JP3703389B2 - Amorphous silicon solar cell module - Google Patents

Amorphous silicon solar cell module Download PDF

Info

Publication number
JP3703389B2
JP3703389B2 JP2000344831A JP2000344831A JP3703389B2 JP 3703389 B2 JP3703389 B2 JP 3703389B2 JP 2000344831 A JP2000344831 A JP 2000344831A JP 2000344831 A JP2000344831 A JP 2000344831A JP 3703389 B2 JP3703389 B2 JP 3703389B2
Authority
JP
Japan
Prior art keywords
solar cell
amorphous silicon
cell module
heat insulating
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000344831A
Other languages
Japanese (ja)
Other versions
JP2002151709A (en
Inventor
靖 藤岡
敬 大内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000344831A priority Critical patent/JP3703389B2/en
Publication of JP2002151709A publication Critical patent/JP2002151709A/en
Application granted granted Critical
Publication of JP3703389B2 publication Critical patent/JP3703389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非晶質シリコン系太陽電池モジュールに関し、より詳細には断熱部材を備えた非晶質シリコン系太陽電池モジュールに関するものである。
【0002】
【従来の技術】
薄膜太陽電池は、結晶ウエハーを用いる太陽電池に比べ半導体材料の使用量が少なく、またガラス板や金属板などの安価な基板上に低温プロセスで形成できるため、近年広く用いられるようになりつつある。この薄膜太陽電池の中でも非晶質シリコン系太陽電池は、材料となるシリコンが地球上に豊富に存在し、またカドミウムやセレンといった他の材料に比べて人体および環境への悪影響がないことから近年その需要が伸びている。
【0003】
非晶質シリコン系太陽電池モジュールは例えば次のようにして作製される。まず、SnO2やZnOなどの透明導電膜を形成したガラスなどの透光性基板上に、p−i−n非晶質シリコン系半導体層を形成し、さらに金属裏面電極層を形成して太陽電池素子を作製する。そして、レーザービームなどで分割・接続して集積構造とした後、裏面側にエチレンビニルアセテート(EVA)シート、アルミニウム箔をポリエチレンテレフタレート(PET)フィルムで挟んだ有機シートをこの順で重ね合わせてラミネート装置に入れる。ラミネート装置は装置内部を真空排気しながら加熱する装置で、加熱によりEVAシートが溶けて太陽電池素子を封止するともに有機シートを着接する。このようにして作製したスーパーストレート型の太陽電池モジュールにアルミニウム製の枠を取り付けて屋外に設置し使用していた。
【0004】
しかしながら、非晶質シリコン系太陽電池には、ステブラー・ロンスキー効果と呼ばれる長時間の光照射による変換効率の初期劣化現象(以下、単に「光劣化現象」という)があり、太陽電池として使用する場合の重大な問題となっていた。非晶質シリコン系太陽電池の光劣化現象を完全に防止することはできないものの、光劣化現象を抑える方法として、i層の層厚を薄くしたり、あるいは太陽電池素子をタンデム、トリプル構造とする試みがこれまでになされているが未だ充分な成果が得られていない。
【0005】
ところで、非晶質シリコン系太陽電池の光劣化現象によって低下した変換効率は、アニール処理することで回復することが知られている。回復効果は40℃程度の温度でも見られるが、温度の高い方が回復効果は大きく、70℃以上の温度にすることで変換効率が大幅に回復することが確認されている。一方、太陽電池は温度上昇により、開放電圧および最大出力は減少し、短絡電流は増大する傾向を示すが、非晶質シリコン系太陽電池は結晶シリコン系太陽電池に比べその温度依存性が小さく、1℃の温度上昇による出力低下はわずか0.1〜0.2%である。
【0006】
そこで、このような非晶質シリコン系太陽電池の特性に着目し、太陽電池を高い温度に保持して、光劣化現象による変換効率の低下を抑制させながら使用することが従来から提案されている。例えば特開平4−71276号公報には、非晶質シリコン系太陽電池素子の受光面の裏面側に断熱部材を設け、太陽光受光と同時に受ける熱によって太陽電池素子を高温に保持し光劣化現象を抑制することが提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、例えば、太陽電池モジュールを陸屋根上に設けた傾斜架台に設置した場合や空中に組んだフレームに取り付ける場合など、太陽電池モジュールの設置場所や設置方法によっては断熱部材にも太陽光が当たる場合があり、このような場合には断熱部材が太陽光に含まれる紫外線によって劣化するという問題があった。例えば、断熱部材として発泡ポリスチレンや発泡ポリウレタンなどの発泡樹脂材料を用いた場合には、長期間の紫外線照射により樹脂が激しく劣化して体積の減少及び強度の低下が起こる。また断熱部材としてグラスウールやロックウールなどの繊維材料を樹脂で結着させた断熱材を用いた場合でも、長期間の紫外線照射により結着樹脂が劣化し繊維がバラバラになることがある。このため、断熱部材の屋外での長期間の使用は一般に困難であった。
【0008】
本発明はこのような従来の問題に鑑みてなされたものであり、断熱部材を備えた非晶質シリコン系太陽電池モジュールにおいて、長期間の紫外線照射によっても劣化することなく、屋外での長期間の使用に耐えるようにすることをその目的とするものである。
【0009】
【課題を解決するための手段】
本発明によれば、非晶質シリコン系太陽電池素子の受光面と反対側面に断熱部材を設けた太陽電池モジュールにおいて、前記太陽電池素子と前記断熱部材との間に樹脂シートを配設するとともに、前記断熱部材の少なくとも外表面を紫外線遮断部材で被覆し、この紫外線遮断部材を前記樹脂シートと融着させたことを特徴とする非晶質シリコン系太陽電池モジュールが提供される。ここで樹脂シートとしてはエチレン−酢酸ビニル共重合体(EVA)からなるシートが好ましい。
【0010】
また断熱部材の劣化を一層効果的に抑えるには、紫外線遮断部材の350nm以下の波長透過率を1%以下とするのが好ましく、さらに軽量且つ低価格化の点から、紫外線遮断部材としてはアルミニウム箔をポリエチレンテレフタレート(PET)フィルムで挟んだものが好ましい。そしてまた本発明の効果をより奏するようにするには、断熱部材として発泡樹脂材料および繊維材料の少なくとも一方を含むものが推奨される。
【0011】
【発明の実施の形態】
本発明者等は、紫外線による断熱部材の劣化を防止すべく鋭意検討を重ねた結果、少なくとも紫外線の当たる断熱部材の外表面を紫外線遮断部材で被覆しておけば断熱部材の劣化が防止できることを見出し本発明をなすに至った。すなわち発明の大きな特徴は太陽電池素子と断熱部材との間に樹脂シートを配設するとともに、断熱部材の少なくとも外表面を紫外線遮断部材で被覆し、この紫外線遮断部材を前記樹脂シートと融着させた点にある。
【0012】
本発明で使用できる紫外線遮断部材としては、紫外線反射部材および紫外線吸収部材のいずれでもよいが、本発明者等が行った発泡樹脂を用いた屋外暴露試験の結果によれば、発泡樹脂材料の紫外線による劣化をより効果的に防止するには、波長350nm以下の光の透過率を1%以下にするがよい。
【0013】
紫外線反射部材としては、紫外線を反射するものであれば特に限定はないが、Alなどの金属箔をPETなどの樹脂フィルムで挟んだ積層フィルムが、軽さ、加工性およびコストなどの点から推奨される。
【0014】
また紫外線吸収部材としては、紫外線を吸収するものであれば特に限定はなく、例えば黒色に着色した樹脂フィルムや紫外線吸収剤を含有させた樹脂フィルムなどが好適に使用できる。ここで紫外線吸収剤とは、プラスチックにとって有害な紫外線を吸収し、分子内で無害な熱・運動・光エネルギーに変換して放出するものであり、このような紫外線吸収剤としては、例えば2−ヒドロキシ−4−メトキシベンゾフェノンや2−ヒドロキシ−4−n−オクトキシベンゾフェノンなどのベンゾフェノン系;2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾールや2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロ路ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2,、2’−メチレンビス[4−(1,1,3,3−テトラチルブチル)]−6−2H−ベンゾトリアゾールなどのベンゾトリアゾール系;4−t−ブチルフェニルサリシレートなどのサリチレート系;エチル−2−シアノ−3,3−ジフェニルアクリレートなどのシアノアクリレート系などが挙げられる。この中でも、吸収波長領域が広く、また吸収強度の大きいことからベンゾトリアゾール系が好適に使用できる。
【0015】
本発明で使用できる断熱部材としては、特に限定はなく従来公知のものが使用できるが、耐熱性があり、焼却処理されたときにダイオキシンなどの有害物質を発生しないものが望ましい。断熱部材としては、例えばポリスチレンやポリウレタン、イソシアヌレート、フェノール樹脂、ポリエチレン、シリコンラバー、ポリプロピレンなどからなる発泡樹脂材料;グラスウール、ロックウール、セラミックファイバー、動植物繊維などの繊維材料を結着樹脂で固めたもの;ケイ酸カルシウム、珪藻土、コルクなどの粉粒体状物;軽量気泡コンクリートなどが挙げられる。この中でも発泡樹脂材料および繊維材料を断熱部材として用いた場合に本発明の効果が明瞭に奏される。
【0016】
本発明で使用する非晶質シリコン系太陽電池素子としては、特に限定はなく従来公知のものが使用できる。このような太陽電池素子は例えば次のようにして作製することができる。まず、ITO(Indium Tin Oxide)やSnO2、ZnOなどのいわゆる透明・導電性酸化物膜(TCO)を、強化ガラスや貼り合わせガラスなどの透明基板上に電極膜として形成する。次に、プラズマCVDや熱CVD、反応性スパッタリング、光CVDなどの気相成長法によりpin接合構造の非晶質シリコン半導体膜を形成する。単接合構造の場合、一般的にp層の層厚は50〜200Åの範囲、i層の層厚は2,000〜6,000Åの範囲、n層の層厚は100〜300Åの範囲である。そして、裏面電極として、Al,Ag,Ag/Ti,TCO(ZnO,ITO)/metalの膜を真空蒸着やスパッタリングにより形成し太陽電池素子とする。なお、太陽電池が高温化することにより裏面電極の金属成分が非晶質シリコン半導体膜に拡散するのを防止するために、前記半導体膜と裏面電極との間にZnOなどからなる透明導電膜をさらに形成してもよい。
【0017】
発明に係る太陽電池モジュールは例えば次のようにして作製できる。前記作製した非晶質シリコン系太陽電池素子の下側に充填材料としてEVAやPVBなどからなる樹脂シートを配設し、湿気防止などの観点から必要により有機シートをさらに配設する。ここで用いる有機シートとしては、PETフィルムやフッ化ビニルフィルムなどが挙げられ、湿気をより完全に防止するためにはアルミニウム箔をこれらのフィルムで挟んだ構造の有機シートが推奨される。そしてさらに、その下にEVAシートを介して断熱部材を配設し、断熱部材を覆うように紫外線遮断部材を着接する。この状態でラミネート装置に入れ、加熱して樹脂シートを溶融させて、太陽電池素子を封止すると同時に有機シートを接着する一方、EVAシートを溶融させて、断熱部材の外表面を覆う紫外線遮断部材を断熱部材の周辺部で接着して本発明に係る太陽電池モジュールとする。
【0018】
本発明の太陽電池モジュールは、屋外に設置して使用する電力用モジュールとして主に用いることができる。
【0019】
【実施例】
比較例1
ガラス基板上にSnO2の透明導電膜を形成し、その上にプラズマCVD法によりpin接合構造の単接合非晶質シリコン半導体膜を形成し、さらにその上に、DCマグネトロンスパッタリング法によりZnO透明導電膜とAg薄膜からなる裏面電極とを形成し太陽電池素子を形成した。そして太陽電池素子の上に、EVAからなる樹脂シート、アルミニウム箔をPETフィルムで挟んだ有機シートをこの順で重ねて配設し、この状態でラミネート装置に入れ、150℃で数分間加熱し、樹脂シートを溶融させて太陽電池素子を封止するとともに、有機シートを接着させた。そして、断熱部材としての厚さ10mmの粒状発泡ポリスチレンフォームを、紫外線遮断部材で被覆することなく、前記有機シートの上に接着剤で固着して太陽電池モジュールとした。そして、この太陽電池モジュールを約1年間屋外に設置し、断熱部材の形状変化と変換効率の変化を観察・測定した。なお変換効率の変化は、初期1ヶ月間を除いた変換効率の年間平均値の、初期の変換効率に対する低下割合で表す。結果を表1に示す。
【0020】
比較例2
断熱部材として厚さ10mmのグラスウール成型ボードを用いた以外は、比較例1と同様にして太陽電池モジュールを作製し、断熱部材の形状変化と変換効率の変化を観察・測定した。結果を表1に示す。
【0021】
実施例1
ガラス基板上にSnO2の透明導電膜を形成し、その上にプラズマCVD法によりpin接合構造の単接合非晶質シリコン半導体膜を形成し、さらにその上に、DCマグネトロンスパッタリング法によりZnO透明導電膜とAg薄膜からなる裏面電極とを形成し太陽電池素子を形成した。そして太陽電池素子の上に、EVAからなる樹脂シート、アルミニウム箔をPETフィルムで挟んだ有機シートをこの順で重ねて配設し、その上にEVAシートを介して断熱部材としての厚さ10mmのグラスウール成型ボードを載置し、次に紫外線遮断部材であるアルミニウム箔をPETフィルムで挟んだシートを、グラスウール成型ボードを覆い且つ周縁部がEVAシートと接触するようにさらに設けた。この状態でラミネート装置に入れ150℃で数分間加熱し、樹脂シートを溶融させて太陽電池素子を封止するとともに有機シートを接着させる一方、EVAシートを溶融させて紫外線遮断部材の周縁部を接着する。このようにして太陽電池素子/EVA/(PET/Al箔/PET)/EVA/グラスウール成型ボード/(PET/Al箔/PET)の構造をした太陽電池モジュールを作製した。この太陽電池モジュールの概略断面図を図1に示す。比較例1と同様にして、断熱部材の形状変化と変換効率の変化を観察・測定した。結果を表1に示す。
【0022】
【表1】

Figure 0003703389
【0023】
表1から明らかなように、実施例1の太陽電池モジュールでは、1年間屋外に放置しても断熱部材の形状変化は起こらなかった。これに対し、断熱部材を紫外線遮断部材で被覆しなかった比較例のそれぞれの太陽電池モジュールでは、1年間屋外に放置したことにより比較例1の太陽電池モジュールでは体積が初期の約半分にまで減少し、比較例2の太陽電池モジュールではグラスウール成型ボードが劣化しグラスウールが解れてしまった。
【0024】
また実施例1の太陽電池モジュールの初期に対する変換効率の低下割合は19%と、比較例1,2の太陽電池モジュールの24%、23%に比べ低い値を示し、断熱部材を紫外線遮断部材で被覆することにより変換効率の低下を抑制できることがわかる。
【0025】
【発明の効果】
発明に係る太陽電池モジュールでは、太陽電池素子と断熱部材との間に樹脂シートを配設するとともに、断熱部材の少なくとも外表面を紫外線遮断部材で被覆し、この紫外線遮断部材を前記樹脂シートと融着させたので、屋外での長期間の使用によっても断熱部材が劣化することなく、変換効率の低下を抑制することができる。
【0026】
また紫外線遮断部材の350nm以下の波長透過率を1%以下とすれば、断熱部材の劣化を一層効果的に抑えることができる。紫外線遮断部材としてアルミニウム箔をポリエチレンテレフタレート(PET)フィルムで挟んだものを用いると軽量且つ低価格化が図れる。
【0027】
断熱部材として発泡樹脂材料および繊維材料の少なくとも一方を含むものを用いると、本発明の効果が一層顕著に奏される。
【図面の簡単な説明】
【図1】 本発明の太陽電池モジュールの一実施態様を示す概略断面図である。
【符号の説明】
1 非晶質シリコン系太陽電池素子
2 樹脂シート
3 有機シート
4 樹脂シート
5 紫外線遮断部材
6 断熱部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an amorphous silicon solar cell module, and more particularly to an amorphous silicon solar cell module provided with a heat insulating member.
[0002]
[Prior art]
Thin film solar cells are becoming widely used in recent years because they use less semiconductor material than solar cells using crystal wafers and can be formed on low-cost substrates such as glass plates and metal plates by a low-temperature process. . Among these thin-film solar cells, amorphous silicon-based solar cells have been used in recent years because silicon as a material is abundant on the earth and has no adverse effects on the human body and the environment compared to other materials such as cadmium and selenium. The demand is growing.
[0003]
The amorphous silicon solar cell module is manufactured as follows, for example. First, a p-i-n amorphous silicon-based semiconductor layer is formed on a light-transmitting substrate such as glass on which a transparent conductive film such as SnO2 or ZnO is formed, and a metal back electrode layer is further formed to form a solar cell. An element is manufactured. Then, after dividing and connecting with a laser beam or the like to make an integrated structure, an ethylene vinyl acetate (EVA) sheet on the back side and an organic sheet with aluminum foil sandwiched between polyethylene terephthalate (PET) films are laminated in this order and laminated. Put in the device. The laminating apparatus is an apparatus that heats the inside of the apparatus while evacuating the apparatus, and the EVA sheet is melted by heating to seal the solar cell element and attach the organic sheet. An aluminum frame was attached to the super straight type solar cell module produced in this way, and it was used outdoors.
[0004]
However, amorphous silicon solar cells have an initial deterioration phenomenon of conversion efficiency (hereinafter referred to simply as “light deterioration phenomenon”) due to light irradiation for a long time, which is called the “Stebler-Lonsky effect”. It was a serious problem. Although the photodegradation phenomenon of amorphous silicon-based solar cells cannot be completely prevented, as a method for suppressing the photodegradation phenomenon, the thickness of the i layer is reduced, or the solar cell element is formed in a tandem or triple structure. Although attempts have been made so far, sufficient results have not yet been obtained.
[0005]
By the way, it is known that the conversion efficiency lowered by the photodegradation phenomenon of the amorphous silicon solar cell can be recovered by annealing. Although the recovery effect is seen even at a temperature of about 40 ° C., the higher the temperature, the greater the recovery effect, and it has been confirmed that the conversion efficiency is significantly recovered by setting the temperature to 70 ° C. or higher. On the other hand, the solar cell tends to decrease the open circuit voltage and the maximum output and increase the short circuit current due to the temperature rise, but the amorphous silicon solar cell is less temperature dependent than the crystalline silicon solar cell, The decrease in output due to a temperature increase of 1 ° C. is only 0.1 to 0.2%.
[0006]
Therefore, focusing on the characteristics of such an amorphous silicon solar cell, it has been proposed to use the solar cell while keeping the solar cell at a high temperature and suppressing a decrease in conversion efficiency due to a light deterioration phenomenon. . For example, in Japanese Patent Laid-Open No. 4-71276, a heat insulating member is provided on the back side of the light receiving surface of an amorphous silicon solar cell element, and the solar cell element is held at a high temperature by heat received simultaneously with sunlight reception, thereby causing a light deterioration phenomenon. It has been proposed to suppress this.
[0007]
[Problems to be solved by the invention]
However, for example, when the solar cell module is installed on an inclined frame provided on a flat roof, or when it is attached to a frame assembled in the air, depending on the installation location and installation method of the solar cell module, the heat insulating member also receives sunlight. In such a case, there is a problem that the heat insulating member is deteriorated by ultraviolet rays contained in sunlight. For example, when a foamed resin material such as foamed polystyrene or foamed polyurethane is used as the heat insulating member, the resin is severely deteriorated by long-term ultraviolet irradiation, resulting in a decrease in volume and a decrease in strength. Even when a heat insulating material obtained by binding a fiber material such as glass wool or rock wool with a resin is used as the heat insulating member, the binder resin may deteriorate due to long-term ultraviolet irradiation, and the fibers may fall apart. For this reason, it has been generally difficult to use the heat insulating member outdoors for a long period of time.
[0008]
The present invention has been made in view of such a conventional problem, and in an amorphous silicon solar cell module provided with a heat insulating member, it is not deteriorated even by long-term ultraviolet irradiation, and is outdoors for a long time. Its purpose is to withstand the use of
[0009]
[Means for Solving the Problems]
According to the present invention, in the solar cell module in which the heat insulating member is provided on the side opposite to the light receiving surface of the amorphous silicon solar cell element , the resin sheet is disposed between the solar cell element and the heat insulating member. An amorphous silicon solar cell module is provided , wherein at least an outer surface of the heat insulating member is covered with an ultraviolet blocking member, and the ultraviolet blocking member is fused to the resin sheet . Here, the resin sheet is preferably a sheet made of an ethylene-vinyl acetate copolymer (EVA).
[0010]
In order to suppress deterioration of the heat insulating member more effectively, it is preferable to set the wavelength transmittance of the ultraviolet blocking member to 350 nm or less to 1% or less, and from the viewpoint of light weight and low price, aluminum is used as the ultraviolet blocking member. What sandwiched the foil with the polyethylene terephthalate (PET) film is preferable. And in order to show the effect of this invention more, what contains at least one of a foamed resin material and a fiber material as a heat insulation member is recommended.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies to prevent deterioration of the heat insulating member due to ultraviolet rays, the present inventors have confirmed that the deterioration of the heat insulating member can be prevented if at least the outer surface of the heat insulating member exposed to ultraviolet rays is covered with the ultraviolet ray blocking member. The inventor has made the present invention. That is, a major feature of the present invention is that a resin sheet is disposed between the solar cell element and the heat insulating member, and at least the outer surface of the heat insulating member is covered with an ultraviolet blocking member, and the ultraviolet blocking member is fused to the resin sheet. It is in the point made to do.
[0012]
The ultraviolet blocking member that can be used in the present invention may be either an ultraviolet reflecting member or an ultraviolet absorbing member. However, according to the result of an outdoor exposure test using a foamed resin conducted by the present inventors, the ultraviolet ray of the foamed resin material is used. In order to more effectively prevent deterioration due to light, the transmittance of light having a wavelength of 350 nm or less is preferably 1% or less.
[0013]
The ultraviolet reflecting member is not particularly limited as long as it reflects ultraviolet rays, but a laminated film in which a metal foil such as Al is sandwiched between resin films such as PET is recommended in terms of lightness, workability and cost. Is done.
[0014]
The ultraviolet absorbing member is not particularly limited as long as it absorbs ultraviolet rays. For example, a resin film colored black or a resin film containing an ultraviolet absorber can be suitably used. Here, the ultraviolet absorber absorbs ultraviolet rays harmful to plastics, converts them into harmless heat, kinetics, and light energy within the molecule and releases them. As such ultraviolet absorbers, for example, 2- Benzophenones such as hydroxy-4-methoxybenzophenone and 2-hydroxy-4-n-octoxybenzophenone; 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′) -T-butyl-5'-methylphenyl) -5-chloro benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2, Benzotriazoles such as 2′-methylenebis [4- (1,1,3,3-tetratylbutyl)]-6-2H-benzotriazole; 4 Salicylates such as -t-butylphenyl salicylate; cyanoacrylates such as ethyl-2-cyano-3,3-diphenyl acrylate, and the like. Among these, a benzotriazole type can be suitably used because of its wide absorption wavelength region and high absorption intensity.
[0015]
The heat insulating member that can be used in the present invention is not particularly limited and a conventionally known member can be used. However, it is preferable that it has heat resistance and does not generate harmful substances such as dioxin when incinerated. As a heat insulating member, for example, a foamed resin material made of polystyrene, polyurethane, isocyanurate, phenol resin, polyethylene, silicone rubber, polypropylene, or the like; a fiber material such as glass wool, rock wool, ceramic fiber, animal or plant fiber is hardened with a binder resin Things; pulverulent materials such as calcium silicate, diatomaceous earth, cork; lightweight cellular concrete. Among these, when the foamed resin material and the fiber material are used as the heat insulating member, the effect of the present invention is clearly exhibited.
[0016]
The amorphous silicon solar cell element used in the present invention is not particularly limited and conventionally known ones can be used. Such a solar cell element can be produced, for example, as follows. First, a so-called transparent / conductive oxide film (TCO) such as ITO (Indium Tin Oxide), SnO 2 , or ZnO is formed as an electrode film on a transparent substrate such as tempered glass or laminated glass. Next, an amorphous silicon semiconductor film having a pin junction structure is formed by a vapor phase growth method such as plasma CVD, thermal CVD, reactive sputtering, or photo-CVD. In the case of a single junction structure, the p layer generally has a thickness of 50 to 200 mm, the i layer has a thickness of 2,000 to 6,000 mm, and the n layer has a thickness of 100 to 300 mm. . Then, as a back electrode, a film of Al, Ag, Ag / Ti, TCO (ZnO, ITO) / metal is formed by vacuum deposition or sputtering to obtain a solar cell element. In order to prevent the metal component of the back electrode from diffusing into the amorphous silicon semiconductor film due to the high temperature of the solar cell, a transparent conductive film made of ZnO or the like is provided between the semiconductor film and the back electrode. Further, it may be formed.
[0017]
The solar cell module according to the present invention can be produced, for example, as follows. A resin sheet made of EVA, PVB, or the like as a filling material is disposed below the produced amorphous silicon solar cell element, and an organic sheet is further disposed as necessary from the viewpoint of preventing moisture. Examples of the organic sheet used here include a PET film and a vinyl fluoride film, and an organic sheet having a structure in which an aluminum foil is sandwiched between these films is recommended to prevent moisture more completely. Further, a heat insulating member is disposed under the EVA sheet, and an ultraviolet blocking member is attached so as to cover the heat insulating member. In this state, it is put into a laminating apparatus, heated to melt the resin sheet, seal the solar cell element, and simultaneously adhere the organic sheet, while melting the EVA sheet to cover the outer surface of the heat insulating member Are bonded at the periphery of the heat insulating member to form a solar cell module according to the present invention.
[0018]
The solar cell module of the present invention can be mainly used as a power module installed and used outdoors.
[0019]
【Example】
Comparative Example 1
A SnO 2 transparent conductive film is formed on a glass substrate, a single-junction amorphous silicon semiconductor film having a pin junction structure is formed thereon by plasma CVD, and a ZnO transparent conductive film is further formed thereon by DC magnetron sputtering. A solar cell element was formed by forming a film and a back electrode composed of an Ag thin film. And on the solar cell element, the resin sheet made of EVA, the organic sheet sandwiched between the aluminum foil and the PET film are arranged in this order, and placed in the laminating apparatus in this state, heated at 150 ° C. for several minutes, The resin sheet was melted to seal the solar cell element, and the organic sheet was adhered. And the granular foam polystyrene foam of thickness 10mm as a heat insulation member was adhere | attached on the said organic sheet with the adhesive agent, without coat | covering with an ultraviolet shielding member, and it was set as the solar cell module. And this solar cell module was installed outdoors for about one year, and the shape change of the heat insulation member and the change of conversion efficiency were observed and measured. The change in conversion efficiency is represented by the rate of decrease of the annual average conversion efficiency excluding the initial one month relative to the initial conversion efficiency. The results are shown in Table 1.
[0020]
Comparative Example 2
A solar cell module was produced in the same manner as in Comparative Example 1 except that a glass wool molded board having a thickness of 10 mm was used as the heat insulating member, and the shape change of the heat insulating member and the change in conversion efficiency were observed and measured. The results are shown in Table 1.
[0021]
Example 1
A SnO 2 transparent conductive film is formed on a glass substrate, a single-junction amorphous silicon semiconductor film having a pin junction structure is formed thereon by plasma CVD, and a ZnO transparent conductive film is further formed thereon by DC magnetron sputtering. A solar cell element was formed by forming a film and a back electrode composed of an Ag thin film. Then, on the solar cell element, an EVA resin sheet and an organic sheet having an aluminum foil sandwiched between PET films are stacked in this order, and a 10 mm thick insulating member is placed on the EVA sheet via the EVA sheet. A glass wool molding board was placed, and then a sheet in which an aluminum foil as an ultraviolet blocking member was sandwiched between PET films was further provided so as to cover the glass wool molding board and the peripheral edge portion was in contact with the EVA sheet. In this state, it is put in a laminating apparatus and heated at 150 ° C. for several minutes to melt the resin sheet to seal the solar cell element and adhere the organic sheet, while melting the EVA sheet to bond the peripheral portion of the ultraviolet blocking member To do. Thus, a solar cell module having a structure of solar cell element / EVA / (PET / Al foil / PET) / EVA / glass wool molded board / (PET / Al foil / PET) was produced. A schematic cross-sectional view of this solar cell module is shown in FIG. In the same manner as in Comparative Example 1 , the shape change of the heat insulating member and the change in conversion efficiency were observed and measured. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0003703389
[0023]
As is clear from Table 1, in the solar cell module of Example 1 , the shape of the heat insulating member did not change even when left outdoors for one year. On the other hand, in each solar cell module of the comparative example in which the heat insulating member was not covered with the ultraviolet blocking member, the volume of the solar cell module of comparative example 1 was reduced to about half of the initial value because it was left outdoors for one year. In the solar cell module of Comparative Example 2, the glass wool molded board was deteriorated and the glass wool was unwound.
[0024]
Also a reduction ratio of 19% conversion efficiency for the initial solar cell module of Example 1, 24% of the solar cell module of Comparative Examples 1 and 2 showed lower values than 23%, the heat insulating member in the ultraviolet blocking member It turns out that the fall of conversion efficiency can be suppressed by coat | covering.
[0025]
【The invention's effect】
In the solar cell module according to the present invention, a resin sheet is disposed between the solar cell element and the heat insulating member, and at least an outer surface of the heat insulating member is covered with an ultraviolet blocking member, and the ultraviolet blocking member is attached to the resin sheet. Since they are fused, the heat insulating member is not deteriorated even when used outdoors for a long time, and a reduction in conversion efficiency can be suppressed.
[0026]
If the wavelength transmittance of 350 nm or less of the ultraviolet blocking member is 1% or less, the deterioration of the heat insulating member can be more effectively suppressed. If a material in which an aluminum foil is sandwiched between polyethylene terephthalate (PET) films is used as the ultraviolet blocking member, the weight and cost can be reduced.
[0027]
When the heat insulating member containing at least one of the foamed resin material and the fiber material is used, the effect of the present invention is more remarkably exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a solar cell module of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Amorphous silicon type solar cell element 2 Resin sheet 3 Organic sheet 4 Resin sheet 5 Ultraviolet ray blocking member 6 Heat insulation member

Claims (5)

非晶質シリコン系太陽電池素子の受光面と反対側面に断熱部材を設けた太陽電池モジュールにおいて、前記太陽電池素子と前記断熱部材との間に樹脂シートを配設するとともに、前記断熱部材の少なくとも外表面を紫外線遮断部材で被覆し、この紫外線遮断部材を前記樹脂シートと融着させたことを特徴とする非晶質シリコン系太陽電池モジュール。 In the solar cell module in which a heat insulating member is provided on the side opposite to the light receiving surface of the amorphous silicon solar cell element, a resin sheet is disposed between the solar cell element and the heat insulating member, and at least the heat insulating member. An amorphous silicon solar cell module , wherein an outer surface is coated with an ultraviolet blocking member, and the ultraviolet blocking member is fused to the resin sheet . 前記樹脂シートがエチレン−酢酸ビニル共重合体からなるシートである請求項1記載の非晶質シリコン系太陽電池モジュール。 The amorphous silicon solar cell module according to claim 1, wherein the resin sheet is a sheet made of an ethylene-vinyl acetate copolymer . 前記紫外線遮断部材の350nm以下の波長透過率が1%以下である請求項1又は2記載の非晶質シリコン系太陽電池モジュール。 The amorphous silicon solar cell module according to claim 1 or 2, wherein a wavelength transmittance of 350 nm or less of the ultraviolet blocking member is 1% or less . 前記紫外線遮断部材がアルミニウム箔をポリエチレンテレフタレートフィルムで挟んだものである請求項1〜3のいずれかに記載の非晶質シリコン系太陽電池モジュール。 The amorphous silicon solar cell module according to any one of claims 1 to 3, wherein the ultraviolet blocking member is an aluminum foil sandwiched between polyethylene terephthalate films . 前記断熱部材が、発泡樹脂材料および繊維材料の少なくとも一方を含むものである請求項1〜4のいずれかに記載の非晶質シリコン系太陽電池モジュール。 The amorphous silicon solar cell module according to claim 1 , wherein the heat insulating member includes at least one of a foamed resin material and a fiber material .
JP2000344831A 2000-11-13 2000-11-13 Amorphous silicon solar cell module Expired - Fee Related JP3703389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344831A JP3703389B2 (en) 2000-11-13 2000-11-13 Amorphous silicon solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344831A JP3703389B2 (en) 2000-11-13 2000-11-13 Amorphous silicon solar cell module

Publications (2)

Publication Number Publication Date
JP2002151709A JP2002151709A (en) 2002-05-24
JP3703389B2 true JP3703389B2 (en) 2005-10-05

Family

ID=18818968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344831A Expired - Fee Related JP3703389B2 (en) 2000-11-13 2000-11-13 Amorphous silicon solar cell module

Country Status (1)

Country Link
JP (1) JP3703389B2 (en)

Also Published As

Publication number Publication date
JP2002151709A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP3618802B2 (en) Solar cell module
JP2613719B2 (en) Method of manufacturing solar cell module
US6307145B1 (en) Solar cell module
ES2372131T3 (en) PERFECTION OF CONTRIBUTIONS TO CAPABLE ELEMENTS TO COLLECT THE LIGHT.
EP1921684A1 (en) Solar cell module and process for manufacture thereof
ES2347494T3 (en) ZINC OXIDE BASED ELECTRODE DOPED WITH ITRIUM FOR USE IN SIMILAR PHOTOVOLTAIC DEVICE.
EP1964181B1 (en) Photovoltaic device and method of encapsulating
JP3530595B2 (en) Solar cell module
US20090090412A1 (en) Photovoltaic device and method for encapsulating
KR101509841B1 (en) Improvements to light-collecting elements
JPH11103086A (en) Solar battery module
JPH0936405A (en) Solar cell module and production thereof
JPH07297439A (en) Solar battery module
EP1135809B1 (en) Hybrid roof covering element
JP2002270880A (en) Solar battery module and its manufacturing method
WO2012053042A1 (en) Solar cell module and method of manufacturing the same
JPH06318728A (en) Solar battery module
JP2002043594A (en) Optical transmission type thin film solar cell module
JP2003110128A (en) Thin film solar cell module and its manufacturing method
JPH09116182A (en) Solar battery module and manufacture of solar battery module
JP3703389B2 (en) Amorphous silicon solar cell module
JP4194457B2 (en) Solar cell module
JP3676216B2 (en) Thin film solar cell module
WO2019128085A1 (en) Solar panel
CN209823699U (en) Solar cell panel with protective frame

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees