JP3703138B2 - Method for controlling molten resin temperature of screw type extruder and screw type extruder - Google Patents

Method for controlling molten resin temperature of screw type extruder and screw type extruder Download PDF

Info

Publication number
JP3703138B2
JP3703138B2 JP2002230972A JP2002230972A JP3703138B2 JP 3703138 B2 JP3703138 B2 JP 3703138B2 JP 2002230972 A JP2002230972 A JP 2002230972A JP 2002230972 A JP2002230972 A JP 2002230972A JP 3703138 B2 JP3703138 B2 JP 3703138B2
Authority
JP
Japan
Prior art keywords
screw
temperature
cylinder
cooling water
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002230972A
Other languages
Japanese (ja)
Other versions
JP2004066705A (en
Inventor
豊 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2002230972A priority Critical patent/JP3703138B2/en
Publication of JP2004066705A publication Critical patent/JP2004066705A/en
Application granted granted Critical
Publication of JP3703138B2 publication Critical patent/JP3703138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/9239Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92657Volume or quantity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92971Fluids, e.g. for temperature control or of environment

Description

【0001】
【発明の属する技術分野】
本発明は、スクリュ式押出成形機の溶融樹脂温度制御方法及びスクリュ式押出成形機に関し、特に、スクリュ用測温体によってスクリュの温度を制御し、製品品質の向上を行うための新規な改良に関する。
【0002】
【従来の技術】
従来、合成樹脂原料のスクリュ式押出成形機として、図4から図8にて示す構成が援用されていた。
すなわち、図4において、符号100で示されるものはスクリュ式押出成形機であり、このスクリュ式押出成形機100は、架台11の一端側から駆動モータ12、減速機13及びスクリュ14を回転可能に有するシリンダ15が順次連結配置して構成されている。図4においては、1本のスクリュ14が示されているが、2本のスクリュ14が平行に配置されて構成される場合もある。また、この架台11に隣接して制御装置20が設けられ、後述のシリンダ用測温体21および電磁弁22に連結された温度調節器23が組込まれている。
【0003】
前記シリンダ15は減速機13側から連結シリンダ23、原料投入口24を有する原料供給シリンダ25、複数個の温度調節シリンダ26および先端シリンダ27が、貫通内孔を一直線状に配置して連結されている。連結シリンダ23には、後述するロータリージョイント50に連結される配管用の貫通孔(図示していない)が壁部を貫通して形成されている。原料供給シリンダ25および温度調節シリンダ26には、壁内部に水冷用のシリンダジャケット31が形成されている。この水冷ジャケット31は、冷却水ユニット16と供給管32および戻り配管33により連結されている。供給管32の各温度調節シリンダ26への分岐管には、それぞれ電磁弁22が設けられている。また、温度調節シリンダ26には、外周にシリンダ加熱ヒータ40が設けられている。電磁弁22およびシリンダ加熱ヒータ40は前記制御装置20へ連結されている。温度調節シリンダ26および先端シリンダ27には、内壁面近傍の温度を計測するシリンダ用測温体21が壁内に設けられている。さらに、先端シリンダ27には、壁部を貫通して内孔内へ突出する樹脂用測温体28が設けられている。
【0004】
図5において、前記スクリュ14は、スクリュ軸41、複数個および複数種類のスクリュセグメント42および締付ナット42aにより構成されている。このスクリュ軸41は、前記シリンダ15に挿入され、軸直角断面がほぼ正多角形に形成されている。
【0005】
図6において、前記スクリュ14のスクリュ軸41には、減速機13側の後端から先端手前まで冷却水孔41aが形成されている。また、スクリュ軸41には、この冷却水孔41aから外周へ貫通する給水孔44および隣接して排水孔45が軸方向2箇所に近接して形成されている。冷却水孔41aの外周には排出孔43が同軸配置され、この排出孔43は排水孔45に連通している。
【0006】
前記給水孔44および排水孔45の位置する前記スクリュ軸14の外周には、水密状態で相対回転可能、すなわち、運転時に回転駆動されるスクリュ14に対して冷却水を供給するための図8のロータリージョイント50が接続されている。このロータリージョイント50によってスクリュ14の回転中においても冷却水の給水と排水が行われる。
【0007】
以上のように構成されたスクリュ式押出成形機100は以下のように作用する。まず、シリンダ15のシリンダ加熱ヒータ40に通電し昇温する。冷却水ユニット16から各シリンダジャケット31へ冷却水を供給し、必要に応じて制御装置20によりシリンダ加熱ヒータ40および電磁弁22を調節し、樹脂用測温体60による計測温度が各温度調節シリンダ26のそれぞれの所定温度になるように制御する。次に、駆動モータ12を起動し、減速機13を経てスクリュ14を回転駆動するとともに、合成樹脂原料をホッパ24から原料供給シリンダ25の内孔へ供給する。この合成樹脂原料は、回転するスクリュ14の輸送作用により、順次先端方向へ輸送される。この輸送の間に、回転するスクリュ14の混練作用および昇温された温度調節シリンダ26の加熱により、合成樹脂原料は混練溶融される。所定の混練が終了しシリンダ15の先端に到達した溶融状態の合成樹脂原料は、先端シリンダ27からダイ27aを経て押出される。なお、原料投入口24から供給された未溶融の合成樹脂原料が減速機13方向へ漏れ出さないように、グランドシール23aにより阻止されている。
【0008】
また、駆動モータ12が起動された後の時点で、ロータリージョイント50を介して、給水管44aから冷却水を連続的に供給する。この冷却水はロータリージョイント50からスクリュ軸41の給水孔44を経て冷却水孔41aへ供給され、その後、冷却水孔41aの外周の排出孔43を逆流し、スクリュ軸41の排水孔45からロータリージョイント50を経て外部へ排出される。すなわち、冷却水は、冷却水孔41aの内周面と排出孔43を逆流する間に、スクリュ軸41を内周面から冷却し、従ってスクリュ14を内部から冷却する。
【0009】
前記シリンダ15の内部において、合成樹脂原料は回転駆動されるスクリュ14により剪断作用を受けて溶融する際に発熱し、温度調節シリンダ26のそれぞれの制御された所定温度以上に温度上昇する可能性がある。このような合成樹脂原料の異常な温度上昇に対して、スクリュ14の内部からの冷却ならびにシリンダ用測温体21による温度調節シリンダ26の内壁面近傍温度および樹脂用測温体28による混練後の溶融合成樹脂原料温度の計測結果に基づくシリンダ加熱ヒータ40および電磁弁22の制御により、シリンダ15の混練途中および混練後の温度が所定温度になるように制御されている。
【0010】
【発明が解決しようとする課題】
従来のスクリュ式押出成形機およびその温度制御方法は以上のように構成されていたため、次のような課題が存在していた。
すなわち、合成樹脂原料が常時シリンダ内を充満して輸送されているとは言えず、シリンダ壁内の内壁面近傍に設けられた樹脂用測温体では合成樹脂原料の温度検出精度が低い。従って、合成樹脂原料の溶融温度を高精度に制御することが困難で有り、例えば、EVA樹脂原料あるいは塗料原料などの低融点合成樹脂原料を混練する場合、低温領域の温度制御が非常に困難である。その結果、安定した運転を継続できず、均一な製品品質の確保が困難であった。なお、スクリュ軸へ冷却水を定常的に通水して合成樹脂原料の剪断発熱による温度上昇を抑制しているが、このスクリュ軸自体の温度の計測および温度制御はなされていない。
【0011】
