JP3701043B2 - Auto white balance apparatus and video camera manufacturing method - Google Patents

Auto white balance apparatus and video camera manufacturing method Download PDF

Info

Publication number
JP3701043B2
JP3701043B2 JP03811895A JP3811895A JP3701043B2 JP 3701043 B2 JP3701043 B2 JP 3701043B2 JP 03811895 A JP03811895 A JP 03811895A JP 3811895 A JP3811895 A JP 3811895A JP 3701043 B2 JP3701043 B2 JP 3701043B2
Authority
JP
Japan
Prior art keywords
color temperature
temperature detection
control
axis
video camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03811895A
Other languages
Japanese (ja)
Other versions
JPH08237673A (en
Inventor
謙二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP03811895A priority Critical patent/JP3701043B2/en
Publication of JPH08237673A publication Critical patent/JPH08237673A/en
Application granted granted Critical
Publication of JP3701043B2 publication Critical patent/JP3701043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/11Scanning of colour motion picture films, e.g. for telecine

Description

【0001】
【産業上の利用分野】
本発明はネガフィルム画像の取り込み機能を有するビデオカメラに関し、特に、そのホワイトバランス制御の色温度検出、色温度制御に関する。
【0002】
【従来の技術】
通常のビデオカメラのホワイトバランス制御においては、その検出範囲及び制御範囲が太陽光や電球・蛍光灯下での被写体の撮影に適合するように調整されており、調整時にはこれら太陽光や電球・蛍光灯に近似した基準照明光が用いられている。
【0003】
しかし、ネガフィルムの画像をビデオカメラで取り込む場合は、下記▲1▼〜▲3▼の特殊事情が原因で、通常のビデオカメラのホワイトバランス制御とは検出値も制御値も大きく異なり、且つ、ばらつきも多い。
▲1▼ フィルム自体にオレンジ系のベース着色がなされており、その色もフィルムの種類によって大きく異なる。
▲2▼ ネガフィルム画像をビデオカメラで取り込む場合の光源の種類が多い。
▲3▼ 銀塩カメラで撮影を行った時の色温度が不明である。
【0004】
そのため、ビデオカメラでネガフィルム画像を取り込んでホワイトバランス制御を行う場合は、通常のビデオカメラのホワイトバランス制御とは別に、検出範囲及び制御範囲を特別に設定する必要がある。
【0005】
また、これら検出範囲及び制御範囲を設定するための調整時には、通常のビデオカメラの調整用基準照明光とは別に、ネガフィルム画像専用の光源を用いる必要がある。
【0006】
【発明が解決しようとする課題】
そこで本発明の課題は、通常のビデオカメラと同じ基準照明光を用いてネガフィルム画像の取り込みに適合した検出範囲、制御範囲を調整することが可能なオートホワイトバランス装置及びビデオカメラの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決する請求項1の発明に係るオートホワイトバランス装置の構成は、色温度が異なる複数個の基準照明光の撮像により得られた複数個の色温度検出信号の値を記憶する第1の記憶手段と、前記基準照明光を撮影した場合の色温度検出信号と所定の光源でネガフィルムを撮影した場合の色温度検出信号とのずれ量を記憶する第2の記憶手段と、前記第1の記憶手段に記憶した前記複数個の色温度検出信号の値を基に色温度検出軸を求め,この色温度検出軸を、前記第2の記憶手段に記憶している前記ずれ量だけずらしてネガ用色温度検出軸を求め、このネガ用色温度検出軸を基に色温度を検出する検出手段と、この検出手段の出力に基づいて制御信号を演算する演算手段と、この演算手段の出力に基づいて、映像信号処理系に配されているホワイトバランス調整用アンプのゲインを制御する制御手段とを具備することを特徴とする
【0008】
また、請求項2の発明に係るビデオカメラの製造方法は基準色温度を有する基準照明光源に複数個の色温度変換フィルタを付け変えて複数個の基準照明光源とし、ビデオカメラで複数個の基準照明光を撮影して複数個の色温度検出信号を求めこれらから色温度検出軸を近似すること、及び、前記ビデオカメラで所定の光源下のネガフィルムを撮影して色温度検出信号を求め、この色温度検出信号からネガ用色温度検出軸を求め、このネガ用色温度検出軸と前記色温度検出軸とのずれ量を計算することを含む工程を複数台のビデオカメラについて行うこと;
複数台の前記ビデオカメラについて行って得られた前記ずれ量の平均値を求めること;
前記近似した色温度検出軸の最大値と最小値との差に対する前記平均値の比率を求めること;
この比率を基準照明光と所定の光源との間での色温度検出信号のずれを補正するためのずれ量とすること;
を特徴とする。
【0009】
また、請求項3の発明に係るオートホワイトバランス装置は、請求項2の発明のビデオカメラの製造方法で得られたずれ量を、第2の記憶手段に記憶したことを特徴とするものである。
【0010】
次に、請求項4の発明に係るオートホワイトバランス装置は、色温度が異なる複数個の基準照明光の撮像により得られたホワイトバランス調整用アンプのゲイン制御用の複数個の制御信号の値を記憶する第1の記憶手段と、前記基準照明光を撮影した場合の制御信号と所定の光源でネガフィルムを撮影した場合の制御信号とのずれ量を記憶する第2の記憶手段と、前記第1の記憶手段に記憶した前記複数個の制御信号の値を基に色温度制御軸を求め、この色温度制御軸を、前記第2の記憶手段に記憶している前記ずれ量だけずらしてネガ撮影用色温度制御軸を求め、このネガ撮影用色温度制御軸を基に制御信号を演算する演算手段と、この演算手段の出力に基づいて、映像信号処理系に配されているホワイトバランス調整用アンプのゲインを制御する制御手段とを具備することを特徴とする
【0011】
また、請求項5の発明に係るビデオカメラの製造方法は、基準色温度を有する基準照明光源に複数個の色温度変換フィルタを付け変えて複数個の基準照明光源とし、ビデオカメラで複数個の基準照明光を撮影してホワイトバランス調整用アンプのゲイン制御用の複数個の制御信号を求めこれらから色温度制御軸を近似すること、及び、前記ビデオカメラで所定の光源下のネガフィルムを撮影して制御信号を求め、この制御信号からネガ撮影用色温度制御軸を求め、このネガ撮影用色温度制御軸と前記色温度制御軸とのずれ量を計算することを含む工程を複数台のビデオカメラについて行うこと;
複数台の前記ビデオカメラについて行って得られた前記ずれ量の平均値を求めること;
前記近似した色温度制御軸の最大値と最小値との差に対する前記平均値の比率を求めること;
この比率を基準照明光と所定の光源との間での制御信号のずれを補正するためのずれ量とすること;
を特徴とする。
【0012】
更に、請求項6の発明に係るオートホワイトバランス装置は、請求項5の発明のビデオカメラの製造方法で得られたずれ量を、第2の記憶手段に記憶したことを特徴とするものである。
【0013】
【作用】
本発明では、基準照明光として色温度の異なるものを複数個用い、その時得られる各色温度検出信号の値を予め第1の記憶手段に記憶しておき、且つ、これら各色温度検出信号と、所定の光源でネガフィルム画像を取り込んだ場合の各温度検出信号とのずれ量も予め第2の記憶手段に記憶しておく。
【0014】
そして実際にネガフィルム画像を取り込む際には、第1の記憶手段と第2の記憶手段に記憶された内容に基づいて温度検出軸をずらして色温度を検出し、この検出した色温度に基づいてホワイトバランス調整用アンプのゲインを制御する。
【0015】
また本発明では、基準照明光として色温度の異なるものを複数個用い、その時得られるホワイトバランス調整用アンプのゲイン制御用の各制御信号の値を予め第1の記憶手段に記憶しておき、且つ、これら各制御信号と、所定の光源でネガフィルム画像を取り込んだ場合の制御信号とのずれ量も予め第2の記憶手段に記憶しておく。
【0016】
そして実際にネガフィルム画像を取り込む際には、第1の記憶手段と第2の記憶手段に記憶された内容に基づいて温度制御軸をずらして制御信号を演算し、この演算で得た制御信号に基づいてホワイトバランス調整用アンプのゲインを制御する。
【0017】
このように、複数の基準照明光と所定の光源とを用いた場合の色温度検出信号または制御信号のずれ量を予め記憶しておき、実際にネガフィルム画像を取り込む際に、このずれ量により色温度検出領域または色温度制御領域をずらして色温度を検出したり、制御信号を求めることにより、各基準照明光の色温度が特別に限定されることはなくなるから、通常のビデオカメラ調整用の基準照明光を用いてネガフィルム画像の取り込み機能を有するビデオカメラのオートホワイトバランス装置を調整することができる。
【0018】
特に、基準照明光として色温度の異なるもの複数個を用い、その時得られる信号の最大値と最小値との差を基準例えば100%とし、所定の光源における色信号の検出値及び制御値のずれ量を、前記差に対する比率例えばパーセント表示として記憶することにより、個々のビデオカメラのオートホワイトバランス装置の色温度検出領域及び色温度制御領域を前記比率で補正すると、検出系のばらつきや、基準照明光による近似により生じるフィードフォワード制御の誤差を実用上十分な程度に低減することができる。
【0019】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
<第1実施例>
図1〜図5は本発明の第1実施例を示す。図1はネガフィルム画像の取り込み機能を有するビデオカメラの撮像系を示す回路図である。本実施例は、補色フィルタを使用したCCDの場合について述べる。同図に示すようにレンズ1により形成された光学像が補色フィルタ内蔵のCCD3の受光面に結像され、CCD3からは撮像信号Sが出力される。撮像信号Sは、サンプルホールド及びAGC回路5にてサンプルホールド処理及びゲイン調整され、更にA/Dコンバータ7によりデジタル信号に変換されてから、信号処理回路部9の輝度信号処理回路11及び色分離回路13と、色分離回路15に入力される。
【0020】
輝度信号処理回路11は、信号処理によりデジタルの輝度信号DYを作って出力し、この輝度信号DYはネガ用反転回路100を通って反転された後、D/Aコンバータ17によりアナログの輝度信号Yに変換されて出力される。色分離回路13は、信号処理により三種の原色信号R,G,Bを作って出力する。原色信号R,G,Bは、ホワイトバランス制御信号Rcont,Bcontに応じホワイトバランス回路19にてホワイトバランス制御(ゲイン調整)され、ホワイトバランス制御された原色信号R,G,Bは色信号処理回路21により信号処理されてデジタルの色信号DCとなる。この色信号DCは、ネガ用反転回路200を通って反転された後、D/Aコンバータ23によりアナログの色信号Cに変換されて出力される。
【0021】
前記色分離回路15は信号処理をしてデジタルの輝度信号Y及び色合成信号Cr ,Cb を出力する。この色分離回路15の後段には、積分器27及びマイクロコンピュータ29が接続されている。マイクロコンピュータ29には、演算部31、演算部33、色温度検出領域の判断部35、制御値の演算部37、及び記憶部39がある。
【0022】
マイクロコンピュータ29での基本動作は図2に示すものであり、積分器27からのY,Cr ,Cb の各積算値を演算部31が入力してR,G,B各色信号を計算し、これから演算部33で色温度検出値としてR/G,B/Gを計算し、この計算値が所定の色温度検出領域(色温度検出軸あるいは色温度検出点を含む)に存在するか否かを判断部35で判断し、存在すればネガ用光源下での撮像なので演算部37にてR/G,B/Gの計算値からネガ用光源用に設定した色温度制御軸に基づいてR用制御値RcontとB用制御値Bcontを計算し、これら制御値をホワイトバランス回路19に与えてそのアンプのゲインを制御する。
【0023】
この基本動作に加えて、記憶部39にはネガフィルム画像の取り込み用に、色温度検出軸のR/Gずらし量α(%)と、B/G用ずらしβ(%)とが記憶されており、判断部35はこれらの%表示のずらし量α,βを用いて色温度検出軸をずらして色温度R/G,B/Gを検出し、演算部37に与える。
【0024】
ずらし量α,β(%)は多数のビデオカメラを用いて実験により求める。図3はずらし量α,βの決定手順を示し、まず1台のビデオカメラについて、例えば3200Kの基準照明光を撮像してR/G,B/Gのデータを取り、次いでこの基準照明光に例えば4000Kの第1色温度変換フィルタを付けてR/G,B/Gのデータを取り、更に例えば7500Kの第2色温度変換フィルタを付けてR/G,B/Gのデータを取り、これら3点のデータから図5に示すような色温度検出軸41を近似する。次に、所定の光源下でネガフィルムを撮像してR/G,B/Gのデータを取り、それぞれについて基準照明光で近似した色温度検出軸とのずれ量を計算する。このようなデータ取りを多数N台のビデオカメラについて行ったのち、N個のずれ量の平均α,βを決定し、この平均ずれ量α,βを、色温度検出軸のR/G,B/G夫々について最大値と最小値の差を100%とした%で表示する。
【0025】
このように決定したずらし量α,β(%)を、個々のビデオカメラの製造時に、記憶部39に記憶させる。
【0026】
製造時における個々のビデオカメラのネガ用ホワイトバランス調整の一例としては、図4に示す通りであり、まず3200Kの基準照明光を撮像しR/G,B/Gのデータを取る。これは図5中のA点のデータ(a1,b1)である。次に、第1色温度変換フィルタを基準照明光に付けて撮像し、R/G,B/Gのデータを取る。これは図5中のB点のデータ(a2,b2)である。次に、第2色温度変換フィルタを付けて撮像し、R/G,B/Gのデータを取る。これは図5中のC点のデータ(a3,b3)である。これらのデータはマイクロコンピュータ29の図示しない記憶部に記憶しておく。これら記憶したデータから判断部35は図5の色温度検出軸41を近似し、更に、この色温度検出軸41を、図5に示すように記憶部39に記憶したずらし量α1%、α2%、β1%、β2%を用いてN1,N2の如くずらし、当該ビデオカメラのネガ用色温度検出軸43として決定する。
【0027】
図5において、各移動点N1(a4,b4)、N2(a5,b5)は次のように表わされる。
a4=a3+(a1−a3)×(α1/100)
b4=b1+(b3−b1)×(β1/100)
a5=a3+(a1−a3)×(α2/100)
b5=b1+(b3−b1)×(β2/100)
但し、
α1=100(a4−a3)/(a1−a3)
β1=100(b4−b1)/(b3−b1)
α2=100(a5−a3)/(a1−a3)
β2=100(b5−b1)/(b3−b1)
【0028】
色温度検出軸43は図5の如く線だけではなく、ネガの種類、ネガ撮像用光源の種類、ネガ撮像時の色温度など色がばらつく要因が大きいため、領域300の如くばらつきを考慮してある程度の幅を持たせても良い。もちろん、これらの条件を限定できれば領域300の代りに軸43を用いて色温度を検出できるので、ホワイトバランス制御の性能が向上する。更に、ずれ量α,β(%)は一機種について一旦決定すれば、マイクロコンピュータ29のソフトウェアに定数として書き込んでも良く、あるいはEEPROM(Electrical Erasable Programable Read Only Memory) に書き込んで変更可能としても良い。
【0029】
以上の如く、A,B,C各点のR/G,B/Gのうち最大値と最小値の差を100%として、基準照明光に対するずれ量を%表示で予め決定しておくことにより、個々のCCDの補色フィルタ等にばらつきがあっても%表示したずれ量はほぼ一定であることから、%表示のずれ量により補正することにより、CCD等のばらつきによる影響を押えることができ、良好なフィードフォワード方式のホワイトバランス制御が可能である。
【0030】
<第2実施例>
図6〜図9は本発明の第2実施例を示す。図6はネガフィルム画像の取り込み機能を有するビデオカメラの撮像系を示す回路図であり、図1に対して、マイクロコンピュータ29に記憶部39Aが追加されている点と、演算部37に新機能が追加されている点以外は同じである。
【0031】
マイクロコンピュータ29では、図2に示した基本動作に加えて、記憶部39Aに色温度制御軸のRcont用ずらし量α(%)と、Bcont用ずらし量β(%)とが記憶されており、演算部37はこれらの%表示のずらし量α,βを用いて色温度制御軸をずらして制御値Rcont,Bcontを計算しホワイトバランス回路19に与える。
【0032】
ずらし量α,β(%)は多数のビデオカメラを用いて実験により求める。図7はずらし量α,βの決定手順を示し、まず1台のビデオカメラについて、例えば3200Kの基準照明光を撮像してRcont,Bcontのデータを取り、次いでこの基準照明光に例えば4000Kの第1色温度変換フィルタを付けてRcont,Bcontのデータを取り、更に例えば7500Kの第2色温度変換フィルタを付けてRcont,Bcontのデータを取り、これら3点のデータから図9に示すような基準照明光に対する色温度制御軸45を近似する。次に、実際にネガ用光源下でネガフィルムを撮像してRcont,Bcontのデータを取り、それぞれについて基準照明光で近似した色温度と実際の太陽光の色温度制御軸のずれ量を計算する。このようなデータ取りをN台のビデオカメラについて行ったのち、N個のずれ量の平均α,βを決定し、この平均ずれ量α,βを、色温度制御軸のRcont,Bcont夫々について最大値と最小値の差を100%とした%で表示する。
【0033】
このように決定したずらし量α,β(%)を、個々のビデオカメラの製造時に、記憶部39Aに記憶させる。
【0034】
製造時における個々のビデオカメラのホワイトバランス調整としては、図8に示す通りであり、まず3200Kの基準照明光を撮像しRcont,Bcontのデータを取る。これは図9中のA点のデータ(a5,b5)である。次に、第1色温度変換フィルタを基準照明光に付けて撮像し、Rcont,Bcontのデータを取る。これは図9中のB点のデータ(a6,b6)である。次に、第2色温度変換フィルタを付けて撮像し、Rcont,Bcontのデータを取る。これは図9中のC点のデータ(a7,b7)である。これらのデータはマイクロコンピュータ29の図示しない記憶部に記憶しておく。これら記憶したデータから演算部37は図9の色温度制御軸45を近似し、更に、この色温度制御軸45を、図9に示すように記憶部39Aに記憶したずらし量α1%、α2%、β1%、β2%を用いてN1,N2の如くずらし、当該ビデオカメラのネガ撮影用色温度制御軸47として決定する。
【0035】
図9において、色温度変化軸がA−B−CからN1−N2へ移動する場合は、各移動点N1(a8,b8)、N2(a9,b9)は次のように表わされる。
a8=a5+(a7−a5)×(α1/100)
b8=b7+(b5−b7)×(β1/100)
a9=a5+(a7−a5)×(α2/100)
b9=b7+(b5−b7)×(β2/100)
但し、
α1=100(a8−a5)/(a7−a5)
β1=100(b8−b7)/(b5−b7)
α2=100(a9−a5)/(a7−a5)
β2=100(b9−b7)/(b5−b7)
【0036】
色温度制御軸47は図9の如く線だけではなく、ネガの種類、ネガ撮像用光源の種類、ネガ撮像時の色温度など色がばらつく要因が大きいため、領域400の如くばらつきを考慮してある程度の幅を持たせても良い。もちろん、これらの条件を特定できれば領域400の代りに軸47を用いて制御できるので、ホワイトバランス性能が向上する。更に、ずれ量α,β(%)は一機種について一旦決定すれば、マイクロコンピュータ29のソフトウェアに定数として書き込んでも良く、あるいはEEPROM(Electrical Erasable Programable Read Only Memory) に書き込んで変更可能としても良い。変更可能な場合には、個々のビデオカメラ毎にホワイトバランスが可変にる。
【0037】
以上の如く、A,B,C各点のRcont,Bcontのうち最大値と最小値の差を100%として、基準照明光に対するずれ量を%表示で予め決定しておくことにより、個々のCCDの色フィルタにばらつきがあっても%表示したずれ量はほぼ一定であることから、%表示のずれ量により補正することにより、CCD等のばらつきによる影響を押えることができ、良好なフィードフォワード方式のホワイトバランス制御が可能である。
【0038】
上記第1,第2各実施例では色信号系のネガ用反転処理(200)を通常のビデオカメラ用の信号処理(21)が終わった後に行っているが、色分離(13)の後であればどこで行っても良い。
【0039】
また、上記第1,第2各実施例ではフィードフォワード方式について述べているが、フィードバック方式のものでも同様の効果が得られる。
【0040】
【発明の効果】
請求項1の発明によれば、通常のビデオカメラの調整用と同じ光源を利用してネガフィルム画像用のホワイトバランス制御の色温度検出軸または領域を調整時に設定することができる。
【0041】
また、請求項2及び3の発明によれば、CCD等の撮像素子の特性のばらつき、調整時の基準照明光と実際のネガ撮影用の光源間の色温度のずれなど、これらに影響されない色温度検出軸または領域を有するホワイトバランス制御が可能である。
【0042】
請求項4の発明によれば、通常のビデオカメラの調整用と同じ光源を利用してネガフィルム画像用のホワイトバランス制御の色温度制御軸または領域を調整時に設定することができる。
【0043】
また、請求項5及び6の発明によれば、CCD等の撮像素子の特性のばらつき、調整時の基準照明光と実際のネガ撮影用の光源間の色温度のずれなど、これらに影響されない色温度制御軸または領域を有するホワイトバランス制御が可能である。
【図面の簡単な説明】
【図1】本発明の第1実施例のビデオカメラの回路図。
【図2】マイクロコンピュータの基本制御動作を示す図。
【図3】色温度検出軸のずれ量の決定手順を示す図。
【図4】色温度検出領域の決定手順を示す図。
【図5】色温度検出領域を示す図。
【図6】本発明の第2実施例のビデオカメラを示す回路図。
【図7】色温度制御軸のずれ量の決定手順を示す図。
【図8】色温度制御軸の決定手順を示す図。
【図9】色温度制御軸を示す図。
【符号の説明】
3 CCD
16 色分離回路
19 ホワイトバランス回路
29 マイクロコンピュータ
31 R,G,B演算部
33 R/G,B/G演算部
35 色温度検出領域判断部
37 制御演算部
39,39A 記憶部
100,200 ネガ用反転回路
[0001]
[Industrial application fields]
The present invention relates to a video camera having a negative film image capturing function, and more particularly to color temperature detection and color temperature control for white balance control.
[0002]
[Prior art]
In normal video camera white balance control, the detection range and control range are adjusted to suit the shooting of subjects under sunlight, light bulbs, and fluorescent lights. A reference illumination light similar to a lamp is used.
[0003]
However, when the negative film image is captured by the video camera, the detection value and the control value are significantly different from the white balance control of the normal video camera due to special circumstances (1) to (3) below, and There are many variations.
{Circle around (1)} The film itself has an orange base coloring, and the color varies greatly depending on the type of film.
(2) There are many types of light sources for capturing negative film images with a video camera.
(3) The color temperature when shooting with a silver salt camera is unknown.
[0004]
Therefore, when a negative film image is captured by a video camera and white balance control is performed, it is necessary to specially set a detection range and a control range separately from white balance control of a normal video camera.
[0005]
Further, at the time of adjustment for setting the detection range and the control range, it is necessary to use a light source dedicated to a negative film image separately from the reference illumination light for adjustment of a normal video camera.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an auto white balance device and a video camera manufacturing method capable of adjusting a detection range and a control range suitable for capturing a negative film image using the same reference illumination light as a normal video camera. It is to provide.
[0007]
[Means for Solving the Problems]
The configuration of the auto white balance device according to the first aspect of the present invention that solves the above-described problem is a first configuration that stores values of a plurality of color temperature detection signals obtained by imaging a plurality of reference illumination lights having different color temperatures. storage means, second storage means for storing a shift amount of the color temperature detection signal in the case of photographing a negative film with a color temperature detection signal and a predetermined light source for shooting said reference illumination light, the first A color temperature detection axis is obtained based on the values of the plurality of color temperature detection signals stored in one storage means , and the color temperature detection axis is shifted by the shift amount stored in the second storage means. Obtaining a negative color temperature detection axis, detecting a color temperature based on the negative color temperature detection axis, a calculation means for calculating a control signal based on the output of the detection means, Based on the output, distributed to the video signal processing system And characterized by a control means for controlling the gain of the white balance adjustment amplifier are.
[0008]
According to a second aspect of the present invention, there is provided a video camera manufacturing method in which a reference illumination light source having a reference color temperature is replaced with a plurality of color temperature conversion filters to obtain a plurality of reference illumination light sources. Photographing illumination light to obtain a plurality of color temperature detection signals, approximating the color temperature detection axis therefrom, and photographing a negative film under a predetermined light source with the video camera to obtain a color temperature detection signal , Obtaining a negative color temperature detection axis from the color temperature detection signal , and performing a process for a plurality of video cameras including calculating a deviation amount between the negative color temperature detection axis and the color temperature detection axis;
Obtaining an average value of the deviation amounts obtained by performing a plurality of video cameras ;
Determining a ratio of the average value to a difference between the maximum value and the minimum value of the approximate color temperature detection axis;
This ratio is set as a shift amount for correcting a shift of the color temperature detection signal between the reference illumination light and the predetermined light source;
It is characterized by.
[0009]
According to a third aspect of the present invention, there is provided an auto white balance apparatus characterized in that the shift amount obtained by the video camera manufacturing method according to the second aspect of the invention is stored in the second storage means. .
[0010]
Next, an automatic white balance device according to a fourth aspect of the invention provides a plurality of control signal values for gain control of a white balance adjustment amplifier obtained by imaging a plurality of reference illumination lights having different color temperatures. first storage means for storing a second storage means for storing the deviation amount of the control signal in the case of photographing a negative film by a control signal and a predetermined light source in the case of photographing the reference illumination light, the first A color temperature control axis is obtained based on the values of the plurality of control signals stored in one storage means , and the color temperature control axis is shifted by the shift amount stored in the second storage means to make a negative. Obtaining the color temperature control axis for shooting, calculating means for calculating the control signal based on the color temperature control axis for negative shooting, and white balance adjustment arranged in the video signal processing system based on the output of the calculating means Amplifier gain Characterized by comprising a Gosuru control means.
[0011]
According to a fifth aspect of the present invention, there is provided a method of manufacturing a video camera, wherein a plurality of color temperature conversion filters are replaced with a reference illumination light source having a reference color temperature to obtain a plurality of reference illumination light sources. Photographing the reference illumination light, obtaining a plurality of control signals for gain control of the white balance adjustment amplifier, approximating the color temperature control axis therefrom, and photographing the negative film under a predetermined light source with the video camera Determining a color temperature control axis for negative imaging from the control signal, and calculating a shift amount between the color temperature control axis for negative imaging and the color temperature control axis . What to do with the video camera;
Obtaining an average value of the deviation amounts obtained by performing a plurality of video cameras ;
Determining a ratio of the average value to a difference between the maximum value and the minimum value of the approximate color temperature control axis;
This ratio is set as a shift amount for correcting a shift of the control signal between the reference illumination light and the predetermined light source;
It is characterized by.
[0012]
Further, the auto white balance apparatus according to the invention of claim 6 is characterized in that the shift amount obtained by the method of manufacturing the video camera of claim 5 is stored in the second storage means. .
[0013]
[Action]
In the present invention, a plurality of light sources having different color temperatures are used as the reference illumination light, the values of the color temperature detection signals obtained at that time are stored in advance in the first storage means, and the color temperature detection signals The amount of deviation from each temperature detection signal when a negative film image is captured with the light source is stored in advance in the second storage means.
[0014]
When the negative film image is actually captured, the color temperature is detected by shifting the temperature detection axis based on the contents stored in the first storage means and the second storage means, and based on the detected color temperature. To control the gain of the white balance adjustment amplifier.
[0015]
In the present invention, a plurality of light sources having different color temperatures are used as the reference illumination light, and the values of the control signals for gain control of the white balance adjustment amplifier obtained at that time are stored in advance in the first storage means. In addition, a deviation amount between each of these control signals and a control signal when a negative film image is captured with a predetermined light source is also stored in advance in the second storage unit.
[0016]
When the negative film image is actually captured, the control signal is calculated by shifting the temperature control axis based on the contents stored in the first storage means and the second storage means, and the control signal obtained by this calculation is calculated. The gain of the white balance adjustment amplifier is controlled based on the above.
[0017]
As described above, the deviation amount of the color temperature detection signal or the control signal when a plurality of reference illumination lights and a predetermined light source are used is stored in advance, and this deviation amount is obtained when the negative film image is actually captured. By detecting the color temperature by shifting the color temperature detection area or the color temperature control area, or by obtaining the control signal, the color temperature of each reference illumination light is not specifically limited. It is possible to adjust an auto white balance device of a video camera having a negative film image capturing function using the reference illumination light.
[0018]
In particular, a plurality of light sources having different color temperatures are used as the reference illumination light, and the difference between the maximum value and the minimum value of the signal obtained at that time is set to 100% as a reference, for example. By storing the amount as a ratio with respect to the difference, for example, as a percentage display, the color temperature detection area and the color temperature control area of the auto white balance device of each video camera are corrected with the ratio, thereby detecting variations in the detection system and reference illumination. An error in feedforward control caused by approximation by light can be reduced to a practically sufficient level.
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
<First embodiment>
1 to 5 show a first embodiment of the present invention. FIG. 1 is a circuit diagram showing an imaging system of a video camera having a negative film image capturing function. In this embodiment, the case of a CCD using a complementary color filter will be described. As shown in the figure, an optical image formed by the lens 1 is formed on the light receiving surface of a CCD 3 with a built-in complementary color filter, and an imaging signal S is output from the CCD 3. The image pickup signal S is subjected to sample hold processing and gain adjustment by the sample hold and AGC circuit 5, and further converted into a digital signal by the A / D converter 7, and then the luminance signal processing circuit 11 and color separation of the signal processing circuit unit 9. The signal is input to the circuit 13 and the color separation circuit 15.
[0020]
The luminance signal processing circuit 11 generates and outputs a digital luminance signal DY by signal processing. This luminance signal DY is inverted through the negative inversion circuit 100 and then converted into an analog luminance signal Y by the D / A converter 17. Is converted to output. The color separation circuit 13 generates and outputs three kinds of primary color signals R, G, and B by signal processing. The primary color signals R, G, B are subjected to white balance control (gain adjustment) by the white balance circuit 19 according to the white balance control signals R cont , B cont , and the primary color signals R, G, B subjected to white balance control are color signals. The signal is processed by the processing circuit 21 to become a digital color signal DC. The color signal DC is inverted through the negative inversion circuit 200, then converted to an analog color signal C by the D / A converter 23, and output.
[0021]
The color separation circuit 15 performs signal processing and outputs a digital luminance signal Y and color synthesis signals C r and C b . An integrator 27 and a microcomputer 29 are connected to the subsequent stage of the color separation circuit 15. The microcomputer 29 includes a calculation unit 31, a calculation unit 33, a color temperature detection region determination unit 35, a control value calculation unit 37, and a storage unit 39.
[0022]
The basic operation of the microcomputer 29 is as shown in FIG. 2, and the calculation unit 31 inputs the integrated values of Y, C r , and C b from the integrator 27 to calculate the R, G, and B color signals. Then, the calculation unit 33 calculates R / G and B / G as color temperature detection values, and whether or not these calculation values exist in a predetermined color temperature detection region (including a color temperature detection axis or a color temperature detection point). Is determined based on the color temperature control axis set for the negative light source from the calculated values of R / G and B / G by the calculation unit 37 because the image is taken under the negative light source. The R control value R cont and the B control value B cont are calculated, and these control values are given to the white balance circuit 19 to control the gain of the amplifier.
[0023]
In addition to this basic operation, the storage unit 39 stores the R / G shift amount α (%) of the color temperature detection axis and the B / G shift β (%) for capturing a negative film image. The determination unit 35 detects the color temperatures R / G and B / G by shifting the color temperature detection axis using the% display shift amounts α and β, and supplies them to the calculation unit 37.
[0024]
The shift amounts α and β (%) are obtained by experiments using a number of video cameras. FIG. 3 shows a procedure for determining the shift amounts α and β. First, for example, 3200K reference illumination light is imaged for one video camera to obtain R / G and B / G data. For example, R / G and B / G data is taken with a first color temperature conversion filter of 4000K, and further R / G and B / G data is taken with a second color temperature conversion filter of 7500K, for example. A color temperature detection axis 41 as shown in FIG. 5 is approximated from the three points of data. Next, a negative film is imaged under a predetermined light source, R / G and B / G data are taken, and a deviation amount from the color temperature detection axis approximated by the reference illumination light is calculated for each. After performing such data collection on a large number of N video cameras, the averages α and β of N shift amounts are determined, and the average shift amounts α and β are determined as R / G, B of the color temperature detection axis. / G is displayed in%, where the difference between the maximum value and the minimum value is 100%.
[0025]
The shift amounts α and β (%) determined in this way are stored in the storage unit 39 when each video camera is manufactured.
[0026]
An example of negative white balance adjustment for individual video cameras at the time of manufacture is as shown in FIG. 4. First, 3200K reference illumination light is imaged to obtain R / G and B / G data. This is data (a1, b1) at point A in FIG. Next, the first color temperature conversion filter is attached to the reference illumination light and imaged to obtain R / G and B / G data. This is the data (a2, b2) at point B in FIG. Next, an image is taken with the second color temperature conversion filter, and R / G and B / G data are taken. This is the data (a3, b3) at point C in FIG. These data are stored in a storage unit (not shown) of the microcomputer 29. From these stored data, the determination unit 35 approximates the color temperature detection axis 41 of FIG. 5, and further shifts the color temperature detection axis 41 to the shift amounts α1% and α2% stored in the storage unit 39 as shown in FIG. , Β1%, and β2% are used to shift as N1 and N2 to determine the negative color temperature detection axis 43 of the video camera.
[0027]
In FIG. 5, the moving points N1 (a4, b4) and N2 (a5, b5) are expressed as follows.
a4 = a3 + (a1-a3) × (α1 / 100)
b4 = b1 + (b3−b1) × (β1 / 100)
a5 = a3 + (a1-a3) × (α2 / 100)
b5 = b1 + (b3-b1) × (β2 / 100)
However,
α1 = 100 (a4-a3) / (a1-a3)
β1 = 100 (b4-b1) / (b3-b1)
α2 = 100 (a5-a3) / (a1-a3)
β2 = 100 (b5-b1) / (b3-b1)
[0028]
The color temperature detection axis 43 is not limited to a line as shown in FIG. 5, and there are many factors that cause color variations such as the type of negative, the type of light source for negative imaging, and the color temperature at the time of negative imaging. It may have a certain width. Of course, if these conditions can be limited, the color temperature can be detected using the shaft 43 instead of the region 300, so that the performance of white balance control is improved. Further, once the deviation amounts α and β (%) are determined for one model, they may be written as constants in the software of the microcomputer 29 or may be changed by writing them in an EEPROM (Electrical Erasable Programmable Read Only Memory).
[0029]
As described above, the difference between the maximum value and the minimum value of R / G and B / G at points A, B, and C is set to 100%, and the deviation amount with respect to the reference illumination light is previously determined in% display. Even if there is a variation in the complementary color filter of each CCD, the deviation amount displayed in% is almost constant, so by correcting by the deviation amount in% display, it is possible to suppress the influence due to the variation in CCD, etc. Good feedforward type white balance control is possible.
[0030]
<Second embodiment>
6 to 9 show a second embodiment of the present invention. FIG. 6 is a circuit diagram showing an imaging system of a video camera having a negative film image capturing function. Compared to FIG. 1, a storage unit 39A is added to the microcomputer 29, and a new function is added to the calculation unit 37. It is the same except that is added.
[0031]
In the microcomputer 29, in addition to the basic operations shown in FIG. 2, the storage unit 39A stores the R cont shift amount α (%) of the color temperature control axis and the B cont shift amount β (%). The calculating unit 37 calculates the control values R cont and B cont by shifting the color temperature control axis using these% display shift amounts α and β, and gives them to the white balance circuit 19.
[0032]
The shift amounts α and β (%) are obtained by experiments using a number of video cameras. FIG. 7 shows a procedure for determining the shift amounts α and β. First, for one video camera, for example, 3200K reference illumination light is imaged to obtain Rcont and Bcont data, and then, for example, 4000K first illumination light is obtained. The data of Rcont and Bcont are obtained by attaching one color temperature conversion filter, and further, for example, the data of Rcont and Bcont are obtained by attaching a second color temperature conversion filter of 7500K, and the standard as shown in FIG. 9 is obtained from these three points of data. The color temperature control axis 45 for the illumination light is approximated. Next, the negative film is actually imaged under a negative light source, Rcont and Bcont data are taken, and the deviation between the color temperature approximated by the reference illumination light and the actual color temperature control axis of sunlight is calculated for each. . After such data acquisition is performed for N video cameras, the average α and β of the N shift amounts are determined, and the average shift amounts α and β are set to the maximum for each of the Rcont and Bcont color temperature control axes. The difference between the value and the minimum value is displayed in%.
[0033]
The shift amounts α and β (%) determined in this way are stored in the storage unit 39A when each video camera is manufactured.
[0034]
The white balance adjustment of each video camera at the time of manufacture is as shown in FIG. 8. First, 3200K reference illumination light is imaged and R cont and B cont data are taken. This is the data (a5, b5) at point A in FIG. Next, the first color temperature conversion filter is attached to the reference illumination light and imaged, and data of R cont and B cont are taken. This is the data (a6, b6) at point B in FIG. Next, the second color temperature conversion filter is attached to take an image, and R cont and B cont data are taken. This is the data (a7, b7) at point C in FIG. These data are stored in a storage unit (not shown) of the microcomputer 29. Based on these stored data, the calculation unit 37 approximates the color temperature control axis 45 of FIG. 9, and further, the color temperature control axis 45 is shifted by α1% and α2% stored in the storage unit 39A as shown in FIG. , Β1%, and β2% are used to shift as N1 and N2 to determine the color temperature control axis 47 for negative photographing of the video camera.
[0035]
In FIG. 9, when the color temperature change axis moves from ABC to N1-N2, the moving points N1 (a8, b8) and N2 (a9, b9) are expressed as follows.
a8 = a5 + (a7−a5) × (α1 / 100)
b8 = b7 + (b5-b7) × (β1 / 100)
a9 = a5 + (a7−a5) × (α2 / 100)
b9 = b7 + (b5−b7) × (β2 / 100)
However,
α1 = 100 (a8−a5) / (a7−a5)
β1 = 100 (b8−b7) / (b5−b7)
α2 = 100 (a9−a5) / (a7−a5)
β2 = 100 (b9−b7) / (b5−b7)
[0036]
The color temperature control axis 47 is not limited to a line as shown in FIG. 9, and there are many factors that cause color variations such as the type of negative, the type of light source for negative imaging, and the color temperature at the time of negative imaging. It may have a certain width. Of course, if these conditions can be specified, the control can be performed using the shaft 47 instead of the region 400, so that the white balance performance is improved. Further, once the deviation amounts α and β (%) are determined for one model, they may be written as constants in the software of the microcomputer 29 or may be changed by writing them in an EEPROM (Electrical Erasable Programmable Read Only Memory). If it can be changed, the white balance is variable for each video camera.
[0037]
As described above, the difference between the maximum value and the minimum value of R cont and B cont at points A, B, and C is set to 100%, and the amount of deviation with respect to the reference illumination light is determined in advance in% display. Even if there is a variation in the color filter of the CCD, the amount of deviation displayed in% is almost constant, so correction by the amount of deviation in% display can suppress the influence of variations in CCD, etc. Forward type white balance control is possible.
[0038]
In each of the first and second embodiments, the color signal negative reversal processing (200) is performed after the normal video camera signal processing (21) is completed, but after the color separation (13). You can go anywhere if you want.
[0039]
In the first and second embodiments, the feedforward method is described. However, the same effect can be obtained by using the feedback method.
[0040]
【The invention's effect】
According to the first aspect of the present invention, the color temperature detection axis or area of the white balance control for the negative film image can be set at the time of adjustment using the same light source as that for adjustment of a normal video camera.
[0041]
According to the second and third aspects of the present invention, color that is not affected by variations in characteristics of an image sensor such as a CCD, a color temperature shift between reference illumination light at the time of adjustment and an actual light source for negative photography, etc. White balance control having a temperature detection axis or region is possible.
[0042]
According to the fourth aspect of the present invention, the color temperature control axis or area of the white balance control for the negative film image can be set at the time of adjustment using the same light source as that for adjustment of a normal video camera.
[0043]
Further, according to the inventions of claims 5 and 6, colors that are not affected by variations in characteristics of an image sensor such as a CCD, a color temperature shift between a reference illumination light at the time of adjustment and an actual light source for negative photography, etc. White balance control having a temperature control axis or region is possible.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a video camera according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a basic control operation of the microcomputer.
FIG. 3 is a diagram illustrating a procedure for determining a deviation amount of a color temperature detection axis.
FIG. 4 is a diagram showing a procedure for determining a color temperature detection region.
FIG. 5 is a diagram illustrating a color temperature detection region.
FIG. 6 is a circuit diagram showing a video camera according to a second embodiment of the present invention.
FIG. 7 is a diagram illustrating a procedure for determining a deviation amount of a color temperature control axis.
FIG. 8 is a diagram illustrating a procedure for determining a color temperature control axis.
FIG. 9 is a diagram illustrating a color temperature control axis.
[Explanation of symbols]
3 CCD
16 color separation circuit 19 white balance circuit 29 microcomputer 31 R, G, B operation unit 33 R / G, B / G operation unit 35 color temperature detection area determination unit 37 control operation unit 39, 39A storage unit 100, 200 for negative Inversion circuit

Claims (6)

色温度が異なる複数個の基準照明光の撮像により得られた複数個の色温度検出信号の値を記憶する第1の記憶手段と、前記基準照明光を撮影した場合の色温度検出信号と所定の光源でネガフィルムを撮影した場合の色温度検出信号とのずれ量を記憶する第2の記憶手段と、前記第1の記憶手段に記憶した前記複数個の色温度検出信号の値を基に色温度検出軸を求め,この色温度検出軸を、前記第2の記憶手段に記憶している前記ずれ量だけずらしてネガ用色温度検出軸を求め、このネガ用色温度検出軸を基に色温度を検出する検出手段と、この検出手段の出力に基づいて制御信号を演算する演算手段と、この演算手段の出力に基づいて、映像信号処理系に配されているホワイトバランス調整用アンプのゲインを制御する制御手段とを具備することを特徴とするオートホワイトバランス装置。First storage means, a color temperature detection signal in the case of photographing the reference illumination light with a predetermined storing the value of the plurality of color temperature detection signal obtained by the imaging of a plurality of reference illumination light color temperature is different the second storage means for storing a shift amount of the color temperature detection signal in the case of photographing a negative film with a light source, based on the value of the first of said plurality of color temperature detection signal stored in the storage means A color temperature detection axis is obtained, and the color temperature detection axis is shifted by the shift amount stored in the second storage means to obtain a negative color temperature detection axis. Based on the negative color temperature detection axis, A detecting means for detecting a color temperature, a calculating means for calculating a control signal based on the output of the detecting means, and a white balance adjusting amplifier arranged in the video signal processing system based on the output of the calculating means and control means for controlling the gain Auto white balance and wherein the door. 基準色温度を有する基準照明光源に複数個の色温度変換フィルタを付け変えて複数個の基準照明光源とし、ビデオカメラで複数個の基準照明光を撮影して複数個の色温度検出信号を求めこれらから色温度検出軸を近似すること、及び、前記ビデオカメラで所定の光源下のネガフィルムを撮影して色温度検出信号を求め、この色温度検出信号からネガ用色温度検出軸を求め、このネガ用色温度検出軸と前記色温度検出軸とのずれ量を計算することを含む工程を複数台のビデオカメラについて行うこと;
複数台の前記ビデオカメラについて行って得られた前記ずれ量の平均値を求めること;
前記近似した色温度検出軸の最大値と最小値との差に対する前記平均値の比率を求めること;
この比率を基準照明光と所定の光源との間での色温度検出信号のずれを補正するためのずれ量とすること;
を特徴とするビデオカメラの製造方法。
A reference illumination light source having a reference color temperature is replaced with a plurality of color temperature conversion filters to obtain a plurality of reference illumination light sources, and a plurality of reference illumination lights are photographed by a video camera to obtain a plurality of color temperature detection signals. Approximating the color temperature detection axis from these, and taking a negative film under a predetermined light source with the video camera to obtain a color temperature detection signal, obtaining the color temperature detection axis for the negative from this color temperature detection signal, Performing a process including calculating a deviation amount between the color temperature detection axis for negative and the color temperature detection axis for a plurality of video cameras;
Obtaining an average value of the deviation amounts obtained by performing a plurality of video cameras ;
Determining a ratio of the average value to a difference between the maximum value and the minimum value of the approximate color temperature detection axis;
This ratio is set as a shift amount for correcting a shift of the color temperature detection signal between the reference illumination light and the predetermined light source;
A method of manufacturing a video camera characterized by the above.
請求項2記載のビデオカメラの製造方法で得られたずれ量を、第2の記憶手段に記憶したことを特徴とする請求項1記載のオートホワイトバランス装置。  3. The auto white balance apparatus according to claim 1, wherein the shift amount obtained by the video camera manufacturing method according to claim 2 is stored in the second storage means. 色温度が異なる複数個の基準照明光の撮像により得られたホワイトバランス調整用アンプのゲイン制御用の複数個の制御信号の値を記憶する第1の記憶手段と、前記基準照明光を撮影した場合の制御信号と所定の光源でネガフィルムを撮影した場合の制御信号とのずれ量を記憶する第2の記憶手段と、前記第1の記憶手段に記憶した前記複数個の制御信号の値を基に色温度制御軸を求め、この色温度制御軸を、前記第2の記憶手段に記憶している前記ずれ量だけずらしてネガ撮影用色温度制御軸を求め、このネガ撮影用色温度制御軸を基に制御信号を演算する演算手段と、この演算手段の出力に基づいて、映像信号処理系に配されているホワイトバランス調整用アンプのゲインを制御する制御手段とを具備することを特徴とするオートホワイトバランス装置。First storage means for storing the values of the plurality of control signals for the gain control of the white balance adjustment amplifier obtained by imaging a plurality of reference illumination light color temperature are different, taken the reference illumination light second storage means for storing the deviation amount of the control signal and the control signal for shooting the negative film at a predetermined light source when the value of said first of said plurality of control signals stored in the storage means A color temperature control axis is obtained based on the color temperature control axis, and the color temperature control axis is shifted by the shift amount stored in the second storage means to obtain a color temperature control axis for negative photography. features and calculating means for calculating a control signal based on the axis, based on the output of the arithmetic means, to a control means for controlling the gain of the white balance adjustment amplifier are arranged in a video signal processing system auto white to Balancing device. 基準色温度を有する基準照明光源に複数個の色温度変換フィルタを付け変えて複数個の基準照明光源とし、ビデオカメラで複数個の基準照明光を撮影してホワイトバランス調整用アンプのゲイン制御用の複数個の制御信号を求めこれらから色温度制御軸を近似すること、及び、前記ビデオカメラで所定の光源下のネガフィルムを撮影して制御信号を求め、この制御信号からネガ撮影用色温度制御軸を求め、このネガ撮影用色温度制御軸と前記色温度制御軸とのずれ量を計算することを含む工程を複数台のビデオカメラについて行うこと;
複数台の前記ビデオカメラについて行って得られた前記ずれ量の平均値を求めること;
前記近似した色温度制御軸の最大値と最小値との差に対する前記平均値の比率を求めること;
この比率を基準照明光と所定の光源との間での制御信号のずれを補正するためのずれ量とすること;
を特徴とするビデオカメラの製造方法。
A reference light source having a reference color temperature is replaced with a plurality of color temperature conversion filters to obtain a plurality of reference illumination light sources, and a plurality of reference illumination lights are photographed with a video camera for gain control of a white balance adjustment amplifier. A control signal is obtained by photographing a negative film under a predetermined light source with the video camera, and a color temperature for negative photography is obtained from the control signal. Obtaining a control axis and performing a process for a plurality of video cameras including calculating a deviation amount between the color temperature control axis for negative photography and the color temperature control axis ;
Obtaining an average value of the deviation amounts obtained by performing a plurality of video cameras ;
Determining a ratio of the average value to a difference between the maximum value and the minimum value of the approximate color temperature control axis;
This ratio is set as a shift amount for correcting a shift of the control signal between the reference illumination light and the predetermined light source;
A method of manufacturing a video camera characterized by the above.
請求項5記載のビデオカメラの製造方法で得られたずれ量を、第2の記憶手段に記憶したことを特徴とする請求項4記載のオートホワイトバランス装置。  6. The auto white balance apparatus according to claim 4, wherein the shift amount obtained by the video camera manufacturing method according to claim 5 is stored in the second storage means.
JP03811895A 1995-02-27 1995-02-27 Auto white balance apparatus and video camera manufacturing method Expired - Fee Related JP3701043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03811895A JP3701043B2 (en) 1995-02-27 1995-02-27 Auto white balance apparatus and video camera manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03811895A JP3701043B2 (en) 1995-02-27 1995-02-27 Auto white balance apparatus and video camera manufacturing method

Publications (2)

Publication Number Publication Date
JPH08237673A JPH08237673A (en) 1996-09-13
JP3701043B2 true JP3701043B2 (en) 2005-09-28

Family

ID=12516559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03811895A Expired - Fee Related JP3701043B2 (en) 1995-02-27 1995-02-27 Auto white balance apparatus and video camera manufacturing method

Country Status (1)

Country Link
JP (1) JP3701043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108277A1 (en) 2001-02-21 2002-08-29 Franz Josef Gasmann Recording device, method for reconstructing image information and method for calibrating image information
JP4603319B2 (en) 2004-09-01 2010-12-22 パナソニック株式会社 Image input device
KR100753195B1 (en) * 2006-02-23 2007-08-30 엠텍비젼 주식회사 Method and device for detecting color temperature

Also Published As

Publication number Publication date
JPH08237673A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
US7009641B2 (en) Electronic camera with gain adjustment
US6618091B1 (en) Image pickup apparatus having image signal state adjusting means a response characteristic of which is controlled in accordance with image magnification rate
JP3368041B2 (en) Imaging device
JP4042432B2 (en) Imaging device
JP6887245B2 (en) Imaging device and its control method, program, storage medium
JP3701043B2 (en) Auto white balance apparatus and video camera manufacturing method
JP2002290988A (en) Imaging device
JPH07245764A (en) Automatic white balance device
JP3538435B2 (en) Auto white balance device and video camera manufacturing method
JP4717229B2 (en) Imaging apparatus and white balance processing method thereof
JP2000156869A (en) Digital camera
JP3554069B2 (en) Imaging device
JP2006171315A (en) Stroboscope controller, stroboscope control program, and stroboscope control method
JP6570252B2 (en) Image processing apparatus, information processing method, and program
JP3566845B2 (en) Imaging system
JP2000156874A (en) Digital camera
US20040246359A1 (en) Imaging apparatus
JP2002271825A (en) Color matching method, color matching system, and television camera used for them
JP3774480B2 (en) Imaging device
JP2004274367A (en) Digital camera
JP2615065B2 (en) Camera white balance adjustment method
JP4281134B2 (en) Digital camera
JP2523038B2 (en) Color video camera
JPH10221593A (en) Digital camera
JP2020134547A (en) Imaging apparatus, lens device, camera system, and control method of imaging apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees