JP3701553B2 - Ti-V alloy target material for vapor deposition and method for producing the same - Google Patents

Ti-V alloy target material for vapor deposition and method for producing the same Download PDF

Info

Publication number
JP3701553B2
JP3701553B2 JP2000241774A JP2000241774A JP3701553B2 JP 3701553 B2 JP3701553 B2 JP 3701553B2 JP 2000241774 A JP2000241774 A JP 2000241774A JP 2000241774 A JP2000241774 A JP 2000241774A JP 3701553 B2 JP3701553 B2 JP 3701553B2
Authority
JP
Japan
Prior art keywords
target material
powder
less
alloy
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000241774A
Other languages
Japanese (ja)
Other versions
JP2002060933A (en
Inventor
雅也 得平
保之 山田
夏樹 一宮
陽一郎 米田
好司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000241774A priority Critical patent/JP3701553B2/en
Publication of JP2002060933A publication Critical patent/JP2002060933A/en
Application granted granted Critical
Publication of JP3701553B2 publication Critical patent/JP3701553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタリング法またはイオンプレーティング法などの所謂ドライプロセス蒸着法によって、切削工具や摺動部品等の表面に耐摩耗性や耐酸化性などに優れたTi−V系薄膜を形成する際に、蒸着源として使用されるTi−V合金製のターゲット材とその製法に関するものである。
【0002】
【従来の技術】
切削工具や摺動部品等の表面に、耐摩耗性や耐酸化性などに優れたTi−V合金系薄膜(窒化膜や炭窒化膜を含む)を形成する方法として一般的に採用されているのは、蒸着源としてTi−V合金製ターゲット材を使用し、前述した様なドライプロセス蒸着を適用する方法である。
【0003】
この様な方法で切削工具や摺動部品などに所望される機能を付与するに当たり、蒸着源として用いられるTi−V合金製ターゲット材には、成膜時に異常放電を起こすことなく効率よく成膜し得ること、ターゲット材として長寿命であること等が要求される。
【0004】
【発明が解決しようとする課題】
本発明はこうした要望に鑑みてなされたもので、その目的は、安定した放電特性の下で成膜を効率良く行なうことができ、しかも長寿命のTi−V合金製ターゲット材とその製法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を達成した本発明の構成は、ドライプロセス蒸着用として用いられるTi−V合金製ターゲット材であって、TiとVが固溶した部分が、鏡面研磨試料表面の面積率で5%以上存在し、且つ相対密度が95〜100%であるところに要旨を有している。
【0006】
該ターゲット材においては、組成式がTix1-x(0.25≦X≦0.75)で示されるものが好ましい。また化学成分的には、(a)不純物として含まれることのある酸素の含有量が0.3質量%以下で、且つ水素の含有量が0.05質量%以下であり、あるいは更に、鉄の含有量が0.5質量%以下であるものが好ましい。
【0007】
本発明の上記Ti−V合金製ターゲット材は、スパッタリング法やイオンプレーティング法の如き各種のドライプロセス蒸着に有効に用いることができ、特にアークイオンプレーティング法に適用した場合、その特徴が最も効果的に発揮される。
【0008】
また本発明に係る製法は、上記特性を備えた蒸着用Ti−V合金製ターゲット材を効率よく製造することのできる方法であって、平均粒径が200μm以下のTi粉とV粉および/またはそれらの合金粉を使用し、好ましくは、粒径比が3以下のTi粉とV粉をもちいて、粉末冶金法により製造するところに要旨を有している。ここで採用される粉末冶金法としては、カプセルHIP法、粉末鍛造法またはホットプレス法が好ましい。
【0009】
【発明の実施の形態】
本発明者らは前述した目的を達成すべく、様々の角度から検討を重ねた。その結果、TiとVが固溶した部分を鏡面研磨試料の表面面積率で5%以上有するものは、安定した放電特性の下で効率よく成膜し得ると共に、ターゲット材としての寿命も非常に長くなることを知り、本発明に想到したものである。
【0010】
上記Ti−V合金製ターゲット材においては、TiとVが固溶した部分を鏡面研磨試料の表面面積率で5%以上有していることが必須の要件となる。ちなみにTiとVが全く固溶していない場合、両元素間の結合強度が低いため、成膜中にクラックを起こし易くなる。そしてこのクラックは、ターゲット材の割れを誘発し、あるいは割れに至らないまでも、クラックの進展によって生じる隙間が異常放電の原因となり、ターゲット材が著しく短命化する。しかし、TiとVが固溶した部分が面積率で5%以上を占めるものは、クラックの進展が著しく抑えられ、ターゲット材としての寿命を著しく延長し得ることが確認された。こうした寿命延長作用を有効に発揮させる上でより好ましい上記面積率は20%以上、更に好ましくは50%以上であり、とりわけ好ましいのはTiとVが完全に固溶し合った組織からなるものである。
【0011】
尚、TiとVの固溶状態は、供試材をダイヤモンドやSiO2粉などにより鏡面研磨し、その表面を例えばSEM−EDXによりTiとVの存在位置を確認し、反射電子像写真を用いて画像解析することによって求めることができ、その一例は図1の反射電子像に示す通りである。この図において、AはTi部、BはV部、CはTi−V固溶部を示しており、本例におけるTi−V固溶部の占める面積率は66%である。
【0012】
更に本発明のTi−V合金製ターゲット材は、相対密度が95%以上であることが求められる。ちなみに相対密度が95%未満では、ターゲット材の中にミクロポアの如き粗な部分が残存し、蒸着源として用いた時にこの部分が局部的に急速に減耗して蒸着(蒸発)成分に偏りが生じ、ターゲット材全体としての寿命が短くなるからである。
【0013】
ところで上記特性を備えたTi−V合金製ターゲット材を製造する方法としては、粉末冶金法を採用し且つTiとVの各粉末として平均粒径が200μm以下のものを使用し、好ましくは両粉末の平均粒径比が3以内、より好ましくは2以内のものを使用することが望ましい。
【0014】
ちなみに、常法に従ってTiとVを溶融混合して上記合金製ターゲットを製造しようとすると、極めて高温の溶解温度を採用しなければならないため、溶融炉を構成する耐火物からの酸素などのコンタミ(不純物)の混入による純度低下がターゲット材としての品質を劣化させると共に、冷却時に相分離を起こして割れを起こしたり、或いは難加工性であるため鍛造や圧延時に割れを起こし、所定形状への加工が困難であるからである。
【0015】
これに対し、粉末冶金法、具体的にはカプセルHIP法、粉末鍛造法、ホットプレス法などを使用すれば、上記の様な難点を生じることなく、均質で且つ所望形状のターゲット材を容易に得ることができる。このとき、使用するTiやV粉末が粗粒であると均質性不足になる恐れがある他、TiとVの表面積を高めて両金属の固溶部を増大させるには、各粉末として平均粒径が200μm以下、より好ましくは100μm以下、更に好ましくは70μm以下のものを使用すべきである。またTi粉とV粉の粒径が違い過ぎると、粉末冶金法によって製造する際に両金属の均一分散が阻害され、Ti−V固溶部増大の障害となる他、均質なTi−V合金が形成され難くなるので、両金属粉は極力近似した粒径のものを使用することが望ましく、両者の粒径比で3以下、より好ましくは2以下のものを組合わせて使用することが望ましい。
【0016】
ちなみに、各粉末の平均粒径が200μmを超えると組成分布が不均一になり、粉末冶金処理後の組織中に占めるTi−V固溶部の面積率を5%以上に高め難くなるばかりでなく、部分的に圧密不足となって相対密度も低くなる傾向が生じてくるからである。また、上記粒径比が3を超える場合も、同様に両金属粉の均一混合不足や圧密不足によりTi−V固溶部の面積率や相対密度を十分に高め難くなる。
【0017】
上記粒度構成のTi粉とV粉(場合によっては、その一部に合金粉を使用することも有効である)を使用し、これらを適正比率で均一混合してカプセルHIP法、粉末鍛造法、ホットプレス法などの粉末冶金法を採用して適正な条件で成形すると、上記Ti−V面積率や相対密度を満たすTi−V合金製ターゲットを得ることができる。
【0018】
粉末冶金法を実施する際の条件は、適用する粉末冶金法によっても異なってくるので一律に規定することはできないが、例えば本発明で好ましく採用されるカプセルHIP法を採用する際の好ましい条件は、温度:900〜1300℃、より好ましくは1100〜1300℃、圧力:100〜200MPa、粉末鍛造法を採用する際の好ましい条件は、温度:600〜900℃、より好ましくは800〜900℃、圧力:700〜800MPaの範囲とし、その後、温度:1000〜1300℃、より好ましくは1100〜1300℃の範囲で熱処理する方法、ホットプレス法を採用する際の好ましい条件は、温度:1300〜1500℃、より好ましくは1400〜1500℃、圧力:20〜50MPa、より好ましくは40〜50MPaの範囲である。
【0019】
本発明のTi−V合金製ターゲット材は、組成式がTix1-x(0.25≦X≦0.75)で示される範囲のものが好ましい。即ち、本発明のTi−V合金製ターゲット材を用いて窒化膜や炭窒化膜を形成する際に、上記組成範囲のターゲット材を使用すると、蒸着皮膜の耐摩耗性を著しく高めることができ、Ti−V合金製ターゲット材を使用することの優位性が顕著に現われるからである。こうした観点から、上記Ti−V合金製ターゲット材の前記組成式で表わされる[x]のより好ましい範囲は0.3≦X≦0.7、更に好ましくは0.4≦X≦0.6の範囲である。
【0020】
また本発明の上記Ti−V合金製ターゲット材には、製造時の原料条件、雰囲気条件、更には製造装置からのコンタミネーション等として酸素、水素、鉄などの不純物が殆ど不可避的に混入してくるが、酸素や水素は、ターゲット材として実用化する際にターゲット材からガスとして突発的に放出され、放電状態を著しく不安定にし、最悪の場合はターゲット材そのものを損傷させることもある。
【0021】
従ってこうした問題を未然に回避するには、ターゲット材中に含まれる酸素の含有量を0.3質量%以下、より好ましくは0.2質量%以下に、また水素の含有量は0.05質量%以下、より好ましくは0.03質量%以下に抑えることが望ましい。
【0022】
また、不純物として混入してくる鉄の量は0.5質量%以下、より好ましくは0.1質量%以下に抑えることが望ましく、鉄含有量が多過ぎると、FeとTiやVとの金属間化合物の量が増大し、この化合物はマトリックスであるTiとVに対して導電性や融点などが著しく異なるため、放電状態を著しく不安定にする。
【0023】
上記各不純物をできるだけ低減し、上記で規定する範囲内に収めるための具体的手段としては、例えば原料粉末として不純物含量の少ない高純度のものを使用すると共に、その配合・混合、或いは溶融などに亘る一連の工程における不純元素の混入を可及的に抑えるため、清浄雰囲気下での配合・混合、真空条件下での溶融などを適宜組合わせて実施すればよい。
【0024】
本発明のTi−V合金製ターゲット材は、スパッタリング法またはイオンプレーティング法等の各種のドライプロセス蒸着法に適用できるが、これらの中でもその特長が最も有効に発揮されるのは、アークイオンプレーティング用としての使用である。尚、上記スパッタリング法とは、ターゲット物質とスパッタガス(反応ガス)とを反応させて、ターゲット物質とスパッタガス成分との化合物からなる蒸着層を形成するいわゆる反応性スパッタリング法も含む趣旨であり、従って、本発明のTi−V合金製ターゲット材を使用することによって形成される皮膜には、スパッタガスとして窒素やメタン等を用いることによって形成される窒化物膜や炭窒化物膜も包含される。
【0025】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0026】
実施例
Ti−V固溶部の面積率および相対密度の異なる試料を、下記3つの方法で作製した。なおTi−V固溶部の面積率は、SEM−EDXによりTiとVの存在位置を確認し、反射電子像写真を用いて画像解析によって求め、また相対密度はアルキメデス法によって求めた。
【0027】
[方法1:カプセルHIP法]
平均粒径50μmのTi粉と平均粒径100μmのV粉の均一混合物を原料粉末として使用し、これを不活性雰囲気中で乾式混合した後、CIP成形により200〜300MPaの圧力で固化し、次いで炭素鋼製のカプセルに充填し脱気してから封印する。これを、温度700〜1400℃、圧力100〜200MPaの条件でHIP加工し、その後、真空中または不活性ガス(アルゴン)雰囲気中で1000〜1300℃の温度で熱処理して、所望の相対密度とTi−V固溶部の面積率を得た。尚、HIP法を採用して本発明のターゲットを得る際の好ましい条件は、900〜1300℃、100〜200MPaの範囲である。
【0028】
[方法2:粉末鍛造法]
平均粒径100μmのTi粉と平均粒径100μmのV粉の均一混合物を原料粉末として使用し、これを乾式混合した後金型に充填し、不活性ガス(アルゴン)雰囲気下で500〜900℃に加熱し、500〜800MPaの圧力で加圧して緻密化した。その後、真空中または不活性ガス(アルゴン)雰囲気下で1000〜1300℃の温度で熱処理し、所望の相対密度と固溶部の面積率を得た。この種の粉末鍛造法で本発明のターゲットを得る際の好ましい条件は、温度:600〜900℃、圧力:700〜800MPaの範囲で鍛造し、その後、温度:1000〜1300℃の範囲で熱処理する方法である。
【0029】
[方法3:ホットプレス法]
平均粒径50μmのTi粉と平均粒径120μmのV粉の均一混合物を原料粉末として使用し、これを乾式混合した後、カーボン型(型の内面には、反応防止材としてA1N,BN等を塗布)に充填し、不活性ガス(アルゴン)雰囲気下で1200〜1500℃に加熱し、20〜50MPaの圧力をかけて緻密化した。その後、真空または不活性ガス(アルゴン)雰囲気下で1000〜1300℃の温度で熱処理し、所望の相対密度と固溶部の面積率を得た。この種のホットプレス法で本発明のターゲット材を得る際の好ましい条件は、温度:1300〜1500℃、圧力:20〜50MPaの範囲である。
【0030】
なお不純元素量については、原料粉末の純度と保管状態により変化させた。
【0031】
上記方法1〜3で得た各ターゲット材の組成、相対密度、Ti−V固溶部の面積率、酸素含有量、水素含有量、鉄含有量と、ターゲット材としての性能を表1に一括して示す。なおターゲット材としての性能評価には下記の方法を採用した。
【0032】
外径:60mm、厚さ:20mmで、底面に外径:70mm、厚さ:2mmの固定用鍔をターゲット材の削り出し或いは銅製バッキングプレートのろう付けによって設けたターゲット材を作製し、アーク放電方式イオンプレーティング装置の水冷カソードに装着した。このとき、装置内に基板としてシリコンウエハーを入れ、6.65×10-5Paまで真空引きし、400℃に加熱した後、表1に示すターゲットをアーク電流:150Aで蒸発させると共に、反応ガスとしてN2ガスまたはN2/CH4混合ガスを導入し、9.3×10-1Paで基板に−150Vの電位を印加して成膜した。尚、皮膜の組成を電子プルーフX線マイクロアナライザーおよびオージェ電子分光法により求めたところ、いずれもターゲット材組成に対して±1原子%の範囲内にあった。各ターゲット材を用いたときの性能は、成膜中のアークの状態、アーク電圧、使用後のターゲットの表面状態、減厚量から総合的に判断した。尚、◎は極めて良好、○は非常に良好、△は良好、×は不良を表わす。
【0033】
【表1】

Figure 0003701553
【0034】
表1より次の様に解析できる。No.1,2,9〜12は本発明における最も好ましい実施例であり、いずれも非常に良好な結果が得られている。これらに対しNo.3,6,7,8は、Ti・V固溶部の面積率が前記No.1などに比べてやや少ないものの、本発明で定める「5%以上」の要件を満たしている実施例であり、一応良好なターゲット性能が得られている。またNo.13,14,15は、不純物として含まれる酸素、水素または鉄の量がやや多過ぎるため、比較対照例であるNo.1の実施例に比べるとターゲット性能がやや不足する。No.4は相対密度が不足する比較例、No.5は、Ti−V面積率が規定値に満たない比較例であり、ターゲット性能が明らかに劣っている。
【0035】
【発明の効果】
本発明は以上の様に構成されており、特にドライプロセス蒸着用として用いられるTi−V合金製ターゲットにおけるTi−V固溶部が占める表面面積率を特定することによって、安定した放電特性の下で耐摩耗性や耐酸化性などに優れたTi−V系薄膜を効率よく成膜することができ、しかも使用寿命の長いターゲット材を提供し得ることになった。
【図面の簡単な説明】
【図1】実施例で得たターゲット材のSEM−EDX分析による反射電子像である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a method for forming a Ti-V-based thin film having excellent wear resistance and oxidation resistance on the surface of a cutting tool, a sliding part, etc. by so-called dry process vapor deposition such as sputtering or ion plating. Further, the present invention relates to a Ti-V alloy target material used as a vapor deposition source and a method for producing the target material.
[0002]
[Prior art]
Generally used as a method for forming Ti-V alloy-based thin films (including nitride films and carbonitride films) with excellent wear resistance and oxidation resistance on the surface of cutting tools and sliding parts. No. is a method in which a target material made of Ti-V alloy is used as a deposition source and dry process deposition as described above is applied.
[0003]
In providing a desired function to a cutting tool or a sliding part by such a method, a Ti-V alloy target material used as a deposition source can be efficiently formed without causing abnormal discharge during film formation. And a long life as a target material is required.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of these demands, and an object of the present invention is to provide a Ti-V alloy target material having a long life and capable of efficiently performing film formation under stable discharge characteristics, and a method for producing the target material. There is to do.
[0005]
[Means for Solving the Problems]
The structure of the present invention that has achieved the above-described object is a Ti-V alloy target material used for dry process vapor deposition, and the portion where Ti and V are dissolved is 5% or more in terms of the area ratio of the mirror-polished sample surface It has a gist where it exists and the relative density is 95-100%.
[0006]
In the target material, a material whose composition formula is represented by Ti x V 1-x (0.25 ≦ X ≦ 0.75) is preferable. In terms of chemical composition, (a) the content of oxygen which may be contained as an impurity is 0.3% by mass or less, and the content of hydrogen is 0.05% by mass or less. The content is preferably 0.5% by mass or less.
[0007]
The target material made of the Ti-V alloy of the present invention can be effectively used for various dry process depositions such as sputtering and ion plating, and particularly when applied to arc ion plating. Effectively demonstrated.
[0008]
Further, the production method according to the present invention is a method capable of efficiently producing a target material made of Ti-V alloy for vapor deposition having the above-mentioned characteristics, and has an average particle size of Ti powder and V powder of 200 μm or less and / or The gist of the present invention is that these alloy powders are used and are preferably produced by powder metallurgy using Ti powder and V powder having a particle size ratio of 3 or less. As the powder metallurgy method employed here, a capsule HIP method, a powder forging method or a hot press method is preferable.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to achieve the above-described object. As a result, those having a solid solution portion of Ti and V with a surface area ratio of 5% or more of the mirror-polished sample can be efficiently formed under stable discharge characteristics, and also have a very long life as a target material. Knowing that it will be long, the present invention has been conceived.
[0010]
In the target material made of Ti-V alloy, it is an essential requirement that a portion where Ti and V are dissolved is 5% or more in terms of the surface area ratio of the mirror-polished sample. Incidentally, when Ti and V are not dissolved at all, the bond strength between the two elements is low, so that cracks are likely to occur during film formation. And even if this crack induces the crack of a target material or does not reach a crack, the clearance gap which arises by the progress of a crack causes abnormal discharge, and a target material shortens remarkably. However, it was confirmed that when the portion where Ti and V are solid-solved occupies 5% or more in area ratio, the progress of cracks is remarkably suppressed and the life as a target material can be significantly extended. The above-mentioned area ratio is more preferably 20% or more, more preferably 50% or more for effectively exhibiting such a life extending action, and particularly preferable is a structure having a structure in which Ti and V are completely in solid solution. is there.
[0011]
In addition, the solid solution state of Ti and V is that the specimen is mirror-polished with diamond or SiO 2 powder, the surface of the specimen is confirmed by, for example, SEM-EDX, and the reflection electron image photograph is used. An example of this is shown in the reflected electron image of FIG. In this figure, A indicates the Ti part, B indicates the V part, and C indicates the Ti-V solid solution part, and the area ratio occupied by the Ti-V solid solution part in this example is 66%.
[0012]
Furthermore, the Ti-V alloy target material of the present invention is required to have a relative density of 95% or more. By the way, if the relative density is less than 95%, a rough portion such as micropores remains in the target material, and when this is used as a deposition source, this portion is rapidly depleted locally and the deposition (evaporation) component is biased. This is because the life of the entire target material is shortened.
[0013]
By the way, as a method for producing a Ti-V alloy target material having the above-mentioned characteristics, a powder metallurgy method is employed, and Ti and V powders having an average particle size of 200 μm or less are used, preferably both powders. It is desirable to use those having an average particle size ratio of 3 or less, more preferably 2 or less.
[0014]
Incidentally, when trying to manufacture the above alloy target by melting and mixing Ti and V according to a conventional method, it is necessary to adopt an extremely high melting temperature. Therefore, contamination such as oxygen from a refractory constituting the melting furnace ( Deterioration of purity due to contamination of impurities) degrades the quality of the target material and causes phase separation during cooling, or cracks due to difficult workability, or cracks during forging or rolling, and processing into a predetermined shape This is because it is difficult.
[0015]
On the other hand, if a powder metallurgy method, specifically, a capsule HIP method, a powder forging method, a hot press method, or the like is used, a homogeneous and desired shape target material can be easily obtained without causing the above-mentioned difficulties. Obtainable. At this time, if the Ti or V powder to be used is coarse, the homogeneity may be insufficient. In addition, in order to increase the surface area of Ti and V and increase the solid solution part of both metals, The diameter should be 200 μm or less, more preferably 100 μm or less, and still more preferably 70 μm or less. If the particle sizes of the Ti powder and the V powder are too different, the uniform dispersion of both metals is hindered during the production by the powder metallurgy method, which obstructs the increase of the Ti-V solid solution portion, and is a homogeneous Ti-V alloy. Therefore, it is desirable to use both metal powders having particle sizes that are as close as possible to each other, and to use a combination of particles having a particle size ratio of 3 or less, more preferably 2 or less. .
[0016]
Incidentally, when the average particle size of each powder exceeds 200 μm, the composition distribution becomes non-uniform, and it becomes difficult not only to increase the area ratio of the Ti-V solid solution portion in the structure after the powder metallurgy treatment to 5% or more. This is because there is a tendency that the relative density is lowered due to partial compaction. In addition, when the particle size ratio exceeds 3, similarly, it is difficult to sufficiently increase the area ratio and relative density of the Ti-V solid solution portion due to insufficient uniform mixing and compaction of both metal powders.
[0017]
Using Ti powder and V powder of the above particle size configuration (in some cases, it is also effective to use alloy powder for a part thereof), these are uniformly mixed at an appropriate ratio, capsule HIP method, powder forging method, When a powder metallurgy method such as a hot press method is employed and molding is performed under appropriate conditions, a Ti-V alloy target satisfying the Ti-V area ratio and the relative density can be obtained.
[0018]
The conditions for carrying out the powder metallurgy method are different depending on the powder metallurgy method to be applied and cannot be defined uniformly. For example, the preferred conditions for adopting the capsule HIP method preferably employed in the present invention are: , Temperature: 900-1300 ° C., more preferably 1100-1300 ° C., pressure: 100-200 MPa, preferable conditions when adopting the powder forging method are temperature: 600-900 ° C., more preferably 800-900 ° C., pressure : The range of 700 to 800 MPa, and then the temperature: 1000 to 1300 ° C, more preferably the method of heat treatment in the range of 1100 to 1300 ° C, the preferable conditions when adopting the hot press method are: temperature: 1300 to 1500 ° C, More preferably 1400-1500 ° C., pressure: 20-50 MPa, more preferably 40-50 MPa It is in the range.
[0019]
The Ti—V alloy target material of the present invention preferably has a composition formula in the range represented by Ti x V 1-x (0.25 ≦ X ≦ 0.75). That is, when forming a nitride film or carbonitride film using the target material made of Ti-V alloy of the present invention, if a target material having the above composition range is used, the wear resistance of the deposited film can be remarkably improved. This is because the superiority of using the Ti-V alloy target material appears remarkably. From such a viewpoint, the more preferable range of [x] represented by the composition formula of the Ti-V alloy target material is 0.3 ≦ X ≦ 0.7, more preferably 0.4 ≦ X ≦ 0.6. It is a range.
[0020]
The Ti-V alloy target material of the present invention is almost inevitably mixed with impurities such as oxygen, hydrogen, and iron as raw material conditions, atmospheric conditions, and contamination from the manufacturing equipment. However, oxygen and hydrogen are suddenly released as gas from the target material when put into practical use as the target material, making the discharge state extremely unstable, and in the worst case, damaging the target material itself.
[0021]
Therefore, in order to avoid such a problem in advance, the oxygen content in the target material is 0.3% by mass or less, more preferably 0.2% by mass or less, and the hydrogen content is 0.05% by mass. % Or less, more preferably 0.03% by mass or less.
[0022]
Further, the amount of iron mixed as an impurity is desirably 0.5% by mass or less, more preferably 0.1% by mass or less. If the iron content is excessive, the metal of Fe and Ti or V The amount of the intermetallic compound increases, and this compound makes the discharge state remarkably unstable because the conductivity, melting point, etc. are significantly different from Ti and V as the matrix.
[0023]
As a specific means for reducing each of the above impurities as much as possible and keeping them within the range specified above, for example, a high-purity powder with a low impurity content is used as a raw material powder, and its blending, mixing, melting, etc. In order to suppress contamination of impure elements in a series of processes as much as possible, blending / mixing in a clean atmosphere, melting under vacuum conditions, and the like may be appropriately combined.
[0024]
The target material made of Ti-V alloy of the present invention can be applied to various dry process vapor deposition methods such as sputtering method or ion plating method. Among these, the feature is most effectively exhibited by arc ion plate. It is for use for The sputtering method includes a so-called reactive sputtering method in which a target material and a sputtering gas (reactive gas) are reacted to form a vapor deposition layer composed of a compound of the target material and a sputtering gas component. Therefore, the film formed by using the target material made of the Ti-V alloy of the present invention includes a nitride film and a carbonitride film formed by using nitrogen, methane or the like as a sputtering gas. .
[0025]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to carry out and they are all included in the technical scope of the present invention.
[0026]
Example Samples having different area ratios and relative densities of Ti-V solid solution portions were produced by the following three methods. The area ratio of the Ti-V solid solution portion was determined by image analysis using a reflection electron image photograph after confirming the position where Ti and V were present by SEM-EDX, and the relative density was determined by the Archimedes method.
[0027]
[Method 1: Capsule HIP method]
A uniform mixture of Ti powder having an average particle diameter of 50 μm and V powder having an average particle diameter of 100 μm is used as a raw material powder, and after this is dry mixed in an inert atmosphere, it is solidified at a pressure of 200 to 300 MPa by CIP molding, Fill into a carbon steel capsule, deaerate and seal. This is subjected to HIP processing under conditions of a temperature of 700 to 1400 ° C. and a pressure of 100 to 200 MPa, and then heat-treated at a temperature of 1000 to 1300 ° C. in a vacuum or an inert gas (argon) atmosphere to obtain a desired relative density. The area ratio of the Ti-V solid solution part was obtained. In addition, the preferable conditions when the HIP method is employed to obtain the target of the present invention are in the range of 900 to 1300 ° C. and 100 to 200 MPa.
[0028]
[Method 2: Powder forging method]
A uniform mixture of Ti powder having an average particle diameter of 100 μm and V powder having an average particle diameter of 100 μm is used as a raw material powder, which is dry-mixed and then filled into a mold, and 500 to 900 ° C. in an inert gas (argon) atmosphere. And densified by pressurization at a pressure of 500 to 800 MPa. Then, it heat-processed in the temperature of 1000-1300 degreeC in the vacuum or inert gas (argon) atmosphere, and obtained the desired relative density and the area ratio of the solid solution part. Preferred conditions for obtaining the target of the present invention by this type of powder forging method are forging at a temperature of 600 to 900 ° C. and a pressure of 700 to 800 MPa, and thereafter heat-treating at a temperature of 1000 to 1300 ° C. Is the method.
[0029]
[Method 3: Hot press method]
A uniform mixture of Ti powder having an average particle diameter of 50 μm and V powder having an average particle diameter of 120 μm is used as a raw material powder, and after this is dry-mixed, a carbon mold (on the inner surface of the mold, A1N, BN, etc. as a reaction preventing material) Application) was carried out, heated to 1200 to 1500 ° C. in an inert gas (argon) atmosphere, and densified by applying a pressure of 20 to 50 MPa. Then, it heat-processed at the temperature of 1000-1300 degreeC in vacuum or inert gas (argon) atmosphere, and obtained the desired relative density and the area ratio of the solid solution part. The preferable conditions for obtaining the target material of the present invention by this kind of hot pressing method are a temperature: 1300 to 1500 ° C. and a pressure: 20 to 50 MPa.
[0030]
The amount of impure elements was changed depending on the purity of the raw material powder and the storage state.
[0031]
Table 1 summarizes the composition, relative density, Ti-V solid solution area ratio, oxygen content, hydrogen content, iron content, and target material performance of each target material obtained in the above methods 1 to 3. Show. In addition, the following method was employ | adopted for the performance evaluation as a target material.
[0032]
A target material having an outer diameter of 60 mm and a thickness of 20 mm and a fixing rod having an outer diameter of 70 mm and a thickness of 2 mm on the bottom surface is prepared by cutting out the target material or brazing a copper backing plate, and arc discharge. It was attached to the water-cooled cathode of the system ion plating apparatus. At this time, a silicon wafer was placed in the apparatus as a substrate, evacuated to 6.65 × 10 −5 Pa, heated to 400 ° C., and then the targets shown in Table 1 were evaporated at an arc current of 150 A and the reaction gas As a film, N 2 gas or N 2 / CH 4 mixed gas was introduced, and a potential of −150 V was applied to the substrate at 9.3 × 10 −1 Pa. The composition of the film was determined by an electron proof X-ray microanalyzer and Auger electron spectroscopy, and both were within a range of ± 1 atomic% with respect to the target material composition. The performance when each target material was used was comprehensively judged from the state of the arc during film formation, the arc voltage, the surface state of the target after use, and the amount of thickness reduction. In addition, (double-circle) is very favorable, (circle) is very favorable, (triangle | delta) is favorable, and x shows defect.
[0033]
[Table 1]
Figure 0003701553
[0034]
From Table 1, it can be analyzed as follows. No. 1, 2, 9 to 12 are the most preferred examples in the present invention, and all of them have obtained very good results. No. 3, 6, 7 and 8, the area ratio of the Ti / V solid solution part is No. This is an example that satisfies the requirement of “5% or more” defined in the present invention, although it is slightly less than 1, etc., and a good target performance is obtained. No. Nos. 13, 14 and 15 are comparative examples of No. 13 because the amount of oxygen, hydrogen or iron contained as impurities is slightly too large. Compared to the first embodiment, the target performance is slightly insufficient. No. No. 4 is a comparative example in which the relative density is insufficient. No. 5 is a comparative example in which the Ti-V area ratio is less than the specified value, and the target performance is clearly inferior.
[0035]
【The invention's effect】
The present invention is configured as described above. In particular, by specifying the surface area ratio occupied by the Ti-V solid solution portion in the target made of Ti-V alloy used for dry process vapor deposition, Therefore, it is possible to efficiently form a Ti-V-based thin film excellent in wear resistance and oxidation resistance, and to provide a target material having a long service life.
[Brief description of the drawings]
FIG. 1 is a reflected electron image obtained by SEM-EDX analysis of a target material obtained in an example.

Claims (8)

ドライプロセス蒸着用として用いられるTi−V合金製ターゲット材であって、TiとVが固溶した部分を鏡面研磨試料の表面面積率で5%以上有し、且つ相対密度が95〜100%であることを特徴とする蒸着用Ti−V合金製ターゲット材。A target material made of Ti-V alloy used for dry process vapor deposition, having a portion where Ti and V are solid-dissolved in a surface area ratio of 5% or more of a mirror-polished sample, and a relative density of 95-100% A target material made of Ti-V alloy for vapor deposition, characterized in that there is. 組成式がTix1-x(0.25≦x≦0.75)で示されるものである請求項1に記載のターゲット材。The target material according to claim 1, wherein the composition formula is represented by Ti x V 1-x (0.25 ≦ x ≦ 0.75). 酸素含有量が0.3質量%以下で、且つ水素含有量が0.05質量%以下である請求項1または2に記載のターゲット材。The target material according to claim 1 or 2, wherein the oxygen content is 0.3% by mass or less and the hydrogen content is 0.05% by mass or less. 鉄含有量が0.5質量%以下である請求項1〜3のいずれかに記載のターゲット材。Iron target is 0.5 mass% or less, The target material in any one of Claims 1-3. スパッタリング法またはイオンプレーティング法に用いられるものである請求項1〜4のいずれかに記載のターゲット材。The target material according to claim 1, which is used in a sputtering method or an ion plating method. 前記請求項1〜5に記載のいずれかのターゲット材を製造する方法であって、平均粒子径が200μm以下のTi粉とV粉および/またはそれらの合金粉を使用し、粉末冶金法により製造することを特徴とする蒸着用Ti−V合金製ターゲット材の製法。A method for producing the target material according to any one of claims 1 to 5, wherein Ti powder and V powder and / or alloy powder thereof having an average particle diameter of 200 µm or less are used and produced by powder metallurgy. A process for producing a target material made of Ti-V alloy for vapor deposition, characterized in that: 平均粒径比が3以下のTi粉とV粉を使用する請求項6に記載の製法。The manufacturing method of Claim 6 which uses Ti powder and V powder whose average particle diameter ratio is 3 or less. 粉末冶金法が、カプセルHIP法、粉末鍛造法またはホットプレス法である請求項6または7に記載の製法。The method according to claim 6 or 7, wherein the powder metallurgy method is a capsule HIP method, a powder forging method or a hot press method.
JP2000241774A 2000-08-09 2000-08-09 Ti-V alloy target material for vapor deposition and method for producing the same Expired - Lifetime JP3701553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000241774A JP3701553B2 (en) 2000-08-09 2000-08-09 Ti-V alloy target material for vapor deposition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000241774A JP3701553B2 (en) 2000-08-09 2000-08-09 Ti-V alloy target material for vapor deposition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002060933A JP2002060933A (en) 2002-02-28
JP3701553B2 true JP3701553B2 (en) 2005-09-28

Family

ID=18732914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000241774A Expired - Lifetime JP3701553B2 (en) 2000-08-09 2000-08-09 Ti-V alloy target material for vapor deposition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3701553B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT8697U1 (en) * 2005-10-14 2006-11-15 Plansee Se TUBE TARGET
CN114457299A (en) * 2022-01-27 2022-05-10 江苏理工学院 Processing method for refining Ti-V alloy grains

Also Published As

Publication number Publication date
JP2002060933A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
US7972583B2 (en) Iron silicide sputtering target and method for production thereof
JP4415303B2 (en) Sputtering target for thin film formation
KR102519021B1 (en) Tungsten silicide target and method of manufacturing same
KR0184725B1 (en) High melting point metallic silicide target and method for producing the same, high melting point metallic silicide
JP2020535318A (en) Molybdenum sintered parts
JP2017502166A (en) Sputtering target and manufacturing method thereof
JP2901049B2 (en) Al-Ti alloy target material for arc ion plating
US6713391B2 (en) Physical vapor deposition targets
JP2003535969A (en) Intermetallic aluminide and silicide sputtering target and method of manufacturing the same
JP3701553B2 (en) Ti-V alloy target material for vapor deposition and method for producing the same
EP4407056A2 (en) Aluminum-scandium sputtering alloy and methods of making
JP4097972B2 (en) Target for physical vapor deposition and method for producing the same
WO2021192916A1 (en) Composite material and heat dissipation member
JP2896233B2 (en) Refractory metal silicide target, manufacturing method thereof, refractory metal silicide thin film, and semiconductor device
JP2003193111A (en) Method for manufacturing tungsten sputtering target
US6827759B2 (en) Method for reducing the oxygen and oxide content in cobalt to produce cobalt sputtering targets
KR20160085756A (en) Sputtering target and production method
JPH07320608A (en) Manufacture of contact material
JP2000355761A (en) Ta TARGET FOR FILM-FORMING BARRIER MATERIAL AND ITS PRODUCTION
JP2001303240A (en) Sputtering target
CN116904823A (en) WC/CoVTiB high-entropy alloy composite material and preparation method thereof
CN116904790A (en) Preparation method of high-hardness WC/CoVTiB high-entropy alloy composite material
WO2002012577A1 (en) Method for reducing the oxygen and oxide content in cobalt to procuce cobalt sputtering targets
JPH0666288B2 (en) Target for sputtering equipment
JP2001164303A (en) Sintered material and producing method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Ref document number: 3701553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term