本発明は、以上のような課題を解決するためになされたものであり、特に、スクリュに設けたスクリュ用測温体でスクリュの温度を検出してスクリュの温度を制御し、合成樹脂原料の温度制御による製品品質の向上を得るようにしたスクリュ式押出成形機の溶融樹脂温度制御方法及びスクリュ式押出成形機を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明によるスクリュ式押出成形機の溶融樹脂温度制御方法は、シリンダ用測温体 (21) を有する長尺筒形状のシリンダ(15)およびこのシリンダ(15)内に回転駆動可能に挿入され内部に同軸状に形成された複数の冷却水孔 (41a,41aA,41aB) を有し、冷却水をロータリージョイント (50) を介して通水・排出できるようにしたスクリュ(14)により合成樹脂原料を溶融混練するスクリュ式押出成形機(100)を用い、前記スクリュ(14)のスクリュ軸 (41) 表面近傍において前記スクリュ (14) の軸方向に沿って互いに異なる長さ位置に配設された複数のスクリュ用測温体(200〜200b)によって検出した検出温度信号を前記スクリュ軸 (41) の端部に設けられた伝送ヘッド部 (202) から無線伝送手段を介して対向配置の出力ヘッド部 (203) から制御装置 (20) の温度調節器 (23) へ入力することによって前記スクリュ(14)内の前記冷却水の通水量を制御すると共に、前記シリンダ(15)の壁内に冷却水を通水して前記シリンダ (15) 冷却し、前記シリンダ(15)の外周に設けたシリンダ加熱ヒータ(40)により加熱すると共に前記シリンダ(15)内壁又はその近傍の温度を前記シリンダ用測温体 (21) によって計測し、前記温度に基づいて前記温度調節器 (23) により前記シリンダ(15)の温度を制御し、前記合成樹脂原料の温度を制御する方法であり、また、本発明によるスクリュ式押出成形機は、シリンダ用測温体 (21) からの検出温度を用いて制御装置 (20) の温度調節器 (23) により温度調節を行う長尺筒形状のシリンダ(15)およびこのシリンダ(15)内に回転駆動可能に挿入され内部にロータリージョイント (50) を介して冷却水を通水・排出できるようにしたスクリュ(14)により合成樹脂原料を溶融混練するスクリュ式押出成形機において、前記シリンダ(15)に設けられたシリンダジャケット(31)及びシリンダ加熱ヒータ(40)と、前記シリンダ(15)の内壁又はこの内壁から突出して設けられた樹脂用測温体(28)と、前記スクリュ (14) 内に同軸状に形成され前記ロータリージョイント (50) を介して前記冷却 水を通水・排水するための複数の冷却水孔 (41a,41aA,41aB) と、前記スクリュ (14) のスクリュ軸 (41) の表面近傍の軸方向に沿って互いに異なる長さ位置に配設された複数のスクリュ用測温体 (200 200b )と、前記スクリュ軸 (41) の端部に設けられ前記各スクリュ用測温体 (200 200b )に接続された伝送ヘッド部 (202) と、前記伝送ヘッド部 (202) に対向して設けられ前記各スクリュ用測温体 (200 200b) からの各検出温度信号を前記伝送ヘッド部 (202) から無線伝送手段を介して受けるための出力ヘッド部 (203) とを備え、前記シリンダ用測温体 (21) 、樹脂用測温体 (28) 及びスクリュ用測温体 (200 200b) からの検出温度信号が前記出力ヘッド部 (203) を介して前記温度調節器 (23) に入力され、前記合成樹脂原料の温度を制御するようにした構成である。
【0013】
【発明の実施の形態】
以下、図面と共に本発明によるスクリュ式押出成形機の溶融樹脂温度制御方法及びスクリュ式押出成形機の好適な実施の形態について説明する。尚、従来例と同一あるいは同等部分については、同一符号を用いてその説明を省略し、異なる部分についてのみ説明する。
尚、異なる部分は、スクリュ14内の冷却水の供給軸構造及びスクリュ14の温度を検出するスクリュ用測温体を有する構造である。
【0014】
図1において、スクリュ14のスクリュ軸41には、駆動モータ12側の後端から先端手前まで軸芯部に非貫通の冷却水孔41aが形成されている。この冷却水孔41aは、従来と異なって同軸状に二重、三重状の冷却水孔41aA、41aBが形成され、これらは排出孔43に連通している。これらの冷却水孔41a〜41aBは、ロータリージョイント50から複数の給水孔44と各電磁弁44Bが連通され、各電磁弁44Bを制御装置20によって個別に開閉等させることにより、各冷却水孔41a、41aA、41aBに供給する冷却水を選択的に制御することができる。
各冷却水孔41a、41aA、41aBから吐出された冷却水は共通の排出孔43から排水孔45を経てロータリージョイント50を介して回収又は排出される。
【0015】
前記スクリュ14のスクリュ軸41には、その表面近傍位置に複数のスクリュ用測温体200、200a、200b(数は任意)が配設され、各スクリュ用測温体200、200a、200bは各々軸方向に沿って異なる長さ位置に配設され、異なる長さ位置の温度検出ができるように構成されている。
【0016】
前記各スクリュ用測温体200、200a、200bは、配線201を介してスクリュ軸41の端部に設けられた伝送ヘッド部202に接続され、各スクリュ用測温体200、200a、200bの各検出温度信号は伝送ヘッド部202から周知の電磁手段又は赤外線等の非接触式の無線伝送手段を介して対向配置の出力ヘッド部203に伝送される。
【0017】
前記出力ヘッド部203から出力された前記各検出温度信号は、制御装置20の温度調節器23へ入力され、スクリュ14が回転中において前記各検出温度信号はリアルタイムの状態で温度調節器23に入力することができる。
【0018】
次に、動作について説明する。まず、駆動モータ12が起動された後の時点で、ロータリージョイント50を介して冷却水を供給する。この冷却水は各電磁弁44Bの開閉に応じて各冷却水孔41a、41aA、41aBに送られ、排出孔43から排水孔45を介してロータリージョイント50から外部へ回収又は排出される。
【0019】
すなわち、冷却水は、冷却水孔41a、41aA、41aBから排出孔43へ流れる間に合成樹脂原料の剪断発熱により加熱されるスクリュ14を内部から冷却する。
【0020】
この間、3箇所に設けられたスクリュ用測温体200、200a、200bがスクリュ14のそれぞれの位置の温度を計測し、各検出温度信号は伝送ヘッド部202から出力ヘッド部203を経て温度調節器23へ入力され、各電磁弁44Bの開閉を制御し、スクリュ14を所望の設定温度に制御する。すなわち、スクリュ14の内部からスクリュ14の温度を制御することにより、スクリュ14に接触しながら輸送および混練される合成樹脂材料の温度を制御する。従って、スクリュ式押出成形機100は、制御装置20の温度調節器23により、シリンダ用測温体21、樹脂用測温体28およびスクリュ用測温体200〜200bの計測データに基づいて電磁弁44Bおよびシリンダ加熱ヒータ40を制御し、混練溶融される合成樹脂原料の混練途中および混練後の温度を所望の状態に維持する。
【0021】
【発明の効果】
本発明によるスクリュ式押出成形機の溶融樹脂温度制御方法及びスクリュ式押出成形機は、以上のように構成されているため、次のような効果を得ることができる。
(1)スクリュ式混練押出機におけるスクリュに、スクリュ軸内の軸方向の異なる複数箇所の位置にスクリュ用測温体が設けられ、スクリュ表面近傍の温度が計測されることにより、合成樹脂原料がシリンダ内を非充満状態で輸送され混練溶融されている場合でも、スクリュに接触しながら輸送および混練される合成樹脂材料の温度を精度高く計測することが可能になった。
(2)スクリュ式押出成形機におけるスクリュのスクリュ軸に複数の冷却水孔が形成され、温度調節を細かく行うことができ合成樹脂原料の温度制御が高精度にできる。
(3)従って、溶融樹脂温度の上昇によるスクリュの停止及びスクリュの回転数の低下となることもなく均一な製品品質の確保が容易に可能になった。
【図面の簡単な説明】
【図1】 本発明によるスクリュ式押出成形機の要部を示す断面構成図である。
【図2】 図1の要部を示す横断面図である。
【図3】 図1のスクリュの全長の断面図である。
【図4】 従来のスクリュ式押出成形機を示す断面構成図である。
【図5】 図1のスクリュを示す断面図である。
【図6】 図4の要部を示す断面構成図である。
【図7】 図6の要部の横断面図である。
【図8】 図6のロータリージョイントを示す詳細構成図である。
【符号の説明】
14 スクリュ
15 シリンダ
20 制御装置
21 シリンダ用測温体
23 温度調節器
28 樹脂用測温体
31 シリンダジャケット
40 シリンダ加熱ヒータ
41 スクリュ軸
41a、41aA、41aB 冷却水孔
44 給水孔
44B 電磁弁
45 排水孔
50 ロータリージョイント
100 スクリュ式押出成形機
200〜200b スクリュ用測温体
202 伝送ヘッド部
203 出力ヘッド部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten resin temperature control method for a screw-type extrusion molding machine and a screw-type extrusion molding machine, and more particularly to a novel improvement for improving the product quality by controlling the temperature of a screw using a temperature measuring element for a screw. .
[0002]
[Prior art]
Conventionally, the structure shown in FIGS. 4 to 8 has been used as a screw-type extruder for synthetic resin materials.
That is, in FIG. 4, what is indicated by reference numeral 100 is a screw type extrusion molding machine, and this screw type extrusion molding machine 100 is capable of rotating the drive motor 12, the speed reducer 13 and the screw 14 from one end side of the gantry 11. The cylinders 15 that are provided are configured to be sequentially connected and arranged. Although one screw 14 is shown in FIG. 4, there are cases where two screws 14 are arranged in parallel. A control device 20 is provided adjacent to the gantry 11, and a temperature controller 23 connected to a cylinder temperature sensor 21 and an electromagnetic valve 22 described later is incorporated.
[0003]
The cylinder 15 includes a connecting cylinder 23, a raw material supply cylinder 25 having a raw material inlet 24, a plurality of temperature adjusting cylinders 26, and a front end cylinder 27 connected from the reduction gear 13 side, with through-holes arranged in a straight line. Yes. The connecting cylinder 23 is formed with a through-hole (not shown) for piping connected to a rotary joint 50 described later through the wall portion. In the raw material supply cylinder 25 and the temperature adjustment cylinder 26, a water-cooling cylinder jacket 31 is formed inside the wall. The water cooling jacket 31 is connected to the cooling water unit 16 by a supply pipe 32 and a return pipe 33. A solenoid valve 22 is provided in each branch pipe of the supply pipe 32 to each temperature adjustment cylinder 26. The temperature adjustment cylinder 26 is provided with a cylinder heater 40 on the outer periphery. The electromagnetic valve 22 and the cylinder heater 40 are connected to the control device 20. The temperature adjusting cylinder 26 and the tip cylinder 27 are provided with a cylinder temperature sensor 21 for measuring the temperature in the vicinity of the inner wall surface. Further, the tip cylinder 27 is provided with a resin temperature measuring body 28 that penetrates the wall portion and protrudes into the inner hole.
[0004]
In FIG. 5, the screw 14 is constituted by a screw shaft 41, a plurality of types and a plurality of types of screw segments 42, and a tightening nut 42a. The screw shaft 41 is inserted into the cylinder 15 and has a cross section perpendicular to the axis substantially a regular polygon.
[0005]
In FIG. 6, a screw hole 41a is formed in the screw shaft 41 of the screw 14 from the rear end on the reduction gear 13 side to the front end. Further, the screw shaft 41 is formed with a water supply hole 44 penetrating from the cooling water hole 41a to the outer periphery and a drainage hole 45 adjacent to the two axial directions. A discharge hole 43 is coaxially disposed on the outer periphery of the cooling water hole 41 a, and the discharge hole 43 communicates with the drain hole 45.
[0006]
The outer periphery of the screw shaft 14 where the water supply hole 44 and the drainage hole 45 are located is relatively rotatable in a watertight state, that is, for supplying cooling water to the screw 14 that is rotationally driven during operation. A rotary joint 50 is connected. The rotary joint 50 supplies and drains the cooling water while the screw 14 is rotating.
[0007]
The screw extruder 100 configured as described above operates as follows. First, the cylinder heater 40 of the cylinder 15 is energized to raise the temperature. Cooling water is supplied from the cooling water unit 16 to each cylinder jacket 31, and the cylinder heater 40 and the electromagnetic valve 22 are adjusted by the control device 20 as necessary. The temperature measured by the resin temperature measuring element 60 is adjusted to each temperature adjusting cylinder. It controls to become each predetermined temperature of 26. Next, the drive motor 12 is started, the screw 14 is driven to rotate through the speed reducer 13, and the synthetic resin material is supplied from the hopper 24 to the inner hole of the material supply cylinder 25. The synthetic resin raw material is sequentially transported in the distal direction by the transport action of the rotating screw 14. During this transportation, the synthetic resin material is kneaded and melted by the kneading action of the rotating screw 14 and the heating of the temperature adjusting cylinder 26 which has been heated. The molten synthetic resin material that has reached the tip of the cylinder 15 after the completion of the predetermined kneading is extruded from the tip cylinder 27 through the die 27a. The unmelted synthetic resin raw material supplied from the raw material inlet 24 is blocked by the ground seal 23a so as not to leak out toward the speed reducer 13.
[0008]
Further, at the time after the drive motor 12 is activated, the cooling water is continuously supplied from the water supply pipe 44 a via the rotary joint 50. This cooling water is supplied from the rotary joint 50 to the cooling water hole 41a through the water supply hole 44 of the screw shaft 41, and then flows backward through the discharge hole 43 on the outer periphery of the cooling water hole 41a. It is discharged to the outside through the joint 50. That is, the cooling water cools the screw shaft 41 from the inner peripheral surface while backflowing the inner peripheral surface of the cooling water hole 41a and the discharge hole 43, and thus cools the screw 14 from the inside.
[0009]
Inside the cylinder 15, the synthetic resin raw material generates heat when it is melted by being sheared by the screw 14 that is driven to rotate, and there is a possibility that the temperature rises above a predetermined controlled temperature of the temperature adjusting cylinder 26. is there. In response to such an abnormal temperature rise of the synthetic resin raw material, the temperature from the inside of the screw 14 and the temperature in the vicinity of the inner wall surface of the temperature adjusting cylinder 26 by the cylinder temperature sensor 21 and the kneading by the resin temperature sensor 28 are mixed. By controlling the cylinder heater 40 and the electromagnetic valve 22 based on the measurement result of the melted synthetic resin raw material temperature, the temperature during and after the kneading of the cylinder 15 is controlled to be a predetermined temperature.
[0010]
[Problems to be solved by the invention]
Since the conventional screw type extruder and its temperature control method are configured as described above, the following problems exist.
That is, it cannot be said that the synthetic resin raw material is always filled and transported in the cylinder, and the temperature detection accuracy of the synthetic resin raw material is low in the resin temperature sensor provided near the inner wall surface in the cylinder wall. Therefore, it is difficult to control the melting temperature of the synthetic resin raw material with high accuracy. For example, when kneading a low melting point synthetic resin raw material such as an EVA resin raw material or a coating raw material, temperature control in the low temperature region is very difficult. is there. As a result, stable operation could not be continued and it was difficult to ensure uniform product quality. Although the cooling water is constantly passed through the screw shaft to suppress the temperature rise due to the shear heat generation of the synthetic resin raw material, the temperature of the screw shaft itself is not measured and controlled.
[0011]
The present invention has been made to solve the above-described problems, and in particular, the temperature of the screw is detected by a screw temperature sensor provided on the screw to control the temperature of the screw. An object of the present invention is to provide a method for controlling the temperature of a molten resin in a screw-type extruder and a screw-type extruder that can improve product quality by temperature control.
[0012]
[Means for Solving the Problems]
The method of controlling the molten resin temperature of a screw type extruder according to the present invention includes a long cylindrical cylinder (15) having a temperature measuring element (21) for a cylinder, and an internal portion of the cylinder (15) that is rotatably driven. Synthetic resin raw material by means of a screw (14) that has a plurality of cooling water holes (41a, 41aA, 41aB) formed coaxially on the shaft and that allows the cooling water to be passed and discharged through the rotary joint (50). using melt-kneading screw type extruder (100), distribution in different lengths located along the axial direction of Oite the screw (14) in the vicinity of the surface of the screw shaft (41) of the screw (14) Detected temperature signals detected by a plurality of screw temperature detectors (200 to 200b) provided are opposed to each other via a wireless transmission means from a transmission head portion (202) provided at an end portion of the screw shaft (41). in particular to the input temperature controller (23) of the output head controller from (203) (20) Converting mechanism for controlling the passing water amount of the cooling water in said screw (14), and passed through the cooling water to the inside wall of the cylinder (15) to cool the cylinder (15), said cylinder (15) Heated by a cylinder heater (40) provided on the outer periphery, and measured the temperature of the inner wall of the cylinder (15) or the vicinity thereof by the cylinder temperature sensor (21) , and based on the temperature, the temperature controller (23 ) by controlling the temperature of the cylinder (15), a method for controlling the temperature of said synthetic resin material, also screw-type extruder according to the present invention, the detected temperature from the measuring cylinder Yutakatai (21) controller using a temperature controller (20) of the elongated tubular shape to control the temperature by (23) the cylinder (15) and the cylinder rotates drivably inserted rotary joint therein in (15) (50) the screw (14) which is to be passed through and discharge the cooling water through the In a screw-type extruder for melting and kneading synthetic resin raw materials, a cylinder jacket (31) and a cylinder heater (40) provided in the cylinder (15) and an inner wall of the cylinder (15) or protruding from the inner wall A resin temperature sensor (28) and a plurality of cooling water holes formed coaxially in the screw (14) for passing and draining the cooling water through the rotary joint (50) (41a, 41aA, 41aB) and a plurality of screw temperature sensors (200 to 200b) disposed at different lengths along the axial direction in the vicinity of the surface of the screw shaft (41) of the screw (14). ), A transmission head part (202) provided at an end of the screw shaft (41) and connected to each of the temperature measuring elements (200 to 200b ) for each screw, and facing the transmission head part (202) Each detected temperature signal from each of the temperature measuring elements (200 to 200b) provided is sent to the transmission head unit (202 ) And an output head for receiving via the wireless transmission means (203) from measurement for the cylinder Yutakatai (21), measuring resin Yutakatai (28) and the measuring screw for Yutakatai (200 ~ 200b) The detected temperature signal is input to the temperature controller (23) via the output head part (203), and the temperature of the synthetic resin raw material is controlled .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a method for controlling a molten resin temperature of a screw extruder according to the present invention and a screw extruder according to the present invention will be described with reference to the drawings. In addition, about the same or equivalent part as a prior art example, the description is abbreviate | omitted using the same code | symbol, and only a different part is demonstrated.
In addition, a different part is a structure which has the temperature measuring body for screws which detects the temperature of the supply shaft structure of the cooling water in the screw 14, and the screw 14. FIG.
[0014]
In FIG. 1, the screw shaft 41 of the screw 14 is formed with a non-penetrating cooling water hole 41a in the shaft core portion from the rear end to the front end of the drive motor 12 side. Unlike the conventional case, the cooling water holes 41 a are formed with double and triple cooling water holes 41 a A and 41 a B coaxially and communicate with the discharge holes 43. These cooling water holes 41a to 41aB are communicated with the plurality of water supply holes 44 from the rotary joint 50 and the respective electromagnetic valves 44B, and are individually opened and closed by the control device 20 to open the respective cooling water holes 41a. , 41aA, 41aB can be selectively controlled.
The cooling water discharged from each of the cooling water holes 41a, 41aA, 41aB is collected or discharged from the common discharge hole 43 through the drain hole 45 through the rotary joint 50.
[0015]
The screw shaft 41 of the screw 14 is provided with a plurality of screw temperature measuring bodies 200, 200a, 200b (the number is arbitrary) near the surface thereof, and each of the screw temperature measuring bodies 200, 200a, 200b is respectively It is arrange | positioned at different length positions along an axial direction, and it is comprised so that the temperature detection of a different length position can be performed.
[0016]
Each of the temperature measuring elements 200, 200a, 200b for the screw is connected to a transmission head portion 202 provided at the end of the screw shaft 41 via the wiring 201, and each of the temperature measuring elements 200, 200a, 200b for the screw is connected. The detected temperature signal is transmitted from the transmission head unit 202 to the output head unit 203 arranged oppositely via known electromagnetic means or non-contact wireless transmission means such as infrared rays.
[0017]
The detected temperature signals output from the output head unit 203 are input to the temperature controller 23 of the control device 20, and the detected temperature signals are input to the temperature controller 23 in real time while the screw 14 is rotating. can do.
[0018]
Next, the operation will be described. First, cooling water is supplied through the rotary joint 50 at a time after the drive motor 12 is activated. This cooling water is sent to each cooling water hole 41a, 41aA, 41aB according to opening / closing of each electromagnetic valve 44B, and is collected or discharged from the rotary joint 50 to the outside through the drain hole 45 from the discharge hole 43.
[0019]
That is, the cooling water cools the screw 14 heated from the inside by the shear heat generation of the synthetic resin raw material while flowing from the cooling water holes 41a, 41aA, 41aB to the discharge hole 43.
[0020]
During this time, the temperature measuring elements 200, 200a, 200b provided at three locations measure the temperature of each position of the screw 14, and each detected temperature signal is transmitted from the transmission head unit 202 through the output head unit 203 to the temperature controller. 23, the opening and closing of each solenoid valve 44B is controlled, and the screw 14 is controlled to a desired set temperature. That is, by controlling the temperature of the screw 14 from the inside of the screw 14, the temperature of the synthetic resin material that is transported and kneaded while being in contact with the screw 14 is controlled. Therefore, the screw-type extrusion molding machine 100 uses the temperature controller 23 of the controller 20 to control the solenoid valve based on the measurement data of the cylinder temperature sensor 21, the resin temperature sensor 28, and the screw temperature sensors 200 to 200b. 44B and the cylinder heater 40 are controlled to maintain the desired temperature during and after the kneading of the synthetic resin material to be kneaded and melted.
[0021]
【The invention's effect】
Since the method for controlling the molten resin temperature of the screw extruder and the screw extruder according to the present invention are configured as described above, the following effects can be obtained.
(1) A screw in a screw type kneading extruder is provided with screw temperature measuring elements at a plurality of positions in the axial direction in the screw shaft, and the temperature in the vicinity of the screw surface is measured. Even when the inside of the cylinder is transported and kneaded and melted in an unfilled state, the temperature of the synthetic resin material that is transported and kneaded while being in contact with the screw can be measured with high accuracy.
(2) A plurality of cooling water holes are formed in the screw shaft of the screw in the screw type extrusion molding machine, the temperature can be finely adjusted, and the temperature control of the synthetic resin raw material can be performed with high accuracy.
(3) Accordingly, it is possible to easily ensure uniform product quality without stopping the screw and lowering the rotational speed of the screw due to an increase in the molten resin temperature.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram showing a main part of a screw-type extruder according to the present invention.
2 is a cross-sectional view showing the main part of FIG.
3 is a cross-sectional view of the entire length of the screw of FIG.
FIG. 4 is a cross-sectional configuration diagram showing a conventional screw type extrusion molding machine.
FIG. 5 is a cross-sectional view showing the screw of FIG.
6 is a cross-sectional configuration diagram illustrating a main part of FIG. 4;
7 is a cross-sectional view of the main part of FIG.
FIG. 8 is a detailed configuration diagram showing the rotary joint of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 14 Screw 15 Cylinder 20 Control apparatus 21 Cylinder temperature measuring element 23 Temperature controller 28 Resin temperature measuring element 31 Cylinder jacket 40 Cylinder heating heater 41 Screw shaft 41a, 41aA, 41aB Cooling water hole 44 Water supply hole 44B Solenoid valve 45 Drain hole DESCRIPTION OF SYMBOLS 50 Rotary joint 100 Screw type extrusion molding machine 200-200b Temperature measuring body for screws 202 Transmission head part 203 Output head part

Claims (2)

シリンダ用測温体 (21) を有する長尺筒形状のシリンダ(15)およびこのシリンダ(15)内に回転駆動可能に挿入され内部に同軸状に形成された複数の冷却水孔 (41a,41aA,41aB) を有し、冷却水をロータリージョイント (50) を介して通水・排出できるようにしたスクリュ(14)により合成樹脂原料を溶融混練するスクリュ式押出成形機(100)を用い、前記スクリュ(14)のスクリュ軸 (41) 表面近傍において前記スクリュ (14) の軸方向に沿って互いに異なる長さ位置に配設された複数のスクリュ用測温体(200〜200b)によって検出した検出温度信号を前記スクリュ軸 (41) の端部に設けられた伝送ヘッド部 (202) から無線伝送手段を介して対向配置の出力ヘッド部 (203) から制御装置 (20) の温度調節器 (23) へ入力することによって前記スクリュ(14)内の前記冷却水の通水量を制御すると共に、前記シリンダ(15)の壁内に冷却水を通水して前記シリンダ (15) 冷却し、前記シリンダ(15)の外周に設けたシリンダ加熱ヒータ(40)により加熱すると共に前記シリンダ(15)内壁又はその近傍の温度を前記シリンダ用測温体 (21) によって計測し、前記温度に基づいて前記温度調節器 (23) により前記シリンダ(15)の温度を制御し、前記合成樹脂原料の温度を制御することを特徴とするスクリュ式押出成形機の溶融樹脂温度制御方法。 A long cylindrical cylinder (15) having a temperature measuring element (21) for cylinder and a plurality of cooling water holes (41a, 41aA ) inserted into the cylinder (15) so as to be rotationally driven and coaxially formed therein. , 41aB) , and using a screw type extrusion molding machine (100) that melts and kneads the synthetic resin raw material with a screw (14) that allows cooling water to pass through and discharge through the rotary joint (50). screw (14) of the screw shaft (41) measuring a plurality of screw Oite the near the surface along the axial direction of the screw (14) disposed in different lengths positions from each other of Yutakatai by (200~200B) The detected temperature signal is adjusted from the transmission head unit (202) provided at the end of the screw shaft (41 ) to the control device (20) from the opposed output head unit (203) via the wireless transmission means. controls the passing water amount of the cooling water in said screw (14) by entering into a vessel (23), Wherein by cooling water to pass therethrough the wall of serial cylinders (15) cylinder (15) is cooled, the said cylinder with heating by the cylinder heater provided on the outer periphery of the cylinder (15) (40) (15) the temperature of the inner wall or near the measured by the cylinder temperature detector (21), wherein controlling the temperature of the cylinder (15) by the temperature controller (23) based on said temperature, the temperature of the synthetic resin raw material A method for controlling the temperature of a molten resin in a screw-type extrusion molding machine, characterized in that: シリンダ用測温体 (21) からの検出温度を用いて制御装置 (20) の温度調節器 (23) により温度調節を行う長尺筒形状のシリンダ(15)およびこのシリンダ(15)内に回転駆動可能に挿入され内部にロータリージョイント (50) を介して冷却水を通水・排出できるようにしたスクリュ(14)により合成樹脂原料を溶融混練するスクリュ式押出成形機において、前記シリンダ(15)に設けられたシリンダジャケット(31)及びシリンダ加熱ヒータ(40)と、前記シリンダ(15)の内壁又はこの内壁から突出して設けられた樹脂用測温体(28)と、前記スクリュ (14) 内に同軸状に形成され前記ロータリージョイント (50) を介して前記冷却水を通水・排水するための複数の冷却水孔 (41a,41aA,41aB) と、前記スクリュ (14) のスクリュ軸 (41) の表面近傍の軸方向に沿って互いに異なる長さ位置に配設された複数のスクリュ用測温体 (200 200b )と、前記スクリュ軸 (41) の端部に設けられ前記各スクリュ用測温体 (200 200b )に接続された伝送ヘッド部 (202) と、前記伝送ヘッド部 (202) に対向して設けられ前記各スクリュ用測温体 (200 200b) からの各検出温度信号を前記伝送ヘッド部 (202) から無線伝送手段を介して受けるための出力ヘッド部 (203) とを備え、
前記シリンダ用測温体 (21) 、樹脂用測温体 (28) 及びスクリュ用測温体 (200 200b) からの検出温度信号が前記出力ヘッド部 (203) を介して前記温度調節器 (23) に入力され、前記合成樹脂原料の温度を制御するように構成したことを特徴とするスクリュ式押出成形機。
A long cylindrical cylinder (15) that adjusts the temperature with the temperature controller (23) of the control device (20) using the temperature detected from the temperature measuring element (21) for the cylinder, and rotates in this cylinder (15) In the screw type extrusion molding machine that melts and kneads the synthetic resin raw material by a screw (14) that is inserted so as to be drivable and that allows cooling water to be passed and discharged through the rotary joint (50) , the cylinder (15) cylinder jacket provided in (31) and the cylinder and heater (40), said cylinder inner wall or Yutakatai measuring resin which protrudes from the inner wall (15) and (28), said screw (14) A plurality of cooling water holes (41a, 41aA, 41aB) that are formed coaxially with each other and allow the cooling water to flow and drain through the rotary joint (50) , and a screw shaft (41 ) of the screw (14). ) Are arranged at different lengths along the axial direction in the vicinity of the surface. And measuring a number of screw Yutakatai (200 ~ 200b), the screw shaft transmission head portion provided at an end portion connected to said Yutakatai measuring for each screw (200 ~ 200b) of (41) and (202), output for receiving via the wireless transmission means each detected temperature signal from the provided opposite to the transmission head portion (202) measuring for each screw Yutakatai (200 ~ 200b) from the transmission head (202) A head portion (203) ,
The cylinder temperature detector (21), measuring resin Yutakatai (28) and the measuring screw for Yutakatai (200 ~ 200b) detected temperature signal is the output head portion (203) said temperature controller through from ( 23. A screw type extrusion molding machine that is inputted to 23) and is configured to control the temperature of the synthetic resin raw material .
JP2002230972A 2002-08-08 2002-08-08 Method for controlling molten resin temperature of screw type extruder and screw type extruder Expired - Fee Related JP3703138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230972A JP3703138B2 (en) 2002-08-08 2002-08-08 Method for controlling molten resin temperature of screw type extruder and screw type extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230972A JP3703138B2 (en) 2002-08-08 2002-08-08 Method for controlling molten resin temperature of screw type extruder and screw type extruder

Publications (2)

Publication Number Publication Date
JP2004066705A JP2004066705A (en) 2004-03-04
JP3703138B2 true JP3703138B2 (en) 2005-10-05

Family

ID=32016874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230972A Expired - Fee Related JP3703138B2 (en) 2002-08-08 2002-08-08 Method for controlling molten resin temperature of screw type extruder and screw type extruder

Country Status (1)

Country Link
JP (1) JP3703138B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196770B2 (en) * 2006-11-24 2013-05-15 サミット製油株式会社 Coffee oil and method for producing the same
JP5523812B2 (en) * 2009-12-16 2014-06-18 株式会社リコー Kneading apparatus and toner manufacturing method
JP6033895B2 (en) * 2015-01-13 2016-11-30 株式会社日本製鋼所 Extruder with vent
KR101713214B1 (en) * 2015-06-02 2017-03-07 주식회사 씨맥 Temperature regulating system of extruder screw

Also Published As

Publication number Publication date
JP2004066705A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
EP2202043B1 (en) Injection molding apparatus having rotating vane
US3822867A (en) Control apparatus and methods for molding machinery
JP3703138B2 (en) Method for controlling molten resin temperature of screw type extruder and screw type extruder
EP2834058B1 (en) Method and installation for manufacturing biaxially oriented tubing
US5723082A (en) Method of granulating synthetic resin by extrusion and apparatus thereof
BR112012009229B1 (en) Method and installation for producing a biaxially oriented tube from thermoplastic material
CN109908824B (en) Tempering method of efficient tempering device
DE202014001005U1 (en) Sugar extruder for use in 3D printers
US3237241A (en) Controlled continuous mixer
JP2004255607A (en) Monitor of injection molding machine
US5297865A (en) Method and apparatus for the mixing of mixing material with thermoplastic material
JP2000205423A (en) Molten substance valve
US3946803A (en) Apparatus for controlling temperature of an extruder screw
CN108757996A (en) Constant temperature of water heater valve
US4695240A (en) Apparatus for extruding small quantities of material
CN110696320A (en) PVC pipe fitting injection molding machine
KR100698930B1 (en) A supply equipment of warm water by proportional control 3-way ball valve and its temperature control method
US3243848A (en) Extruding machine with automatic metering control
JP6669777B2 (en) Method for monitoring and controlling a twin screw extruder, and a twin screw extruder
RU2706625C1 (en) Auger plasticator for injection molding polymers
JPH0477655B2 (en)
CN212920364U (en) Extrusion device with temperature control structure
JPH11240052A (en) Method for operating injection molding machine
US4685875A (en) Pressure relief device for extrusion apparatus
EP1666223A1 (en) Densifier system and relative method for treatment of plastic materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

R150 Certificate of patent or registration of utility model

Ref document number: 3703138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees