorbed and detoxified.
As this detoxifying agent, soda lime containing calcium hydroxide (Ca (OH) 2 ) as a main component is often used.
[0003]
[Problems to be solved by the invention]
However, since the abatement treatment agent used in this treatment method has a low ability to absorb reactive fluorine-based gas, an abatement treatment agent with higher treatment capability has been desired.
The present invention has been made in view of the above circumstances, and provides a reactive fluorine-based gas removal treatment agent and a reactive fluorine-based gas removal method excellent in reactive fluorine-based gas removal treatment capability. For the purpose.
[0004]
[Means for Solving the Problems]
To solve this problem,
The invention according to claim 1 is obtained by contacting a treating agent mainly composed of calcium hydroxide with a carbon dioxide-containing nitrogen gas having a carbon dioxide concentration of 100 ppm to 500 ppm. It is a detoxifying agent for reactive fluorine-based gas.
[0005]
In the invention according to claim 2, after the treatment agent containing calcium hydroxide as a main component is contacted with a carbon dioxide-containing nitrogen gas having a carbon dioxide concentration of 100 ppm to 500 ppm, the treatment agent is reacted with a reactive fluorine-based gas. This is a method for removing reactive fluorine-based gas, which comprises subjecting a gas containing hydrogen to contact treatment.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The reactive fluorine-based gas detoxifying agent of the present invention is a detoxifying agent for detoxifying reactive fluorine-based gas contained in a gas discharged from a semiconductor manufacturing process or the like, and is mainly composed of calcium hydroxide. A treatment agent (hereinafter sometimes referred to as a calcium hydroxide-containing treatment agent or a treatment agent ) as a component is obtained by contacting with a carbon dioxide-containing nitrogen gas having a carbon dioxide concentration of 100 ppm to 500 ppm . As the calcium hydroxide-containing treatment agent, one containing soda lime can be used.
[0009]
At this time, by setting the CO 2 concentration in the carbon dioxide (CO 2 ) -containing nitrogen gas to 100 ppm or more and 500 ppm or less, it is possible to increase the detoxification processing capacity of the reactive fluorine-based gas.
This is presumably because part of the calcium hydroxide-containing treatment agent is converted to calcium carbonate by CO 2 , whereby fine cracks occur on the surface due to volume expansion and the surface area increases.
If the CO 2 concentration is less than the above range, a sufficient effect of increasing the detoxification treatment capacity cannot be obtained. On the other hand, when the CO 2 concentration exceeds the above range, the calcium carbonate-containing treatment agent becomes excessively converted to calcium carbonate, and the detoxification treatment ability of the reactive fluorine-based gas is lowered.
[0010]
Hereinafter, an example of a method for detoxifying reactive fluorine-based gas using the reactive fluorine-based gas detoxifying agent of the present invention will be described.
As shown in FIG. 1, a filling agent 1 is filled with a calcium hydroxide-containing treatment agent (for example, soda lime) M.
The valves 2 and 3 are opened, the valves 12 and 13 are closed, and carbon dioxide-containing nitrogen gas Ng is introduced into the filling cylinder 1 from the pipe 4 via the valve 2 and the pipe 5, and the pipe 6, Derived via the valve 3 and the conduit 7. As a result, the treatment agent M in the filling cylinder 1 is brought into contact with the carbon dioxide-containing nitrogen gas Ng to obtain the detoxification treatment agent M0.
By bringing the treatment agent M into contact with the carbon dioxide-containing nitrogen gas , the moisture-containing component covering the treatment agent M can be removed. For this reason, the abatement treatment agent M0 with the surface of the treatment agent M exposed is obtained.
[0011]
Next, the valves 2 and 3 are closed, and the introduction of the carbon dioxide-containing nitrogen gas Ng into the filling cylinder 1 is stopped. Next, the valves 12 and 13 are opened, and the gas Fg containing the reactive fluorine-based gas is supplied from the gas source 10 to be processed in the semiconductor manufacturing process or the like through the pipe 8, the valve 12, and the pipe 5. It introduce | transduces into the filling cylinder 1, and is made to contact the abatement treatment agent M0.
The detoxifying agent M0 is in a state in which the moisture-containing component has been removed by the carbon dioxide-containing nitrogen gas treatment, so that the reactive fluorine system in the gas Fg to be treated is not hindered by the moisture-containing component. Absorbs gas efficiently.
Therefore, the gas to be treated Fg that has passed through the filling cylinder 1 is led out as the discharge gas F0 through the pipes 6 and 9 in a state in which the reactive fluorine-based gas is removed and rendered harmless.
By performing this detoxification treatment for a long time, the detoxification treatment agent M0 is close to saturation in absorption capacity, and the concentration of the reactive fluorine-based gas in the released gas F0 increases and reaches an allowable value (for example, 3 ppm) Replaces the detoxification treatment agent M0 with a new treatment agent, and after the treatment agent is treated with the carbon dioxide-containing nitrogen gas , the treatment gas Fg is treated.
[0012]
< Reference Example 1>
Treatment agent M made of soda lime was filled into a filling cylinder 1 having a diameter of 40 mm so as to have a height of 20 cm.
Nitrogen Ng was introduced into the filling cylinder 1 at a flow rate of 20 L / min over 24 hours, and this nitrogen was brought into contact with the treating agent M to obtain a detoxifying agent M0.
Using the apparatus shown in FIG. 1, the gas to be treated Fg shown below was caused to flow through the filling cylinder 1 under the condition of an empty cylinder speed of 10 cm / s.
・ Hydrogen fluoride (HF): 1.5% by volume
・ Silicon tetrafluoride (SiF 4 ): 0.6% by volume
Nitrogen gas (N 2 ): 97.9% by volume
As a result of measuring the hydrogen fluoride (HF) concentration in the released gas F0 from the pipe 9 with the gas detector, the time until the hydrogen fluoride (HF) concentration in the released gas F0 reaches the allowable concentration (3 ppm) ( The breakthrough time was 400 hours.
[0013]
< Reference Example 2>
The same treatment agent M as that used in Reference Example 1 was left in the atmosphere for 24 hours, and then filled into a filling cylinder 1 having a diameter of 40 mm so as to have a height of 20 cm.
Nitrogen was introduced into the filling cylinder 1 at a flow rate of 20 L / min over 24 hours to obtain a detoxifying agent M0.
When the gas Fg having the same composition as that used in Reference Example 1 was allowed to flow through the filling cylinder 1 at the same cylinder speed as in Reference Example 1, the breakthrough time was 530 hours.
[0014]
< Reference Example 3>
The same treatment agent M as that used in Reference Example 1 was filled as it was in a filling cylinder 1 having a diameter of 40 mm to a height of 20 cm.
Dry gas was introduced into the filling cylinder 1 at a flow rate of 8 L / min for 24 hours to obtain a detoxifying agent M0.
When the gas Fg having the same composition as that used in Reference Example 1 was allowed to flow through the filling cylinder 1 at the same cylinder speed as in Reference Example 1, the breakthrough time was 530 hours.
[0015]
<Example>
The same treatment agent M as that used in Reference Example 1 was filled as it was in a filling cylinder 1 having a diameter of 40 mm to a height of 20 cm.
Nitrogen gas containing 100 ppm of carbon dioxide was introduced into the filling cylinder 1 at a flow rate of 20 L / min for 24 hours to obtain a detoxifying agent M0.
When the gas Fg having the same composition as that used in Reference Example 1 was allowed to flow through the filling cylinder 1 at the same cylinder speed as in Reference Example 1, the breakthrough time was 500 hours.
[0016]
<Comparative example>
The same treatment agent M as that used in Reference Example 1 was directly filled in a filling cylinder 1 having a diameter of 40 mmφ to a height of 20 cm.
The treatment agent M without performing the processing of contacting the carbon dioxide-containing nitrogen gas Ng, the treated gas Fg of the same composition as that used in Reference Example 1, was passed to the filling tube 1 at the same superficial speed as in Reference Example 1 However, the breakthrough time was 180 hours.
[0017]
As described above, it was found that in the example in which the carbon dioxide-containing nitrogen gas treatment was performed, the life of the detoxifying agent M0 was greatly extended compared to the comparative example in which the carbon dioxide-containing nitrogen gas treatment was not performed.
The reactive fluorine-based gas to be treated in the present invention is not limited to the above-mentioned hydrogen fluoride and silicon tetrafluoride, but reactive gases such as fluorine, tungsten hexafluoride, boron trifluoride and the like. The same detoxification effect can be obtained with any fluorine compound.
[0018]
【The invention's effect】
The reactive fluorine gas detoxifying agent of the present invention is obtained by bringing a treating agent mainly composed of calcium hydroxide into contact with carbon dioxide-containing nitrogen gas having a carbon dioxide concentration of 100 ppm to 500 ppm. So you can get excellent abatement ability. Furthermore, it is possible to significantly extend the useful life of the abatement treatment, and to reduce the operating cost.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a reactive fluorine-based gas removal apparatus capable of implementing the reactive fluorine-based gas removal method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Filling cylinder, 10 ... To-be-processed gas source, M ... Treatment agent which has calcium hydroxide as a main component, M0 ... Detoxification treatment agent, Ng ... Nitrogen containing gas (gas containing nitrogen), Fg ... Reactive fluorine type Processed gas containing gas, F0 ... released gas

Claims (2)

水酸化カルシウムを主成分とする処理剤を、二酸化炭素濃度100ppm〜500ppmの二酸化炭素含有窒素ガスに接触させて処理して得られたものであることを特徴とする反応性フッ素系ガスの除害処理剤。 Detoxification of reactive fluorine-based gas characterized by being obtained by contacting a treatment agent mainly composed of calcium hydroxide with carbon dioxide-containing nitrogen gas having a carbon dioxide concentration of 100 ppm to 500 ppm. Processing agent. 水酸化カルシウムを主成分とする処理剤を、二酸化炭素濃度100ppm〜500ppmの二酸化炭素含有窒素ガスに接触させて処理した後、該処理剤に、反応性フッ素系ガスを含有するガスを接触処理させることを特徴とする反応性フッ素系ガスの除害方法。After treating the treatment agent containing calcium hydroxide as a main component with a carbon dioxide-containing nitrogen gas having a carbon dioxide concentration of 100 ppm to 500 ppm, the treatment agent is contacted with a gas containing a reactive fluorine-based gas. A method for removing reactive fluorine-based gas, characterized in that
JP2001165871A 2001-05-31 2001-05-31 Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method Expired - Lifetime JP3703406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001165871A JP3703406B2 (en) 2001-05-31 2001-05-31 Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001165871A JP3703406B2 (en) 2001-05-31 2001-05-31 Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method

Publications (2)

Publication Number Publication Date
JP2002363533A JP2002363533A (en) 2002-12-18
JP3703406B2 true JP3703406B2 (en) 2005-10-05

Family

ID=19008490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001165871A Expired - Lifetime JP3703406B2 (en) 2001-05-31 2001-05-31 Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method

Country Status (1)

Country Link
JP (1) JP3703406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225219A (en) * 2005-02-21 2006-08-31 Iwatani Internatl Corp Method for recovering fluorine
JP2007137739A (en) * 2005-11-22 2007-06-07 Central Glass Co Ltd METHOD FOR RECOVERING CaF2
JP5709606B2 (en) * 2011-03-30 2015-04-30 京セラ株式会社 Decomposition treatment agent

Also Published As

Publication number Publication date
JP2002363533A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
KR101115206B1 (en) Processing method of exhaust gas and processing apparatus of exhaust gas
JP3976459B2 (en) Method and apparatus for treating exhaust gas containing fluorine-containing compound
RU97110225A (en) METHOD FOR ISOLATION OF SUBSTANCES FROM THE GAS MEDIA BY DRY ADSORPTION
JPS6161619A (en) Treatment of waste gas
JP3703406B2 (en) Reactive fluorine gas removal treatment agent and reactive fluorine gas removal method
JP2020119934A (en) Rare gas recovery system and rare gas recovery method
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JP4699919B2 (en) Exhaust gas treatment method and treatment apparatus
JP3871127B2 (en) Vent gas removal method and treatment agent
JPH0251654B2 (en)
JP4344536B2 (en) Fluorine recovery method and apparatus
JP2783485B2 (en) How to remove chlorine trifluoride gas
JP2006130499A (en) Method and apparatus for waste gas treatment
JP2525957B2 (en) Dry etching exhaust gas treatment agent
JPS63291624A (en) Treatment of exhaust gas in dry etching of gallium-arsenide wafer
JP3908819B2 (en) CFC recovery method
JP2000015056A (en) Recovery of fluoride
JPS643139B2 (en)
JP3463873B2 (en) How to recycle perfluoro compounds
JP3650588B2 (en) Perfluoro compound recycling method
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP3515766B2 (en) Removal method of carbon disulfide
JPH03202128A (en) Removal of nf3
CN115121216B (en) Water humidifying dechlorinating agent and preparation method and application thereof
WO2024135452A1 (en) Exhaust gas treatment method and exhaust gas treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Ref document number: 3703406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term