JP3700657B2 - Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer - Google Patents

Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer Download PDF

Info

Publication number
JP3700657B2
JP3700657B2 JP2002045510A JP2002045510A JP3700657B2 JP 3700657 B2 JP3700657 B2 JP 3700657B2 JP 2002045510 A JP2002045510 A JP 2002045510A JP 2002045510 A JP2002045510 A JP 2002045510A JP 3700657 B2 JP3700657 B2 JP 3700657B2
Authority
JP
Japan
Prior art keywords
boron
vapor phase
phase growth
semiconductor layer
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002045510A
Other languages
Japanese (ja)
Other versions
JP2003243317A (en
Inventor
耕二 中原
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002045510A priority Critical patent/JP3700657B2/en
Priority to TW92103678A priority patent/TWI221002B/en
Priority to US10/369,556 priority patent/US6846754B2/en
Publication of JP2003243317A publication Critical patent/JP2003243317A/en
Application granted granted Critical
Publication of JP3700657B2 publication Critical patent/JP3700657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、珪素単結晶基板等の下地の表面上に、表面の平坦性に優れ、且つ間隙が無く連続性に優れるリン化硼素系半導体層を気相成長させるための気相成長技術に関する。
【0002】
【従来の技術】
従来より、III−V族化合物半導体の一種としてリン化硼素(BP)が知られている(寺本 巌著、「半導体デバイス概論」(1995年3月30日、(株)培風館発行初版、28頁参照)。リン化硼素等の硼素(B)とリン(P)とを構成元素として含むリン化硼素系半導体からなる結晶層は例えば、緩衝層として発光素子を構成するに利用されている(米国特許6,069,021号参照)。或いは、オーミック(Ohmic)性電極を形成するためのコンタクト(contact)層として利用されている(特開平2−288388号公報参照)。また、レーザダイオード(LD)にあって、活性層(発光層)をなすリン化硼素(BP)/窒化アルミニウム・ガリウム(GaXAl1-XN:0≦X≦1)超格子層を構成するために使用されている(上記の特開平2−288388号公報参照)。この様な窒素(N)を構成元素として含むIII族窒化物半導体層とリン化硼素とからなる超格子層は、また、発光層に対するクラッド(clad)層として利用されている(上記の特開平2−288388号公報参照)。
【0003】
リン化硼素系半導体層は、例えば、珪素(Si)単結晶(シリコン)を基板として有機金属化学的気相堆積法(MOCVD法)等の気相成長手段により形成されている(上記の米国特許6,069,021号参照)。MOCVD手段に依り例えば、リン化硼素を形成するには、トリエチル硼素((C253B)やホスフィン(PH3)が原料として利用されている(▲1▼上記の米国特許6,069,021号参照)。また、ハロゲン化物の三塩化リン(PCl3)や三塩化硼素(BCl3)を使用するハロゲン気相成長法に依って形成する手段も知れている(▲1▼J.Crystal Growth、13/14(1972)、346〜349頁、及び▲2▼「日本結晶成長学会誌」、Vol.25、No.3(1998)、A28頁参照)。また、ジボラン(B26)とホスフィンを用いるハイドライド(hydride)気相成長手段に依っても形成されている(▲1▼J.Appl.Phys.,42(1)(1971)、420〜424頁、及び▲2▼J.Crystal Growth、70(1984)、507〜514頁参照)。
【0004】
珪素単結晶基板上へのリン化硼素系半導体層の形成は従来より、石英材料等から構成される気相成長反応炉(気相成長炉)内で実施されている(▲1▼庄野 克房著、「半導体技術(上)」(1992年6月25日、(財)東京大学出版会発行9刷、74〜76頁参照)。気相成長炉の内部にある載置台(susceptor)上に珪素単結晶基板を載置した後、載置台或いは珪素単結晶基板の温度をリン化硼素系半導体層を形成するに適する温度に上昇させる。リン化硼素系半導体層を形成するための温度としては、例えば900℃〜1250℃が開示されている(上記の「半導体技術(上)、76頁参照」)。然る後、硼素等のIII族元素の気体原料とリン等のV族元素の気体原料を気相成長炉内に流通させて、リン化硼素系半導体層の形成を開始するのが従来からの極く一般的なリン化硼素系半導体層の気相成長方法である(Inst.Phys,Conf.Ser.、No.129(IPO Pub.Ltd.、1993、UK)、157〜162頁参照)。上記の気体原料を気相成長炉内に搬送、供給するための気体としては、もっぱら、水素ガス(H2)が利用されている(上記のInst.Phys,Conf.Ser.、No.129参照)。
【0005】
一方、珪素単結晶の表面に存在する窒化珪素(Si34)或いは二酸化珪素(SiO2)の被膜は、例えば、窒化ガリウム(GaN)の成長を妨げるための被覆(masking)材料として知られている(▲1▼J.Crystal Growth、230(2001)、341〜345頁、及び▲2▼同誌、346〜350頁参照)。この様な作用から、窒化珪素或いは酸化珪素被膜は、窒素を構成元素として含むIII族窒化物半導体層を基板表面上の適宣、選択された領域に限定して形成する選択成長手段のための基板表面の被覆材料として活用されている(「III族窒化物半導体」(1999年12月8日、(株)培風館発行初版)、122〜124頁参照)。
【0006】
【発明が解決しようとする課題】
従来のリン化硼素系半導体層の形成技術では、例えば、上記のBP/GaXAl1-XN(0≦X≦1)超格子層は、同一の気相成長炉内に於いて、BP結晶層とGaXAl1-XN(0≦X≦1)結晶層とを交互に積層させることにより形成されている。同一の気相成長炉で、この様な窒素を含むIII族窒化物半導体層との超格子層を形成することに因り、気相成長炉の内壁或いは載置台には、III族窒化物半導体結晶を含む分解生成物が付着することとなる。III族窒化物半導体層を構成する窒素は、リン化硼素系半導体層の従来からの一般的な形成温度である約1000℃前後或いはそれを越える高温では容易に揮散する(J.Phys.Chem.,69(10)(1965)、3455〜3460頁参照)。従って、リン化硼素系半導体層を形成するための昇温時に於いて、III族窒化物半導体結晶を含む分解生成物より窒素が気相成長炉の内部へ放出されてしまう。特に、窒化インジウム(InN)の昇華温度は、真空中で約620℃と低いため(日本産業技術振興協会新材料技術委員会編著、「化合物半導体デバイス」(1973年9月15日、(株)工業調査会発行)、397頁参照)、窒化インジウムを含む分解生成物からは気相成長炉内に顕著に窒素が放出される。
【0007】
高温に於いて、気相成長炉内に放出された窒素の一部は、珪素単結晶基板の表面に於いて反応し、窒化珪素被膜を形成する。上記のIII族窒化物半導体半導体層の正常な形成が窒化珪素被膜により阻害されるのと同様に、気相成長炉内に存在する窒素により珪素単結晶基板の表面上に形成された窒化珪素被膜は、リン化硼素系半導体層の形成を妨害する。このため、凹凸の激しい連続性に欠けるリン化硼素系半導体層が帰結されてしまう。珪素単結晶基板の表面に形成されたリン化硼素系半導体層が、そもそも表面の平坦性及び連続性に欠けているものとなっては、その上に連続性のある表面の平坦性に優れる結晶層は形成出来ない。この様な不連続な結晶層を含む積層構造体から例えば、発光ダイオード(LED)を構成しようとしても、結晶層の不連続性、或いはpn接合界面の非平坦性に因り、順方向電圧(所謂、Vf)が低く、且つ電流の整流特性に優れるLEDを得るに至らない。
【0008】
本発明は、上記の従来技術に於ける問題点を解決すべくなされたもので、珪素単結晶基板表面上へのリン化硼素系半導体層の形成を阻害する、気相成長炉の内壁に被着した分解生成物からの物質の放出を抑制する手段を提示し、もって、珪素単結晶基板表面上に表面の平坦性及び連続性に優れるリン化硼素系半導体層を形成するための気相成長方法を提供するものである。
【0009】
【課題を解決するための手段】
すなわち本発明は、
(1)気相成長炉内で、珪素(Si)単結晶基板(シリコン)上に、気相成長手段に依り、リン化硼素系半導体層を気相成長させるリン化硼素系半導体層の気相成長方法において、硼素(B)とリン(P)とを含む気体と、それを随伴する搬送用気体とを、気相成長炉内に流通させて、気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成した後、珪素単結晶基板上にリン化硼素系半導体層を気相成長させることを特徴とするリン化硼素系半導体層の気相成長方法。
(2)上記の搬送用気体を、アルゴン(Ar)を体積分率にして60%以上含む気体としたことを特徴とする上記(1)に記載のリン化硼素系半導体層の気相成長方法。
(3)硼素を含む気体を、有機硼素化合物を含みハロゲン元素を含有しない気体としたことを特徴とする上記(1)または(2)に記載のリン化硼素系半導体層の気相成長方法。
(4)リンを含む気体を、水素化リン化合物を含みハロゲン元素を含有しない気体としたことを特徴とする上記(1)ないし(3)に記載のリン化硼素系半導体層の気相成長方法。
(5)気相成長炉の内部に珪素単結晶基板を載置していない基板載置台を配置し、該基板際置台を500℃以上で1200℃以下の温度に保持しつつ、硼素(B)とリン(P)とを含む気体と、それを随伴する搬送用気体とを、気相成長炉内に流通させて、気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成することを特徴とする上記(1)ないし(4)に記載のリン化硼素系半導体層の気相成長方法。
(6)気相成長炉内でIII族窒化物半導体を気相成長した後、気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成し、その後同一気相成長炉内で珪素単結晶基板の表面にリン化硼素系半導体層を気相成長させることを特徴とする上記(1)ないし(5)に記載のリン化硼素系半導体層の気相成長方法。
(7)気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成した後、基板載置台上に珪素単結晶基板を載置して気相成長炉の内部に配置し、基板載置台の温度を250℃以上で1200℃以下の範囲の温度に昇温して、珪素単結晶基板の表面にリン化硼素系半導体層を気相成長させることを特徴とする上記(1)ないし(6)に記載のリン化硼素系半導体層の気相成長方法。
である。さらに本発明は、
(8)上記(1)ないし(7)に記載のリン化硼素系半導体層の気相成長方法で製造したリン化硼素系半導体層。
である。
【0010】
【発明の実施の形態】
本発明は、MOCVD法、ハロゲン気相成長法或いはハイドライド気相成長法等の成長手段の相違に拘わらず、窒素(N)或い酸素(O)等を含む分解生成物が存在する気相成長炉内部で珪素単結晶基板の表面上にリン化硼素系半導体層を気相成長させるに際し、特に効力を発揮するものである。此処に於いて、基板には、{100}結晶面、{110}結晶面、或いは{111}結晶面を有する珪素単結晶(シリコン)を利用できる。特定の結晶方向に傾斜した結晶面を表面とする珪素単結晶も基板として利用できる。例えば、<110>結晶方向に角度にして約7度(°)傾斜した{111}結晶面を表面とする珪素単結晶を基板として利用できる。n形またはp形伝導性の珪素単結晶を基板とすれば、基板の裏面に正負、何れかの極性のオーミック(Ohmic)性電極を敷設できるため、簡便に発光素子或いは受光素子等を構成するに寄与できる。特に、抵抗率を1ミリオーム(mΩ)以下、より望ましくは0.1mΩ以下とする低い比抵抗(=抵抗率)の導電性単結晶基板は、順方向電圧(所謂、Vf)の低いLEDをもたらすに貢献する。また、放熱性に優れるため安定した発振をもたらすLDを構成するに有効となる。
【0011】
珪素単結晶基板の表面上に設けるリン化硼素系半導体層とは、硼素とリンとを構成元素として含む、例えば、BAAlBGaCInD1- δAsδ(0<A≦1、0≦B<1、0≦C<1、0≦D<1、A+B+C+D=1、0≦δ<1)からなる層である。また、例えば、BAAlBGaCInD1- δδ(0<A≦1、0≦B<1、0≦C<1、0≦D<1、A+B+C+D=1、0≦δ<1)からなる層である。本発明は、珪素単結晶基板の表面上に設けるリン化硼素系半導体層の構成形態、即ち、非晶質(amorphous)、多結晶或いは単結晶の如何に拘わらず、適用される。また、リン化硼素系半導体層の伝導形、また伝導形を制御するために故意に添加される不純物(dopant)の種類、キャリア(carrier)濃度、及び層厚等に拘わらず、本発明の効力を発揮できる。更にまた、上記のリン化硼素系半導体層を珪素単結晶基板の表面に接合する様に気相成長させる場合に限定されず、特に、窒素(N)を含む例えば、III族窒化物半導体層を気相成長させたのと同一の気相成長炉内で、同層上にリン化硼素系半導体層を接合させて設ける場合にも効力を発揮できる。
【0012】
本発明の第1の実施形態では、上記の如く珪素単結晶からなる基板を載置台に載置する以前に、石英材料、ステンレス鋼材或いは窒化硼素(BN)等のセラミック材料などからなる気相成長炉の内壁を硼素とリンを含む被膜で被覆する操作を行う。気相成長炉の内壁とは、基板に最も近接して基板の周囲に配置された部材の基板と対向している内面の壁面を云う。被膜は、具体的には、グラファイト(graphite)或いは炭化珪素(SiC)等の耐高温素材からなる載置台を500℃以上で1200℃以下の温度に保持しつつ、硼素とリンとを含む気体とそれを随伴する搬送用気体とを気相成長炉内に流通させて形成する。これにより、気相成長炉の内壁に被着している窒素(N)を含む分解生成物の被膜を被覆する。
【0013】
硼素を含む気体には、トリエチル硼素((C253B)、ボラン(BH3)やジボラン(B26)を、リンを含む気体にはホスフィン(PH3)を各々、例示できる。気相成長炉の内壁に硼素とリンとを含む被膜を形成するために気相成長炉内に流通させるリン原子の濃度は、硼素原子の濃度を上回るとするのが好ましい。例えば、硼素原子の濃度に対して、約5倍以上、好ましくは10倍以上の濃度のリン原子を気相成長炉内に供給するのが好ましい。被膜を形成するに当たりリン原子の濃度が硼素原子の濃度を上回らないと、実際にリン化硼素系半導体層を成長するにあたり、硼素等のIII族構成元素を富裕に含む被膜にはリンが吸収され易いため、化学量論的に均衡のとれた当量比的に優れるリン化硼素系半導体層を安定して得られない不都合を生ずる。
【0014】
載置台は、例えば、高周波加熱法や抵抗加熱法或いは赤外線加熱法等の手段に依り加熱する。載置台を加熱するのは、気相成長炉内に供給される硼素またはリンを含む気体を熱分解させて、被膜を形成する硼素とリンを生成させるためである。硼素またはリンを含む気体を、気相成長炉に新たに付随させて設けた専用の加熱装置により熱分解させる手段もあるが、気相成長炉に常備されている載置台を加熱すれば簡便に熱分解を生じさせることができる。一般に、約250℃未満の低温では硼素或いはリンを含む気体を充分に熱分解するに至らず、従って、効率良く硼素とリンとを含む被膜を気相成長炉の内壁に被着させるに不都合である。効率的に硼素とリンとを含む被膜を形成するには、載置台の温度を500℃以上とした上で硼素を含む気体及びリンを含む気体の熱分解を促進するのが好適である。逆に、1200℃を越える高温では、リン等の揮発性の高いV族元素が蒸発してしまうため、III族元素を富裕とする被膜が帰結され、当量比的に組成の均衡したリン化硼素系半導体層を得るに支障を来すこととなる。
【0015】
被膜を形成するに好適な上記の500℃以上で1200℃以下の温度範囲に於いて、載置台の温度を高温に設定する程、リンを含む気体の気相成長炉内への供給量を、硼素を含む気体の供給量に対して増加させるのが望ましい。高温環境下に於ける、リンの揮散を考慮して、III族元素を富裕とする被膜が気相成長炉の内壁に被着するのを回避するためである。また、窒素(N)等を含む分解生成物の表面を充分に被覆できる硼素とリンとを含む被膜を形成するためである。硼素とリンとを含む被膜の膜厚は、窒素(N)等を含む分解生成物の平均的な厚みに比して、約2倍以上、更に望ましくは約4倍以上とする。被膜が厚膜となると、気相成長炉の内壁から剥離し易くなる。リン化硼素系半導体層の気相成長時に於いて、気相成長炉の内壁より剥離し、例えば、珪素単結晶基板の表面に飛来し、付着した被膜の小片により帰結されるリン化硼素系半導体層の表面状態は損なわれる。従って、被膜の膜厚は、分解生成物の平均的な厚みの約10倍未満とするのが好適である。被膜の膜厚は、載置台の加熱時に於いて、気相成長炉内への硼素またはリンを含む気体の流通時間を制御して調整できる。或いは、決められた流通時間に於いて、特に、硼素を含む気体の供給量(=濃度)をより多量とすれば、より膜厚の大きな被膜を得ることができる。
【0016】
本発明の第2の実施形態では、硼素とリンとを含む被膜を形成するに際し、これらの元素を含む気体を特に、アルゴン(Ar)を主体とするガスで気相成長炉内に搬送させることとする。この搬送ガスは、硼素またはリンを含む気体と共に気相成長炉内に供給され、気相成長炉内の雰囲気を構成するものとなる。換言すれば、本発明の第2の実施形態の特徴は、硼素とリンを含む被膜を、アルゴンを主体とする雰囲気中で形成することを特徴としている。主体とは、体積分率にして60%以上のアルゴンを含むことを指す。これには、アルゴン単体(アルゴンの体積分率=100%)、アルゴン(体積分率=70%)と水素(H2)(体積分率=30%)との混合ガス等を例示できる。アルゴン体積分率は、ガスの総体積に占めるアルゴンの体積の比率で表せる。気相成長炉内に放出される窒素(N)或いは酸素(O)等の濃度を抑制しようとする本発明の趣旨からして、アルゴンと窒素(N2)、アルゴンとアンモニア(NH3)、或いはアルゴンと酸素(O2)等のアルゴンと含窒素ガス或いは含酸素ガスとの混合ガスは好ましく利用できない。珪素単結晶基板表面に、リン化硼素系半導体層の正常な気相成長を妨げる窒化珪素或いは酸化珪素からなるマスキング被膜を形成する不都合を伴うからである。
【0017】
例えば、アルゴンと水素との混合ガスにあって、アルゴンの体積分率は、アルゴンガスと水素ガスの単位時間に於ける流量の総和に対して、アルゴンの流量を調節することにより変化させられる。例えば、アルゴンと水素との混合ガスにあって、アルゴンの体積分率が60%未満となると、水素と被膜に含まれるリンとが化合して蒸気圧の高いリンの水素化物として逸脱し、被膜が急激に顕著に浸食される。これより、被膜の膜厚が減少し、窒素等を含む分解生成物の表面を充分に被覆できなくなり、窒素等が気相成長炉内に放出されてしまう不都合を生ずる。アルゴンと同族の不活性気体であるヘリウム(He)やネオン(Ne)も搬送ガスとして利用できるが、経済的な観点からも判断すると、硼素とリンとを含む被膜を形成するに最も適した不活性ガスからなる搬送ガスは、アルゴン単体(アルゴンの体積分率=100%)からなるガスである。
【0018】
本発明の第3の実施形態では、硼素とリンとを含む被膜を形成するに際し、硼素を含む気体として、塩素(Cl)や臭素(Br)等のハロゲン(halogen)元素を含有しない非ハロゲン化合物を選択して利用する。特に、トリメチル硼素((CH33B)、トリエチル硼素((C253B)等のハロゲン元素を含有しない有機硼素化合物を利用する。これにより、ハロゲンを含む硼素化合物の熱分解時に発生するハロゲンラジカル或いはハロゲンガスに因る被膜の浸食を回避できる。硼素の脂肪族飽和化合物にあって、トリエチル硼素は常温で適度の蒸気圧を有するため、気相成長炉内に流通させるリンを含む気体との流量的比率を適宣、調節でき得て利便である。また、窒素(N)原子或いは酸素(O)原子を含む官能基(function group)を付加した有機硼素化合物は被膜を形成するに好適に利用できない。窒素(N)や酸素(O)を含む被膜の形成を導き、気相成長炉内への窒素や酸素の放出源となるからである。
【0019】
本発明の第4の実施形態では、硼素とリンとを含む被膜を形成するに際し、リンを含む気体として、塩素(Cl)や臭素(Br)等のハロゲン(halogen)元素を含有しない非ハロゲン化合物を選択して利用する。特に、ホスフィン(PH3)等のハロゲン元素を含有しないリンの水素化物を利用する。ハロゲンを含むハロゲン化リン化合物は、被膜を浸食して薄層化させ分解生成物の表面の被覆を不完全なものとするハロゲンを、その熱分解時に発生させるために好ましく利用できない。また、ホスフィンはルイス(Lewis)塩基性の性質を呈するものの、トリメチル硼素或いはトリエチル硼素等のルイス酸性化合物との複合体(ポロマー)化反応を顕著に起こさないため、同反応に徒に浪費されることはなく、略所望の濃度をもって気相成長炉内に送り込める利点を有する。水素の他に窒素(N)原子或いは酸素(O)原子を含むリンの水素化物は被膜を形成するに好適に利用できない。窒素(N)や酸素(O)を含む被膜の形成を導き、気相成長炉内への窒素や酸素の放出源となるからである。
【0020】
ホスフィンを、リンを含む気体として利用すると、次記の化学反応式(1)に従い、熱分解に因り水素ガス(H2)が気相成長炉内で発生することとなる。
PH3 → P + 3/2・H2 −−− 化学反応式(1)
即ち、化学反応式(1)は、PH3の1モル(mol.)が完全に熱分解すれば、1.5モルの水素ガスを発生することを示している。従って、上記のアルゴンと水素との混合ガスを搬送ガスとする場合、アルゴンガスの体積分率は、混合ガスを構成するアルゴンガスと、水素ガスと、ホスフィンの熱分解で発生する水素ガスとの合計の体積に対して60%以上となる様にする必要がある。ホスフィンの熱分解により発生する水素の量は、一般には、(PH3)の完全な熱分解に因り発生する水素の量(PH31モル(mol.)につき、1.5モルの水素)と見積もるのが適当である。
【0021】
気相成長炉の内壁に硼素とリンとを含む被膜を形成した後は、載置台上に珪素単結晶を基板として載置するために、載置台の温度を例えば、室温近傍の温度まで降温する。基板を載置できる温度迄、冷却された載置台の所定の位置に珪素単結晶を載置した後、基板を載置した状態で載置台を最終的には気相成長炉内の所定の位置に挿入する。此処で云う所定の位置とは、リン化硼素系半導体層を気相成長するための温度に均一に加熱するに好都合となる気相成長炉内の位置である。然る後、載置台の温度を、リン化硼素系半導体層を気相成長させるに適する温度に昇温させる。珪素単結晶基板上へのリン化硼素系半導体層の気相成長は、MOCVD法、ハロゲン気相成長法、ハイドライド気相成長法、或いはガスソース(gas−source)分子線エピタキシャル法(J.Solid StateChem.,133(1997)、269〜272頁参照)等の気相成長手段に依り形成できる。
【0022】
非晶質或いは多結晶のリン化硼素系半導体層を気相成長させるには、250℃〜750℃の温度が適する。単結晶状のリン化硼素系半導体層の気相成長には、750℃〜1200℃の温度が適する。1200℃を越える高温では、B6PやB132等の多量体のリン化硼素が形成されるため、組成的に均質なリン化硼素系半導体層を気相成長させるに不都合となる。載置台の温度は例えば、熱電対、放射温度計等の温度計測機器により計測、調整できる。載置台の温度を、しいては載置台に載置された珪素単結晶基板の温度を上記のリン化硼素系半導体層を気相成長させるに適する温度に昇温する際には、気相成長炉内の雰囲気をアルゴン等の不活性ガスを体積分率にして60%以上含む混合ガスから構成するのが好適である。アルゴン単体(体積分率=100%)から昇温時の雰囲気を構成するのが最適である。従来から一般的に利用されている水素雰囲気中での昇温も可能ではあるが、リン化硼素系半導体層を気相成長させる以前に、気相成長炉の内壁に被着させた硼素とリンとを含む被膜と水素との反応に因り、被膜の膜厚が減少する結果を招くので好ましくはない。
【0023】
本発明の実施の形態に則り、硼素とリンとを含む被膜を気相成長炉内に予め形成することに依る効力を表す分析結果を例示する。分析用試料は、MOCVD法に依り、層厚を620nmとする窒化ガリウム・インジウム混晶(Ga0.90In0.10N)層を気相成長させ、気相成長炉の内壁、特に、載置台の周辺に平均的な層厚を約100nm弱とする分解生成物を被着した気相成長炉を利用して作製した。従来技術に則り、即ち、気相成長炉の内壁に硼素とリンとを含む被膜を予め形成することなく、{111}結晶面を有する珪素単結晶基板を1050℃に加熱した後の、基板表面の元素分析結果を図1に例示する。加熱後の基板表面に於いて、薄膜の形成は明瞭に視認できないが、オージェ(Auger)分光分析(AES)に依れば、図1の分光スペクトルに見られる如く、窒素(N)に加え、炭素(C)及び酸素(O)の存在を確認できる。この様に、主に窒素で汚染された珪素単結晶表面上には、連続性があり、表面の平坦性に優れるリン化硼素系半導体層を気相成長させるのは困難である。通常は、球状の結晶体が乱雑に積み重なった粗雑な表面のリン化硼素系半導体層が帰結されるのみである。
【0024】
一方、本発明に則り、上記の気相成長炉の内壁に予め、硼素とリンとを含む膜厚を約300nmとする被膜を形成した後、{111}面を有する珪素単結晶基板を1050℃で熱処理した際の、基板表面の元素分析結果を図2に例示する。図2に示すAESの分光スペクトルからは、基板の珪素単結晶に由来する珪素(Si)のAES信号の他に、僅かに炭素(C)に起因するAES信号が見取れるのみである。また、硼素とリンとを含む被膜に由来する硼素とリンのAES信号が認められる。珪素単結晶基板の表面上に存在する硼素或いはリンは、リン化硼素系半導体層の成長に於ける「成長核」を提供し、リン化硼素系半導体層の気相成長を円滑に進行させるに有効となる。これより、本発明に依る被膜は、気相成長炉の内壁に被着した分解生成物に起源を発する、窒素(N)、酸素(O)に因る珪素単結晶基板の表面の汚染を防止する作用を有するのは明瞭である。この様な本発明の被膜に因る窒素(N)及び酸素(O)の表面汚染の防止作用は、例えば、III族窒化物半導体層を気相成長させた後、リン化硼素系半導体層を気相成長させる場合にも顕現される。この場合、III族窒化物半導体層の如く窒素を含有する層の気相成長を終了した後、リン化硼素系半導体層の気相成長に先立ち、硼素とリンとを含む被膜を形成しておく必要がある。
【0025】
【作用】
リン化硼素系半導体層を気相成長させる以前に、気相成長炉の内壁に形成された、硼素とリンとを含んでなる被膜は、リン化硼素系半導体層の正常な成長を妨げる、気相成長炉内の分解生成物に起源する下地の表面の汚染を防止する作用を有する。
【0026】
リン化硼素系半導体層を気相成長させる以前に、気相成長炉の内壁に硼素とリンとを含んでなる被膜を形成するに際し用いる、アルゴンを体積分率にして60%以上含む搬送ガスは、気相成長炉内にアルゴンを含む雰囲気を創出すると共に、上記被膜の膜厚の減少を抑制する作用をする。
【0027】
リン化硼素系半導体層を気相成長させる以前に、気相成長炉の内壁に硼素とリンとを含んでなる被膜を形成するに際し用いる、非ハロゲン化合物である有機硼素化合物は、熱分解に因り被膜を構成する硼素を供給すると共に、形成された被膜の膜厚が減少するのを回避する作用を有する。
【0028】
リン化硼素系半導体層を気相成長させる以前に、気相成長炉の内壁に硼素とリンとを含んでなる被膜を形成するに際し用いる、非ハロゲン化合物である水素化リン化合物は、熱分解に因り被膜を構成するリンを供給すると共に、形成された被膜の膜厚が減少するのを回避する作用を有する。
【0029】
【実施例】
(実施例)
硼素を添加したp形の{111}結晶面を有する珪素単結晶基板の表面に直接、MOCVD法に依り、単量体のリン化硼素(boron monophophide)層を気相成長させる場合を例にして、本発明の内容を具体的に説明する。本実施例に利用したMOCVD気相成長装置の構造を図3に模式的に示す。
【0030】
図3に示す気相成長装置にあって、気相成長炉11は半導体工業用途の高純度石英管から構成されている。円形の気相成長炉11の略中央には、基板を載置するための高純度グラファイト製の円柱状の載置台12が配置されている。載置台12の周辺の気相成長炉11の外周部には、載置台12を高周波誘導加熱するために用いる高周波コイル13が配置されている。気相成長炉11の一端には、硼素及びリンを含む被膜の形成またはリン化硼素層の気相成長に使用する硼素またはリンを含む気体及び搬送ガスを炉内へ供給するための導入口14が設けられている。また、気相成長炉11の他の一端には、炉内へ供給され、気相成長炉11の内壁11aに沿って載置台12の周囲を流通する気体を搬送ガス共々、炉外へ排出するための排気口15を設けてある。
【0031】
本発明に係わる被膜を形成するに際し、先ず、導入口14を通じて気相成長炉11の内部にアルゴンガスを搬送ガスとして毎分12リットルの流量で供給した。アルゴンガスの通流を開始してから、約20分が経過した後、高周波コイル13に高周波電源を投入して、珪素単結晶基板を載せていない載置台12の温度を室温より900℃に昇温した。載置台12の内部に挿入された熱電対16により計測される温度の安定を見た後、導入口14より、上記の流量の搬送ガスと共に、トリエチル硼素((C253B)とホスフィン(PH3)を気相成長炉11内へ供給した。トリエチル硼素の供給量は、流量にして毎分約4ccとし、ホスフィンの流量は毎分約220ccに設定した。これより、気相成長炉11の内部の圧力を略大気圧に維持しつつ、トリエチル硼素((C253B)とホスフィン(PH3)を気相成長炉11内へ60分間に亘り継続して供給し、気相成長炉11の内壁11aに膜厚を約400nmとする硼素とリンとを含む被膜17を形成した。硼素またはリンを含む気体として、非ハロゲン化合物である有機硼素化合物と水素化リン化合物を含む気体を使用したため、被膜は顕著に食刻されることなく、その膜厚は、トリエチル硼素((C253B)及びホスフィン(PH3)を供給する時間に略比例して増加した。
【0032】
然る後、トリエチル硼素((C253B)とホスフィン(PH3)の気相成長炉11の内部への供給を停止し、炉内には導入口14から、搬送ガスとしてのアルゴンガスのみを上記の流量で供給し続けた。次に、載置台12の高周波誘導加熱を停止し、載置台12の温度を降温させた。降温後、載置台12を気相成長炉11より一旦、炉外へ取り出し、載置台12の上面の中央部に基板101として上記のp形の{111}結晶面を有するSi単結晶基板を載置した。その後、基板101を載置した載置台12を再び、気相成長炉11の所定の位置に挿入した。挿入後、気相成長炉11の内部に、再び、毎分12リットルの流量でアルゴンを導入口14から供給した。その後、アルゴンからなる雰囲気中で、載置台12の温度を高周波誘導加熱手段に依り、850℃に昇温した。載置台12の温度が850℃に到達した直後に、リン化硼素層の気相成長に先立ち、搬送ガスとして利用していたアルゴンガスの流量を毎分12リットルから毎分10リットルへと減少させた。同時に毎分2リットルの流量の水素ガスをアルゴンガスに添加して、アルゴンの体積分率を約83.3%とするAr−H2混合ガスを新たに搬送ガスとして利用した。
【0033】
暫時、Ar−H2混合ガスを気相成長炉11の内部に流通した後、同混合ガスにトリエチル硼素((C253B)とホスフィン(PH3)とを加えた。トリエチル硼素((C253B)の添加量は毎分4ccとし、また、ホスフィン(PH3)の添加量は毎分430ccとした。この硼素及び(P)を含む気体を随伴する搬送ガスの気相成長炉11内への流通をもって、単量体のリン化硼素層102の気相成長を開始した。8分間に亘り継続してこの硼素及びリンを含む気体を随伴する搬送ガスを流通させ、層厚を300nmとする単量体のリン化硼素層102を気相成長させた。搬送ガスへの硼素及びリンを含む気体の搬送ガスへの添加を停止してリン化硼素層102の気相成長を終了させた後、載置台12の高周波誘導加熱を停止した。上記のAr−H2混合ガス(Arの体積分率≒83.3%)からなる雰囲気中で載置台12の温度を室温近傍の温度に降温した後、載置台12を気相成長炉11より引き出し、珪素単結晶基板101を取り出した。
【0034】
本発明に則り珪素単結晶基板101の表面上に気相成長されたリン化硼素層102の表面は、突起等が無く凹凸の無い平坦な表面となった。また、連続性に優れるリン化硼素層が得られた。
【0035】
(比較例)
上記の(実施例)に記載の気相成長炉11を使用して、且つ気相成長炉11の内壁11aに予め、硼素とリンとを含む被膜を形成することなく、{111}結晶面を有する珪素単結晶基板の表面に、表面の平坦性に優れる単量体のリン化硼素からなる連続膜の気相成長を試行した。即ち、硼素及びリンを含む気体及び搬送ガスが気相成長炉11の内壁11aに直接、接触する状況下でリン化硼素層の気相成長を試みた。
【0036】
上記の(実施例)に記載の如く、気相成長炉11の内壁11aに予め硼素とリンとを含む被膜を設けた場合との正確な対比を期すため、本比較例では、珪素単結晶基板上へリン化硼素層を気相成長させるための気相成長条件を上記(実施例)の場合と全く同一とした。
【0037】
ところが、珪素単結晶基板上には連続性のある層状のリン化硼素層は形成されず、略球状の結晶粒が互いに重なりあって出来た凹凸の激しい粗雑なリン化硼素層となった。図4に本比較例で珪素単結晶基板101上に気相成長させたリン化硼素層102の断面模式図を示す。図4に示す如く、略球状の結晶粒103は、珪素単結晶基板101の表面上に均等に成長しているのではなく、部分的な領域に於いて成長していた。また、略球状の結晶粒103は互いに密着して存在しておらず、隣接する結晶粒103の中間には、空隙104の存在も認められた。
【0038】
また、一般的な2次イオン質量分析法(SIMS)を利用した、リン化硼素層102の深さ方向(層厚方向)の元素分析に依れば、珪素単結晶基板101とリン化硼素層102との界面近傍の領域に、特に、結晶粒103が成長していない領域に原子濃度にして約7×1018原子/cm3を越える酸素(O)原子が蓄積しているのが示された。これは、上記の(実施例)で成長させたリン化硼素層と珪素単結晶基板との界面近傍の領域に於ける酸素原子濃度に比較して約1桁、高濃度となっていた。珪素単結晶基板101表面でのこの酸素原子濃度の顕著な差異を示す分析結果は、本発明に係わる硼素とリンとを含む被膜の有無が酸素原子濃度に関係していることを示唆している。即ち、例え、気相成長炉11の内壁11aに窒素(N)等を含む分解生成物が存在しなくとも、石英材料からなる気相成長炉11からの酸素に因る珪素単結晶表面の汚染を防止するに、本発明に係わる硼素とリンとを含む被膜が有効であるのを教示する結果となった。
【0039】
【発明の効果】
本発明に依れば、珪素単結晶基板等の下地上に気相成長手段に依り、リン化硼素系半導体層を気相成長させるに際し、気相成長炉の内壁に硼素とリンとを含む被膜を予め形成した後、気相成長を実施することとしたので、リン化硼素系半導体層の正常な気相成長を妨害する、珪素単結晶基板等の下地の表面の汚染を回避することができ、表面の平坦性に優れ、連続性のあるリン化硼素系半導体層をもたらすに効果を奏する。
【図面の簡単な説明】
【図1】従来の技術による、珪素単結晶基板表面の元素分析結果を示す図である。
【図2】 本発明の技術による、珪素単結晶基板表面の元素分析結果を示す図である。
【図3】本発明の実施例に係る気相成長装置の構造を示す模式図である。
【図4】本発明の比較例に係るリン化硼素層の構成を示す断面模式図である。
【符号の説明】
11 気相成長炉
11a 内壁
12 載置台
13 高周波コイル
14 導入口
15 排出口
16 熱電対
17 被膜
101 珪素単結晶基板
102 リン化硼素層
103 結晶粒
104 結晶粒間の空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase growth technique for vapor phase growth of a boron phosphide-based semiconductor layer that is excellent in surface flatness and excellent in continuity without a gap on an underlying surface such as a silicon single crystal substrate.
[0002]
[Prior art]
Conventionally, boron phosphide (BP) has been known as a kind of III-V group compound semiconductor (Akira Teramoto, “Introduction to Semiconductor Devices” (March 30, 1995, first published by Bafukan Co., Ltd., page 28). A crystal layer made of a boron phosphide-based semiconductor containing boron (B) such as boron phosphide and phosphorus (P) as constituent elements is used as a buffer layer, for example, to construct a light emitting device (US) Patent No. 6,069,021) Alternatively, it is used as a contact layer for forming an ohmic electrode (see JP-A-2-288388) and a laser diode (LD). ) And boron phosphide (BP) / aluminum nitride / gallium (Ga) forming the active layer (light emitting layer)XAl1-XN: 0.ltoreq.X.ltoreq.1) is used to construct a superlattice layer (see the above-mentioned JP-A-2-288388). Such a superlattice layer composed of a group III nitride semiconductor layer containing boron (N) as a constituent element and boron phosphide is also used as a clad layer for the light emitting layer (see the above-mentioned Japanese Patent Laid-Open No. 2-288388).
[0003]
The boron phosphide-based semiconductor layer is formed, for example, by vapor phase growth means such as metal organic chemical vapor deposition (MOCVD method) using silicon (Si) single crystal (silicon) as a substrate (the above-mentioned US Patent). 6,069,021). For example, to form boron phosphide by MOCVD means, triethylboron ((C2HFive)ThreeB) and phosphine (PHThree) Is used as a raw material (see (1) above US Pat. No. 6,069,021). The halide phosphorus trichloride (PClThree) Or boron trichloride (BCl)Three(1) J. Crystal Growth, 13/14 (1972), pages 346 to 349, and (2) “Journal of Japanese Society for Crystal Growth” Vol. 25, No. 3 (1998), page A28). In addition, diborane (B2H6) And a hydride vapor phase growth method using phosphine ((1) J. Appl. Phys., 42 (1) (1971), pages 420 to 424, and (2) J .. Crystal Growth, 70 (1984), pages 507-514).
[0004]
Formation of a boron phosphide-based semiconductor layer on a silicon single crystal substrate has been conventionally carried out in a vapor phase growth reactor (vapor phase growth reactor) made of quartz material or the like (1) Katsufumi Shono "Semiconductor Technology (above)" (see June 25, 1992, 9th edition of the University of Tokyo Press, pages 74-76) on the susceptor inside the vapor deposition reactor. After the silicon single crystal substrate is mounted, the temperature of the mounting table or the silicon single crystal substrate is raised to a temperature suitable for forming the boron phosphide-based semiconductor layer. (For example, the above-mentioned “Semiconductor Technology (above), see page 76”) Gas materials of Group III elements such as boron and gases of Group V elements such as phosphorus are disclosed. Boron phosphide-based semiconductor layer is distributed through the vapor deposition furnace The formation of the conventional phosphide-based boron phosphide-based semiconductor layer is started by a conventional method (Inst. Phys, Conf. Ser., No. 129 (IPO Pub. Ltd., 1993, UK). ) Refer to pages 157 to 162) As the gas for transporting and supplying the above gas raw material into the vapor phase growth furnace, hydrogen gas (H2) Is used (see the above Inst. Phys, Conf. Ser., No. 129).
[0005]
On the other hand, silicon nitride (SiThreeNFour) Or silicon dioxide (SiO2)2) Is known as, for example, a coating material for preventing the growth of gallium nitride (GaN) (1) J. Crystal Growth, 230 (2001), pages 341 to 345, and (2). (See the same magazine, pages 346-350). Thus, the silicon nitride or silicon oxide film is used for selective growth means for forming a group III nitride semiconductor layer containing nitrogen as a constituent element limited to a selected region on the substrate surface. It is used as a coating material for the substrate surface (see “Group III Nitride Semiconductor” (December 8, 1999, published by Baifukan Co., Ltd.), pages 122 to 124).
[0006]
[Problems to be solved by the invention]
In the conventional technology for forming a boron phosphide-based semiconductor layer, for example, the above-described BP / GaXAl1-XThe N (0 ≦ X ≦ 1) superlattice layer is formed in the same vapor phase growth furnace with the BP crystal layer and GaXAl1-XN (0 ≦ X ≦ 1) crystal layers are alternately stacked. By forming such a superlattice layer with a group III nitride semiconductor layer containing nitrogen in the same vapor phase growth furnace, a group III nitride semiconductor crystal is formed on the inner wall or mounting table of the vapor phase growth furnace. Decomposition product containing will adhere. Nitrogen composing the group III nitride semiconductor layer is easily volatilized at a temperature of about 1000 ° C. or higher, which is a conventional formation temperature of a boron phosphide-based semiconductor layer (J. Phys. Chem. 69 (10) (1965), pages 3455-3460). Therefore, nitrogen is released from the decomposition product containing the group III nitride semiconductor crystal to the inside of the vapor phase growth furnace at the time of temperature rise for forming the boron phosphide-based semiconductor layer. In particular, since the sublimation temperature of indium nitride (InN) is as low as about 620 ° C. in vacuum (edited by the Japan Society for the Promotion of Industrial Technology, New Material Technology Committee, “Compound Semiconductor Device” (September 15, 1973, Ltd.) Published by the Industrial Research Council) (see page 397), the decomposition products containing indium nitride significantly release nitrogen into the vapor phase growth furnace.
[0007]
At a high temperature, part of the nitrogen released into the vapor phase growth reactor reacts on the surface of the silicon single crystal substrate to form a silicon nitride film. The silicon nitride film formed on the surface of the silicon single crystal substrate by nitrogen existing in the vapor phase growth furnace in the same manner that the normal formation of the group III nitride semiconductor semiconductor layer is inhibited by the silicon nitride film. Hinders the formation of a boron phosphide-based semiconductor layer. This results in a boron phosphide-based semiconductor layer that lacks rugged continuity. If the boron phosphide-based semiconductor layer formed on the surface of the silicon single crystal substrate lacks surface flatness and continuity in the first place, it is a crystal with excellent surface flatness on it. The layer cannot be formed. Even if an attempt is made to construct a light emitting diode (LED) from such a laminated structure including a discontinuous crystal layer, a forward voltage (so-called “so-called”) is generated due to discontinuity of the crystal layer or non-planarity of the pn junction interface. , Vf) is low, and an LED having excellent current rectification characteristics cannot be obtained.
[0008]
The present invention has been made to solve the above-described problems in the prior art, and covers the inner wall of a vapor deposition reactor that inhibits the formation of a boron phosphide-based semiconductor layer on the surface of a silicon single crystal substrate. Vapor phase growth for forming a boron phosphide-based semiconductor layer having excellent surface flatness and continuity on the surface of a silicon single crystal substrate by presenting means for suppressing release of substances from the deposited decomposition products A method is provided.
[0009]
[Means for Solving the Problems]
That is, the present invention
(1) A vapor phase of a boron phosphide-based semiconductor layer in which a boron phosphide-based semiconductor layer is grown in a vapor phase on a silicon (Si) single crystal substrate (silicon) by a vapor phase growth means in a vapor phase growth furnace. In the growth method, a gas containing boron (B) and phosphorus (P) and a carrier gas accompanying the gas are circulated in a vapor phase growth furnace, and boron and phosphorus are formed on the inner wall of the vapor phase growth furnace. And then forming a boron phosphide-based semiconductor layer on a silicon single crystal substrate by vapor-phase growth.
(2) The vapor phase growth method for a boron phosphide-based semiconductor layer according to (1), wherein the carrier gas is a gas containing argon (Ar) in a volume fraction of 60% or more. .
(3) The method for vapor phase growth of a boron phosphide-based semiconductor layer according to (1) or (2) above, wherein the gas containing boron is a gas containing an organic boron compound and containing no halogen element.
(4) The vapor phase growth method for a boron phosphide-based semiconductor layer according to the above (1) to (3), wherein the gas containing phosphorus is a gas containing a phosphorus hydride compound and containing no halogen element .
(5) Arranging a substrate mounting table on which a silicon single crystal substrate is not mounted inside the vapor phase growth furnace, and maintaining the substrate mounting table at a temperature of 500 ° C. or higher and 1200 ° C. or lower, boron (B) A film containing boron and phosphorus is formed on the inner wall of the vapor phase growth furnace by circulating a gas containing oxygen and phosphorus (P) and a carrier gas accompanying the gas in the vapor phase growth furnace. The vapor phase growth method for a boron phosphide-based semiconductor layer according to any one of (1) to (4) above, wherein:
(6) After vapor-depositing a group III nitride semiconductor in a vapor deposition furnace, a film containing boron and phosphorus is formed on the inner wall of the vapor deposition furnace, and then in the same vapor deposition furnace. The vapor phase growth method for a boron phosphide-based semiconductor layer according to any one of (1) to (5) above, wherein the boron phosphide-based semiconductor layer is vapor-phase grown on the surface of the silicon single crystal substrate.
(7) After forming a coating film containing boron and phosphorus on the inner wall of the vapor phase growth furnace, the silicon single crystal substrate is placed on the substrate mounting table and placed inside the vapor phase growth furnace. The temperature of the mounting table is raised to a temperature in the range of 250 ° C. to 1200 ° C., and the boron phosphide-based semiconductor layer is vapor-phase grown on the surface of the silicon single crystal substrate. The vapor phase growth method for a boron phosphide-based semiconductor layer according to (6).
It is. Furthermore, the present invention provides
(8) A boron phosphide-based semiconductor layer manufactured by the vapor phase growth method for a boron phosphide-based semiconductor layer described in (1) to (7) above.
It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a vapor phase growth in which a decomposition product containing nitrogen (N) or oxygen (O) is present regardless of the growth means such as MOCVD method, halogen vapor phase growth method or hydride vapor phase growth method. This is particularly effective when a boron phosphide-based semiconductor layer is vapor-phase grown on the surface of a silicon single crystal substrate inside the furnace. Here, a silicon single crystal (silicon) having a {100} crystal face, a {110} crystal face, or a {111} crystal face can be used for the substrate. A silicon single crystal whose surface is a crystal plane inclined in a specific crystal direction can also be used as a substrate. For example, a silicon single crystal whose surface is a {111} crystal plane inclined by about 7 degrees (°) with respect to the <110> crystal direction can be used as the substrate. If an n-type or p-type conductive silicon single crystal is used as a substrate, an ohmic electrode having either positive or negative polarity can be laid on the back surface of the substrate, so that a light-emitting element or a light-receiving element can be easily configured. Can contribute. In particular, a low resistivity (= resistivity) conductive single crystal substrate with a resistivity of 1 milliohm (mΩ) or less, more preferably 0.1 mΩ or less results in an LED with a low forward voltage (so-called Vf). To contribute. In addition, since it has excellent heat dissipation, it is effective in constructing an LD that provides stable oscillation.
[0011]
The boron phosphide-based semiconductor layer provided on the surface of the silicon single crystal substrate includes boron and phosphorus as constituent elements, for example, BAAlBGaCInDP1- δAsδ(0 <A ≦ 1, 0 ≦ B <1, 0 ≦ C <1, 0 ≦ D <1, A + B + C + D = 1, 0 ≦ δ <1). For example, BAAlBGaCInDP1- δNδ(0 <A ≦ 1, 0 ≦ B <1, 0 ≦ C <1, 0 ≦ D <1, A + B + C + D = 1, 0 ≦ δ <1). The present invention is applied regardless of the configuration of the boron phosphide-based semiconductor layer provided on the surface of the silicon single crystal substrate, that is, amorphous, polycrystalline, or single crystal. In addition, the conductivity of the boron phosphide-based semiconductor layer, the kind of impurities intentionally added to control the conductivity, the carrier concentration, the layer thickness, etc. Can be demonstrated. Furthermore, the present invention is not limited to the case where the boron phosphide-based semiconductor layer is grown in a vapor phase so as to be bonded to the surface of the silicon single crystal substrate. In particular, a group III nitride semiconductor layer containing nitrogen (N) is used. The effect can also be exhibited when a boron phosphide-based semiconductor layer is provided on the same layer in the same vapor phase growth furnace as that used for vapor phase growth.
[0012]
In the first embodiment of the present invention, vapor phase growth made of a quartz material, a stainless steel material, or a ceramic material such as boron nitride (BN) before placing the substrate made of a silicon single crystal on the mounting table as described above. The operation of coating the inner wall of the furnace with a film containing boron and phosphorus is performed. The inner wall of the vapor phase growth furnace refers to the inner wall surface facing the substrate of the member disposed around the substrate closest to the substrate. Specifically, the coating is made of a gas containing boron and phosphorus while holding a mounting table made of a high temperature resistant material such as graphite or silicon carbide (SiC) at a temperature of 500 ° C. or higher and 1200 ° C. or lower. It is formed by circulating a gas for transport accompanying it in a vapor phase growth furnace. Thereby, the coating of the decomposition product containing nitrogen (N) deposited on the inner wall of the vapor phase growth furnace is coated.
[0013]
For the gas containing boron, triethylboron ((C2HFive)ThreeB), borane (BHThree) And diborane (B2H6), Phosphine (PHThree) Can be illustrated respectively. In order to form a coating film containing boron and phosphorus on the inner wall of the vapor phase growth furnace, the concentration of phosphorus atoms circulated in the vapor phase growth furnace is preferably higher than the concentration of boron atoms. For example, it is preferable to supply phosphorus atoms having a concentration of about 5 times or more, preferably 10 times or more, to the concentration of boron atoms in the vapor phase growth furnace. If the concentration of phosphorus atoms does not exceed the concentration of boron atoms in forming the film, phosphorus is absorbed by the film rich in Group III constituent elements such as boron when actually growing the boron phosphide-based semiconductor layer. Therefore, there arises a disadvantage that a boron phosphide-based semiconductor layer excellent in terms of an equivalence ratio stoichiometrically balanced cannot be stably obtained.
[0014]
The mounting table is heated by means such as a high-frequency heating method, a resistance heating method, or an infrared heating method. The reason for heating the mounting table is to thermally decompose a gas containing boron or phosphorus supplied into the vapor phase growth furnace to generate boron and phosphorus that form a film. There is also a means of thermally decomposing gas containing boron or phosphorus with a dedicated heating device newly attached to the vapor phase growth furnace, but it can be easily done by heating the mounting table provided in the vapor phase growth furnace. Thermal decomposition can occur. In general, at a low temperature of less than about 250 ° C., the gas containing boron or phosphorus is not sufficiently pyrolyzed, and therefore, it is inconvenient for efficiently depositing the coating containing boron and phosphorus on the inner wall of the vapor deposition furnace. is there. In order to efficiently form a film containing boron and phosphorus, it is preferable to promote thermal decomposition of a gas containing boron and a gas containing phosphorus after setting the temperature of the mounting table to 500 ° C. or higher. Conversely, at a high temperature exceeding 1200 ° C., highly volatile group V elements such as phosphorus evaporate, resulting in a film rich in group III elements, and boron phosphide with a balanced composition in terms of equivalent ratio. This will hinder obtaining a semiconductor layer.
[0015]
In the above temperature range of 500 ° C. or more and 1200 ° C. or less suitable for forming a film, the supply amount of the gas containing phosphorus into the vapor phase growth furnace is increased as the temperature of the mounting table is set higher. It is desirable to increase the supply amount of the gas containing boron. This is in order to avoid deposition of a film rich in Group III elements on the inner wall of the vapor phase growth furnace in consideration of volatilization of phosphorus in a high temperature environment. Another reason is to form a film containing boron and phosphorus that can sufficiently cover the surface of the decomposition product containing nitrogen (N) or the like. The film thickness of the film containing boron and phosphorus is about 2 times or more, more preferably about 4 times or more, as compared with the average thickness of the decomposition product containing nitrogen (N) or the like. When the coating becomes thick, it becomes easy to peel off from the inner wall of the vapor phase growth furnace. Boron phosphide-based semiconductor that peels off from the inner wall of the vapor-phase growth furnace during the vapor phase growth of the boron phosphide-based semiconductor layer, for example, jumps to the surface of the silicon single crystal substrate and results from the small pieces of the coating The surface condition of the layer is impaired. Therefore, the film thickness is preferably less than about 10 times the average thickness of the decomposition products. The film thickness of the coating can be adjusted by controlling the flow time of the gas containing boron or phosphorus into the vapor phase growth furnace when the mounting table is heated. Alternatively, a coating with a larger film thickness can be obtained particularly when the supply amount (= concentration) of the gas containing boron is increased in a predetermined distribution time.
[0016]
In the second embodiment of the present invention, when a film containing boron and phosphorus is formed, a gas containing these elements is transported into the vapor phase growth furnace with a gas mainly composed of argon (Ar). And This carrier gas is supplied into the vapor deposition furnace together with a gas containing boron or phosphorus, and constitutes an atmosphere in the vapor deposition furnace. In other words, a feature of the second embodiment of the present invention is that a film containing boron and phosphorus is formed in an atmosphere mainly composed of argon. The main body means containing 60% or more of argon in terms of volume fraction. This includes argon alone (volume fraction of argon = 100%), argon (volume fraction = 70%) and hydrogen (H2) (Volume fraction = 30%) and the like. The argon volume fraction can be expressed by the ratio of the volume of argon to the total volume of gas. For the purpose of the present invention to suppress the concentration of nitrogen (N) or oxygen (O) released into the vapor phase growth furnace, argon and nitrogen (N2), Argon and ammonia (NHThree), Or argon and oxygen (O2A mixed gas of argon and nitrogen-containing gas or oxygen-containing gas such as) cannot be preferably used. This is because a masking film made of silicon nitride or silicon oxide which prevents normal vapor phase growth of the boron phosphide-based semiconductor layer is formed on the surface of the silicon single crystal substrate.
[0017]
For example, in a mixed gas of argon and hydrogen, the volume fraction of argon can be changed by adjusting the flow rate of argon with respect to the total flow rate of argon gas and hydrogen gas per unit time. For example, in a mixed gas of argon and hydrogen, when the volume fraction of argon is less than 60%, hydrogen and phosphorus contained in the coating combine to deviate as a hydride of phosphorus with a high vapor pressure, and the coating Is rapidly eroded. As a result, the film thickness of the coating is reduced, the surface of the decomposition product containing nitrogen or the like cannot be sufficiently covered, and nitrogen and the like are released into the vapor phase growth furnace. Helium (He) and neon (Ne), which are inert gases belonging to the same family as argon, can also be used as a carrier gas. However, from an economical viewpoint, the most suitable inert gas for forming a film containing boron and phosphorus. The carrier gas made of active gas is a gas made of argon alone (argon volume fraction = 100%).
[0018]
In the third embodiment of the present invention, a non-halogen compound that does not contain a halogen element such as chlorine (Cl) or bromine (Br) as a gas containing boron when forming a film containing boron and phosphorus. Select and use. In particular, trimethylboron ((CHThree)ThreeB), triethylboron ((C2HFive)ThreeAn organic boron compound containing no halogen element such as B) is used. Thereby, erosion of the coating film due to halogen radicals or halogen gas generated during the thermal decomposition of the boron compound containing halogen can be avoided. Since it is an aliphatic saturated compound of boron and triethylboron has an appropriate vapor pressure at room temperature, the flow rate ratio with the gas containing phosphorus to be circulated in the vapor phase growth furnace can be appropriately and adjusted, which is convenient. is there. In addition, an organic boron compound to which a functional group containing a nitrogen (N) atom or an oxygen (O) atom is added cannot be suitably used for forming a film. This is because the formation of a film containing nitrogen (N) or oxygen (O) is led to become a release source of nitrogen or oxygen into the vapor phase growth furnace.
[0019]
In the fourth embodiment of the present invention, a non-halogen compound that does not contain a halogen element such as chlorine (Cl) or bromine (Br) as a gas containing phosphorus when forming a film containing boron and phosphorus. Select and use. In particular, phosphine (PHThree) And other phosphorus hydrides that do not contain halogen elements. The halogenated phosphorous compound containing halogen is not preferably used because it generates a halogen during the thermal decomposition, which erodes the coating to make it thin and imperfectly coats the surface of the decomposition product. In addition, although phosphine exhibits Lewis basic properties, it does not remarkably cause a complex (polomer) reaction with a Lewis acidic compound such as trimethylboron or triethylboron. However, there is an advantage that it can be fed into the vapor phase growth furnace with a substantially desired concentration. Phosphorous hydrides containing nitrogen (N) atoms or oxygen (O) atoms in addition to hydrogen cannot be suitably used to form a film. This is because the formation of a film containing nitrogen (N) or oxygen (O) is led to become a release source of nitrogen or oxygen into the vapor phase growth furnace.
[0020]
When phosphine is used as a gas containing phosphorus, hydrogen gas (H) is generated by thermal decomposition according to the following chemical reaction formula (1).2) Will occur in the vapor phase growth furnace.
PHThree  → P + 3/2 · H2  ---- Chemical reaction formula (1)
That is, the chemical reaction formula (1) is PHThreeIt is shown that 1.5 mol of hydrogen gas is generated when 1 mol (mol.) Of is completely pyrolyzed. Therefore, when the above mixed gas of argon and hydrogen is used as a carrier gas, the volume fraction of the argon gas is determined by the argon gas constituting the mixed gas, the hydrogen gas, and the hydrogen gas generated by the thermal decomposition of phosphine. It is necessary to be 60% or more with respect to the total volume. The amount of hydrogen generated by the thermal decomposition of phosphine is generally (PHThreeOf hydrogen generated due to complete pyrolysis ofThreeIt is appropriate to estimate 1.5 moles of hydrogen per mole (mol.).
[0021]
After the film containing boron and phosphorus is formed on the inner wall of the vapor phase growth furnace, the temperature of the mounting table is lowered to, for example, a temperature near room temperature in order to place the silicon single crystal as a substrate on the mounting table. . After placing the silicon single crystal at a predetermined position of the cooled mounting table up to a temperature at which the substrate can be mounted, the mounting table is finally positioned at a predetermined position in the vapor deposition furnace with the substrate mounted. Insert into. The predetermined position referred to here is a position in the vapor phase growth furnace that is convenient for uniformly heating the boron phosphide-based semiconductor layer to a temperature for vapor phase growth. Thereafter, the temperature of the mounting table is raised to a temperature suitable for vapor phase growth of the boron phosphide-based semiconductor layer. Vapor growth of a boron phosphide-based semiconductor layer on a silicon single crystal substrate can be performed by MOCVD, halogen vapor deposition, hydride vapor deposition, or gas-source molecular beam epitaxy (J. Solid). State Chem., 133 (1997), see pages 269 to 272).
[0022]
A temperature of 250 ° C. to 750 ° C. is suitable for vapor phase growth of an amorphous or polycrystalline boron phosphide-based semiconductor layer. A temperature of 750 ° C. to 1200 ° C. is suitable for vapor phase growth of the single crystal boron phosphide-based semiconductor layer. At high temperatures exceeding 1200 ° C, B6P or B13P2Therefore, it is inconvenient for vapor phase growth of a compositionally uniform boron phosphide-based semiconductor layer. The temperature of the mounting table can be measured and adjusted by a temperature measuring device such as a thermocouple or a radiation thermometer. When raising the temperature of the mounting table, and thus the temperature of the silicon single crystal substrate mounted on the mounting table, to a temperature suitable for vapor phase growth of the boron phosphide-based semiconductor layer, vapor phase growth is performed. It is preferable that the atmosphere in the furnace is composed of a mixed gas containing an inert gas such as argon in a volume fraction of 60% or more. It is optimal to construct an atmosphere at the time of temperature rise from simple argon (volume fraction = 100%). Although it is possible to raise the temperature in a hydrogen atmosphere that has been generally used in the past, before the boron phosphide-based semiconductor layer is vapor-phase grown, boron and phosphorus deposited on the inner wall of the vapor-phase growth furnace can be used. This is not preferable because the film thickness of the film is reduced due to the reaction between the film containing hydrogen and hydrogen.
[0023]
In accordance with an embodiment of the present invention, an analysis result showing the effectiveness of forming a film containing boron and phosphorus in advance in a vapor deposition furnace is illustrated. The sample for analysis is a gallium nitride / indium mixed crystal (Ga) having a layer thickness of 620 nm by the MOCVD method.0.90In0.10N) Vapor phase growth of the layer, and using a vapor phase growth furnace in which a decomposition product having an average layer thickness of less than about 100 nm is deposited on the inner wall of the vapor phase growth furnace, particularly around the mounting table. did. In accordance with the prior art, that is, the substrate surface after heating a silicon single crystal substrate having a {111} crystal face to 1050 ° C. without previously forming a film containing boron and phosphorus on the inner wall of the vapor phase growth furnace The elemental analysis results are shown in FIG. Formation of a thin film is not clearly visible on the substrate surface after heating, but according to Auger spectroscopic analysis (AES), in addition to nitrogen (N), as seen in the spectroscopic spectrum of FIG. The presence of carbon (C) and oxygen (O) can be confirmed. Thus, it is difficult to vapor-phase grow a boron phosphide-based semiconductor layer having continuity and excellent surface flatness on the surface of a silicon single crystal mainly contaminated with nitrogen. Usually, the boron phosphide-based semiconductor layer having a rough surface in which spherical crystals are randomly stacked is only resulted.
[0024]
On the other hand, in accordance with the present invention, after a film having a thickness of about 300 nm containing boron and phosphorus is formed in advance on the inner wall of the vapor phase growth furnace, a silicon single crystal substrate having a {111} plane is formed at 1050 ° C. FIG. 2 illustrates the results of elemental analysis of the substrate surface when the heat treatment is performed in FIG. From the spectrum of AES shown in FIG. 2, in addition to the AES signal of silicon (Si) derived from the silicon single crystal of the substrate, only an AES signal due to carbon (C) can be seen. Further, boron and phosphorus AES signals derived from a film containing boron and phosphorus are observed. Boron or phosphorus existing on the surface of the silicon single crystal substrate provides a “growth nucleus” in the growth of the boron phosphide-based semiconductor layer, and facilitates vapor phase growth of the boron phosphide-based semiconductor layer. It becomes effective. Thus, the coating according to the present invention prevents the contamination of the surface of the silicon single crystal substrate caused by nitrogen (N) and oxygen (O) originating from decomposition products deposited on the inner wall of the vapor deposition reactor. It is clear that it has the effect | action which carries out. The action of preventing the surface contamination of nitrogen (N) and oxygen (O) due to such a film of the present invention can be achieved, for example, by vapor-growing a group III nitride semiconductor layer and then forming a boron phosphide-based semiconductor layer. This is also manifested in vapor phase growth. In this case, after the vapor phase growth of the layer containing nitrogen such as the group III nitride semiconductor layer is completed, a film containing boron and phosphorus is formed prior to the vapor phase growth of the boron phosphide-based semiconductor layer. There is a need.
[0025]
[Action]
Prior to vapor phase growth of the boron phosphide-based semiconductor layer, the coating containing boron and phosphorus formed on the inner wall of the vapor phase growth furnace prevents normal growth of the boron phosphide-based semiconductor layer. It has the effect of preventing contamination of the surface of the substrate originating from the decomposition products in the phase growth furnace.
[0026]
Prior to vapor phase growth of the boron phosphide-based semiconductor layer, a carrier gas containing 60% or more of argon in volume fraction used for forming a film containing boron and phosphorus on the inner wall of the vapor phase growth furnace is In addition, an atmosphere containing argon is created in the vapor phase growth furnace, and the film thickness of the coating film is suppressed from decreasing.
[0027]
Before the boron phosphide-based semiconductor layer is vapor-grown, the organic boron compound, which is a non-halogen compound used to form a film containing boron and phosphorus on the inner wall of the vapor-phase growth furnace, is caused by thermal decomposition. In addition to supplying boron constituting the film, the film has a function of avoiding a decrease in the film thickness of the formed film.
[0028]
Before vapor-depositing a boron phosphide-based semiconductor layer, a phosphorus hydride compound, which is a non-halogen compound, used to form a film containing boron and phosphorus on the inner wall of a vapor deposition furnace is used for thermal decomposition. Therefore, it has the effect | action which avoids that the film thickness of the formed coating film reduces while supplying the phosphorus which comprises a coating film.
[0029]
【Example】
(Example)
Taking as an example the case where a monomeric boron phosphide layer is vapor-phase grown directly on the surface of a silicon single crystal substrate having a p-type {111} crystal plane doped with boron by MOCVD. The contents of the present invention will be specifically described. The structure of the MOCVD vapor phase growth apparatus used in this example is schematically shown in FIG.
[0030]
In the vapor phase growth apparatus shown in FIG. 3, the vapor phase growth furnace 11 is composed of a high purity quartz tube for use in the semiconductor industry. A columnar mounting table 12 made of high-purity graphite for mounting a substrate is disposed in the approximate center of the circular vapor phase growth furnace 11. A high-frequency coil 13 used for high-frequency induction heating of the mounting table 12 is disposed on the outer periphery of the vapor deposition furnace 11 around the mounting table 12. At one end of the vapor phase growth furnace 11, an inlet 14 for supplying a gas containing boron or phosphorus and a carrier gas used for forming a film containing boron and phosphorus or vapor phase growth of a boron phosphide layer into the furnace. Is provided. Further, the other end of the vapor deposition furnace 11 is supplied into the furnace, and the gas flowing around the mounting table 12 along the inner wall 11a of the vapor deposition furnace 11 is discharged to the outside of the furnace together with the carrier gas. An exhaust port 15 is provided.
[0031]
In forming the coating according to the present invention, first, argon gas was supplied as a carrier gas into the vapor phase growth furnace 11 through the inlet 14 at a flow rate of 12 liters per minute. After about 20 minutes have passed since the start of the argon gas flow, a high-frequency power source is turned on to the high-frequency coil 13, and the temperature of the mounting table 12 on which the silicon single crystal substrate is not placed is raised from room temperature to 900 ° C. Warm up. After observing the stability of the temperature measured by the thermocouple 16 inserted in the mounting table 12, the triethyl boron ((C2HFive)ThreeB) and phosphine (PHThree) Was supplied into the vapor phase growth furnace 11. The supply amount of triethylboron was set to about 4 cc / min in flow rate, and the flow rate of phosphine was set to about 220 cc / min. Thus, while maintaining the pressure inside the vapor phase growth furnace 11 at substantially atmospheric pressure, triethylboron ((C2HFive)ThreeB) and phosphine (PHThree) Was continuously supplied into the vapor phase growth furnace 11 for 60 minutes, and a film 17 containing boron and phosphorus having a thickness of about 400 nm was formed on the inner wall 11a of the vapor phase growth furnace 11. As the gas containing boron or phosphorus, a gas containing an organic boron compound which is a non-halogen compound and a phosphorus hydride compound was used, so that the film was not significantly etched, and the film thickness was triethylboron ((C2HFive)ThreeB) and phosphine (PHThree) Increased substantially in proportion to the supply time.
[0032]
After that, triethyl boron ((C2HFive)ThreeB) and phosphine (PHThree) To the inside of the vapor phase growth furnace 11 was stopped, and only argon gas as a carrier gas was continuously supplied into the furnace from the introduction port 14 at the above flow rate. Next, high frequency induction heating of the mounting table 12 was stopped, and the temperature of the mounting table 12 was lowered. After the temperature is lowered, the mounting table 12 is once taken out of the vapor phase growth furnace 11, and the Si single crystal substrate having the p-type {111} crystal plane is mounted as the substrate 101 at the center of the upper surface of the mounting table 12. I put it. Thereafter, the mounting table 12 on which the substrate 101 was mounted was again inserted into a predetermined position of the vapor phase growth furnace 11. After the insertion, argon was again supplied from the inlet 14 into the vapor phase growth furnace 11 at a flow rate of 12 liters per minute. Thereafter, the temperature of the mounting table 12 was raised to 850 ° C. by an induction heating means in an atmosphere composed of argon. Immediately after the temperature of the mounting table 12 reaches 850 ° C., the flow rate of argon gas used as the carrier gas is reduced from 12 liters per minute to 10 liters per minute prior to vapor phase growth of the boron phosphide layer. It was. At the same time, hydrogen gas at a flow rate of 2 liters per minute is added to the argon gas so that the argon volume fraction is about 83.3%.2The mixed gas was newly used as a carrier gas.
[0033]
For a while, Ar-H2After the mixed gas is circulated inside the vapor phase growth furnace 11, triethylboron ((C2HFive)ThreeB) and phosphine (PHThree) And added. Triethyl boron ((C2HFive)ThreeThe amount of B) added is 4 cc / min, and phosphine (PHThree) Was 430 cc per minute. Vapor growth of the monomeric boron phosphide layer 102 was started by the flow of the carrier gas accompanying the gas containing boron and (P) into the vapor phase growth furnace 11. A carrier gas accompanying the gas containing boron and phosphorus was circulated continuously for 8 minutes to vapor-phase grow the monomeric boron phosphide layer 102 having a layer thickness of 300 nm. After the addition of the gas containing boron and phosphorus to the carrier gas was stopped and the vapor phase growth of the boron phosphide layer 102 was terminated, the high frequency induction heating of the mounting table 12 was stopped. Ar-H above2After the temperature of the mounting table 12 is lowered to a temperature near room temperature in an atmosphere composed of a mixed gas (Ar volume fraction≈83.3%), the mounting table 12 is pulled out from the vapor phase growth furnace 11, and a silicon single crystal substrate is obtained. 101 was taken out.
[0034]
The surface of the boron phosphide layer 102 vapor-deposited on the surface of the silicon single crystal substrate 101 in accordance with the present invention was a flat surface having no projections or the like and having no irregularities. Further, a boron phosphide layer having excellent continuity was obtained.
[0035]
(Comparative example)
Using the vapor phase growth furnace 11 described in the above (Example) and without forming a film containing boron and phosphorus in advance on the inner wall 11a of the vapor phase growth furnace 11, a {111} crystal plane is formed. The vapor phase growth of a continuous film made of monomeric boron phosphide having excellent surface flatness was tried on the surface of a silicon single crystal substrate. That is, the vapor phase growth of the boron phosphide layer was attempted in a state where the gas containing boron and phosphorus and the carrier gas were in direct contact with the inner wall 11a of the vapor phase growth furnace 11.
[0036]
As described in the above (Example), in order to accurately compare with the case where a film containing boron and phosphorus is provided in advance on the inner wall 11a of the vapor phase growth furnace 11, in this comparative example, a silicon single crystal substrate is used. The vapor phase growth conditions for vapor phase growth of the boron phosphide layer onto the layer were exactly the same as in the above (Example).
[0037]
However, a continuous layered boron phosphide layer was not formed on the silicon single crystal substrate, and a rough boron phosphide layer with severe irregularities formed by substantially spherical crystal grains overlapping each other. FIG. 4 is a schematic cross-sectional view of the boron phosphide layer 102 grown in a vapor phase on the silicon single crystal substrate 101 in this comparative example. As shown in FIG. 4, the substantially spherical crystal grains 103 did not grow uniformly on the surface of the silicon single crystal substrate 101, but grew in a partial region. Further, the substantially spherical crystal grains 103 did not exist in close contact with each other, and the presence of voids 104 was observed between the adjacent crystal grains 103.
[0038]
Further, according to elemental analysis in the depth direction (layer thickness direction) of the boron phosphide layer 102 using general secondary ion mass spectrometry (SIMS), the silicon single crystal substrate 101 and the boron phosphide layer In the region near the interface with 102, particularly in the region where the crystal grains 103 are not grown, the atomic concentration is about 7 × 10 × 10.18Atom / cmThreeIt was shown that more than oxygen (O) atoms accumulated. This was about one digit higher than the oxygen atom concentration in the region in the vicinity of the interface between the boron phosphide layer grown in the above (Example) and the silicon single crystal substrate. The analysis result showing the remarkable difference in the oxygen atom concentration on the surface of the silicon single crystal substrate 101 suggests that the presence or absence of the coating containing boron and phosphorus according to the present invention is related to the oxygen atom concentration. . That is, even if there is no decomposition product containing nitrogen (N) or the like on the inner wall 11a of the vapor phase growth furnace 11, contamination of the surface of the silicon single crystal due to oxygen from the vapor phase growth furnace 11 made of quartz material. As a result, it was taught that the coating containing boron and phosphorus according to the present invention is effective.
[0039]
【The invention's effect】
According to the present invention, when a boron phosphide-based semiconductor layer is vapor-phase grown on a silicon single crystal substrate or the like by vapor phase growth means, a film containing boron and phosphorus is formed on the inner wall of the vapor phase growth furnace. Therefore, it is possible to avoid contamination of the underlying surface such as a silicon single crystal substrate which hinders the normal vapor phase growth of the boron phosphide-based semiconductor layer. It is effective in providing a boron phosphide-based semiconductor layer having excellent surface flatness and having continuity.
[Brief description of the drawings]
FIG. 1 is a diagram showing a result of elemental analysis of a surface of a silicon single crystal substrate according to a conventional technique.
FIG. 2 is a diagram showing the results of elemental analysis on the surface of a silicon single crystal substrate according to the technique of the present invention.
FIG. 3 is a schematic view showing the structure of a vapor phase growth apparatus according to an embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view showing a configuration of a boron phosphide layer according to a comparative example of the present invention.
[Explanation of symbols]
11 Vapor growth furnace
11a inner wall
12 Mounting table
13 High frequency coil
14 Introduction
15 outlet
16 Thermocouple
17 Coating
101 Silicon single crystal substrate
102 Boron phosphide layer
103 crystal grains
104 Gaps between grains

Claims (7)

気相成長炉内で、珪素(Si)単結晶基板(シリコン)上に、気相成長手段に依り、リン化硼素系半導体層を気相成長させるリン化硼素系半導体層の気相成長方法において、硼素(B)とリン(P)とを含む気体と、それを随伴する、アルゴン(Ar)を体積分率にして60%以上含む搬送用気体とを、気相成長炉内に流通させて、気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成した後、珪素単結晶基板上にリン化硼素系半導体層を気相成長させることを特徴とするリン化硼素系半導体層の気相成長方法。In a vapor phase growth method of a boron phosphide-based semiconductor layer in which a boron phosphide-based semiconductor layer is vapor-grown on a silicon (Si) single crystal substrate (silicon) in a vapor phase growth furnace by vapor phase growth means. And a gas containing boron (B) and phosphorus (P) and a carrier gas accompanying the gas containing argon (Ar) in a volume fraction of 60% or more are circulated in the vapor phase growth furnace. A boron phosphide-based semiconductor characterized in that after a film containing boron and phosphorus is formed on the inner wall of a vapor phase growth furnace, a boron phosphide-based semiconductor layer is vapor-phase grown on a silicon single crystal substrate Vapor phase growth method of layer. 硼素を含む気体を、有機硼素化合物を含みハロゲン(halogen)元素を含有しない気体としたことを特徴とする請求項に記載のリン化硼素系半導体層の気相成長方法。2. The method for vapor phase growth of a boron phosphide-based semiconductor layer according to claim 1 , wherein the gas containing boron is a gas containing an organic boron compound and not containing a halogen element. リンを含む気体を、水素化リン化合物を含みハロゲン元素を含有しない気体としたことを特徴とする請求項1または2に記載のリン化硼素系半導体層の気相成長方法。The method for vapor phase growth of a boron phosphide-based semiconductor layer according to claim 1 or 2 , wherein the gas containing phosphorus is a gas containing a phosphorus hydride compound and containing no halogen element. 気相成長炉の内部に珪素単結晶基板を載置していない基板載置台を配置し、該基板載置台を500℃以上で1200℃以下の温度に保持しつつ、硼素(B)とリン(P)とを含む気体と、それを随伴する搬送用気体とを、気相成長炉内に流通させて、気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成することを特徴とする請求項1ないしに記載のリン化硼素系半導体層の気相成長方法。A substrate mounting table on which the silicon single crystal substrate is not mounted is disposed inside the vapor phase growth furnace, and while maintaining the substrate mounting table at a temperature of 500 ° C. or higher and 1200 ° C. or lower, boron (B) and phosphorus ( P) and a carrier gas accompanying it are circulated in the vapor phase growth furnace to form a film containing boron and phosphorus on the inner wall of the vapor phase growth furnace. The method for vapor phase growth of a boron phosphide-based semiconductor layer according to any one of claims 1 to 3 . 気相成長炉内でIII族窒化物半導体を気相成長させた後、気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成し、その後同一気相成長炉内で珪素単結晶基板の表面にリン化硼素系半導体層を気相成長させることを特徴とする請求項1ないしに記載のリン化硼素系半導体層の気相成長方法。After the group III nitride semiconductor in a vapor phase growth furnace was vapor deposited on the inner wall of the vapor phase epitaxy reactor, to form a coating comprising boron and phosphorus, followed, silicon in the same vapor phase growth furnace vapor deposition method boron-phosphide-based semiconductor layer according to claim 1, characterized in that the boron-phosphide-based semiconductor layer is grown in vapor phase on the surface of the single crystal substrate. 気相成長炉の内壁に、硼素とリンとを含んでなる被膜を形成した後、基板載置台上に珪素単結晶基板を載置して気相成長炉の内部に配置し、該基板載置台の温度を250℃以上で1200℃以下の範囲の温度に昇温して、珪素単結晶基板の表面にリン化硼素系半導体層を気相成長させることを特徴とする請求項1ないしに記載のリン化硼素系半導体層の気相成長方法。A film containing boron and phosphorus is formed on the inner wall of the vapor deposition furnace, and then a silicon single crystal substrate is placed on the substrate mounting table and placed inside the vapor deposition furnace. by elevating the temperature of the temperature to a temperature in the range of 1200 ° C. or less at 250 ° C. or higher, wherein the boron-phosphide-based semiconductor layer on the surface of the silicon single crystal substrate to claims 1 to 5, characterized in that vapor-phase growth Vapor phase growth method of boron phosphide-based semiconductor layer. 請求項1ないしに記載のリン化硼素系半導体層の気相成長方法で製造したリン化硼素系半導体層。Boron-phosphide-based semiconductor layer manufactured in claims 1 to boron-phosphide-based semiconductor layer according to 6 vapor deposition method.
JP2002045510A 2002-02-22 2002-02-22 Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer Expired - Fee Related JP3700657B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002045510A JP3700657B2 (en) 2002-02-22 2002-02-22 Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer
TW92103678A TWI221002B (en) 2002-02-22 2003-02-21 Vapor phase growth method for boron phosphide-based semiconductor layer
US10/369,556 US6846754B2 (en) 2002-02-22 2003-02-21 Boron phosphide-based semiconductor layer and vapor phase growth method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045510A JP3700657B2 (en) 2002-02-22 2002-02-22 Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer

Publications (2)

Publication Number Publication Date
JP2003243317A JP2003243317A (en) 2003-08-29
JP3700657B2 true JP3700657B2 (en) 2005-09-28

Family

ID=27784340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045510A Expired - Fee Related JP3700657B2 (en) 2002-02-22 2002-02-22 Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer

Country Status (2)

Country Link
JP (1) JP3700657B2 (en)
TW (1) TWI221002B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411512B2 (en) * 2009-01-09 2014-02-12 東京エレクトロン株式会社 Method for forming Ge-Sb-Te film and storage medium

Also Published As

Publication number Publication date
TWI221002B (en) 2004-09-11
JP2003243317A (en) 2003-08-29
TW200305204A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
EP0635874B1 (en) Thin film single crystal substrate
Kawabata et al. GaN blue light emitting diodes prepared by metalorganic chemical vapor deposition
TW508839B (en) Apparatus and method for depositing semiconductor film
US20060102081A1 (en) Wafer Guide, MOCVD Equipment, and Nitride Semiconductor Growth Method
CN110731002B (en) Nitride semiconductor laminate, semiconductor device, method for producing nitride semiconductor laminate, method for producing nitride semiconductor self-supporting substrate, and method for producing semiconductor device
WO2008096884A1 (en) N-type conductive aluminum nitride semiconductor crystal and method for producing the same
TW201133557A (en) Method for manufacturing aluminum-containing nitride intermediate layer, method for manufacturing nitride layer, and method for manufacturing nitride semiconductor element
JP3700657B2 (en) Vapor phase growth method of boron phosphide-based semiconductor layer and boron phosphide-based semiconductor layer
US7504321B2 (en) MBE growth of an algan layer or AlGaN multilayer structure
JP2004115305A (en) Gallium nitride single crystal substrate, method of manufacturing the same, gallium nitride-based semiconductor device and light emitting diode
JP3695416B2 (en) Boron phosphide-based semiconductor layer, manufacturing method thereof, and boron phosphide-based semiconductor element
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
US6846754B2 (en) Boron phosphide-based semiconductor layer and vapor phase growth method thereof
JP3322740B2 (en) Semiconductor substrate and method of manufacturing the same
JPH0992881A (en) Compound semiconductor device
JP4595592B2 (en) Single crystal growth method
Nishimura et al. Growth of GaN on Si substrates using BP thin layer as a buffer
JP4158437B2 (en) Method for producing p-type boron phosphide semiconductor layer, boron phosphide-based semiconductor element, and LED
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
Zhang et al. Investigation of preparation and properties of epitaxial growth GaN film on Si (1 1 1) substrate
JP3639276B2 (en) Method for manufacturing p-type boron phosphide semiconductor layer, compound semiconductor device, Zener diode, and light emitting diode
Paisley et al. Growth Of Gallium Nitride On Silicon Carbide By Molecular Beam Epitaxy
JP3931740B2 (en) Boron phosphide-based semiconductor device, manufacturing method thereof, and LED
US11869767B2 (en) Gallium nitride vapor phase epitaxy apparatus used in vapor phase epitaxy not using organic metal as a gallium raw material and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees