JP3701900B2 - Method for producing non-aqueous electrolyte battery - Google Patents

Method for producing non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3701900B2
JP3701900B2 JP2001373600A JP2001373600A JP3701900B2 JP 3701900 B2 JP3701900 B2 JP 3701900B2 JP 2001373600 A JP2001373600 A JP 2001373600A JP 2001373600 A JP2001373600 A JP 2001373600A JP 3701900 B2 JP3701900 B2 JP 3701900B2
Authority
JP
Japan
Prior art keywords
lithium
metal foil
laminate
shape
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001373600A
Other languages
Japanese (ja)
Other versions
JP2002246014A (en
Inventor
徳 高井
善史 阪本
匡 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2001373600A priority Critical patent/JP3701900B2/en
Publication of JP2002246014A publication Critical patent/JP2002246014A/en
Application granted granted Critical
Publication of JP3701900B2 publication Critical patent/JP3701900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池容器内に負極、正極および非水電解質を有する非水電解質電池に関するものである。
【0002】
【従来の技術】
コイン形リチウム電池に代表される非水電解質電池は、使用温度範囲が広く、また長期信頼性にすぐれるため、電子時計や種々のメモリーバックアップ用電源として広く利用されている。この種の電池の負極には通常リチウムが用いられ、貯蔵特性や放電特性の向上を目的として、正極側の表面にリチウム合金層、たとえばリチウム−アルミニウム合金層を形成することが提案されている。
【0003】
リチウム合金層を負極表面に形成する場合は、通常、板状のリチウムの片面にその全面を覆うようにリチウム以外の金属箔、たとえばアルミニウム箔を積層し、これを電解質とともに電池容器内に組み込むことにより、電池容器内でリチウムとアルミニウムを合金化させ、これにより上記リチウムの正極に面する側全面にリチウム−アルミニウム合金層を形成して、リチウムの一部が合金化した負極を構成させるようにしている。
【0004】
【発明が解決しようとする課題】
このような負極構成とする場合、リチウムの片面に積層するアルミニウム箔を、あらかじめ電極の形状に合わせて打ち抜いておく必要があり、たとえば、コイン形(円形または略長円形)の電池では、アルミニウム箔を円形または略長円形に打ち抜く必要がある。この場合、図9に示すように、電極の作製に必要な円形の打ち抜き部分(白抜き部分)以外に、打ち抜きかす(斜線イの部分)が必ず生じ、その面積はアルミニウム箔全体のおよそ1/4にもなる。
【0005】
このような打ち抜きかすは、電極の作製には利用できないため、そのまま廃棄せざるを得ないのが現状であり、また、電池の製造工程において、この打ち抜きかすを排出するための設備が必要となってくるため、電池の生産面および環境面で問題が生じている。
【0006】
本発明は、上記の事情に照らし、円形または略長円形などの略多角形以外の形状のリチウム板の正極側表面にリチウム合金層を形成して負極を構成させる非水電解質電池において、リチウムと合金化させるアルミニウム箔などの金属箔の打ち抜きかすの発生を防いで、電池の生産面および環境面での改善をはかることを目的としたものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記の目的に対して、鋭意検討した結果、リチウムと合金化させるアルミニウム箔などの金属箔を、負極の形状に合わせるのではなく、略三角形、略四角形、略六角形などの略多角形の形状に打ち抜くと、従来の円形または略長円形などの略多角形以外の形状に打ち抜いていたのとは異なり、打ち抜きかすが発生しないかまたはその発生を低減できること、またこの略多角形の金属箔を上記略多角形以外の形状のリチウム板に積層した異形積層体を使用して、上記金属箔をリチウムと合金化させると、上記リチウム板の正極側表面に略多角形のリチウム合金層を形成でき、この合金層の正極側表面での面積比率を特定範囲に設定することにより、リチウム合金層を正極側表面の全面に形成したのと遜色のない良好な重負荷特性が得られるものであることがわかった。
つまり、この方法により、電池の重負荷特性を損なうことなく、アルミニウム箔などの金属箔の打ち抜きかすの発生を防いで、電池の生産面および環境面での改善をはかれるものであることがわかった。
【0008】
本発明は、上記の知見に基づいて、完成されたものである
【0009】
すなわち、本発明は略多角形以外の形状のリチウム板の片面にこのリチウム板の面積よりも小さな面積を有する略多角形のリチウム以外の金属箔を積層した異形積層体を作製し、この積層体を正極および非水電解質とともに電池容器内に収容し、電池容器内でリチウムと金属箔とを合金化させてリチウム合金層を形成することにより、あるいは、上記積層体を電池容器内に収容する前にリチウムと金属箔とを合金化させてリチウム合金層を形成し、これを正極および非水電解質とともに電池容器内に収容することにより、負極構成として、リチウム板の正極側表面にリチウム合金層を有する構成とすることを特徴とする非水電解質電池の製造方法に係るものであり、とくに、上記リチウム以外の金属箔の形状が略三角形、略四角形、略六角形またはその組み合わせからなる上記構成の非水電解質電池の製造方法、上記リチウム以外の金属箔がアルミニウム箔からなる上記構成の非水電解質電池の製造方法、上記異形積層体におけるリチウム以外の金属箔の面積が積層体の面積の10〜95%を占める上記構成の非水電解質電池の製造方法に係るものである。
【0010】
さらに、本発明は、上記構成の非水電解質電池の製造方法において、上記した異形積層体の作製にあたり、略多角形のリチウム板の片面にこれと同形のリチウム以外の金属箔を積層した同形積層体を作製し、これに上記リチウム板を押し広げる加圧処理を施して、略多角形以外の形状のリチウム板の片面にこのリチウム板の面積よりも小さな面積を有する略多角形の金属箔を積層した異形積層体を作製する上記構成の非水電解質電池の製造方法に係るものであり、とくに、上記の同形積層体がリチウム板とリチウム以外の金属箔とのシート状積層体を略多角形の形状に打ち抜き成形したものである上記構成の非水電解質電池の製造方法に係るものである。
【0011】
【発明の実施の形態】
本発明において、略多角形以外の形状のリチウム板の片面に積層する金属箔としては、アルミニウム、鉛、インジウム、ガリウムなどの金属箔が挙げられる。これらの中でも、アルミニウム箔がとくに好ましく用いられる。これらの金属箔の厚さは、とくに限定はなく、電池の用途目的などに応じて、適宜決定されるが、通常は、1〜30μmであるのが望ましい。
【0012】
本発明においては、このような金属箔を、略三角形、略四角形、略六角形などの略多角形の形状に打ち抜くことを特徴とする。ここで、略三角形とは、図1に示す正三角形のほか、これ以外の任意形状の三角形を含むものであり、また略四角形とは、図2に示す正方形のほか、これ以外の任意形状の四角形を含むものであり、さらに略六角形とは、図3に示す正六角形のほか、これ以外の任意形状の六角形を含むものである。また、これらのほか、図4に示すように直線部分とともに曲線部分をも含むような特殊形状に打ち抜いてもよく、要は、従来の円形や略長円形以外の形状として、打ち抜きかすが全くないしほとんど発生しないような形状とすればよい。とくに、正三角形、正方形、正六角形のように、隙間なく並べることができるような形状であるのが望ましい。
【0013】
このように略多角形の形状に打ち抜き成形した金属箔を、略多角形以外の形状のリチウム板の片面(電池の組み立て後に正極に面する側)に積層して、異形積層体を作製する。ここで、上記のリチウム板の形状は、電池形態に応じて、適宜決定されるものであるが、コイン形の電池では、円形または略長円形とされるため、これに、たとえば、図1〜3に示す正三角形、正方形または正六角形の金属箔21を積層すると、それぞれ、図5〜7に示すように、金属箔21が積層された部分(白抜き部分)と、金属箔21が積層されずにリチウム板20が露出した部分(斜線部分)とが生じることになる。
【0014】
すなわち、従来のように、金属箔21を負極の形状に合わせて円形に打ち抜き成形したものでは、これを円形のリチウム板20とほぼ同じ大きさとすることにより、リチウム板20の片面全面に金属箔21を積層することができるが、前記のような略多角形の形状に打ち抜き成形したものでは、リチウム板20の片面全面に金属箔21を積層することができない。もし、上記形状でリチウム板20の片面全面に金属箔21を積層しようとすると、リチウム板の面積よりもかなり大きな金属箔が必要となるばかりでなく、リチウム板の周辺部から金属箔の端部がはみ出してしまうため、短絡などの問題を生じやすくなる。
【0015】
しかしながら、本発明者らの検討により、リチウム板の正極に面する側全面にリチウム合金層が形成されなくても、電池の負荷特性向上の効果を十分に発揮できるものであることがわかった。もちろん、上記積層体の面積(図5〜7の斜線部分と白抜き部分との面積の合計)における金属箔21の面積(図5〜7の白抜き部分の面積)の占める割合が大きいほど、電池組み立て後に形成されるリチウム合金層の面積も大きくなり、上記効果が増大してくるが、金属箔21の面積が上記積層体の面積の10%以上であれば、効果が認められ、30%以上であれば、実用上、十分な効果が得られるものであることがわかった。とくに、リチウム板の正極に面する側全面に金属箔を積層したものと同程度の効果を得るためには、上記面積を50%以上とするのが望ましい。
一方、金属箔21の打ち抜き形状の選択とその組み合わせにより、上記面積を限りなく100%に近づけていくことはできるが、工程の繁雑化や打ち抜きかすの増加を招くため、95%以下とするのがよい。
【0016】
ちなみに、図5〜7に示す積層態様では、上記金属箔部分の面積は、図5で41%、図6で63%、図7で82%となる。この面積は、三角形、四角形または六角形の各形状を変更したり、これらを組み合わせたり、図4に示すような特殊形状に打ち抜いたものを使用することで、任意に設定することができる。
【0017】
本発明において、上記のようなリチウム板の片面にその面の10〜95%の面積を占めるリチウム以外の金属箔を積層した異形積層体は、上記とは別の方法で作製することもできる。すなわち、この方法は、まず、略多角形のリチウム板の片面にこれと同形のリチウム以外の金属箔を積層した同形積層体を作製する。これは、たとえば、リチウム板とリチウム以外の金属箔とのシート状積層体を略多角形の形状に打ち抜き成形することにより、作製できる。
【0018】
つぎに、この同形積層体に加圧処理を施し、リチウム以外の金属箔の面積はほとんど変化させずに、塑性変形が容易な略多角形のリチウム板のみを押し広げ、リチウム板を円形ないし略長円形などの略多角形以外の形状に変化させる。これにより、リチウム板の面積がリチウム以外の金属箔より大きくなった、つまり、リチウム板の片面にその面の10〜95%の面積を占めるリチウム以外の金属箔を積層した異形積層体を作製することができる。
この方法によると、リチウム板も略多角形の形状に打ち抜き成形するため、リチウム以外の金属箔だけでなく、リチウム板についても打ち抜きかすが発生しないかまたはその発生を低減できるという効果が得られる。
【0019】
本発明においては、このように作製されるリチウム板の片面に略多角形のリチウム以外の金属箔を積層した異形積層体を、正極および非水電解質とともに、電池容器内に収容し、上記積層体のリチウム以外の金属箔をリチウムと合金化させることにより、上記リチウム板の正極の面する側にリチウム合金層を形成して負極を構成させ、非水電解質電池を製造する。ここで、形成されるリチウム合金層は、もとの金属箔とほぼ同じ形状を有して、もとの金属箔の面積とほぼ等しいか、または若干大きくなる程度となる。
【0020】
すなわち、もとの金属箔の面積は積層体の面積の10〜95%を占めるため、形成されるリチウム合金層は、リチウム板の正極側表面にそのおよそ10〜95%の面積を占めるものとなる。このように、リチウム合金層の面積が10%以上であると、負荷特性の向上に関して効果が認められ、30%以上であると、実用上十分な効果が得られる。とくに、正極側表面の全面にリチウム合金層を形成したものと同程度の効果を得るためには、上記リチウム合金層の面積は50%以上であるのが望ましい。
【0021】
また、上記積層体におけるリチウム板の厚さは、電池の用途目的により種々の厚さに設定できるが、通常は0.05〜1.5mmの範囲とするのがよい。また、この積層体に銅箔などの集電体を密着させて電池容器内に収容することにより、上記集電体と一体となった負極を構成させるようにしてもよい。
【0022】
本発明においては、上記のように電池容器内でリチウムと金属箔を合金化するのではなく、電池容器内に収納する前に合金化させることもできる。すなわち、上記積層体の作製時または作製後に加熱処理を施すなどして、リチウムとリチウム以外の金属との反応を促進してリチウム合金層を形成し、これを正極および非水電解質とともに電池容器内に収容し、上記リチウム合金層を正極の面する側に位置させて負極を構成させることも、場合により可能である。
【0023】
本発明の非水電解質電池は、電池容器の形状や材質にとくに限定はなく、また一次電池または二次電池として利用することができる。これら各種の非水電解質電池において、負極以外の構成要素には、従来よりリチウム電池(またはリチウム二次電池)用として公知のものをいずれも使用できる。
【0024】
正極には、マンガン、コバルト、ニッケル、マグネシウム、銅、鉄、バナジウム、チタン、ニオブなどの酸化物、それらの複合酸化物、リチウムとの複合酸化物などを正極活物質とし、これに必要によりカーボンブラックや黒鉛などの導電助剤、ポリテトラフルオロエチレンやポリフッ化ビニリデンなどの結着剤を混合してなる正極合剤をシート化したものが用いられる。正極内部や正極の片面側にアルミニウム、ニッケル、ステンレスなどで構成されたエキスパンドメタルやパンチングメタル、金属箔などを集電体として積層してもよい。
【0025】
セパレータには、ポリオレフィン、ポリブチレンテレフタレートなどの不織布や微多孔膜など、正負両極の電気的短絡を防止できるものであれは広く使用できる。また、非水電解質には、リチウムイオン伝導性の電解液(非水電解液)が好ましく用いられ、たとえば、ジエチルカーボネート、プロピレンカーボネートなどのカーボネート類や、ジメトキシエタン、ジエチルエーテルなどのエーテル類などに対し、LiClO4 、LiPF6 などのリチウム塩を溶解させたものが用いられる。非水電解液の電解質濃度は、とくに限定されないが、通常は、0.3〜1.7モル/リットル程度とするのが望ましい。また、この非水電解液の使用量は、正極活物質に対し、90〜150体積%とするのが好ましい。
【0026】
なお、本発明において、非水電解質は、上記の非水電解液に限定されず、ゲル状電解質やポリマー状電解質などを使用することもできる。また、この場合は、上記したようなセパレータを省くこともできる。
【0027】
【実施例】
つぎに、本発明の実施例として、コイン形の非水電解質電池の構成例を記載して、さらに具体的に説明することにする。
【0028】
実施例1
負極構成用として、厚さが6μmのアルミニウム箔を使用し、これを、図1に示すように、正三角形の形状に打ち抜いた。その際、打ち抜きかすは全く発生しなかった。この正三角形のアルミニウム箔を、直径16mm、厚さ0.3mmの円形のリチウム板の片面に、図5に示すように、積層した。この異形積層体のアルミニウム箔の面積は、積層体の面積の41%であった。つぎに、この異形積層体と正極とを両者間にポリプロピレン不織布からなるセパレータを介装して電池容器内に収容し、これに非水電解液を注入して、封缶することにより、直径20mm、厚さ3.2mmである図8に示す構成のコイン形の非水電解質電池を作製した。
【0029】
この電池の封缶後、所定時間放置したのちに開缶して、負極構造を調べたところ、リチウム板の片面に積層したアルミニウム箔がリチウムと合金化されて、リチウム−アルミニウム合金層が形成されており、その面積は積層時と同じ41%であった。なお、上記電池の作製にあたり、正極には、電解二酸化マンガン93重量部と導電助剤(黒鉛)6重量部と結着剤(ポリテトラフルオロエチレン)1重量部とを混合した正極合剤を加圧成形してシート化したものを使用した。非水電解液には、プロピレンカーボネートとジメトキシエタンとの体積比1:1の混合溶媒にLiClO4 を0.5モル/リットル溶解させたものを用い、その電解液量を正極活物質の二酸化マンガンに対して120体積%とした。
【0030】
図8において、1は上記した電解二酸化マンガンを正極活物質として使用した正極合剤の加圧成形体からなる正極であり、2はリチウム板の片面に片面全面の40%の面積を占めるリチウム−アルミニウム合金層7が形成された負極である。負極2におけるリチウム−アルミニウム合金層7が形成された側が正極1と対向しており、正極1と負極2の間にはポリプロピレン不織布からなるセパレータ3が介装されている。電池容器は、ステンレス鋼製の正極缶4と負極缶5とにより、構成されており、この両缶4,5とポリプロピレン製の環状ガスケット6とで形成される空間内に、正極1、負極2,セパレータ3および非水電解液が収容されている。封缶にあたり、正極缶5の開口端部の内方への締め付けにより、負極缶5の周縁部に装着した環状ガスケット6を正極缶4の開口端部の内周面と負極缶5の周縁部の外周面に圧接させて電池内部を密閉状態にしている。
【0031】
実施例2
負極構成用として、厚さが6μmのアルミニウム箔を使用し、これを、図2に示すように、正方形の形状に打ち抜いた。その際、打ち抜きかすは全く発生しなかった。この正方形のアルミニウム箔を、直径16mm、厚さ0.3mmの円形のリチウム板の片面に、図6に示すように、積層した。この異形積層体のアルミニウム箔の面積は、積層体の面積の63%であった。
【0032】
この異形積層体を使用するようにした以外は、実施例1と同様にして、コイン形の非水電解質電池を作製した。なお、この電池の封缶後、所定時間放置したのちに開缶して、負極構造を調べたところ、リチウム板の片面に積層したアルミニウム箔がリチウムと合金化されて、リチウム−アルミニウム合金層が形成されており、その面積は積層時と同じ63%であった。
【0033】
実施例3
負極構成用として、厚さが6μmのアルミニウム箔を使用し、これを、図3に示すように、正六角形の形状に打ち抜いた。その際、打ち抜きかすは全く発生しなかった。この正六角形のアルミニウム箔を、直径16mm、厚さ0.3mmの円形のリチウム板の片面に、図7に示すように、積層した。この異形積層体のアルミニウム箔の面積は、積層体の面積の82%であった。
【0034】
この異形積層体を使用するようにした以外は、実施例1と同様にして、コイン形の非水電解質電池を作製した。なお、この電池の封缶後、所定時間放置したのちに開缶して、負極構造を調べたところ、リチウム板の片面に積層したアルミニウム箔がリチウムと合金化されて、リチウム−アルミニウム合金層が形成されており、その面積は積層時と同じ82%であった。
【0035】
実施例4
負極構成用として、厚さが0.48mmのリチウム板と厚さが6μmのアルミニウム箔とを積層してシート状積層体とし、これを正方形の形状に打ち抜き成形して、リチウム板とアルミニウム箔とからなる正方形の同形積層体を作製した。つぎに、この同形積層体を加圧処理して、リチウム板のみを押し広げ、円形のリチウム板と正方形のアルミニウム箔とからなる異形積層体を作製した。この異形積層体は、リチウム板の直径が16mm、厚さが0.3mmで、アルミニウム箔の面積は、積層体の面積の63%であった。この方法では、リチウム板およびアルミニウム箔のいずれについても、打ち抜きかすは全く発生しなかった。
【0036】
この異形積層体を使用するようにした以外は、実施例1と同様にして、コイン形の非水電解質電池を作製した。なお、この電池の封缶後、所定時間放置したのちに開缶して、負極構造を調べたところ、リチウム板の片面に積層したアルミニウム箔がリチウムと合金化されて、リチウム−アルミニウム合金層が形成されており、その面積は積層時と同じ63%であった。
【0037】
比較例1
負極構成用として、厚さが6μmのアルミニウム箔を使用し、これを、図9に示すように、円形に打ち抜いた。その際、打ち抜きかすが22%も発生した。この円形のアルミニウム箔を、直径16mm、厚さ0.3mmの円形のリチウム板の片面に、その片面全面を覆うように、積層した。この円形の積層体を使用した以外は、実施例1と同様にして、コイン形の非水電解質電池を作製した。なお、この電池の封缶後、所定時間放置したのちに開缶して、負極構造を調べたところ、リチウム板の片面全面に積層したアルミニウム箔がリチウムと合金化されて、片面全面にリチウム−アルミニウム合金層が形成されていた。
【0038】
比較例2
負極として、直径16mm、厚さ0.3mmの円形のリチウム板を、そのまま使用し、これを電池容器内に収容するようにした以外は、実施例1と同様にして、コイン形の非水電解質電池を作製した。
【0039】
上記の実施例1〜4および比較例1,2の各非水電解質電池の性能を、以下のように調べた。すなわち、各電池に15kΩの放電抵抗を接続して420時間放電後、無負荷で24時間以上放置し、さらに500Ωの放電抵抗を接続して放電させたときの、放電開始から5秒後の電池電圧を放電途中閉路電圧として、評価した。結果は、表1に示されるとおりであった。
【0040】

Figure 0003701900
【0041】
上記の結果から明らかなように、実施例1〜4の電池では、アルミニウム箔の打ち抜きかすを発生させずに、重負荷での電池電圧低下を抑制して、放電特性の向上をはかることができ、とくにリチウム−アルミニウム合金層の面積をリチウム板の正極側表面の50%以上とした実施例2〜4の電池では、リチウム板の正極側全面にリチウム−アルミニウム合金層を形成した比較例1の電池となんら遜色のない放電特性が得られていることがわかる。
【0042】
【発明の効果】
以上のように、本発明は、アルミニウム箔などの金属箔を、略三角形、略四角形、略六角形またはその組み合わせからなる略多角形の形状に打ち抜いて、これを略多角形以外の形状のリチウム板の片面に積層した異形積層体を作製し、この積層状態で金属箔とリチウムとを合金化させてリチウム合金層を形成したことにより、従来のリチウム板の形状に合わせて打ち抜き積層していたのと遜色のない良好な放電特性を発揮できるうえに、打ち抜きかすの発生を防げ、電池の生産面および環境面での改善をはかることができる。
【図面の簡単な説明】
【図1】本発明による金属箔の打ち抜き形状の一例として正三角形に打ち抜いた状態を示す平面図である。
【図2】本発明による金属箔の打ち抜き形状の別の例として正方形に打ち抜いた状態を示す平面図である。
【図3】本発明による金属箔の打ち抜き形状のさらに別の例として正六角形に打ち抜いた状態を示す平面図である。
【図4】本発明による金属箔の打ち抜き形状の他の異なる例を示す平面図である。
【図5】図1に示す正三角形に打ち抜いた金属箔を円形のリチウム板の片面に積層した状態を示す平面図である。
【図6】図2に示す正方形に打ち抜いた金属箔を円形のリチウム板の片面に積層した状態を示す平面図である。
【図7】図3に示す正六角形に打ち抜いた金属箔を円形のリチウム板の片面に積層した状態を示す平面図である。
【図8】本発明のコイン形の非水電解質電池の一例を示す断面図である。
【図9】従来方法により金属箔を円形に打ち抜いた状態を示す平面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4,5 電池容器
6 環状ガスケット
7 リチウム合金層(リチウム−アルミニウム合金層)
20 リチウム板
21 金属箔(アルミニウム箔)
イ 斜線部分(打ち抜きかす)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery having a negative electrode, a positive electrode, and a nonaqueous electrolyte in a battery container.
[0002]
[Prior art]
Non-aqueous electrolyte batteries typified by coin-type lithium batteries are widely used as power supplies for electronic watches and various memory backups because they have a wide operating temperature range and excellent long-term reliability. Lithium is usually used for the negative electrode of this type of battery, and it has been proposed to form a lithium alloy layer, such as a lithium-aluminum alloy layer, on the surface of the positive electrode for the purpose of improving storage characteristics and discharge characteristics.
[0003]
When the lithium alloy layer is formed on the negative electrode surface, a metal foil other than lithium, such as an aluminum foil, is usually laminated on one side of the plate-like lithium so as to cover the entire surface, and this is incorporated into the battery container together with the electrolyte. Thus, lithium and aluminum are alloyed in the battery container, whereby a lithium-aluminum alloy layer is formed on the entire surface of the lithium facing the positive electrode to form a negative electrode in which a part of lithium is alloyed. ing.
[0004]
[Problems to be solved by the invention]
In the case of such a negative electrode configuration, it is necessary to punch out an aluminum foil laminated on one side of lithium in advance according to the shape of the electrode. For example, in a coin-shaped (circular or substantially oval) battery, an aluminum foil Must be punched into a circle or a substantially oval shape. In this case, as shown in FIG. 9, in addition to the circular punched portion (outlined portion) necessary for the production of the electrode, there is always a punched-out portion (the hatched portion), and the area is approximately 1 / of the entire aluminum foil. It will be four.
[0005]
Since such punched-outs cannot be used for the production of electrodes, the current situation is that they must be discarded as they are, and equipment for discharging the punched-outs is required in the battery manufacturing process. Therefore, there are problems in terms of battery production and environment.
[0006]
In light of the above circumstances, the present invention provides a non-aqueous electrolyte battery in which a lithium alloy layer is formed on a positive electrode side surface of a lithium plate having a shape other than a substantially polygonal shape such as a circle or a substantially oval shape, and a negative electrode is formed. The object is to prevent the occurrence of punching of metal foil such as aluminum foil to be alloyed, and to improve the production and environmental aspects of the battery.
[0007]
[Means for Solving the Problems]
As a result of diligent investigations for the above object, the inventors of the present invention do not match a metal foil such as an aluminum foil alloyed with lithium to the shape of the negative electrode, but a substantially triangular shape, a substantially rectangular shape, a substantially hexagonal shape, etc. When punched into a substantially polygonal shape, unlike the conventional round or oval-shaped shapes other than a substantially polygonal shape, punching dust does not occur or can be reduced. When the metal foil is alloyed with lithium using a deformed laminate in which a rectangular metal foil is laminated on a lithium plate having a shape other than the substantially polygonal shape, a substantially polygonal lithium is formed on the positive electrode side surface of the lithium plate. An alloy layer can be formed, and by setting the area ratio on the positive electrode side surface of this alloy layer to a specific range, good heavy load characteristics comparable to the lithium alloy layer formed on the entire surface of the positive electrode side It is obtained is found.
In other words, it has been found that this method prevents the occurrence of punching of metal foil such as aluminum foil without impairing the heavy load characteristics of the battery, and can improve the production and environmental aspects of the battery. .
[0008]
The present invention has been completed based on the above findings .
[0009]
That is, the present invention is to produce a profiled laminate formed by laminating a metal foil other than lithium in a substantially polygonal shape having a smaller area than the area of the lithium plate on one surface of the lithium plate having a shape other than substantially polygonal shape, the laminate The body is housed in a battery container together with a positive electrode and a non-aqueous electrolyte, and lithium and metal foil are alloyed in the battery container to form a lithium alloy layer, or the laminate is housed in the battery container. Lithium and metal foil are alloyed in advance to form a lithium alloy layer, which is housed in a battery container together with a positive electrode and a non-aqueous electrolyte, so that a lithium alloy layer is formed on the positive electrode side surface of the lithium plate as a negative electrode configuration. In particular, the shape of the metal foil other than lithium is approximately triangular, approximately square, approximately hexagonal. Or a method for producing a non-aqueous electrolyte battery having the above-described configuration comprising a combination thereof, a method for producing a non-aqueous electrolyte battery having the above-described configuration in which the metal foil other than lithium is an aluminum foil, and an area of the metal foil other than lithium in the deformed laminate. Relates to a method of manufacturing a non-aqueous electrolyte battery having the above-described structure that occupies 10 to 95% of the area of the laminate.
[0010]
Furthermore, the present invention provides a method for producing a non-aqueous electrolyte battery having the above-described configuration, in producing the above-described deformed laminate, an isomorphous laminate in which a metal foil other than lithium having the same shape is laminated on one surface of a substantially polygonal lithium plate. The body is subjected to pressure treatment to spread the lithium plate, and a substantially polygonal metal foil having an area smaller than the area of the lithium plate is provided on one side of the lithium plate having a shape other than the substantially polygonal shape. The present invention relates to a method for producing a non-aqueous electrolyte battery having the above-described configuration for producing a laminated laminate having a different shape. In particular, the above-mentioned isomorphous laminate is a substantially polygonal sheet-like laminate of a lithium plate and a metal foil other than lithium. The present invention relates to a method for manufacturing a nonaqueous electrolyte battery having the above-described configuration, which is stamped and formed into a shape.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, metal foil, such as aluminum, lead, indium, and gallium, is mentioned as a metal foil laminated | stacked on the single side | surface of lithium plates of shapes other than a substantially polygon. Among these, aluminum foil is particularly preferably used. The thickness of these metal foils is not particularly limited and is appropriately determined according to the purpose of use of the battery, but it is generally desirable that the thickness is 1 to 30 μm.
[0012]
The present invention is characterized by punching such a metal foil into a substantially polygonal shape such as a substantially triangular shape, a substantially rectangular shape, or a substantially hexagonal shape. Here, the substantially triangular shape includes a regular triangle shown in FIG. 1 and any other triangular shape, and the substantially rectangular shape means a square shown in FIG. 2 or any other arbitrary shape. In addition to the regular hexagon shown in FIG. 3, the substantially hexagon includes a hexagon having an arbitrary shape. In addition to these, it may be punched into a special shape including a curved portion as well as a straight portion as shown in FIG. 4. In short, as a shape other than a conventional circular shape or a substantially oval shape, there is almost no punching. The shape may not be generated. In particular, it is desirable to have a shape that can be arranged without gaps, such as a regular triangle, a square, and a regular hexagon.
[0013]
The metal foil thus punched and formed into a substantially polygonal shape is laminated on one side of the lithium plate having a shape other than the substantially polygonal shape (the side facing the positive electrode after the battery is assembled) to produce a deformed laminate. Here, the shape of the lithium plate is appropriately determined according to the battery form. However, in the case of a coin-type battery, the shape is circular or substantially oval. When the regular triangular, square, or regular hexagonal metal foil 21 shown in FIG. 3 is laminated, as shown in FIGS. 5 to 7, the metal foil 21 is laminated (the white portion) and the metal foil 21 is laminated. Thus, a portion where the lithium plate 20 is exposed (shaded portion) is generated.
[0014]
That is, in the case where the metal foil 21 is punched and formed in a circular shape in accordance with the shape of the negative electrode as in the prior art, the metal foil is formed on the entire surface of one side of the lithium plate 20 by making the size approximately the same as that of the circular lithium plate 20. 21 can be laminated, but the metal foil 21 cannot be laminated on the entire surface of one side of the lithium plate 20 by punching and molding into a substantially polygonal shape as described above. If the metal foil 21 is to be laminated on the entire surface of one side of the lithium plate 20 with the above shape, not only a metal foil much larger than the area of the lithium plate is required, but also the edge of the metal foil from the periphery of the lithium plate. Since it protrudes, it becomes easy to produce problems, such as a short circuit.
[0015]
However, as a result of the study by the present inventors, it has been found that the effect of improving the load characteristics of the battery can be sufficiently exhibited even if the lithium alloy layer is not formed on the entire surface of the lithium plate facing the positive electrode. Of course, the larger the proportion of the area of the metal foil 21 (the area of the white portion in FIGS. 5 to 7) in the area of the laminate (the total area of the hatched portion and the white portion in FIGS. 5 to 7), The area of the lithium alloy layer formed after assembling the battery also increases, and the above effect increases. However, if the area of the metal foil 21 is 10% or more of the area of the laminate, the effect is recognized and 30% If it is above, it turned out that practically sufficient effect is acquired. In particular, in order to obtain the same effect as that obtained by laminating a metal foil on the entire surface of the lithium plate facing the positive electrode, the area is preferably 50% or more.
On the other hand, by selecting and combining the punching shape of the metal foil 21, the area can be made as close to 100% as possible. However, since the process is complicated and the amount of punching is increased, it is 95% or less. Is good.
[0016]
5-7, the area of the metal foil portion is 41% in FIG. 5, 63% in FIG. 6, and 82% in FIG. This area can be arbitrarily set by changing each shape of triangle, quadrangle or hexagon, combining them, or using a punched out special shape as shown in FIG.
[0017]
In the present invention, a deformed laminate in which a metal foil other than lithium occupying 10 to 95% of the area of one side of the lithium plate as described above can be produced by a method different from the above. That is, in this method, first, an isomorphous laminate in which a metal foil other than lithium of the same shape is laminated on one surface of a substantially polygonal lithium plate is produced. This can be produced, for example, by stamping and forming a sheet-like laminate of a lithium plate and a metal foil other than lithium into a substantially polygonal shape.
[0018]
Next, this isomorphous laminate is subjected to a pressure treatment, and the area of the metal foil other than lithium is hardly changed, and only the substantially polygonal lithium plate that is easily plastically deformed is spread out, and the lithium plate is rounded or substantially rounded. The shape is changed to a shape other than a substantially polygon such as an oval. Thereby, the area of the lithium plate became larger than the metal foil other than lithium, that is, a deformed laminate in which a metal foil other than lithium occupying an area of 10 to 95% of the surface of the lithium plate was laminated. be able to.
According to this method, since the lithium plate is stamped and formed into a substantially polygonal shape, not only the metal foil other than lithium but also the lithium plate is not punched and the generation of such an effect can be reduced.
[0019]
In the present invention, a laminated body in which a metal foil other than substantially polygonal lithium is laminated on one side of the lithium plate thus produced is housed in a battery container together with a positive electrode and a non-aqueous electrolyte, and the laminated body A metal foil other than lithium is alloyed with lithium to form a lithium alloy layer on the side of the lithium plate facing the positive electrode to form a negative electrode, thereby producing a nonaqueous electrolyte battery. Here, the formed lithium alloy layer has substantially the same shape as the original metal foil, and is approximately equal to or slightly larger than the area of the original metal foil.
[0020]
That is, since the area of the original metal foil occupies 10 to 95% of the area of the laminate, the formed lithium alloy layer occupies approximately 10 to 95% of the area on the positive electrode side surface of the lithium plate. Become. As described above, when the area of the lithium alloy layer is 10% or more, an effect regarding improvement of load characteristics is recognized, and when it is 30% or more, a practically sufficient effect is obtained. In particular, in order to obtain the same effect as that obtained by forming a lithium alloy layer on the entire surface of the positive electrode side, the area of the lithium alloy layer is desirably 50% or more.
[0021]
The thickness of the lithium plate in the laminate can be set to various thicknesses depending on the purpose of use of the battery, but it is usually preferable to set the thickness in the range of 0.05 to 1.5 mm. Moreover, you may make it comprise the negative electrode united with the said electrical power collector by closely_contact | adhering electrical power collectors, such as copper foil, to this laminated body, and accommodating in a battery container.
[0022]
In the present invention, lithium and metal foil are not alloyed in the battery container as described above, but can be alloyed before being housed in the battery container. That is, the lithium alloy layer is formed by promoting the reaction between lithium and a metal other than lithium by performing a heat treatment at the time of or after the production of the laminate, and this is formed in the battery container together with the positive electrode and the nonaqueous electrolyte. In some cases, it is possible to form the negative electrode by accommodating the lithium alloy layer on the side facing the positive electrode.
[0023]
The nonaqueous electrolyte battery of the present invention is not particularly limited in the shape and material of the battery container, and can be used as a primary battery or a secondary battery. In these various nonaqueous electrolyte batteries, any of those conventionally known for lithium batteries (or lithium secondary batteries) can be used as components other than the negative electrode.
[0024]
For the positive electrode, oxides such as manganese, cobalt, nickel, magnesium, copper, iron, vanadium, titanium, niobium, composite oxides thereof, and composite oxides with lithium are used as the positive electrode active material. A sheet in which a positive electrode mixture formed by mixing a conductive additive such as black or graphite and a binder such as polytetrafluoroethylene or polyvinylidene fluoride is used. An expanded metal, a punching metal, a metal foil, or the like made of aluminum, nickel, stainless steel, or the like may be laminated as a current collector inside the positive electrode or on one side of the positive electrode.
[0025]
As the separator, any non-woven fabric such as polyolefin or polybutylene terephthalate or a microporous film that can prevent electrical short circuit between positive and negative electrodes can be widely used. In addition, a lithium ion conductive electrolyte (nonaqueous electrolyte) is preferably used for the nonaqueous electrolyte, such as carbonates such as diethyl carbonate and propylene carbonate, and ethers such as dimethoxyethane and diethyl ether. On the other hand, a solution in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used. The electrolyte concentration of the nonaqueous electrolytic solution is not particularly limited, but it is usually desirable to set it to about 0.3 to 1.7 mol / liter. Moreover, it is preferable that the usage-amount of this non-aqueous electrolyte is 90-150 volume% with respect to a positive electrode active material.
[0026]
In the present invention, the non-aqueous electrolyte is not limited to the non-aqueous electrolyte described above, and a gel electrolyte, a polymer electrolyte, or the like can also be used. In this case, the separator as described above can be omitted.
[0027]
【Example】
Next, as examples of the present invention, a configuration example of a coin-type non-aqueous electrolyte battery will be described and described more specifically.
[0028]
Example 1
An aluminum foil having a thickness of 6 μm was used for forming the negative electrode, and this was punched into a regular triangle shape as shown in FIG. At that time, there was no punching residue. This equilateral triangular aluminum foil was laminated on one side of a circular lithium plate having a diameter of 16 mm and a thickness of 0.3 mm as shown in FIG. The area of the aluminum foil of this deformed laminate was 41% of the area of the laminate. Next, the deformed laminate and the positive electrode are accommodated in a battery container with a separator made of a polypropylene non-woven fabric interposed therebetween, and a non-aqueous electrolyte is injected into the battery container, which is then sealed, and the diameter is 20 mm. A coin-shaped non-aqueous electrolyte battery having a configuration shown in FIG. 8 and having a thickness of 3.2 mm was produced.
[0029]
After sealing this battery, it was allowed to stand for a predetermined time and then opened to examine the negative electrode structure. As a result, the aluminum foil laminated on one side of the lithium plate was alloyed with lithium to form a lithium-aluminum alloy layer. The area was 41%, the same as when laminated. In preparing the battery, a positive electrode mixture in which 93 parts by weight of electrolytic manganese dioxide, 6 parts by weight of a conductive additive (graphite) and 1 part by weight of a binder (polytetrafluoroethylene) were added to the positive electrode. A sheet formed by pressure molding was used. As the non-aqueous electrolyte, a solution obtained by dissolving 0.5 mol / liter of LiClO 4 in a mixed solvent of propylene carbonate and dimethoxyethane in a volume ratio of 1: 1 was used, and the amount of the electrolyte was changed to manganese dioxide as a positive electrode active material. The volume was 120% by volume.
[0030]
In FIG. 8, 1 is a positive electrode made of a pressure-formed body of a positive electrode mixture using the above-described electrolytic manganese dioxide as a positive electrode active material, and 2 is a lithium plate that occupies 40% of the entire area of one side of a lithium plate. This is a negative electrode on which an aluminum alloy layer 7 is formed. The side of the negative electrode 2 on which the lithium-aluminum alloy layer 7 is formed faces the positive electrode 1, and a separator 3 made of a polypropylene nonwoven fabric is interposed between the positive electrode 1 and the negative electrode 2. The battery container is constituted by a stainless steel positive electrode can 4 and a negative electrode can 5, and a positive electrode 1 and a negative electrode 2 are formed in a space formed by both the cans 4 and 5 and a polypropylene annular gasket 6. , Separator 3 and non-aqueous electrolyte are accommodated. At the time of sealing, the annular gasket 6 attached to the peripheral edge of the negative electrode can 5 is clamped inwardly at the open end of the positive electrode can 5, and the peripheral surface of the negative electrode can 5 and the inner peripheral surface of the open end of the positive electrode can 4 The inside of the battery is hermetically sealed by being pressed against the outer peripheral surface of the battery.
[0031]
Example 2
An aluminum foil having a thickness of 6 μm was used for forming the negative electrode, and this was punched into a square shape as shown in FIG. At that time, there was no punching residue. This square aluminum foil was laminated on one side of a circular lithium plate having a diameter of 16 mm and a thickness of 0.3 mm as shown in FIG. The area of the aluminum foil of this deformed laminate was 63% of the area of the laminate.
[0032]
A coin-shaped nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that this deformed laminate was used. After sealing this battery, it was allowed to stand for a predetermined time and then opened to examine the negative electrode structure. As a result, the aluminum foil laminated on one side of the lithium plate was alloyed with lithium, and the lithium-aluminum alloy layer was formed. It was formed and its area was 63%, the same as at the time of lamination.
[0033]
Example 3
An aluminum foil having a thickness of 6 μm was used for forming the negative electrode, and this was punched into a regular hexagonal shape as shown in FIG. At that time, there was no punching residue. This regular hexagonal aluminum foil was laminated on one side of a circular lithium plate having a diameter of 16 mm and a thickness of 0.3 mm as shown in FIG. The area of the aluminum foil of this deformed laminate was 82% of the area of the laminate.
[0034]
A coin-shaped nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that this deformed laminate was used. After sealing this battery, it was allowed to stand for a predetermined time and then opened to examine the negative electrode structure. As a result, the aluminum foil laminated on one side of the lithium plate was alloyed with lithium, and the lithium-aluminum alloy layer was formed. It was formed, and its area was 82%, the same as at the time of lamination.
[0035]
Example 4
As a negative electrode structure, a lithium plate having a thickness of 0.48 mm and an aluminum foil having a thickness of 6 μm are laminated to form a sheet-like laminate, and this is punched into a square shape to form a lithium plate and an aluminum foil. A square isomorphous laminate was prepared. Next, this isomorphous laminate was subjected to pressure treatment, and only the lithium plate was spread to produce a deformed laminate comprising a circular lithium plate and a square aluminum foil. In this deformed laminate, the lithium plate had a diameter of 16 mm and a thickness of 0.3 mm, and the area of the aluminum foil was 63% of the area of the laminate. In this method, no punching was generated in any of the lithium plate and the aluminum foil.
[0036]
A coin-shaped nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that this deformed laminate was used. After sealing this battery, it was allowed to stand for a predetermined time and then opened to examine the negative electrode structure. As a result, the aluminum foil laminated on one side of the lithium plate was alloyed with lithium, and the lithium-aluminum alloy layer was formed. It was formed and its area was 63%, the same as at the time of lamination.
[0037]
Comparative Example 1
An aluminum foil having a thickness of 6 μm was used for forming the negative electrode, and this was punched into a circle as shown in FIG. At that time, 22% of blanks were generated. This circular aluminum foil was laminated on one surface of a circular lithium plate having a diameter of 16 mm and a thickness of 0.3 mm so as to cover the entire surface of one surface. A coin-shaped nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that this circular laminate was used. After sealing the battery, the battery was allowed to stand for a predetermined time and then opened, and the negative electrode structure was examined. The aluminum foil laminated on the entire surface of one side of the lithium plate was alloyed with lithium, and lithium- An aluminum alloy layer was formed.
[0038]
Comparative Example 2
As a negative electrode, a coin-shaped nonaqueous electrolyte was used in the same manner as in Example 1 except that a circular lithium plate having a diameter of 16 mm and a thickness of 0.3 mm was used as it was and was accommodated in a battery container. A battery was produced.
[0039]
The performance of each of the nonaqueous electrolyte batteries of Examples 1 to 4 and Comparative Examples 1 and 2 was examined as follows. That is, a battery 5 seconds after the start of discharge when a discharge resistance of 15 kΩ is connected to each battery and discharged for 420 hours, left unloaded for 24 hours or more, and further connected with a discharge resistance of 500Ω. The voltage was evaluated as a closed circuit voltage during discharge. The results were as shown in Table 1.
[0040]
Figure 0003701900
[0041]
As is apparent from the above results, in the batteries of Examples 1 to 4, the discharge characteristics can be improved by suppressing the battery voltage drop under heavy load without causing punching of the aluminum foil. In particular, in the batteries of Examples 2 to 4 in which the area of the lithium-aluminum alloy layer was 50% or more of the surface on the positive electrode side of the lithium plate, the lithium-aluminum alloy layer was formed on the entire positive electrode side of the lithium plate. It can be seen that discharge characteristics comparable to the battery are obtained.
[0042]
【The invention's effect】
As described above, the present invention punches a metal foil such as an aluminum foil into a substantially polygonal shape composed of a substantially triangular shape, a substantially quadrangular shape, a substantially hexagonal shape, or a combination thereof. By fabricating a deformed laminate laminated on one side of the plate and forming a lithium alloy layer by alloying metal foil and lithium in this laminated state, it was punched and laminated in accordance with the shape of the conventional lithium plate In addition to exhibiting excellent discharge characteristics comparable to the above, it is possible to prevent the occurrence of punching and to improve the production and environmental aspects of the battery.
[Brief description of the drawings]
FIG. 1 is a plan view showing a state of punching into an equilateral triangle as an example of a punching shape of a metal foil according to the present invention.
FIG. 2 is a plan view showing a state of being punched into a square as another example of the punching shape of the metal foil according to the present invention.
FIG. 3 is a plan view showing a state of punching into a regular hexagon as still another example of the punching shape of the metal foil according to the present invention.
FIG. 4 is a plan view showing another different example of the punched shape of the metal foil according to the present invention.
5 is a plan view showing a state in which a metal foil punched into an equilateral triangle shown in FIG. 1 is laminated on one side of a circular lithium plate. FIG.
6 is a plan view showing a state in which the metal foil punched into a square shown in FIG. 2 is laminated on one side of a circular lithium plate. FIG.
7 is a plan view showing a state in which a metal foil punched into a regular hexagon shown in FIG. 3 is laminated on one side of a circular lithium plate. FIG.
FIG. 8 is a cross-sectional view showing an example of a coin-shaped non-aqueous electrolyte battery of the present invention.
FIG. 9 is a plan view showing a state in which a metal foil is punched out into a circle by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4,5 Battery container 6 Ring gasket 7 Lithium alloy layer (lithium-aluminum alloy layer)
20 Lithium plate 21 Metal foil (aluminum foil)
B Shaded area (punched)

Claims (6)

略多角形以外の形状のリチウム板の片面にこのリチウム板の面積よりも小さな面積を有する略多角形のリチウム以外の金属箔を積層した異形積層体を作製し、この積層体を正極および非水電解質とともに電池容器内に収容し、電池容器内でリチウムと金属箔とを合金化させてリチウム合金層を形成することにより、あるいは、上記積層体を電池容器内に収容する前にリチウムと金属箔とを合金化させてリチウム合金層を形成し、これを正極および非水電解質とともに電池容器内に収容することにより、負極構成として、リチウム板の正極側表面にリチウム合金層を有する構成とすることを特徴とする非水電解質電池の製造方法。A deformed laminate in which a metal foil other than a substantially polygonal lithium having an area smaller than the area of the lithium plate is laminated on one side of a lithium plate having a shape other than a substantially polygonal shape, and the laminate is formed into a positive electrode and a non-aqueous Lithium and metal foil are housed in a battery container together with an electrolyte, and lithium and metal foil are alloyed in the battery container to form a lithium alloy layer, or before the laminate is housed in the battery container. To form a lithium alloy layer, which is housed in a battery container together with a positive electrode and a non-aqueous electrolyte, so that a negative electrode configuration has a lithium alloy layer on the positive electrode surface of the lithium plate. A method for producing a non-aqueous electrolyte battery. リチウム以外の金属箔の形状は略三角形、略四角形、略六角形またはその組み合わせからなる請求項に記載の非水電解質電池の製造方法。The method for producing a nonaqueous electrolyte battery according to claim 1 , wherein the shape of the metal foil other than lithium is substantially triangular, substantially rectangular, substantially hexagonal or a combination thereof. リチウム以外の金属箔はアルミニウム箔からなる請求項またはに記載の非水電解質電池の製造方法。Method of manufacturing a nonaqueous electrolyte battery of the metal foil other than lithium claim 1 or 2 made of an aluminum foil. 異形積層体におけるリチウム以外の金属箔の面積が積層体の面積の10〜95%を占める請求項のいずれかに記載の非水電解質電池の製造方法。The method for producing a non-aqueous electrolyte battery according to any one of claims 1 to 3 , wherein an area of the metal foil other than lithium in the deformed laminate occupies 10 to 95% of the area of the laminate. 異形積層体の作製にあたり、略多角形のリチウム板の片面にこれと同形のリチウム以外の金属箔を積層した同形積層体を作製し、これに上記リチウム板を押し広げる加圧処理を施して、略多角形以外の形状のリチウム板の片面にこのリチウム板の面積よりも小さな面積を有する略多角形の金属箔を積層した異形積層体を作製する請求項のいずれかに記載の非水電解質電池の製造方法。In producing the deformed laminate, a homogenous laminate in which a metal foil other than lithium of the same shape is laminated on one side of a substantially polygonal lithium plate is prepared, and the pressure treatment for spreading the lithium plate is applied to this, The non-shaped laminate according to any one of claims 1 to 4 , wherein a deformed laminate is produced by laminating a substantially polygonal metal foil having an area smaller than the area of the lithium plate on one surface of a lithium plate having a shape other than a substantially polygonal shape. A method for producing a water electrolyte battery. 同形積層体は、リチウム板とリチウム以外の金属箔とのシート状積層体を略多角形の形状に打ち抜き成形したものである請求項に記載の非水電解質電池の製造方法。The method for producing a nonaqueous electrolyte battery according to claim 5 , wherein the isomorphous laminate is obtained by stamping and forming a sheet-like laminate of a lithium plate and a metal foil other than lithium into a substantially polygonal shape.
JP2001373600A 2000-12-11 2001-12-07 Method for producing non-aqueous electrolyte battery Expired - Lifetime JP3701900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373600A JP3701900B2 (en) 2000-12-11 2001-12-07 Method for producing non-aqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-375440 2000-12-11
JP2000375440 2000-12-11
JP2001373600A JP3701900B2 (en) 2000-12-11 2001-12-07 Method for producing non-aqueous electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005040383A Division JP3853343B2 (en) 2000-12-11 2005-02-17 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2002246014A JP2002246014A (en) 2002-08-30
JP3701900B2 true JP3701900B2 (en) 2005-10-05

Family

ID=26605567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373600A Expired - Lifetime JP3701900B2 (en) 2000-12-11 2001-12-07 Method for producing non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3701900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10219425A1 (en) * 2002-05-02 2003-11-20 Varta Microbattery Gmbh Process for producing a rechargeable galvanic element
US7462425B2 (en) * 2003-09-26 2008-12-09 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery module
JP5176386B2 (en) * 2006-09-12 2013-04-03 ソニー株式会社 Non-aqueous electrolyte battery
JP5620811B2 (en) * 2010-12-27 2014-11-05 日立マクセル株式会社 Cylindrical non-aqueous electrolyte primary battery
CN105552348B (en) * 2015-11-23 2018-03-30 天津赫维科技有限公司 A kind of 3V can fill the preparation method of button lithium battery lithium-aluminium alloy negative pole

Also Published As

Publication number Publication date
JP2002246014A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP5135847B2 (en) Battery and battery manufacturing method
TW200814398A (en) Secondary battery
JP5329890B2 (en) Non-aqueous electrolyte battery
KR20080079200A (en) Electrode structure and method of manufacturing the same, and battery and method of manufacturing the same
JP5483587B2 (en) Battery and manufacturing method thereof
JP2007172880A (en) Battery and its manufacturing method
JP7461878B2 (en) Non-aqueous electrolyte secondary battery
JP3701900B2 (en) Method for producing non-aqueous electrolyte battery
JP2010086813A (en) Nonaqueous electrolyte secondary battery
JP2011129446A (en) Laminated type battery
WO2018088204A1 (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4993860B2 (en) Non-aqueous electrolyte primary battery
JP3853343B2 (en) Non-aqueous electrolyte battery
JP2011233462A (en) Battery and manufacturing method thereof and method for joining metal sheet
JP2020061258A (en) Manufacturing method of solid state battery
JP2006012858A (en) Nonaqueous electrolyte battery
JP4178425B2 (en) Organic electrolyte battery and method for producing negative electrode current collector plate
JPWO2012073815A1 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP2007335158A (en) Secondary battery and battery pack
JP2007305383A (en) Manufacturing method of battery
JP7376409B2 (en) Lithium ion batteries and lithium ion battery manufacturing methods
JP2005340116A (en) Manufacturing method of non-aqueous electrolytic solution battery
JPH1040960A (en) Nonaqueous electrolyte secondary battery
JP3154483B2 (en) Battery
JP2007335104A (en) Battery and cap

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent or registration of utility model

Ref document number: 3701900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term