JP3700576B2 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP3700576B2
JP3700576B2 JP2000357281A JP2000357281A JP3700576B2 JP 3700576 B2 JP3700576 B2 JP 3700576B2 JP 2000357281 A JP2000357281 A JP 2000357281A JP 2000357281 A JP2000357281 A JP 2000357281A JP 3700576 B2 JP3700576 B2 JP 3700576B2
Authority
JP
Japan
Prior art keywords
phase
motor
voltage
current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000357281A
Other languages
Japanese (ja)
Other versions
JP2002165482A (en
Inventor
貴史 福榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000357281A priority Critical patent/JP3700576B2/en
Priority to KR1020010073167A priority patent/KR100800901B1/en
Priority to CN011394668A priority patent/CN1216453C/en
Publication of JP2002165482A publication Critical patent/JP2002165482A/en
Application granted granted Critical
Publication of JP3700576B2 publication Critical patent/JP3700576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単相交流電源から三相モータを可変速で駆動できるモータ制御装置に関する。
【0002】
【従来の技術】
以下、従来のモータ制御装置について説明する。従来のこの種のモータ制御装置としては、特開平10-150795号公報、および特開2000-83397号公報などに開示された手段がある。
【0003】
まず、特開平10−150795号公報に記載された内容について図面を参照しながら説明する。図4に示したように、単相交流電源1の出力を全波整流する整流回路2と、整流回路2の整流出力をスイッチングして得た可変電圧・可変周波数の交流出力により三相モータ3を駆動するインバータ主回路4と、インバータ主回路4を制御する制御手段5と、三相モータ3の回転子位置の情報を与える位置センサ6とを備え、前記制御手段5は、電圧指令値に基づいて前記インバータ主回路4内のスイッチング素子をオンオフさせるためのPWM信号を発生する信号発生手段を備えている。
【0004】
上記構成において、制御手段5は、電源リプルに対応して前記信号発生手段により常に所望のインバータ出力電圧を得ることができるようにPWM信号のパルス幅の増減制御を行い、最大パルス幅において所望のインバータ出力を得ることができない飽和状態となった場合には、前記PWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませて所望のインバータ出力を得ることを可能にしている。
【0005】
つぎに、特開2000−83397号公報に記載された内容について図面を参照しながら説明する。図5に示したように、単相交流電源1の出力を全波整流する整流回路2と、整流回路2の整流出力をスイッチングして得た可変電圧・可変周波数の交流出力により三相モータ3を駆動するインバータ主回路4と、インバータ主回路4を制御する制御手段5とを備え、制御手段5は、同一相におけるスイッチング素子のデッドタイム期間中の三相モータ3の端子電圧を検出する相電圧検出手段5aと、相電圧検出手段5aにより検出された前記端子電圧から相電流の符号が変化したタイミングを検出する相電流符号変化検出手段5bと、前記相電流符号変化タイミングと相印加電圧との位相差に基づいてPWM信号を発生するスイッチング素子変調手段5cとを備えている。
【0006】
上記構成において、スイッチング素子のデッドタイム期間中の三相モータ3の端子電圧を相電圧検出手段5aにより検出することにより相電流の符号を検出し、この相電流の符号変化を相電流符号変化検出手段5bにより検出する。検出された相電流符号変化タイミングより三相モータ3の回転子位置を推定し、スイッチング素子変調手段5cにより、この相電流符号変化タイミングと相印加電圧との位相差制御を行う。
【0007】
また、平滑用および回生電流用として十分大きな容量のコンデンサ7を備えたコンデンサ入力型の整流回路2では、図6に示したように、抵抗8aとリレー8bとにより構成される突入電流防止回路8が備えられている。これは電源投入直後の少しの間は抵抗8aを介してコンデンサ7を充電し、その後、リレー8bをオンとすることにより電源投入時に大きな充電電流(突入電流)が流れて単相交流電源1としての商用電源の電圧が一瞬低下することによる周辺機器の誤動作を防止している。
【0008】
【発明が解決しようとする課題】
このような従来のモータ制御装置において、上記の特開平10−150795号公報に開示されたモータ制御装置では、モータ駆動に必要不可欠な三相モータ3の回転子位置情報を位置センサ6により検出しているため、この位置センサ6が過酷な温度・圧力条件にさらされる圧縮機などのような密閉状態での駆動を実現させることができない。また、上記の特開2000−83397号公報などが開示している従来の位置センサレス駆動手段を用いると、コンデンサ7の小容量化に伴うインバータ主回路4の出力補正に相電流が増加する弱め界磁制御を用いる前記モータ制御装置において、電機子反作用による相誘起電圧の進み位相角の影響が大きくなるため、三相モータ3の相誘起電圧に基づいて回転子位置を推定する従来の技術では、位置検出誤差が大きくなると言う問題があった。
【0009】
また、単相交流電源1を整流したのちの電源リプルは電源周波数の2倍の周波数となるため、100Hzまたは120Hzの電源リプルをPWM信号のパルス幅の増減制御および弱め界磁制御により補正する必要がある。これらの補正による効果が実際にモータの駆動に作用するまでにはある期間が必要となる。このためリアルタイムにこれらの補正を行う上記制御方法では、駆動対象である三相モータ3の回転数変動やこれに伴う振動、騒音を十分に抑制できないと言う問題があった。
【0010】
さらに、整流回路2の出力端子間に接続されたコンデンサ7の容量が十分大きな場合、電源投入時にコンデンサ7を充電するために流れる突入電流を防止するために突入電流防止回路8を挿入する必要があり、部品点数が多くなると言う問題があった。
【0011】
本発明は、上記の課題を解決するもので、コンデンサ7の容量を少なくする、またはなくすことにより、突入電流防止回路8を不要とし、さらに、三相モータ3の相誘起電圧に基づいて回転子位置を推定する手法において、モータ電流に依存した電機子反作用による相誘起電圧の進み位相角を考慮した回転子位置推定を行うことで正確な回転子位置推定を行い、また、コンデンサ7の小容量化に伴う電源リプルを予測してPWM信号パルス幅増減制御および弱め界磁制御を行うことで、回転数変動およびこれに伴う振動、騒音などを抑制して安定な駆動を行うモータ制御装置を提供すること目的とする。
【0012】
【課題を解決するための手段】
請求項1に係わる本発明は、単相交流電源の出力を全波整流する整流回路と、前記整流回路の出力端子間に接続されて駆動対象であるモータからの回生電流を流すための小容量のコンデンサと、前記コンデンサに印加される電圧をスイッチングして得た可変電圧・可変周波数の交流出力により前記モータを駆動するインバータ主回路と、全体の動作を制御する制御手段とを備え、前記制御手段は、電圧指令値に基づいて前記インバータ主回路内のスイッチング素子をオンオフするPWM信号のパルス幅増減制御と、前記PWM信号のパルス幅の増大制御で前記電圧指令値に相当したインバータ出力電圧が得られない飽和状態となったときには前記PWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませる弱め界磁制御とを行い、かつ、前記PWM信号のパルス幅の増減制御および前記弱め界磁制御は、前記コンデンサの小容量化に伴い発生する電源リプルの前記単相交流電源の周期ごとにおけるA/Dサンプリングデータを用いて行われ、前記モータの電流量に依存する電機子反作用を考慮した相誘起電圧に基づいて回転子位置を推定して位置センサレス駆動を行うようにしたモータ制御装置である。
【0013】
本発明により、モータの電流量に依存する電機子反作用の影響を補正した推定回転子位置により、位置センサレスで安定に駆動することができる。
【0014】
また、本発明により、整流回路に接続するコンデンサの容量を小さくしたりなくしたとき、それに伴う電源リプルの影響を的確に補正して安定に駆動することができる。
【0015】
請求項2に係わる本発明は、整流回路の出力端子間電圧とPWM信号のパルス幅とモータ回転数とからモータの電流量を推定し、電機子反作用による相誘起電圧の進み位相角を前記推定した電流量により補正し、補正した相誘起電圧に基づいて回転子位置を推定するようにした請求項1に係わるモータ制御装置である。
【0016】
本発明により、電流センサなしてモータの電流量を推定して回転子位置の補正に用いることができる。
【0017】
請求項3に係わる本発明は、電源投入時に整流回路の出力端子間に接続されたコンデンサを充電するために流れる突入電流から周辺機器の回路を保護する突入電流防止回路を備えない構成とした請求項1に係わるモータ制御装置である。
【0018】
本発明により、全体の構成を簡単にすることができる。
【0019】
【発明の実施の形態】
請求項1に係わる本発明は、単相交流電源の出力を全波整流する整流回路と、前記整流回路の出力端子間に接続されて駆動対象であるモータからの回生電流を流すための小容量のコンデンサと、前記コンデンサに印加される電圧をスイッチングして得た可変電圧・可変周波数の交流出力により前記モータを駆動するインバータ主回路と、全体の動作を制御する制御手段とを備え、前記制御手段は、電圧指令値に基づいて前記インバータ主回路内のスイッチング素子をオンオフするPWM信号のパルス幅増減制御と、前記PWM信号のパルス幅の増大制御で前記電圧指令値に相当したインバータ出力電圧が得られない飽和状態となったときには前記PWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませる弱め界磁制御とを行い、かつ、前記PWM信号のパルス幅の増減制御および前記弱め界磁制御は、前記コンデンサの小容量化に伴い発生する電源リプルの前記単相交流電源の周期ごとにおけるA/Dサンプリングデータを用いて行われ、前記モータの電流量に依存する電機子反作用を考慮した相誘起電圧に基づいて回転子位置を推定して位置センサレス駆動を行うようにしたモータ制御装置とする。
【0020】
本発明において、制御手段は、位置センサなしで相誘起電圧と相電流符号変化とから回転子位置を推定するとき、電流量に依存する電機子反作用が相誘起電圧に与える影響を補正し、補正した相誘起電圧を用いて回転子位置を推定する。
【0021】
また、本発明において、制御手段は、整流回路の出力端子間に接続されたコンデンサの小容量化に伴う電源リプルの、単相交流電源の周期ごとにおける半周期前のA/Dサンプリングデータを用いて、PWM信号のパルス幅の増減制御および弱め界磁制御を行う。これにより、リアルタイム処理を行うために必要なA/Dサンプリング速度が高速でかつ処理能力の速い高性能マイコンを不要とし、また、電源リプルを半周期前のA/Dサンプリングデータから予測することにより、モータ駆動に作用するまでの遅延を考慮した制御を行うこととなる。
【0022】
請求項2に係わるモータ制御装置は、整流回路の出力端子間電圧とPWM信号のパルス幅とモータ回転数とからモータの電流量を推定し、電機子反作用による相誘起電圧の進み位相角を前記推定した電流量により補正し、補正した相誘起電圧に基づいて回転子位置を推定するようにした請求項1記載のモータ制御装置とする。
【0023】
本発明において、制御手段は、整流回路の出力端子間電圧とPWM信号のパルス幅とモータ回転数とからモータの電流量を推定し、推定した電流量を用いて相誘起電圧の電機子反作用による進み位相角を補正し、補正した相誘起電圧を用いて回転子位置を推定する。
【0024】
請求項3に係わるモータ制御装置は、電源投入時に整流回路の出力端子間に接続されたコンデンサを充電するために流れる突入電流から周辺機器の回路を保護する突入電流防止回路を備えない構成とした請求項1に係わるモータ制御装置とする。
【0025】
本発明において、モータ制御装置は、整流回路の出力端子間に接続されたコンデンサの容量を小さく、またはコンデンサを設けない構成とし、これにより電源投入時の突入電流を小さく、またはなくし、突入電流防止回路を不要としている。
【0026】
以下、本発明の実施例について説明する。
【0027】
【実施例】
以下、本発明のモータ制御装置の一実施例について図面を参照しながら説明する。
【0028】
図1は、本実施例の構成を示すブロック図、図2は、電機子反作用による相誘起電圧の進み位相角を示す波形図、図3は、電源リプルと補正のタイミングとを示す波形図である。なお、図6に示した従来例と同じ構成要素には同一符号を付与している。
【0029】
上記構成において、まず、単相交流電源1を整流回路2により整流し、整流回路2の出力端子間に駆動対象である三相モータ3からの回生電流を流すための小容量のコンデンサ7を接続し、コンデンサ7の端子に印加される電圧をインバータ主回路4により可変電圧・可変周波数の交流出力に変換し、三相モータ3を駆動する構成となっている。本実施例のモータ制御装置では、電源投入時の突入電流による周辺機器の誤動作を防止するための突入電流防止回路は組み込まれていない。
【0030】
本実施例のモータ制御装置において、電機子反作用による相誘起電圧の進み位相角を考慮した位相制御を、相電圧検出手段5aと相電流符号変化検出手段5bとスイッチング素子変調手段5cと電流値推定手段5dとにより行い、また、PWM信号のパルス幅の増減制御および弱め界磁制御を、モータ駆動に作用するまでの遅延を考慮して、前記スイッチング素子変調手段5cと相電流符号変化検出手段5bと電源周波数検出手段5eとにより行う。
【0031】
上記モータ制御において、スイッチング素子変調手段5cからの相印加電圧指令の符号が変化するタイミングと、相電圧検出手段5aと相電流符号変化検出手段5bとにより検出された相電流の符号が変化するタイミングとの位相差を任意に設定する位相差制御については従来の技術と同じであるため、ここでは詳細な説明は省略する。
【0032】
まず、電機子反作用による相誘起電圧の進み位相角を考慮した制御について説明する。無通電時の相誘起電圧は図2(a)に示したようになる。しかし、実際に三相モータ3を駆動している通電時では電機子反作用により図2(c)に示したような電圧が重畳されて相誘起電圧は図2(b)に示すようになる。ただし、ここでは説明を簡単にするため電機子反作用で発生する電圧を矩形波状に示している。このように電機子反作用の影響を受けると相誘起電圧のゼロクロスポイントは無通電時の相誘起電圧に比べて進むことになる。また、この電機子反作用による影響はモータ電流に依存するため、電流量が増加すると相誘起電圧のゼロクロスポイントの進み具合もθ1<θ2と大きくなる。したがって、相電圧検出手段5aおよび相電流符号変化検出手段5bによる相電流符号変化ポイントから三相モータ3の回転子位置を推定する位相制御では回転子位置情報を正しく検出することができない。
【0033】
そこで、電流量により電機子反作用による影響を考慮するため、相電流符号変化検出手段5bから得る回転子位置情報を補正して位相制御を行う。ここで、電流値推定手段5dは、電機子反作用による影響の大小を判断する電流量を、整流回路2の出力端子間電圧Vdc、PWM信号のパルス幅、および三相モータ3の回転数から推定する。このように、電流量に依存する電機子反作用の影響を考慮して相誘起電圧の進み位相角θを補正することにより、電流量に伴う位置検出誤差をなくした位相制御を行うことができる。
【0034】
つぎに、PWM信号のパルス幅の増減制御および弱め界磁制御を、モータ駆動に作用するまでの遅延を考慮して行うことについて説明する。これらの制御は整流回路2の出力端子間に接続されたコンデンサ7の小容量化またはコンデンサ7をなくしたことにより生じる電源リプルに起因する回転数変動を抑制している。
【0035】
ここで、前記電源リプルの周期は、図3に示したように、単相交流電源1の周期の半分となる。したがって、図3に示した期間t1において単相交流電源1の半周期がわかれば補正すべき電源リプルの周期が明確になる。さらに、図3の期間t1に電源リプルをA/Dサンプリングし、このサンプリング値をもとに期間t2においてパルス幅の増減制御および弱め界磁制御を行うことで、前記パルス幅増減制御および弱め界磁制御のタイミングと三相モータ3への作用のタイミングの遅延を考慮した補正制御を行うことができる。このように、単相交流電源1の半周期前に対応する電源リプルのA/Dサンプリング値をもとに電源リプル補正を行うことでリアルタイムに補正制御を行った場合より確実に回転数変動を抑制することができる。
【0036】
なお、上記遅延時間はステップ応答などによりあらかじめ測定した値を用いてもよい。
【0037】
つぎに、電源投入時の突入電流から周辺機器の誤動作を防止するための突入電流防止回路が不要になった理由について説明する。本実施例のモータ制御装置において、整流回路2の出力端子間に接続するコンデンサ7の容量を小さくする、またはコンデンサ7を不要にした場合、電源投入時にコンデンサ7を充電する電流は微小なものになる。このため、突入電流防止回路を設けなくても周辺機器が誤動作を起こすと言うことはなくなる。
【0038】
以上のように本実施例によれば、位置センサを用いないため、圧縮機などのような密閉状態となる過酷な温度・圧力条件のもとでの駆動を実現させることができる。
【0039】
さらに、コンデンサ7の小容量化に伴うインバータ主回路4の出力補正にモータ電流を増加させる弱め界磁制御を用いるモータ制御装置において、モータ電流量に依存する電機子反作用の影響を考慮した回転子位置検出を行うことで、位置検出誤差をなくした安定な駆動を実現できる。このとき、三相モータ3の回転数、PWM信号パルス幅、および整流回路2の出力端子間電圧からモータ電流量を推定することで電流センサを用いることなく位置検出誤差を補正することができる。また、電源リプルの影響の補正に必要なA/Dサンプリングデータについては、単相交流電源周期ごとに半周期前のA/Dサンプリングデータを用いることにより、A/Dサンプリング速度が高速、かつ処理能力の速い高性能マイコンを使用することなく電源リプルを予測して制御することができる。
【0040】
さらに、コンデンサ7を小容量化することにより、従来必要とされていた突入電流防止回路が不要となり、部品点数を削減することができる。
【0041】
【発明の効果】
請求項1に係わる本発明は、単相交流電源の出力を全波整流する整流回路と、前記整流回路の出力端子間に接続されて駆動対象であるモータからの回生電流を流すための小容量のコンデンサと、前記コンデンサに印加される電圧をスイッチングして得た可変電圧・可変周波数の交流出力により前記モータを駆動するインバータ主回路と、全体の動作を制御する制御手段とを備え、前記制御手段は、電圧指令値に基づいて前記インバータ主回路内のスイッチング素子をオンオフするPWM信号のパルス幅増減制御と、前記PWM信号のパルス幅の増大制御で前記電圧指令値に相当したインバータ出力電圧が得られない飽和状態となったときには前記PWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませる弱め界磁制御とを行い、かつ、前記PWM信号のパルス幅の増減制御および前記弱め界磁制御は、前記コンデンサの小容量化に伴い発生する電源リプルの前記単相交流電源の周期ごとにおけるA/Dサンプリングデータを用いて行われ、前記モータの電流量に依存する電機子反作用を考慮した相誘起電圧に基づいて回転子位置を推定して位置センサレス駆動を行うようにしたモータ制御装置とすることにより、モータ電流に依存した電機子反作用の相誘起電圧に対する影響を補正し、補正した相誘起電圧に基づいて回転子位置を推定して、位置センサレスの構成としながら安定な駆動を実現することができる。
【0042】
また、整流回路の出力端子間に接続されるコンデンサの小容量化に伴う電源リプルに起因する回転数変動、振動、および騒音を抑制することができる。
【0043】
請求項2に係わる本発明は、整流回路の出力端子間電圧とPWM信号のパルス幅とモータ回転数とからモータの電流量を推定し、電機子反作用による相誘起電圧の進み位相角を前記推定した電流量により補正し、補正した相誘起電圧に基づいて回転子位置を推定するようにした請求項1に係わるモータ制御装置とすることにより、電流センサを用いずに、モータ電流に依存する電機子反作用の相誘起電圧への影饗を補正することができる。
【0044】
請求項3に係わる本発明は、電源投入時に整流回路のコンデンサを充電するために流れる突入電流から周辺機器の回路を保護する突入電流防止回路を備えない構成とした請求項1に係わるモータ制御装置とすることにより、従来必要とされた突入電流防止回路が不要となるため、全体の構成を簡略にし、部品点数を削減することができる。
【図面の簡単な説明】
【図1】 本発明のモータ制御装置の一実施例の構成を示すブロック図
【図2】 電機子反作用による相誘起電圧の進み位相角を示す波形図
【図3】 電源リプルと補正のタイミングとを示す波形図
【図4】 従来の電源リプル補正制御を行うモータ制御装置の構成を示すブロック図
【図5】 従来の位置センサレス駆動を行うモータ制御装置の構成を示すブロック図
【図6】 従来例における突入電流防止回路の構成を示す回路図
【符号の説明】
1 単相交流電源
2 整流回路
3 三相モータ(モータ)
4 インバータ主回路
5 制御手段
5a 相電圧検出手段
5b 相電流符号変化検出手段
5c スイッチング素子変調手段
5d 電流値推定手段
5e 電源周波数検出手段
6 位置センサ
7 コンデンサ
8 突入電流防止回路
8a 抵抗
8b リレー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor control device that can drive a three-phase motor at a variable speed from a single-phase AC power source.
[0002]
[Prior art]
Hereinafter, a conventional motor control device will be described. As this type of conventional motor control device, there are means disclosed in Japanese Patent Laid-Open Nos. 10-150795 and 2000-83397.
[0003]
First, the contents described in JP-A-10-150795 will be described with reference to the drawings. As shown in FIG. 4, a three-phase motor 3 by a rectifier circuit 2 for full-wave rectification of the output of the single-phase AC power source 1 and an AC output of variable voltage and variable frequency obtained by switching the rectified output of the rectifier circuit 2. An inverter main circuit 4 for driving the inverter, a control means 5 for controlling the inverter main circuit 4, and a position sensor 6 for giving information on the rotor position of the three-phase motor 3, the control means 5 having a voltage command value Based on this, signal generating means for generating a PWM signal for turning on and off the switching element in the inverter main circuit 4 is provided.
[0004]
In the above configuration, the control means 5 performs the increase / decrease control of the pulse width of the PWM signal so that the signal generating means can always obtain a desired inverter output voltage corresponding to the power supply ripple, and the desired pulse output width is set to a desired value. When a saturation state is reached in which an inverter output cannot be obtained, the output timing of the PWM signal is advanced to advance the phase of the inverter output voltage to obtain a desired inverter output.
[0005]
Next, the contents described in JP 2000-83397 A will be described with reference to the drawings. As shown in FIG. 5, a three-phase motor 3 is obtained by a rectifier circuit 2 that performs full-wave rectification on the output of the single-phase AC power supply 1 and an AC output of variable voltage and variable frequency obtained by switching the rectified output of the rectifier circuit 2. And a control means 5 for controlling the inverter main circuit 4. The control means 5 is a phase for detecting the terminal voltage of the three-phase motor 3 during the dead time period of the switching element in the same phase. A voltage detection means 5a, a phase current sign change detection means 5b for detecting a timing at which the sign of the phase current is changed from the terminal voltage detected by the phase voltage detection means 5a, the phase current sign change timing and the phase applied voltage, Switching element modulation means 5c for generating a PWM signal based on the phase difference between the two.
[0006]
In the above configuration, the sign of the phase current is detected by detecting the terminal voltage of the three-phase motor 3 during the dead time period of the switching element by the phase voltage detecting means 5a, and the sign change of this phase current is detected. Detect by means 5b. The rotor position of the three-phase motor 3 is estimated from the detected phase current sign change timing, and the phase difference control between the phase current sign change timing and the phase applied voltage is performed by the switching element modulation means 5c.
[0007]
Further, in the capacitor input type rectifier circuit 2 provided with a capacitor 7 having a sufficiently large capacity for smoothing and regenerative current, as shown in FIG. 6, an inrush current preventing circuit 8 constituted by a resistor 8a and a relay 8b. Is provided. This is because the capacitor 7 is charged via the resistor 8a for a short time immediately after the power is turned on, and then a large charging current (rush current) flows when the power is turned on by turning on the relay 8b. This prevents the malfunction of peripheral equipment caused by a momentary drop in the commercial power supply voltage.
[0008]
[Problems to be solved by the invention]
In such a conventional motor control device, in the motor control device disclosed in the above Japanese Patent Laid-Open No. 10-150795, the position sensor 6 detects the rotor position information of the three-phase motor 3 that is indispensable for driving the motor. Therefore, the position sensor 6 cannot be driven in a sealed state such as a compressor exposed to severe temperature and pressure conditions. Further, when the conventional position sensorless driving means disclosed in the above Japanese Patent Laid-Open No. 2000-83397 is used, field-weakening control in which the phase current increases for output correction of the inverter main circuit 4 due to the reduction in the capacity of the capacitor 7. In the motor control apparatus using the motor, the influence of the leading phase angle of the phase induced voltage due to the armature reaction becomes large. Therefore, in the conventional technique for estimating the rotor position based on the phase induced voltage of the three-phase motor 3, position detection is performed. There was a problem that the error increased.
[0009]
Further, since the power ripple after rectifying the single-phase AC power source 1 has a frequency twice the power frequency, it is necessary to correct the power ripple of 100 Hz or 120 Hz by increasing / decreasing the pulse width of the PWM signal and field weakening control. . A certain period is required until the effect of these corrections actually acts on the drive of the motor. For this reason, the above-described control method that performs these corrections in real time has a problem that the rotational speed fluctuation of the three-phase motor 3 that is a driving target, vibrations and noises associated therewith cannot be sufficiently suppressed.
[0010]
Furthermore, when the capacity of the capacitor 7 connected between the output terminals of the rectifier circuit 2 is sufficiently large, it is necessary to insert an inrush current prevention circuit 8 in order to prevent an inrush current flowing to charge the capacitor 7 when the power is turned on. There was a problem that the number of parts increased.
[0011]
The present invention solves the above-mentioned problem, and eliminates the inrush current prevention circuit 8 by reducing or eliminating the capacity of the capacitor 7. Further, the rotor is based on the phase induced voltage of the three-phase motor 3. In the position estimation method, accurate rotor position estimation is performed by estimating the rotor position in consideration of the leading phase angle of the phase induced voltage due to the armature reaction that depends on the motor current. To provide a motor control device that performs stable driving by suppressing fluctuations in the rotational speed and vibrations and noises associated therewith by predicting a power supply ripple accompanying control and performing PWM signal pulse width increase / decrease control and field weakening control Objective.
[0012]
[Means for Solving the Problems]
The present invention according to claim 1 is a rectifier circuit that full-wave rectifies the output of a single-phase AC power supply, and a small capacity that is connected between the output terminals of the rectifier circuit to flow a regenerative current from a motor to be driven. Capacitor, an inverter main circuit for driving the motor by an AC output of variable voltage / variable frequency obtained by switching the voltage applied to the capacitor, and control means for controlling the overall operation, the control The means outputs a pulse width increase / decrease control of the PWM signal for turning on / off the switching element in the inverter main circuit based on the voltage command value, and an inverter output voltage corresponding to the voltage command value by the pulse width increase control of the PWM signal. line and field-weakening control to advance the phase of the inverter output voltage by advancing the output timing of the PWM signal when the obtained not become saturated And the increase and decrease control and the field weakening control of the pulse width of the PWM signal is performed using the A / D sampling data at each period of said single-phase AC power supply ripple that occurs due to the small capacity of the capacitor The motor control device is configured to perform position sensorless driving by estimating the rotor position based on the phase induced voltage in consideration of the armature reaction depending on the current amount of the motor.
[0013]
According to the present invention, it is possible to drive stably without a position sensor by the estimated rotor position in which the influence of the armature reaction depending on the current amount of the motor is corrected.
[0014]
Further, according to the present invention, when the capacitance of the capacitor connected to the rectifier circuit is reduced or eliminated, the influence of the power supply ripple associated therewith can be accurately corrected and driven stably.
[0015]
According to the second aspect of the present invention, the current amount of the motor is estimated from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the motor speed, and the lead phase angle of the phase induced voltage due to the armature reaction is estimated. The motor control device according to claim 1, wherein the rotor position is estimated based on the corrected phase induction voltage and corrected based on the corrected current amount.
[0016]
According to the present invention, the current amount of the motor can be estimated and used for correcting the rotor position without a current sensor .
[0017]
The present invention according to claim 3 is configured not to include an inrush current prevention circuit that protects a peripheral device circuit from an inrush current that flows to charge a capacitor connected between the output terminals of the rectifier circuit when the power is turned on. A motor control device according to item 1.
[0018]
According to the present invention, the overall configuration can be simplified.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention according to claim 1 is a rectifier circuit that full-wave rectifies the output of a single-phase AC power supply, and a small capacity that is connected between the output terminals of the rectifier circuit to flow a regenerative current from a motor to be driven. Capacitor, an inverter main circuit for driving the motor by an AC output of variable voltage / variable frequency obtained by switching the voltage applied to the capacitor, and control means for controlling the overall operation, the control The means outputs a pulse width increase / decrease control of the PWM signal for turning on / off the switching element in the inverter main circuit based on the voltage command value, and an inverter output voltage corresponding to the voltage command value by the pulse width increase control of the PWM signal. line and field-weakening control to advance the phase of the inverter output voltage by advancing the output timing of the PWM signal when the obtained not become saturated And the increase and decrease control and the field weakening control of the pulse width of the PWM signal is performed using the A / D sampling data at each period of said single-phase AC power supply ripple that occurs due to the small capacity of the capacitor The motor control device is configured to perform position sensorless driving by estimating the rotor position based on the phase induced voltage in consideration of the armature reaction depending on the current amount of the motor.
[0020]
In the present invention, when the rotor position is estimated from the phase induced voltage and the phase current sign change without a position sensor, the control means corrects the influence of the armature reaction that depends on the amount of current on the phase induced voltage. The rotor position is estimated using the phase induced voltage.
[0021]
Further, in the present invention, the control means uses A / D sampling data of a half cycle before each cycle of the single-phase AC power source of the power ripple accompanying the reduction in the capacity of the capacitor connected between the output terminals of the rectifier circuit. Thus, increase / decrease control of the pulse width of the PWM signal and field weakening control are performed. This eliminates the need for a high-performance microcomputer with a high A / D sampling speed and high processing capacity required for real-time processing, and predicts power supply ripple from A / D sampling data before half a cycle. Therefore, the control is performed in consideration of the delay until the motor is driven.
[0022]
According to a second aspect of the present invention, the motor control device estimates the amount of current of the motor from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the motor rotation speed, and determines the advance phase angle of the phase induced voltage due to the armature reaction. The motor control device according to claim 1, wherein the motor position is corrected based on the estimated current amount, and the rotor position is estimated based on the corrected phase induced voltage.
[0023]
In the present invention, the control means estimates the current amount of the motor from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the motor speed, and uses the estimated current amount based on the armature reaction of the phase induced voltage. The lead phase angle is corrected, and the rotor position is estimated using the corrected phase induced voltage .
[0024]
The motor control device according to claim 3 is configured not to include an inrush current prevention circuit that protects a peripheral device circuit from an inrush current that flows to charge a capacitor connected between the output terminals of the rectifier circuit when the power is turned on. A motor control device according to claim 1 is provided.
[0025]
In the present invention, the motor control device has a configuration in which the capacitance of the capacitor connected between the output terminals of the rectifier circuit is small or no capacitor is provided, thereby reducing or eliminating the inrush current when the power is turned on, thereby preventing the inrush current. The circuit is unnecessary.
[0026]
Examples of the present invention will be described below.
[0027]
【Example】
Hereinafter, an embodiment of a motor control device of the present invention will be described with reference to the drawings.
[0028]
FIG. 1 is a block diagram showing the configuration of the present embodiment, FIG. 2 is a waveform diagram showing a leading phase angle of a phase induced voltage due to armature reaction, and FIG. 3 is a waveform diagram showing power supply ripple and correction timing. is there. The same components as those in the conventional example shown in FIG.
[0029]
In the above configuration, first, the single-phase AC power source 1 is rectified by the rectifier circuit 2 and a small-capacitance capacitor 7 for flowing a regenerative current from the three-phase motor 3 to be driven is connected between the output terminals of the rectifier circuit 2. Then, the voltage applied to the terminal of the capacitor 7 is converted into the variable voltage / variable frequency AC output by the inverter main circuit 4 to drive the three-phase motor 3. In the motor control device of the present embodiment, an inrush current prevention circuit for preventing malfunction of peripheral devices due to an inrush current at power-on is not incorporated.
[0030]
In the motor control apparatus of the present embodiment, phase control in consideration of the leading phase angle of the phase induced voltage due to the armature reaction is performed by phase voltage detection means 5a, phase current sign change detection means 5b, switching element modulation means 5c, and current value estimation. The switching element modulating means 5c, the phase current sign change detecting means 5b and the power supply are controlled by the means 5d in consideration of the delay until the PWM signal pulse width increase / decrease control and field weakening control are applied to the motor drive. This is performed by the frequency detection means 5e.
[0031]
In the motor control described above, the timing at which the sign of the phase applied voltage command from the switching element modulating means 5c changes and the timing at which the sign of the phase current detected by the phase voltage detecting means 5a and the phase current sign change detecting means 5b changes. Since the phase difference control for arbitrarily setting the phase difference is the same as that of the prior art, detailed description thereof is omitted here.
[0032]
First, the control in consideration of the lead phase angle of the phase induced voltage due to the armature reaction will be described. The phase induced voltage when no current is supplied is as shown in FIG. However, during energization that actually drives the three-phase motor 3, the voltage shown in FIG. 2C is superimposed by the armature reaction, and the phase induced voltage becomes as shown in FIG. 2B. However, in order to simplify the explanation, the voltage generated by the armature reaction is shown as a rectangular wave. In this way, when affected by the armature reaction, the zero cross point of the phase induced voltage advances compared to the phase induced voltage when no current is applied. In addition, since the influence of this armature reaction depends on the motor current, the progress of the zero cross point of the phase induced voltage increases as θ1 <θ2 as the amount of current increases. Therefore, the rotor position information cannot be correctly detected in the phase control in which the rotor position of the three-phase motor 3 is estimated from the phase current sign change point by the phase voltage detection means 5a and the phase current sign change detection means 5b.
[0033]
Therefore, in order to consider the influence of the armature reaction depending on the amount of current, the rotor position information obtained from the phase current sign change detecting means 5b is corrected to perform phase control. Here, the current value estimating means 5d estimates the amount of current for judging the magnitude of the influence due to the armature reaction from the voltage Vdc between the output terminals of the rectifier circuit 2, the pulse width of the PWM signal, and the rotation speed of the three-phase motor 3. To do. In this way, by correcting the advance phase angle θ of the phase induced voltage in consideration of the effect of the armature reaction depending on the amount of current, it is possible to perform phase control that eliminates the position detection error associated with the amount of current.
[0034]
Next, a description will be given of performing increase / decrease control of the pulse width of the PWM signal and field weakening control in consideration of a delay until the motor is driven. These controls suppress fluctuations in the rotational speed caused by power supply ripple caused by reducing the capacity of the capacitor 7 connected between the output terminals of the rectifier circuit 2 or eliminating the capacitor 7.
[0035]
Here, the cycle of the power supply ripple is half of the cycle of the single-phase AC power supply 1 as shown in FIG. Therefore, if the half cycle of the single-phase AC power supply 1 is known in the period t1 shown in FIG. 3, the cycle of the power supply ripple to be corrected becomes clear. Further, A / D sampling of the power supply ripple is performed in the period t1 in FIG. 3, and the pulse width increase / decrease control and the field weakening control are performed in the period t2 based on the sampled value. Thus, correction control can be performed in consideration of the delay in the timing of the action on the three-phase motor 3. As described above, the power supply ripple correction is performed based on the A / D sampling value of the power supply ripple corresponding to the half cycle before the single-phase AC power supply 1, so that the rotational speed fluctuation can be more reliably performed than when the correction control is performed in real time. Can be suppressed.
[0036]
The delay time may be a value measured in advance by a step response or the like.
[0037]
Next, the reason why the inrush current prevention circuit for preventing the malfunction of the peripheral device from the inrush current at the time of turning on the power becomes unnecessary will be described. In the motor control device of this embodiment, when the capacity of the capacitor 7 connected between the output terminals of the rectifier circuit 2 is reduced or the capacitor 7 is not required, the current for charging the capacitor 7 when the power is turned on is very small. Become. For this reason, even if an inrush current prevention circuit is not provided, peripheral devices will not malfunction.
[0038]
As described above, according to the present embodiment, since the position sensor is not used, it is possible to realize driving under severe temperature / pressure conditions in which the compressor is sealed.
[0039]
Further, in a motor control device using field-weakening control for increasing the motor current for output correction of the inverter main circuit 4 due to the reduction in the capacity of the capacitor 7, the rotor position detection in consideration of the effect of the armature reaction depending on the motor current amount By performing the above, stable driving with no position detection error can be realized. At this time, the position detection error can be corrected without using a current sensor by estimating the motor current amount from the rotation speed of the three-phase motor 3, the PWM signal pulse width, and the voltage between the output terminals of the rectifier circuit 2. As for the A / D sampling data necessary for correcting the influence of the power ripple, the A / D sampling speed is high and the processing is performed by using the A / D sampling data before half a cycle for each single-phase AC power cycle. The power ripple can be predicted and controlled without using a high-performance microcomputer with high capacity.
[0040]
Furthermore, by reducing the capacity of the capacitor 7, the conventionally required inrush current prevention circuit becomes unnecessary, and the number of parts can be reduced.
[0041]
【The invention's effect】
The present invention according to claim 1 is a rectifier circuit that full-wave rectifies the output of a single-phase AC power supply, and a small capacity that is connected between the output terminals of the rectifier circuit to flow a regenerative current from a motor to be driven. Capacitor, an inverter main circuit for driving the motor by an AC output of variable voltage / variable frequency obtained by switching the voltage applied to the capacitor, and control means for controlling the overall operation, the control The means outputs a pulse width increase / decrease control of the PWM signal for turning on / off the switching element in the inverter main circuit based on the voltage command value, and an inverter output voltage corresponding to the voltage command value by the pulse width increase control of the PWM signal. line and field-weakening control to advance the phase of the inverter output voltage by advancing the output timing of the PWM signal when the obtained not become saturated And the increase and decrease control and the field weakening control of the pulse width of the PWM signal is performed using the A / D sampling data at each period of said single-phase AC power supply ripple that occurs due to the small capacity of the capacitor An electric motor that depends on the motor current by estimating the rotor position based on the phase induced voltage in consideration of the armature reaction that depends on the current amount of the motor and performing position sensorless driving. The influence of the child reaction on the phase induced voltage is corrected, and the rotor position is estimated based on the corrected phase induced voltage, so that stable driving can be realized with a position sensorless configuration.
[0042]
In addition, it is possible to suppress rotational speed fluctuations, vibrations, and noise caused by power supply ripple accompanying the reduction in the capacity of the capacitor connected between the output terminals of the rectifier circuit.
[0043]
According to the second aspect of the present invention, the current amount of the motor is estimated from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the motor speed, and the lead phase angle of the phase induced voltage due to the armature reaction is estimated. The motor control device according to claim 1, wherein the rotor position is estimated based on the corrected phase induced voltage, and the electric motor that depends on the motor current without using a current sensor. The influence of the child reaction on the phase induced voltage can be corrected .
[0044]
According to a third aspect of the present invention, there is provided a motor control device according to the first aspect, wherein the motor control device does not include an inrush current prevention circuit that protects a peripheral device circuit from an inrush current that flows to charge a capacitor of the rectifier circuit when the power is turned on. As a result, the conventionally required inrush current prevention circuit becomes unnecessary, so that the entire configuration can be simplified and the number of parts can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of a motor control device of the present invention. FIG. 2 is a waveform diagram showing a leading phase angle of a phase induced voltage due to an armature reaction. FIG. 4 is a block diagram showing the configuration of a conventional motor control device that performs power supply ripple correction control. FIG. 5 is a block diagram showing the configuration of a conventional motor control device that performs position sensorless driving. Schematic diagram showing the configuration of the inrush current prevention circuit in the example.
1 Single-phase AC power supply 2 Rectifier circuit 3 Three-phase motor (motor)
4 Inverter main circuit 5 Control means 5a Phase voltage detection means 5b Phase current sign change detection means 5c Switching element modulation means 5d Current value estimation means 5e Power frequency detection means 6 Position sensor 7 Capacitor 8 Inrush current prevention circuit 8a Resistance 8b Relay

Claims (3)

単相交流電源の出力を全波整流する整流回路と、前記整流回路の出力端子間に接続されて駆動対象であるモータからの回生電流を流すための小容量のコンデンサと、前記コンデンサに印加される電圧をスイッチングして得た可変電圧・可変周波数の交流出力により前記モータを駆動するインバータ主回路と、全体の動作を制御する制御手段とを備え、前記制御手段は、電圧指令値に基づいて前記インバータ主回路内のスイッチング素子をオンオフするPWM信号のパルス幅増減制御と、前記PWM信号のパルス幅の増大制御で前記電圧指令値に相当したインバータ出力電圧が得られない飽和状態となったときには前記PWM信号の出力タイミングを早めてインバータ出力電圧の位相を進ませる弱め界磁制御とを行い、かつ、前記PWM信号のパルス幅の増減制御および前記弱め界磁制御は、前記コンデンサの小容量化に伴い発生する電源リプルの前記単相交流電源の周期ごとにおけるA/Dサンプリングデータを用いて行われ、前記モータの電流量に依存する電機子反作用を考慮した相誘起電圧に基づいて回転子位置を推定して位置センサレス駆動を行うようにしたモータ制御装置。A rectifier circuit that full-wave rectifies the output of a single-phase AC power supply, a small-capacitance capacitor that is connected between the output terminals of the rectifier circuit and flows a regenerative current from a motor to be driven, and applied to the capacitor An inverter main circuit that drives the motor by an AC output of variable voltage and variable frequency obtained by switching the voltage to be controlled, and control means for controlling the overall operation, the control means based on the voltage command value When the PWM signal pulse width increase / decrease control for turning on / off the switching element in the inverter main circuit and the PWM signal pulse width increase control result in a saturation state where the inverter output voltage corresponding to the voltage command value cannot be obtained. said early output timing of the PWM signal subjected to the field-weakening control to advance the phase of the inverter output voltage, and the PWM signal Decreasing control and the field weakening control of the pulse width is performed using the A / D sampling data in each of the periods of the single-phase AC power source of the power supply ripple that occurs due to the small capacity of the capacitor, the current amount of the motor A motor control device that performs position sensorless driving by estimating a rotor position based on a phase induced voltage in consideration of a dependent armature reaction. 整流回路の出力端子間電圧とPWM信号のパルス幅とモータ回転数とからモータの電流量を推定し、電機子反作用による相誘起電圧の進み位相角を前記推定した電流量により補正し、補正した相誘起電圧に基づいて回転子位置を推定するようにした請求項1記載のモータ制御装置。  The amount of motor current is estimated from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the motor speed, and the phase angle of the phase induced voltage due to the armature reaction is corrected by the estimated amount of current. The motor control device according to claim 1, wherein the rotor position is estimated based on the phase induced voltage. 電源投入時に整流回路の出力端子間に接続されたコンデンサを充電するために流れる突入電流から周辺機器の回路を保護する突入電流防止回路を備えない構成とした請求項1記載のモータ制御装置。  The motor control device according to claim 1, wherein the motor control device is configured not to include an inrush current prevention circuit that protects a peripheral device circuit from an inrush current that flows to charge a capacitor connected between the output terminals of the rectifier circuit when the power is turned on.
JP2000357281A 2000-11-24 2000-11-24 Motor control device Expired - Fee Related JP3700576B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000357281A JP3700576B2 (en) 2000-11-24 2000-11-24 Motor control device
KR1020010073167A KR100800901B1 (en) 2000-11-24 2001-11-23 Motor control equipment
CN011394668A CN1216453C (en) 2000-11-24 2001-11-23 Motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357281A JP3700576B2 (en) 2000-11-24 2000-11-24 Motor control device

Publications (2)

Publication Number Publication Date
JP2002165482A JP2002165482A (en) 2002-06-07
JP3700576B2 true JP3700576B2 (en) 2005-09-28

Family

ID=18829375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357281A Expired - Fee Related JP3700576B2 (en) 2000-11-24 2000-11-24 Motor control device

Country Status (3)

Country Link
JP (1) JP3700576B2 (en)
KR (1) KR100800901B1 (en)
CN (1) CN1216453C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029044A (en) * 2008-07-24 2010-02-04 Panasonic Corp Motor controller

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711102B2 (en) * 2002-10-30 2005-10-26 三洋電機株式会社 Single-phase motor driving device, single-phase motor driving method, and integrated circuit
JP2004208450A (en) * 2002-12-26 2004-07-22 Sanden Corp Motor controller
CN100448158C (en) * 2003-04-30 2008-12-31 松下电器产业株式会社 Motor driving apparatus
JP3829838B2 (en) * 2003-11-05 2006-10-04 ソニー株式会社 Sensorless brushless motor
JP2005198376A (en) * 2004-01-05 2005-07-21 Matsushita Electric Ind Co Ltd Method of driving brushless dc motor, and its device
JP4218572B2 (en) * 2004-04-07 2009-02-04 パナソニック株式会社 Dishwasher motor drive
JP4116595B2 (en) * 2004-06-30 2008-07-09 ファナック株式会社 Motor control device
JP4425091B2 (en) * 2004-08-25 2010-03-03 三洋電機株式会社 Motor position sensorless control circuit
JP4261523B2 (en) * 2004-09-03 2009-04-30 パナソニック株式会社 Motor driving apparatus and driving method
US8049455B2 (en) * 2006-10-19 2011-11-01 Mitsubishi Electric Corporation Electric power converter
WO2008067769A1 (en) * 2006-12-05 2008-06-12 Byd Company Limited Control device and method for determining the motor rotor position
CN101682284B (en) * 2007-06-27 2012-04-18 株式会社明电舍 Pseudo current type 120-degree conduction inverter
JP5167717B2 (en) * 2007-08-08 2013-03-21 日本精工株式会社 Motor drive control device and electric power steering device using motor drive control device
JP5195444B2 (en) * 2009-01-14 2013-05-08 パナソニック株式会社 Brushless DC motor driving apparatus, refrigerator and air conditioner using the same
DE102009030884A1 (en) * 2009-06-23 2011-01-05 GÄRTNER ELECTRONIC-DESIGN GmbH Method and device for compensating load influences in permanent-magnet motors
JP5363352B2 (en) * 2010-01-06 2013-12-11 株式会社日立産機システム Drive control device for hoisting machine
KR101852430B1 (en) * 2012-01-30 2018-04-26 엘지전자 주식회사 Apparatus and method for controlling compressor
KR101401474B1 (en) * 2012-12-20 2014-06-03 서울대학교산학협력단 Circuit and method for controlling motor without any position or speed sensor
CN103887992A (en) * 2014-04-10 2014-06-25 重庆瑜欣平瑞电子有限公司 Frequency converter of generator
CN108270382B (en) * 2016-12-30 2021-01-22 杭州三花研究院有限公司 Control method and device
KR20210053687A (en) * 2019-11-04 2021-05-12 엘지전자 주식회사 Device for driving a plurality of motors and electric apparatus including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118944B2 (en) * 1986-03-17 1995-12-18 株式会社日立製作所 Brushless DC motor
US5486743A (en) * 1992-11-19 1996-01-23 Kabushiki Kaisha Toshiba Inverter and air conditioner controlled by the same
JP3935543B2 (en) * 1996-02-01 2007-06-27 株式会社日本自動車部品総合研究所 PM motor control device
JPH10150795A (en) * 1996-11-15 1998-06-02 Toshiba Corp Inverter device
KR100308006B1 (en) * 1998-04-27 2001-11-30 구자홍 compensation method of a position detecting error for BLDC motor
JP2000083397A (en) * 1998-07-10 2000-03-21 Matsushita Electric Ind Co Ltd Control device for motor and motor unit having the same
JP2000278984A (en) * 1999-01-18 2000-10-06 Nsk Ltd Brushless dc motor drive-controlling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029044A (en) * 2008-07-24 2010-02-04 Panasonic Corp Motor controller

Also Published As

Publication number Publication date
KR20020040615A (en) 2002-05-30
CN1356767A (en) 2002-07-03
CN1216453C (en) 2005-08-24
KR100800901B1 (en) 2008-02-04
JP2002165482A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
JP3700576B2 (en) Motor control device
KR100791814B1 (en) Control Method of Sensorless BLDC Motor
EP2058938B1 (en) Controller of multi-phase electric motor
US7141943B2 (en) Brushless DC motor system and method of controlling the same
KR101958159B1 (en) Method of detecting phase current in motor driving device and motor driving device
EP3082249B1 (en) Motor control device and motor control method
JP2001045763A (en) Converter circuit
JPWO2016098410A1 (en) Power conversion device and electric power steering device using the same
JP3741291B2 (en) Sensorless synchronous motor drive device
JP2007267576A (en) Brushless dc motor controller
JP4242679B2 (en) Apparatus and method for controlling brushless DC motor
JP2008172948A (en) Controller for brushless motors
JP3333442B2 (en) Drive device for brushless motor
JP2008193774A (en) Device and method for estimating temperature of rotor of motor
KR20210092540A (en) Power transforming apparatus and air conditioner using the same
JPH04364384A (en) Resistance estimation starting system for induction motor
JP2000245191A (en) Driving device for brushless direct-current motor
JP2002084777A (en) Brushless motor control method and apparatus thereof
JP3492261B2 (en) Inverter device
JP6198083B2 (en) Electric tool
JPH07123773A (en) Drive method for brushless dc motor
JP3815584B2 (en) Sensorless synchronous motor drive device
KR100575669B1 (en) Pmsm field weakening control method
US20230009497A1 (en) Method for operating an electric machine
JP2002247895A (en) Power output device, abnormality detection device therefor, and abnormality detection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees