JP3700182B2 - Clay-organic composite, its composition, use and method for producing clay-organic composite - Google Patents

Clay-organic composite, its composition, use and method for producing clay-organic composite Download PDF

Info

Publication number
JP3700182B2
JP3700182B2 JP34906593A JP34906593A JP3700182B2 JP 3700182 B2 JP3700182 B2 JP 3700182B2 JP 34906593 A JP34906593 A JP 34906593A JP 34906593 A JP34906593 A JP 34906593A JP 3700182 B2 JP3700182 B2 JP 3700182B2
Authority
JP
Japan
Prior art keywords
clay
general formula
organic
organic composite
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34906593A
Other languages
Japanese (ja)
Other versions
JPH07196313A (en
Inventor
雄康 二階堂
加奈子 斎藤
敏和 藤崎
貴裕 関本
興 本間
誠之助 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Co Op Chemical Co Ltd
Original Assignee
Co Op Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Co Op Chemical Co Ltd filed Critical Co Op Chemical Co Ltd
Priority to JP34906593A priority Critical patent/JP3700182B2/en
Publication of JPH07196313A publication Critical patent/JPH07196313A/en
Application granted granted Critical
Publication of JP3700182B2 publication Critical patent/JP3700182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は粘土−有機複合体、その組成物、用途および粘土−有機複合体の製造方法に関し、さらに詳しくは、有機溶媒に分散してゾル又はゲル状を呈する粘土−有機複合体、粘土−有機複合体を有機溶媒に分散させて得られる組成物、有機溶媒用増粘剤又はゲル化剤としての用途および粘土−有機複合体の製造方法に関する。
【0002】
【従来の技術】
EP公開特許第0524503号には、膨潤性層状ケイ酸塩の層間に、一つ以上のポリオキシエチレン基と、他にアルキル基や水素原子よりなる第4級アンモニウムイオンを導入した粘土−有機複合体が、アルコール類、ケトン類、エーテル類、アミド類等の高極性有機溶媒に分散し、増粘性を示すことが、記載されている。
上記特許に記載された粘土−有機複合体は、此れ迄に発表された極性有機溶媒に分散する増粘剤の中で、その効果の点から極めて注目されるべきものである。その粘土−有機複合体を製造するには層状ケイ酸塩の層間イオンと第4級アンモニウムイオンを液中でイオン交換して生成する必要があり、その生成物は濾過・洗浄により液から分離しなければならない。
しかし、EP特許公開第0524503号に記載された物質を製造しようとすると、あまりにも微細な結晶のため、限外濾過による副生不純物の分離及びその後の遠心沈降分離による濃縮等の操作を繰り返した後で乾燥する必要があり、工業的にはコストがかかりすぎて経済的に極めて不利であった。
【0003】
また、米国特許第4,677,158号及び特開平5−57288号公報にも同様な粘土−有機複合体が記載されているが、これらにも工業的に製造する場合の濾過・分離についての特別な記載はない。
【0004】
また、EP公開特許第0133071号には、スメクタイト属粘土鉱物に、ジアルキルジメチル(又はメチルベンジル)アンモニウムとモノ又はポリオキシアルキレン基を有する含チッソ有機界面活性剤の2種類を作用させて得られる生成物が、有機溶媒の粘性を高めると記載されている。
【0005】
更に、特開平2−56239号公報(国際公開番号WO89/12500)には、テトラアルキル(一部ベンジル基またはヒドロキシアルキル基の場合もある)アンモニウムイオンにより変性された有機変性粘土鉱物とプロピレンオキサイド鎖及び/又はエチレンオキサイド鎖を有するカチオン界面活性剤の混合物が有機溶剤に分散してゲル組成物が得られると記載されている。
しかし、実際には両者共、有機溶媒に対する分散性が不十分であった。
【0006】
このように、工業的に製造する場合に問題となる生成した粘土−有機複合体の液からの分離が容易で、アルコール類、ケトン類、エーテル類、アミド類等の有機溶媒によく分散して、増粘性を示し、更に望ましくは粉砕が容易な粘土−有機複合体は此れ迄報告されておらず、その出現が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明は、有機溶媒に極めてよく分散して分散液がチクソトロピックな粘性を示し、製造工程中の濾過分離が容易で工業的に大量生産可能で、更に生成物の粉砕性やハンドリング面でも有利な粘土−有機複合体を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明者等は、各種の膨潤性層状ケイ酸塩の層間に種々の第4級アンモニウムイオンを導入して粘土−有機複合体を生成し、有機溶媒への分散性、複合体生成時の液からの濾過・分離性、生成物の粉砕性やハンドリング性等のテストを行い、ある条件下で生成した粘土−有機複合体により課題を解決することができることを見出し、本発明を成すに至った。
【0009】
即ち、本発明は、膨潤性層状ケイ酸塩の層間に、一般式(1)(化6)、一般式(2)(化7)で示される、ポリオキシエチレン基を有する2種類の異なる第4級アンモニウムイオンを導入して得られる粘土−有機複合体、およびそれを有機溶媒に分散させて得られる組成物、およびその粘土−有機複合体よりなる有機溶媒用増粘剤又はゲル化剤、および粘土−有機複合体の製造方法に関するものである。
以下、本発明を詳細に説明する。
【0010】
【化6】

Figure 0003700182
【0011】
【化7】
Figure 0003700182
【0012】
本発明で用いられる膨潤性層状ケイ酸塩として、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、バイデライト、モンモリロナイト、ノントロナイト又はベントナイト等のスメクタイト属粘土鉱物やNa型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母及びバーミキュライト又はこれ等の置換体、誘導体あるいは混合物を挙げることができる。
【0013】
スメクタイト属粘土鉱物は、生成する粘土−有機複合体の有機溶媒への分散性の点で好ましく、その中でも3−八面体型スメクタイトであるヘクトライト、サポナイト、スチブンサイト及びその類似化合物の合成品がより好ましく、最も好ましいのは請求項4に記載した一般式(3)で示されるスメクタイト属粘土鉱物である。
それは、特公昭61−12848号公報に記載されている製法、あるいはそれと類似の製法でつくられる。つぎにその製法について記載するが、もちろんこれに限定されるものではない。
【0014】
まず、ケイ酸とマグネシウム塩の均質混合液はケイ酸溶液とマグネシウム塩水溶液の混合あるいはマグネシウム塩をケイ酸溶液に直接溶解することにより得られる。
ケイ酸とマグネシウム塩の混合割合は請求項4に記載した一般式(3)を満足するような化学量論的割合であるのが好ましいが、いずれか一方を過剰に用いることもできる。ケイ酸溶液はケイ酸ナトリウム溶液と鉱酸を混合し、液のpHを酸性とすることにより得られる。ケイ酸ナトリウムは一般に市販されている1号ないし4号水ガラスならびにメタケイ酸ナトリウムはいずれも使用できる。
【0015】
鉱酸としては硝酸、塩酸、硫酸などが用いられる。ケイ酸塩溶液と鉱酸を混合する場合、鉱酸の量が少ないとゲル化する場合が多いので、液のpHが5以下、好ましくは1〜3の間になるようケイ酸ナトリウムと鉱酸の割合を選ぶ必要がある。
【0016】
次に常温でケイ酸とマグネシウム塩の均質混合溶液とアルカ溶液を混合して均質沈殿を得る。
アルカリ溶液としてはアンモニア水、水酸化ナトリウム溶液、水酸化リチウム溶液、水酸化カリウム溶液及びそれらの混合溶液などが用いられる。アルカリ溶液の量は混合後のpHが10以上になる量を選ぶ。
【0017】
次いで濾過、水洗を繰り返して副生した溶解質を充分に除去する。工業的に副生した溶解質を除去する方法としては、特開平5−279012号公報に記載されているようにクロスフロー方式による限外濾過処理(レイノルズ数50〜5000、濾過膜の平均細孔径0.1〜5μm)を採用することが望ましいが、同様な分離・除去効果が得られれば、この方式に限定されない。
【0018】
次にこの均質沈殿にリチウムイオン、必要に応じてリチウムイオン以外のアルカリ金属等の一価陽イオン、フッ素イオンを添加し、オートクレーブ等の加圧反応器に仕込み100〜350℃で反応させる。
【0019】
一般に反応温度が高いほど速度は大となり、反応時間が長いほど結晶化は良好となるが、常圧100℃の条件では少なくとも6時間以上、望ましく24時間以上の反応時間を要し、41kg/cm2 、250℃の条件では1〜3時間で充分である。
【0020】
添加すべきリチウムイオン、ナトリウムイオンおよびフッ素イオン等は、例えば水酸化リチウム、水酸化ナトリウムフッ化水素酸ならびにフッ化ナトリウム等から選ぶことができるが、これらに限定されるものではない。フッ素イオンは特に添加しなくとも、本発明の対象となる生成物は得られるが、フッ素イオンを添加すると生成物の熱に対する安定性の向上等の微妙な差が生じるため、必要に応じて添加する。
【0021】
反応終了後、反応生成物を乾燥し、粉砕することにより、最終的製品が得られる。
このようにして得られたケイ酸塩は、3−八面体型スメクタイト属粘土鉱物であるヘクトライトの構造のX線回析パターンを示す。また、水中において優れた膨潤性および分散性を示し、その分散液はチクソトロピックな粘性を示し、殆ど着色しない水系ゾル・ゲルを生成する特徴がある。
【0022】
それに、層間に存在する陽イオンが関与する陽イオン交換容量は、通常、粘土100gあたり70〜150ミリ当量と非常に大きい。この高い陽イオン交換容量を有することにより、イオン交換法で第4級アンモニウムイオンを層間に導入できる。
【0023】
本発明の粘土−有機複合体を製造するのに使用される膨潤性層状ケイ酸塩の陽イオン交換容量は、粘土100g当り10ミリ当量以上、好ましくは60ミリ当量以上であり、交換容量が大きい程よい。膨潤性層状ケイ酸塩は、50%以下の非粘土不純物を含有していてもよいが、非粘土不純物の量は10%以下が望ましい。
【0024】
また、本発明では層間に一般式(1)と一般式(2)で示される2種類の異なる第4級アンモニウムイオンを導入する点に特徴がある。
一般式(1)の第4級アンモニウムイオンにおいて、ひとつの基はCX2X+1で示されるアルキル基であり、X=5〜20、好ましくは12〜18であり、具体例として、例えば、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、オクタデシル基等が挙げられ、特に好ましくはオクタデシル基である。
もう1つの基はCZ2Z+1で示されるアルキル基(Z=1〜4)又はベンジル基であり、好ましくはメチル基又はベンジル基である。
【0025】
他の2つの基であるポリオキシエチレン基のn+m=5〜30であり、好ましくは12〜20であり、特に好ましくは15である。
【0026】
一般式(2)の第4級アンモニウムイオンにおいて、二つの基はC20のアルキル基であり、例えばメチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、オクタデシル基等が挙げられる。
もう1つの基はCzH2z+1で示されるアルキル基(Z=1〜4)又はベンジル基であり、好ましくはメチル基又はベンル基である。
他の1つの基であるポリオキシエチレン基のnは5〜30であり、好ましくは10〜20であり、特に好ましくは15である。
なお、一般式(1)、一般式(2)で示される2種類の異なる第4級アンモニウムイオンを導入するに際し、両者ともにおのおのの一般式(1)、一般式(2)の範囲内で分子構造の異なる複数のイオンを層間に導入してもいっこうに差し支えない。
【0027】
一般式(1)、一般式(2)の第4級アンモニウムイオンを導入するには、該イオンを含む第4級アンモニウム塩が用いられるが、そのような塩としては、該イオンと、例えばClイオン、Brイオン、NO3 イオン、CH3 COOイオン等の陰イオンとの塩を挙げることができる。
なお、本発明の粘土−有機複合体は一般式(1)、一般式(2)で示される2種類の第4級アンモニウムイオンを膨潤性層状ケイ酸塩の層間に導入することで得られるが、更に上記以外の種々の第4級アルキルアンモニウムイオンや、種々の無機陽イオンを同時に導入しても本発明の目的を損なうことはない。
一般式(1)、一般式(2)で示される2種類の第4級アンモニウムイオンの合計導入量の割合は層間のイオン交換容量の50%以上が望ましく、特に望ましくは95%以上である。
【0028】
本発明の粘土−有機複合体は、層間の陽イオン交換により得られるが、例えば以下の方法で製造することができる。
第1段階として前記した方法で得られた膨潤性層状ケイ酸塩を水中に分散させる。その固体分散濃度は通常1〜15重量%が望ましいが、膨潤性層状ケイ酸塩が十分分散可能な濃度の範囲なら自由に設定することができる。次にこの膨潤性層状ケイ酸塩懸濁液に前述の2種類の異なる第4級アンモニウム塩溶液を添加するか、又は逆に前述の2種類の異なる第4級アンモニウム塩溶液に膨潤性層状ケイ酸塩懸濁液を添加することによっても粘土−有機複合体を製造することが可能である。
【0029】
2種類の異なる第4級アンモニウム塩は通常5〜50重量%の混合水溶液として膨潤性層状ケイ酸塩懸濁液と混合するが、別々の溶液として順序の別なく膨潤性層状ケイ酸塩懸濁液と混合してもいっこうにかまわない。
なお、混合時、アルコール等の有機溶媒を加え、有機溶媒含有液中で反応させてもよい。
【0030】
2種類の第4級アンモニウム塩は、一般式(1)と一般式(2)で示される第4級アンモニウムイオンのモル比率、即ち、(1):(2)の比率が好ましくは1:2〜4:1、特に好ましくは1:〜4:1の割合であり、その合計の第4級アンモニウム塩量として膨潤性層状ケイ酸塩の陽イオン交換容量の当量用いるのが望ましいが、これより少ない量でも製造は可能である。
【0031】
また、陽イオン交換容量に対しても過剰量添加しても差し支えない。その量は該粘土の陽イオン交換容量の0.5〜1.5倍量(ミリ当量換算)、とくに0.8〜1.2倍量であることが好ましい。
【0032】
反応は室温で十分進行するが、加温してもよい。加温の最高温度は用いる第4級アンモニウム塩の分解点以下であれば任意に設定が可能であり、一般的には10〜90℃、好ましくは15〜70℃である。
反応時間は数分〜数時間と反応条件により異なるが、一般的には30分〜2時間程度である。
【0033】
次いで固液を分離し、生成した粘土−有機複合体を水洗浄して副生溶解質を十分に除去する。この粘土−有機複合体の液からの分離、洗浄は極めて容易であり、ごく一般的な濾過分離機で十分である。例えば実験室規模では、ブフナ−漏斗(濾紙を敷く)を用いた減圧濾過・洗浄或いは遠心脱水機による濾過・洗浄で容易に行われる。
【0034】
このようにして得られた粘土−有機複合体を乾燥し(通常は100℃以下)、必要に応じて粉砕して最終製品とする。
このようにして得られた粘土−有機複合体を有機溶媒に添加し、攪拌等により分散させることにより、溶媒に分散した粘土−有機複合体組成物を容易に得ることができる。
分散しうる量であれば、添加量は多いほど増粘効果が高い。添加量は用途により大きく異なるが、一般的には有機溶媒に対し0.1〜20重量%の範囲で分散させ、各種の用途に用いることができる。
【0035】
最終製品として得られた粘土−有機複合体は、有機溶媒に分散させるとチクソトロピックな粘性を示すため、有機溶媒用の増粘剤又はゲル化剤として、有機溶媒に対し0.1〜20重量%の範囲で分散させて用いる事ができる。
【0036】
なお、有機溶媒としては、高極性、低極性或いは無極性の各種有機溶媒、具体的にはメタノール、エタノール、プロパノール等のアルコール類;アセトン等のケトン類;ジメチルホルムアミドのようなアミド類;テトラヒドロフラン、メチルセロソルブ等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;四塩化炭素、クロロホルム、ジクロロメタン、パークロロエチレン、クロロベンゼン等のハロゲン化炭化水素類及びジメチルスルホキシド、N−メチル−2−ピロリドン等の溶剤に分散する。
また、溶媒として上記の2つ以上を混合したもの、あるいは水などのほかの無機溶媒と上記溶媒を混合した各種溶媒を用いることもできる。
また、粘性を高めるために、水などの極性溶媒を添加する必要はないが、使用に当たって添加することはいっこうに差し支えない。
【0037】
【作用】
本発明で得られる粘土−有機複合体が有機溶媒に親和性を有し、更に分散して増粘効果を示すのは、ポリオキシエチレン基の酸素または末端の水酸基と有機溶媒の水酸基又は酸素とが水素結合するため、ないしは層間有機物と有機溶媒との親水性、疎水性バランスの一致により、溶媒分子が膨潤性層状ケイ酸塩の層間に侵入して層間を押し広げ、更に積層したケイ酸塩層を分離させるためと考えられる。
分離したケイ酸塩層は、層面に残る陰電荷や端面の陽電荷により相互に不規則な結合をして、ゾル・ゲル構造を形成するものと推測される。
【0038】
一般式(1)で示される第4級アンモニウムイオンを単独で膨潤性層状ケイ酸塩の層間に導入して得られる粘土−有機複合体も、同様に有機溶媒に親和性を有し、分散するが、分散性は本発明の粘土有機複合体より劣り、製造時の液からの濾過分離・洗浄が極めて悪く、普通の濾過分離・洗浄では事実上不可能に近い。
【0039】
これを濾過分離・洗浄するには、例えば、極めて薄い分散液にして、特開平5−279012号公報に記載されているようにクロスフロー方式による限外濾過処理法を採用し、濃縮・希釈を繰り返して副生溶解質を分離し、その後遠心沈降により濃縮し、それを集めて乾燥するという気の遠くなるような方法を採用しなければならない。
【0040】
また、一般式(2)で示される第4級アンモニウムイオンを単独で膨潤性層状ケイ酸塩の層間に導入して得られる粘土−有機複合体は、有機溶媒に親和性を有せず、分散しない。
【0041】
一方、一般式(1)で示される第4級アンモニウムイオンと一般式(2)で示される第4級アンモニウムイオンを別々に膨潤性層状ケイ酸塩の層間に導入して得られる2種類の粘土−有機複合体を製造し、それを本発明と同様の比率で混合したものは、有機溶媒中では下方に一般式(2)を層間に導入した複合体が沈降し、分散性も悪い。
【0042】
本発明で得られる粘土−有機複合体は、有機溶媒に親和性を有し、分散して増粘効果を示すとともに、更に、製造時の液からの濾過分離・洗浄が極めてよく、その上最終製品の粉砕性がよい。
それは、個々の結晶粒子内の層間に一般式(1)と一般式(2)で示される2種類の異なる第4級アンモニウムイオンが混ざりあって導入されていることに起因していると判断される。この2種類の異なる第4級アンモニウムイオンが混ざりあうことにより、一般式(1)の有する有機溶媒に対する親和性を保ち、或いは更に向上させながら、これらの2種類のイオンに含まれている(CH2 CH2 O)n Hまたは(CH2 CH2 O)m H、及びその基に基づく各粒子間の外周部での水素結合力が一般式(1)のみの場合より弱くなり、その結果、各粒子間での粒子同志の凝集性が向上し、液からの濾過分離・洗浄性や最終製品の粉砕性がよくなるものと判断される。
【0043】
【実施例】
以下に実施例によって本発明をさらに詳しく説明するが、本発明の主旨を逸脱しない限り、本発明は実施例に限定されるものではない。
(合成例1)膨潤性層状ケイ酸塩(“S”)の合成
先ず、ヘクトライト型粘土鉱物の構造、すなわち一般式(3)
M0.11.0 Mg2.42.9 Li0.10.6 Si3.54.5 O9.510.5(OH 及び/又はF)1.52.5(Mはアルカリ金属イオン、アンモニウムイオンを含む一価の陽イオンから選んだ少なくとも一個の陽イオン)
を有する人工粘土鉱物の合成について示す。
10リットルのビーカーに水4リットルを入れ、3号水ガラス(SiO2 28%、Na2 O9%、モル比3.22)860gを溶解し、95%硫酸162gを攪拌しながら一度に加えてケイ酸溶液を得る。次に水1リットルに塩化マグネシウム6水和物[MgCl2 ・6H2 O、一級試薬(純度98%)]560gを溶解し、ケイ酸溶液に加えて均質混合溶液を調製し、2規定水酸化ナトリウム溶液3.6リットル中に攪拌しながら5分間で滴下する。直ちに得られた反応均質複合沈殿物を、日本ガイシ株式会社のクロスフロー方式による濾過システム[クロスフロー濾過器(セラミック膜フィルター:孔径2μm、チューブラータイプ、濾過面積400cm2 )]で濾過及び充分に水洗した後、水200ミリリットルと水酸化リチウム1水和物[Li(OH)・H2 O]14.5gとよりなる溶液を加えてスラリー状とし、オートクレーブに移し、41kg/cm2 、250℃で3時間、水熱反応させた。
冷却後、反応物を取りだし、80℃で乾燥し、粉砕して生成物(“S”)を得た。生成物を分析し、つぎの組成のものが得られた。
Na0.4 Mg2.6 Li0.4 Si4.010(OH)2.0
また、メチレンブルー吸着法で測定した陽イオン交換能(容量)は101mg当量/100gであり、ヘクトライト構造のX線回析パターンを示した。
【0044】
(実施例1)
(粘土−有機複合体の製造−その1)
上記の製造で得られた膨潤性層状ケイ酸塩“S”20gを純水1000mlに分散させ、陽イオン交換容量の1.1倍相当量になるように、下記の一般式(6)(化8)と一般式(7)(化9)に記載の第4級アンモニウム塩(95%以上含有品)を(6):(7)=2:1又は7:3の割合(モル比率)で溶解させた溶液500mlを前記の合成膨潤性層状ケイ酸塩分散液に添加し、攪拌しながら60℃で2時間反応させた。
生成物を直径18.5cmのブフナー漏斗(東洋濾紙No.C131の濾紙を敷く)を用いて減圧濾過し、固液分離、洗浄して副生塩類を除去した後、60℃で48時間乾燥後、粉砕して、2種類の異なる粘土−有機複合体A(2:1の場合)と粘土−有機複合体B(7:3の場合)を得た。
製造時、減圧濾過による固液分離と洗浄はどちらも極めて良好で1分以内に終了した。また、得られた粘土−有機複合体は両者とも非粘着性粉末であった。得られた2種類の粘土−有機複合体を有機溶媒に混合して、分散性と粘性を測定した。
粘土−有機複合体Aと粘土−有機複合体Bの分散性を表1に示した。
また、粘土−有機複合体Aの粘性を表2に、粘土−有機複合体Bの粘性を表3に示した。
【0045】
【化8】
Figure 0003700182
【0046】
【化9】
Figure 0003700182
【0047】
なお、有機溶媒に対する分散性テストは次の方法により行った。
(有機溶媒に対する分散性テスト方法)
50mlの試験管に、粘土−有機複合体を0.6gと有機溶媒29.4gをはかりとり、2%分散液にする。12時間振盪し、その後25℃のインキュベーター中に24時間静置し、分散状態を観察した。
Figure 0003700182
【0048】
また、有機溶媒に対する粘性テストは次の方法により行った。
(テスト方法)
粘土−有機複合体を、有機溶媒に各種濃度で分散させ、回転粘度計(東京計器株式会社製B型粘度計)を用い、6回転/分(剪断速度7.158/s)と60回転/分(剪断速度71.58/s)における見かけ粘度(mPa・s)を測定した。
【0049】
(実施例2)
(粘土−有機複合体の製造−その2)
膨潤性層状ケイ酸塩としてラポナイトXLG(英国、ラポート社製合成ヘクトライト類似物質;陽イオン交換能(容量)は88mg当量/100g)20gを純水1000mlに分散させ、陽イオン交換容量の1.1倍相当量になるように、下記一般式(8)(化10)と一般式(9)(化11)に記載の第4級アンモニウム塩(95%以上含有品)を(8):(9)=2:1又は7:3の割合(モル比率)で溶解させた溶液500mlを前記の合成膨潤性層状ケイ酸塩分散液に添加し、攪拌しながら60℃で2時間反応させた。
以下、実施例1と同様にして2種類の異なる粘土−有機複合体C(2:1の場合)、粘土−有機複合体D(7:3の場合)を得た。
製造時、減圧濾過による固液分離と洗浄はどちらも極めて良好で1分以内に終了した。また、得られた粘土−有機複合体は両者とも非粘着性粉末であった。得られた2種類の粘土−有機複合体を有機溶媒に混合して、実施例1と同様にして分散性と粘性を測定した。
粘土−有機複合体Cと粘土−有機複合体Dの分散性を表1に示した。
また、粘土−有機複合体Cの粘性を表4に、粘土−有機複合体Dの粘性を表5に示した。
【0050】
【化10】
Figure 0003700182
【0051】
【化11】
Figure 0003700182
【0052】
【表1】
Figure 0003700182
【0053】
【表2】
Figure 0003700182
【0054】
【表3】
Figure 0003700182
【0055】
【表4】
Figure 0003700182
【0056】
【表5】
Figure 0003700182
【0057】
(比較例1)
実施例1で用いた膨潤性層状ケイ酸塩“S”20gを純水1000mlに分散させ、その陽イオン交換容量の1.1倍相当量の前記一般式(6)(化8)に記載の第4級アンモニウム塩(95%以上含有品)を溶解させた溶液500mlを前記の合成膨潤性層状ケイ酸塩分散液に添加し、攪拌しながら、60℃で2時間反応させた。
反応生成物を直径18.5cmのブフナー漏斗(東洋濾紙No.C131の濾紙を敷く)を用いて減圧濾過で固液分離しようと試みたが、濾紙が目詰まりをおこし、固液分離できなかった。
それでやむを得ず、反応生成物を特開平5−279012号公報に記載されているようなクロスフロー方式による限外濾過処理(濾過膜の平均細孔径0.5μm)で濃縮・希釈を繰り返して副生塩類を除去した後、遠心分離機で固形分を沈降分離して回収し、60℃で72時間乾燥後、粉砕して、粘土−有機複合体Eを得た。
得られた粘土−有機複合体Eは実施例1と同様に有機溶媒に混合して分散性テストをした。テストの結果、メタノール、エタノール、ジメチルホルムアミドに分散した場合は、分散性の評価は何れも▲1▼(完全分散)であったが、テトラヒドロフラン、トルエン、パークロロエチレンに分散した場合は何れも評価が▲4▼(分散するが、下方に多くの沈降物あり)であり、キシレンに分散した場合は評価が▲5▼(分散不良)であった。
【0058】
(比較例2)
実施例1で用いた膨潤性層状ケイ酸塩“S”20gを純水1000mlに分散させ、その陽イオン交換容量の1.1倍相当量の前記一般式(7)(化9)に記載の第4級アンモニウム塩(95%以上含有品)を溶解させた溶液500mlを前記の合成膨潤性層状ケイ酸塩分散液に添加し、攪拌しながら、60℃で2時間反応させた。
反応生成物を直径18.5cmのブフナー漏斗(東洋濾紙No.C131の濾紙を敷く)を用いて減圧濾過し、固液分離、洗浄して副生塩類を除去した後、60℃で48時間乾燥後、粉砕して粘土−有機複合体Fを得た。製造時、減圧濾過による固液分離と洗浄に要した時間は1分程度であった。
得られた粘土−有機複合体Fは実施例1と同様に有機溶媒に混合して分散性テストをした。テストの結果、メタノール、エタノールに分散した場合は、分散性の評価は何れも▲5▼(分散不良)であった。
【0059】
(比較例3)
比較例1と比較例2で得られた2種類の異なる粘土−有機複合体Eと粘土−有機複合体Fをモル比率でE:F=2:1になるように混ぜ、実施例1と同様に有機溶媒に混合して分散性テストをした。テストの結果、メタノール、エタノールに分散した場合は、分散性の評価は何れでも▲2▼(分散するが、下方に微量の沈降物あり)〜▲3▼(分散するが、下方にかなりの沈降物あり)程度であったが、粘土−有機複合体Fは下方に沈降していた。
【0060】
(比較例4)
合成例1で得られた膨潤性層状ケイ酸塩“S”20gを純水1000mlに分散させ、陽イオン交換容量の1.1倍相当量になるように、前記一般式(6)(化8)に記載の第4級アンモニウム塩:塩化ジオクタデシルジメチルアンモニウム(95%以上含有品)=2:1又は1:2の割合(モル比率)で溶解させた溶液500mlを前記の合成膨潤性層状ケイ酸塩分散液に添加し、攪拌しながら60℃で2時間反応させた。
生成物を直径18.5cmのブフナー漏斗(東洋濾紙No.C131の濾紙を敷く)を用いて減圧濾過し、固液分離、洗浄して副生塩類を除去した後、60℃で48時間乾燥後、粉砕して、2種類の異なる粘土−有機複合体G(2:1の場合)とH(1:2の場合)を得た。製造時、減圧濾過による固液分離と洗浄はどちらも良好で1分以内に終了した。得られた粘土−有機複合体は実施例1と同様に有機溶媒に混合して分散性テストをした。テストの結果、メタノール、エタノール分散した場合は、分散性の評価は何れも▲5▼(分散不良)であった。
【0061】
(比較例5)
合成例1で得られた膨潤性層状ケイ酸塩“S”20gを純水1000mlに分散させ、陽イオン交換容量の1.1倍相当量になるように、塩化ジオクタデシルジメチルアンモニウム(95%以上含有品)を溶解させた溶液500mlを前記の合成膨潤性層状ケイ酸塩分散液に添加し、攪拌しながら60℃で2時間反応させた。
生成物を直径18.5cmのブフナー漏斗(東洋濾紙No.C131の濾紙を敷く)を用いて減圧濾過し、固液分離、洗浄して副生塩類を除去した後、60℃で48時間乾燥後、粉砕して、粘土7有機複合体Iを得た。製造時、減圧濾過による固液分離と洗浄はどちらも良好で1分程度で終了した。
得られた粘土−有機複合体Iと塩化ポリオキシプロピレン(25)ジエチルメチルアンモニウム(95%以上含有品)を1:1の割合(重量比)で、実施例1と同様に有機溶媒に混合して分散性テストをした。テストの結果、メタノール、エタノール分散した場合は、分散性の評価は何れも▲4▼(分散するが、下方に多くの沈降物あり)〜▲5▼(分散不良)であった。
【0062】
【発明の効果】
本発明の粘土−有機複合体は、高極性、低極性或いは無極性の各種有機溶媒、例えば低級アルコール類、高級アルコール類、ケトン類、アミド類、エーテル類、芳香族炭化水素類、ハロゲン化炭化水素類及びジメチルスルホキシド、N−メチル−2−ピロリドン等の溶媒に分散し、分散液は増粘性を示す。
また、製造時の液からの濾過分離・洗浄が極めてよいため、製造コストが安くなり大量生産が可能であり、その上最終製品の粉砕性がよく微粉砕が可能であるため、各種の用途に利用できる。
用途としては、例えば、粘土−有機複合体そのままの形態で、あるいは各種の有機溶媒に分散させて、化粧品、医薬品、衛生剤、接着剤、塗料、染料原料、各種プラスチック製品、繊維工業等各種の製品や工業プロセスにおいて、粘性調整剤、分散剤、乳化剤、粘結剤等の組成物として、用いることができる。
更に、この粘土−有機複合体は、ポリオキシエチレン基を含むため、プラスチックや繊維の帯電防止剤、殺菌剤、染色助剤、カップリング剤等としても有用に活用できる。
また、その層空間を利用して、有機物質貯蔵剤、徐放剤、触媒、分離剤、吸着剤、樹脂安定剤、重合開始剤、担体、フイラー等として利用することもできる。[0001]
[Industrial application fields]
The present invention relates to a clay-organic composite, its composition, use, and a method for producing a clay-organic composite, and more specifically, a clay-organic composite, clay-organic, which is dispersed in an organic solvent and exhibits a sol or gel form. The present invention relates to a composition obtained by dispersing a composite in an organic solvent, a use as a thickener or a gelling agent for an organic solvent, and a method for producing a clay-organic composite.
[0002]
[Prior art]
In EP Publication No. 0524503, a clay-organic composite in which one or more polyoxyethylene groups and a quaternary ammonium ion composed of an alkyl group or a hydrogen atom is introduced between layers of a swellable layered silicate. It is described that the body disperses in highly polar organic solvents such as alcohols, ketones, ethers, amides, and exhibits thickening.
The clay-organic composites described in the above patents are of particular interest among the thickeners dispersed in polar organic solvents that have been published so far. In order to produce the clay-organic composite, it is necessary to produce the layered silicate intercalation ions and quaternary ammonium ions by ion exchange in the liquid, and the product is separated from the liquid by filtration and washing. There must be.
However, when trying to produce the substance described in EP Patent Publication No. 0524503, because of too fine crystals, operations such as separation of by-product impurities by ultrafiltration and subsequent concentration by centrifugal sedimentation were repeated. It was necessary to dry later, and it was too expensive industrially, which was extremely disadvantageous economically.
[0003]
US Pat. No. 4,677,158 and Japanese Patent Laid-Open No. 5-57288 also describe similar clay-organic composites. These are also used for filtration and separation in industrial production. There is no special description.
[0004]
In addition, in EP Publication No. 0133071, a product obtained by reacting two types of organic surfactants containing dialkyldimethyl (or methylbenzyl) ammonium and a mono- or polyoxyalkylene group with smectite clay minerals. Is described as increasing the viscosity of the organic solvent.
[0005]
Further, JP-A-2-56239 (International Publication No. WO89 / 12500) discloses an organically modified clay mineral and a propylene oxide chain modified with a tetraalkyl (sometimes a benzyl group or a hydroxyalkyl group) ammonium ion. And / or a mixture of a cationic surfactant having an ethylene oxide chain is dispersed in an organic solvent to obtain a gel composition.
However, in reality, both of them have insufficient dispersibility in organic solvents.
[0006]
In this way, it is easy to separate the produced clay-organic complex from the liquid, which is a problem in industrial production, and is well dispersed in organic solvents such as alcohols, ketones, ethers and amides. A clay-organic complex that exhibits thickening properties and is more easily pulverized has not been reported so far, and its appearance has been desired.
[0007]
[Problems to be solved by the invention]
The present invention is very well dispersed in an organic solvent, and the dispersion has a thixotropic viscosity, can be easily filtered and separated during the production process, can be industrially mass-produced, and is also advantageous in terms of pulverization and handling of the product. A clay-organic complex.
[0008]
[Means for Solving the Problems]
The present inventors introduced various quaternary ammonium ions between layers of various swellable layered silicates to produce clay-organic composites, dispersibility in organic solvents, and liquids at the time of composite production. From the results of tests such as filterability / separability from the product, grindability and handling properties of the product, it was found that the problem could be solved by the clay-organic composite produced under certain conditions, and the present invention was achieved. .
[0009]
That is, the present invention provides two different types of polyoxyethylene groups represented by the general formula (1) (chemical formula 6) and the general formula (2) (chemical formula 7) between the layers of the swellable layered silicate. A clay-organic complex obtained by introducing a quaternary ammonium ion, a composition obtained by dispersing it in an organic solvent, and a thickener or gelling agent for an organic solvent comprising the clay-organic complex; And a method for producing a clay-organic composite.
Hereinafter, the present invention will be described in detail.
[0010]
[Chemical 6]
Figure 0003700182
[0011]
[Chemical 7]
Figure 0003700182
[0012]
As the swellable layered silicate used in the present invention, natural or synthetic hectrite, saponite, stevensite, beidellite, montmorillonite, nontronite, bentonite and other smectite clay minerals, Na-type tetrasilicic fluoromica, Li Swellable mica and vermiculite, such as type tetrasilicic fluorine mica, Na type fluorine teniolite, and Li type fluorine teniolite, and their substitutes, derivatives or mixtures.
[0013]
The smectite genus clay mineral is preferable from the viewpoint of dispersibility of the resulting clay-organic complex in an organic solvent, and among these, synthetic products of hectorite, saponite, stevensite, and similar compounds that are 3-octahedral smectites are more preferable. Preferably, the smectite genus clay mineral represented by the general formula (3) described in claim 4 is preferred.
It can be produced by the production method described in Japanese Patent Publication No. 61-12848 or a similar production method. Next, the production method will be described, but the present invention is of course not limited thereto.
[0014]
First, a homogeneous mixed solution of silicic acid and magnesium salt is obtained by mixing a silicic acid solution and an aqueous magnesium salt solution or by directly dissolving the magnesium salt in the silicic acid solution.
The mixing ratio of silicic acid and magnesium salt is preferably a stoichiometric ratio that satisfies the general formula (3) described in claim 4, but either one can be used in excess. The silicic acid solution is obtained by mixing a sodium silicate solution and a mineral acid to make the pH of the solution acidic. As sodium silicate, any of commercially available No. 1 to No. 4 water glass and sodium metasilicate can be used.
[0015]
As the mineral acid, nitric acid, hydrochloric acid, sulfuric acid and the like are used. When mixing a silicate solution and a mineral acid, if the amount of mineral acid is small, gelation often occurs, so that the pH of the solution is 5 or less, preferably between 1 and 3, so that sodium silicate and mineral acid are used. It is necessary to choose the ratio.
[0016]
Next, a homogeneous mixed solution of silicic acid and magnesium salt andReMix the solution to obtain a homogeneous precipitate.
As the alkaline solution, ammonia water, sodium hydroxide solution, lithium hydroxide solution, potassium hydroxide solution, and a mixed solution thereof are used. The amount of the alkaline solution is selected so that the pH after mixing is 10 or more.
[0017]
Subsequently, filtration and washing are repeated to sufficiently remove the by-product solute. As a method for removing industrially by-produced solute, as described in JP-A-5-279012, ultrafiltration treatment (Reynolds number 50 to 5000, average pore diameter of filtration membrane) It is desirable to employ 0.1 to 5 μm), but it is not limited to this method as long as the same separation / removal effect can be obtained.
[0018]
Next, lithium ions, if necessary, monovalent cations such as alkali metals other than lithium ions, and fluorine ions are added to this homogeneous precipitate, and charged into a pressure reactor such as an autoclave and reacted at 100 to 350 ° C.
[0019]
In general, the higher the reaction temperature, the higher the rate, and the longer the reaction time, the better the crystallization. However, at normal pressure of 100 ° C., the reaction time is at least 6 hours, preferably 24 hours or more, and 41 kg / cm.2 Under the condition of 250 ° C., 1 to 3 hours is sufficient.
[0020]
Lithium to be addedion, Sodium ion, fluorine ion, etc., for example, lithium hydroxide, sodium hydroxide,Although it can choose from hydrofluoric acid, sodium fluoride, etc., it is not limited to these. Even if fluorine ions are not added, the product that is the object of the present invention can be obtained. However, addition of fluorine ions causes subtle differences such as improvement in the stability of the product against heat. To do.
[0021]
  After completion of the reaction, the final product is obtained by drying and grinding the reaction product.
  The silicate thus obtained is Hectra, which is a 3-octahedral smectite clay mineral.XA line diffraction pattern is shown. Further, it exhibits excellent swelling and dispersibility in water, and the dispersion has a characteristic of producing a water-based sol-gel that exhibits thixotropic viscosity and is hardly colored.
[0022]
In addition, the cation exchange capacity involving cations present between the layers is usually very large, 70 to 150 milliequivalents per 100 g of clay. By having this high cation exchange capacity, quaternary ammonium ions can be introduced between the layers by an ion exchange method.
[0023]
The cation exchange capacity of the swellable layered silicate used to produce the clay-organic composite of the present invention is 10 milliequivalents or more, preferably 60 milliequivalents or more per 100 g of clay, and the exchange capacity is large. Moderate. The swellable layered silicate may contain 50% or less of non-clay impurities, but the amount of non-clay impurities is preferably 10% or less.
[0024]
Further, the present invention is characterized in that two types of different quaternary ammonium ions represented by the general formula (1) and the general formula (2) are introduced between the layers.
In the quaternary ammonium ion of the general formula (1), one group is CX H2X + 1X = 5-20, preferably 12-18, and specific examples include dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, octadecyl group, etc., particularly preferably octadecyl group. It is.
Another group is CZ H2Z + 1Is an alkyl group (Z = 1 to 4) or a benzyl group, preferably a methyl group or a benzyl group.
[0025]
It is n + m = 5-30 of the polyoxyethylene group which is other two groups, Preferably it is 12-20, Most preferably, it is 15.
[0026]
In the quaternary ammonium ion of the general formula (2), the two groups are C1~20Examples thereof include methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, octadecyl group and the like.
Another group is CzH2z + 1An alkyl group (Z = 1 to 4) or a benzyl group, preferably a methyl group or aTheGroup.
N of the polyoxyethylene group which is another one group is 5 to 30, preferably 10 to 20, and particularly preferably 15.
In addition, when two different types of quaternary ammonium ions represented by the general formula (1) and the general formula (2) are introduced, both are molecules within the range of the general formula (1) and the general formula (2). A plurality of ions having different structures may be introduced between the layers.
[0027]
In order to introduce the quaternary ammonium ions of the general formula (1) and the general formula (2), a quaternary ammonium salt containing the ions is used. Ion, Br ion, NOThree Ion, CHThree Mention may be made of salts with anions such as COO ions.
The clay-organic composite of the present invention can be obtained by introducing two types of quaternary ammonium ions represented by the general formula (1) and the general formula (2) between the layers of the swellable layered silicate. Furthermore, even if various quaternary alkylammonium ions other than the above and various inorganic cations are simultaneously introduced, the object of the present invention is not impaired.
The ratio of the total introduction amount of the two types of quaternary ammonium ions represented by the general formulas (1) and (2) is preferably 50% or more of the ion exchange capacity between the layers, and particularly preferably 95% or more.
[0028]
The clay-organic composite of the present invention is obtained by cation exchange between layers, and can be produced, for example, by the following method.
As a first step, the swellable layered silicate obtained by the method described above is dispersed in water. The solid dispersion concentration is usually preferably from 1 to 15% by weight, but can be freely set as long as the concentration of the swellable layered silicate is sufficiently dispersible. Next, the two different quaternary ammonium salt solutions are added to the swellable layered silicate suspension, or conversely, the two different quaternary ammonium salt solutions are added to the swellable layered silicate solution. It is also possible to produce a clay-organic complex by adding an acid salt suspension.
[0029]
Two different quaternary ammonium salts are usually mixed with the swellable lamellar silicate suspension as a mixed aqueous solution of 5-50% by weight, but as a separate solution, the swellable lamellar silicate suspension is not ordered. It doesn't matter if it is mixed with liquid.
During mixing, an organic solvent such as alcohol may be added and reacted in an organic solvent-containing liquid.
[0030]
The two types of quaternary ammonium salts preferably have a molar ratio of the quaternary ammonium ions represented by the general formula (1) and the general formula (2), that is, a ratio of (1) :( 2) is preferably 1: 2. ~ 4: 1, particularly preferably 1:1It is desirable that the equivalent amount of the cation exchange capacity of the swellable layered silicate is used as the total amount of the quaternary ammonium salt, but it is possible to produce it in a smaller amount.
[0031]
Further, an excessive amount may be added to the cation exchange capacity. The amount is preferably 0.5 to 1.5 times (milli equivalent equivalent), particularly 0.8 to 1.2 times the cation exchange capacity of the clay.
[0032]
The reaction proceeds sufficiently at room temperature, but may be warmed. The maximum temperature for heating can be arbitrarily set as long as it is below the decomposition point of the quaternary ammonium salt used, and is generally 10 to 90 ° C, preferably 15 to 70 ° C.
The reaction time varies from several minutes to several hours depending on the reaction conditions, but is generally about 30 minutes to 2 hours.
[0033]
Next, the solid-liquid is separated, and the produced clay-organic complex is washed with water to sufficiently remove the by-product solute. Separation and washing of the clay-organic complex from the liquid is extremely easy, and a very common filter separator is sufficient. For example, in the laboratory scale, it is easily performed by vacuum filtration / washing using a buchner-funnel (laying filter paper) or filtration / washing by a centrifugal dehydrator.
[0034]
The clay-organic composite thus obtained is dried (usually 100 ° C. or lower) and pulverized as necessary to obtain a final product.
The clay-organic composite composition dispersed in the solvent can be easily obtained by adding the clay-organic composite thus obtained to an organic solvent and dispersing it by stirring or the like.
If the amount can be dispersed, the thickening effect increases as the amount added increases. The amount added varies greatly depending on the application, but generally it can be dispersed in the range of 0.1 to 20% by weight with respect to the organic solvent and used for various applications.
[0035]
Since the clay-organic composite obtained as a final product exhibits thixotropic viscosity when dispersed in an organic solvent, it is used as a thickener or gelling agent for the organic solvent in an amount of 0.1 to 20 wt. % Can be used in a dispersed state.
[0036]
Examples of the organic solvent include various organic solvents with high polarity, low polarity or nonpolar properties, specifically alcohols such as methanol, ethanol and propanol; ketones such as acetone; amides such as dimethylformamide; tetrahydrofuran, Ethers such as methyl cellosolve; aromatic hydrocarbons such as benzene, toluene, xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform, dichloromethane, perchloroethylene, chlorobenzene, and dimethyl sulfoxide, N-methyl-2- Disperse in solvents such as pyrrolidone.
Moreover, what mixed said 2 or more as a solvent, or the various solvent which mixed other inorganic solvents, such as water, and the said solvent can also be used.
Further, it is not necessary to add a polar solvent such as water in order to increase the viscosity, but it can be added at the time of use.
[0037]
[Action]
The clay-organic composite obtained in the present invention has an affinity for an organic solvent, and further exhibits a thickening effect by dispersing the oxygen or terminal hydroxyl group of the polyoxyethylene group and the hydroxyl group or oxygen of the organic solvent. Is bonded to hydrogen, or due to the matching of the hydrophilicity and hydrophobicity balance between the organic substance and the organic solvent, the solvent molecules penetrate between the layers of the swellable layered silicate and spread between the layers. This is considered to separate the layers.
The separated silicate layer is presumed to form a sol-gel structure by irregularly bonding to each other due to the negative charge remaining on the layer surface and the positive charge on the end surface.
[0038]
The clay-organic complex obtained by introducing the quaternary ammonium ion represented by the general formula (1) alone between the layers of the swellable layered silicate also has an affinity for the organic solvent and is dispersed. However, the dispersibility is inferior to that of the clay organic composite of the present invention, and filtration separation / washing from the liquid at the time of production is extremely poor, which is practically impossible by ordinary filtration separation / washing.
[0039]
In order to separate and wash this, for example, it is made into a very thin dispersion, and an ultrafiltration method using a cross flow method is employed as described in JP-A-5-279012 to concentrate and dilute. Repeatedly separate the by-product lysate, then concentrate by centrifugation, collect it and dry it.
[0040]
In addition, the clay-organic composite obtained by introducing the quaternary ammonium ion represented by the general formula (2) alone between the layers of the swellable layered silicate has no affinity for the organic solvent and is dispersed. do not do.
[0041]
On the other hand, two types of clays obtained by separately introducing a quaternary ammonium ion represented by the general formula (1) and a quaternary ammonium ion represented by the general formula (2) between the layers of the swellable layered silicate. -When an organic complex is produced and mixed in the same ratio as in the present invention, the complex in which the general formula (2) is introduced between layers is precipitated in the organic solvent, and the dispersibility is poor.
[0042]
The clay-organic composite obtained by the present invention has an affinity for an organic solvent and exhibits a thickening effect when dispersed. Further, the separation and washing from the liquid at the time of production is extremely good, and the final Good grindability of the product.
It is judged that this is because two different quaternary ammonium ions represented by the general formula (1) and the general formula (2) are mixed and introduced between the layers in each crystal grain. The By mixing these two kinds of different quaternary ammonium ions, the affinity to the organic solvent of the general formula (1) is maintained or further improved, and is contained in these two kinds of ions (CH2 CH2 O)n H or (CH2 CH2 O)m The hydrogen bonding force at the outer peripheral portion between each particle based on H and its group is weaker than in the case of only the general formula (1), and as a result, the cohesion of particles between each particle is improved, It is judged that the filter separation / cleaning property and the pulverization property of the final product are improved.
[0043]
【Example】
  The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the examples without departing from the gist of the present invention.
Synthesis Example 1 Synthesis of Swellable Layered Silicate (“S”)
  First, hectorite clay oreStructure of thingsStructure, ie, general formula (3)
M0.1~1.0 Mg2.4~2.9 Li0.1~0.6 Si3.5~4.5 O9.5~10.5(OH and / or F)1.5~2.5(M is at least one cation selected from monovalent cations including alkali metal ions and ammonium ions)
It shows about the synthesis | combination of the artificial clay mineral which has this.
  Put 4 liters of water in a 10 liter beaker, No. 3 water glass (SiO2 28%, Na2 860 g of O 9%, molar ratio 3.22) are dissolved and 162 g of 95% sulfuric acid are added all at once with stirring to obtain a silicic acid solution. Next, magnesium chloride hexahydrate [MgCl] is added to 1 liter of water.2 ・ 6H2 560 g of O, first grade reagent (purity 98%)] is dissolved and added to the silicic acid solution to prepare a homogeneous mixed solution, which is dropped into 3.6 liters of 2N sodium hydroxide solution over 5 minutes with stirring. The reaction homogenous composite precipitate immediately obtained was filtered by a cross flow type filtration system [Cross flow filter (ceramic membrane filter: pore size 2 μm, tubular type, filtration area 400 cm, NGK, Ltd.]2 )], And after sufficient washing with water, 200 ml of water and lithium hydroxide monohydrate [Li (OH) · H2 O] A solution consisting of 14.5 g was added to form a slurry, transferred to an autoclave, and 41 kg / cm.2 And hydrothermal reaction at 250 ° C. for 3 hours.
  After cooling, the reaction product was taken out, dried at 80 ° C., and pulverized to obtain the product (“S”). The product was analyzed and the following composition was obtained.
Na0.4 Mg2.6 Li0.4 Si4.0 OTen(OH)2.0
  Moreover, the cation exchange capacity (capacity) measured by the methylene blue adsorption method was 101 mg equivalent / 100 g.Structure XA line diffraction pattern was shown.
[0044]
Example 1
(Production of Clay-Organic Complex-Part 1)
20 g of the swellable layered silicate “S” obtained in the above production was dispersed in 1000 ml of pure water, and the following general formula (6) 8) and the quaternary ammonium salt (containing 95% or more) described in the general formula (7) (Chemical Formula 9) at a ratio (molar ratio) of (6) :( 7) = 2: 1 or 7: 3 500 ml of the dissolved solution was added to the synthetic swellable layered silicate dispersion and reacted at 60 ° C. for 2 hours with stirring.
The product was filtered under reduced pressure using a 18.5 cm diameter Buchner funnel (with Toyo filter paper No. C131 filter paper), separated into solid and liquid, washed to remove by-product salts, and dried at 60 ° C. for 48 hours. And pulverized to obtain two different clay-organic composites A (2: 1) and clay-organic composites B (7: 3).
During production, both solid-liquid separation by vacuum filtration and washing were extremely good and were completed within 1 minute. Moreover, both obtained clay-organic composites were non-adhesive powders. The obtained two types of clay-organic composites were mixed in an organic solvent, and the dispersibility and viscosity were measured.
Table 1 shows the dispersibility of the clay-organic composite A and the clay-organic composite B.
The viscosity of clay-organic composite A is shown in Table 2, and the viscosity of clay-organic composite B is shown in Table 3.
[0045]
[Chemical 8]
Figure 0003700182
[0046]
[Chemical 9]
Figure 0003700182
[0047]
In addition, the dispersibility test with respect to the organic solvent was done by the following method.
(Dispersibility test method for organic solvents)
In a 50 ml test tube, weigh 0.6 g of clay-organic complex and 29.4 g of organic solvent to make a 2% dispersion. The mixture was shaken for 12 hours and then allowed to stand in an incubator at 25 ° C. for 24 hours, and the dispersion state was observed.
Figure 0003700182
[0048]
Moreover, the viscosity test with respect to the organic solvent was performed by the following method.
(Test method)
The clay-organic composite is dispersed in an organic solvent at various concentrations, and using a rotational viscometer (B-type viscometer manufactured by Tokyo Keiki Co., Ltd.), 6 rotations / minute (shear rate 7.158 / s) and 60 rotations / minute. The apparent viscosity (mPa · s) in minutes (shear rate 71.58 / s) was measured.
[0049]
(Example 2)
(Production of clay-organic composites-Part 2)
As a swellable layered silicate, 20 g of Laponite XLG (a synthetic hectorite-like substance manufactured by Laporte, UK; cation exchange capacity (volume) is 88 mg equivalent / 100 g) is dispersed in 1000 ml of pure water to obtain a cation exchange capacity of 1. The quaternary ammonium salt (containing 95% or more) described in the following general formula (8) (Chemical formula 10) and general formula (9) (Chemical formula 11) is (8) :( 9) 500 ml of a solution dissolved at a ratio of 2: 1 or 7: 3 (molar ratio) was added to the synthetic swellable layered silicate dispersion and reacted at 60 ° C. for 2 hours with stirring.
Thereafter, two different clay-organic composites C (in the case of 2: 1) and clay-organic composites D (in the case of 7: 3) were obtained in the same manner as in Example 1.
During production, both solid-liquid separation by vacuum filtration and washing were extremely good and were completed within 1 minute. Moreover, both obtained clay-organic composites were non-adhesive powders. The obtained two types of clay-organic composites were mixed in an organic solvent, and dispersibility and viscosity were measured in the same manner as in Example 1.
Table 1 shows the dispersibility of the clay-organic composite C and the clay-organic composite D.
The viscosity of the clay-organic composite C is shown in Table 4, and the viscosity of the clay-organic composite D is shown in Table 5.
[0050]
[Chemical Formula 10]
Figure 0003700182
[0051]
Embedded image
Figure 0003700182
[0052]
[Table 1]
Figure 0003700182
[0053]
[Table 2]
Figure 0003700182
[0054]
[Table 3]
Figure 0003700182
[0055]
[Table 4]
Figure 0003700182
[0056]
[Table 5]
Figure 0003700182
[0057]
(Comparative Example 1)
20 g of the swellable layered silicate “S” used in Example 1 was dispersed in 1000 ml of pure water, and the amount of the cation exchange capacity was 1.1 times as much as the general formula (6) (Chemical Formula 8). 500 ml of a solution in which a quaternary ammonium salt (containing 95% or more) was dissolved was added to the synthetic swellable layered silicate dispersion and reacted at 60 ° C. for 2 hours with stirring.
Attempts were made to separate the reaction product by solid-liquid separation by vacuum filtration using a Buchner funnel (Toyo filter paper No. C131 filter paper) having a diameter of 18.5 cm, but the filter paper was clogged and solid-liquid separation could not be performed. .
Therefore, it is unavoidable that the reaction product is repeatedly concentrated and diluted by the ultrafiltration treatment (average pore diameter of the filtration membrane 0.5 μm) by the cross flow method as described in JP-A-5-279012. Then, the solid content was collected by sedimentation using a centrifuge, dried at 60 ° C. for 72 hours, and then pulverized to obtain a clay-organic composite E.
The obtained clay-organic composite E was mixed with an organic solvent in the same manner as in Example 1 and tested for dispersibility. As a result of the test, when dispersed in methanol, ethanol, dimethylformamide, the evaluation of dispersibility was (1) (completely dispersed), but when dispersed in tetrahydrofuran, toluene, perchlorethylene, all were evaluated. Was (4) (dispersed, but there were many sediments below). When dispersed in xylene, the evaluation was (5) (poor dispersion).
[0058]
(Comparative Example 2)
20 g of the swellable layered silicate “S” used in Example 1 was dispersed in 1000 ml of pure water, and the amount of the cation exchange capacity was 1.1 times as much as the general formula (7) (Chemical Formula 9). 500 ml of a solution in which a quaternary ammonium salt (containing 95% or more) was dissolved was added to the synthetic swellable layered silicate dispersion and reacted at 60 ° C. for 2 hours with stirring.
The reaction product was filtered under reduced pressure using a 18.5 cm diameter Buchner funnel (with Toyo filter paper No. C131 filter paper), separated into solid and liquid, washed to remove by-product salts, and dried at 60 ° C. for 48 hours. Thereafter, the mixture was pulverized to obtain a clay-organic composite F. At the time of production, the time required for solid-liquid separation by vacuum filtration and washing was about 1 minute.
The obtained clay-organic composite F was mixed with an organic solvent and tested for dispersibility in the same manner as in Example 1. As a result of the test, when dispersed in methanol and ethanol, the evaluation of dispersibility was (5) (dispersion failure).
[0059]
(Comparative Example 3)
The two different types of clay-organic composite E and clay-organic composite F obtained in Comparative Example 1 and Comparative Example 2 were mixed at a molar ratio of E: F = 2: 1, and the same as in Example 1. The mixture was mixed with an organic solvent and tested for dispersibility. As a result of the test, when dispersed in methanol or ethanol, the evaluation of dispersibility is any of (2) (dispersed, but there is a small amount of sediment below) to (3) (dispersed but considerably settled below) The clay-organic composite F was settled downward.
[0060]
(Comparative Example 4)
20 g of the swellable layered silicate “S” obtained in Synthesis Example 1 is dispersed in 1000 ml of pure water, so that the amount is equivalent to 1.1 times the cation exchange capacity. ) Quaternary ammonium salt: dioctadecyldimethylammonium chloride (containing 95% or more) = 2: 1 or 1: 2 (molar ratio) of 500 ml of the solution dissolved in the above synthetic swellable layered silica The mixture was added to the acid salt dispersion and reacted at 60 ° C. for 2 hours with stirring.
The product was filtered under reduced pressure using a 18.5 cm diameter Buchner funnel (with Toyo filter paper No. C131 filter paper), separated into solid and liquid, washed to remove by-product salts, and dried at 60 ° C. for 48 hours. And pulverized to obtain two different clay-organic composites G (in the case of 2: 1) and H (in the case of 1: 2). During production, both solid-liquid separation by vacuum filtration and washing were good and completed within 1 minute. The obtained clay-organic composite was mixed with an organic solvent in the same manner as in Example 1 and tested for dispersibility. Test results, methanol, ethanolInIn the case of dispersion, the evaluation of dispersibility was (5) (poor dispersion).
[0061]
(Comparative Example 5)
Disperse 20 g of the swellable layered silicate “S” obtained in Synthesis Example 1 in 1000 ml of pure water, and dioctadecyldimethylammonium chloride (95% or more) so as to be equivalent to 1.1 times the cation exchange capacity. 500 ml of the solution containing the dissolved product) was added to the synthetic swellable layered silicate dispersion and reacted at 60 ° C. for 2 hours with stirring.
The product was filtered under reduced pressure using a 18.5 cm diameter Buchner funnel (with Toyo filter paper No. C131 filter paper), separated into solid and liquid, washed to remove by-product salts, and dried at 60 ° C. for 48 hours. To obtain clay 7 organic complex I. During production, both solid-liquid separation by vacuum filtration and washing were good and completed in about 1 minute.
The obtained clay-organic composite I and polyoxypropylene chloride (25) diethylmethylammonium chloride (containing 95% or more) were mixed in an organic solvent at a ratio of 1: 1 (weight ratio) in the same manner as in Example 1. And dispersibility test. Test results, methanol, ethanolInWhen dispersed, the evaluation of dispersibility was (4) (dispersed, but there were many sediments below) to (5) (poor dispersion).
[0062]
【The invention's effect】
The clay-organic composite of the present invention is a high-polarity, low-polarity or non-polar organic solvent such as lower alcohols, higher alcohols, ketones, amides, ethers, aromatic hydrocarbons, halogenated carbonization. Dispersed in a solvent such as hydrogen, dimethyl sulfoxide, N-methyl-2-pyrrolidone, etc., the dispersion exhibits thickening.
In addition, filtration and separation from the liquid at the time of manufacture is extremely good, so the manufacturing cost is low, mass production is possible, and the final product has good pulverization and fine pulverization, so it can be used in various applications. Available.
Applications include, for example, clay-organic composites as they are, or dispersed in various organic solvents, cosmetics, pharmaceuticals, hygiene agents, adhesives, paints, dye raw materials, various plastic products, various textile industries, etc. In products and industrial processes, they can be used as compositions such as viscosity modifiers, dispersants, emulsifiers, and binders.
Furthermore, since this clay-organic composite contains a polyoxyethylene group, it can be used effectively as an antistatic agent for plastics and fibers, a bactericidal agent, a dyeing aid, a coupling agent, and the like.
In addition, the layer space can be used as an organic substance storage agent, sustained release agent, catalyst, separating agent, adsorbent, resin stabilizer, polymerization initiator, carrier, filler, and the like.

Claims (8)

膨潤性層状ケイ酸塩の層間に、一般式(1)(化1)、一般式(2)(化2)で示される2種類の第4級アンモニウムイオンが導入された粘土−有機複合体。
Figure 0003700182
Figure 0003700182
A clay-organic composite in which two types of quaternary ammonium ions represented by the general formula (1) (Chemical formula 1) and the general formula (2) (Chemical formula 2) are introduced between the layers of the swellable layered silicate.
Figure 0003700182
Figure 0003700182
前記一般式(1)と一般式(2)で示される第4級アンモニウムイオンのモル比率、即ち、(1):(2)が1:2〜4:1である請求項1に記載の粘土−有機複合体。  The clay according to claim 1, wherein the molar ratio of the quaternary ammonium ions represented by the general formula (1) and the general formula (2), that is, (1) :( 2) is 1: 2 to 4: 1. -Organic complex. 膨潤性層状ケイ酸塩がスメクタイト属粘土鉱物である請求項1又は請求項2に記載の粘土−有機複合体。  The clay-organic composite according to claim 1 or 2, wherein the swellable layered silicate is a smectite clay mineral. スメクタイト属粘土鉱物が下記一般式(3)(化3)で示されるスメクタイト属粘土鉱物である請求項3に記載の粘土−有機複合体。
Figure 0003700182
The clay-organic composite according to claim 3, wherein the smectite genus clay mineral is a smectite genus clay mineral represented by the following general formula (3) (chemical formula 3).
Figure 0003700182
一般式(1)、一般式(2)で示される第4級アンモニウムイオンがそれぞれ一般式(4)(化4)、一般式(5)(化5)で示される第4級アンモニウムイオンである請求項1〜4のいずれか1項に記載の粘土−有機複合体。
Figure 0003700182
Figure 0003700182
The quaternary ammonium ions represented by general formula (1) and general formula (2) are quaternary ammonium ions represented by general formula (4) (chemical formula 4) and general formula (5) (chemical formula 5), respectively. The clay-organic composite according to any one of claims 1 to 4.
Figure 0003700182
Figure 0003700182
請求項1〜5のいずれか1項に記載の粘土−有機複合体を有機溶媒に分散させて得られる組成物。A composition obtained by dispersing the clay-organic complex according to any one of claims 1 to 5 in an organic solvent. 請求項1〜5のいずれか1項に記載の粘土−有機複合体よりなる有機溶媒用増粘剤又はゲル化剤。The thickener or gelling agent for organic solvents which consists of a clay-organic composite body of any one of Claims 1-5. 膨潤性層状ケイ酸塩に、請求項1に記載の一般式(1)、一般式(2)の第4級アンモニウムイオンを有する2種類の第4級アンモニウム塩を合量で該ケイ酸塩のイオン交換容量の0.5〜1.5倍量(ミリ当量換算)、液中で混合反応させ、生成物を濾過、洗浄、乾燥することを特徴とする請求項1に記載の粘土−有機複合体の製造方法。  In the swellable layered silicate, two types of quaternary ammonium salts having quaternary ammonium ions of the general formula (1) and the general formula (2) according to claim 1 are combined in a total amount. 2. The clay-organic composite according to claim 1, wherein the ion exchange capacity is 0.5 to 1.5 times (in terms of milliequivalents) and mixed and reacted in a liquid, and the product is filtered, washed and dried. Body manufacturing method.
JP34906593A 1993-12-28 1993-12-28 Clay-organic composite, its composition, use and method for producing clay-organic composite Expired - Fee Related JP3700182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34906593A JP3700182B2 (en) 1993-12-28 1993-12-28 Clay-organic composite, its composition, use and method for producing clay-organic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34906593A JP3700182B2 (en) 1993-12-28 1993-12-28 Clay-organic composite, its composition, use and method for producing clay-organic composite

Publications (2)

Publication Number Publication Date
JPH07196313A JPH07196313A (en) 1995-08-01
JP3700182B2 true JP3700182B2 (en) 2005-09-28

Family

ID=18401254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34906593A Expired - Fee Related JP3700182B2 (en) 1993-12-28 1993-12-28 Clay-organic composite, its composition, use and method for producing clay-organic composite

Country Status (1)

Country Link
JP (1) JP3700182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274663B1 (en) * 1997-10-30 2001-08-14 Showa Denko K.K. Compound resin composition
KR102656769B1 (en) * 2022-03-29 2024-04-11 닛산 가가쿠 가부시키가이샤 Basket-type silicate and its manufacturing method
KR102656777B1 (en) * 2022-03-29 2024-04-11 닛산 가가쿠 가부시키가이샤 Method for producing layered silicate and its application in production of silica nanosheets, etc.

Also Published As

Publication number Publication date
JPH07196313A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
US6521678B1 (en) Process for the preparation of organoclays
US4054537A (en) Process for synthesizing compositions containing smectite-type clays and gellants produced thereby
US4040974A (en) Synthesized gellants containing smectite-type clay and process for producing same
US6172121B1 (en) Process for preparing organoclays for aqueous and polar-organic systems
EP0170299A2 (en) A rheological grade sepiolite product and processes for its manufacture
FR2608068A1 (en) NOVEL PROCESS FOR THE SYNTHESIS OF FERRISILICATE-LIKE ZEOLITES, PRODUCTS THUS OBTAINED AND USES THEREOF
CN111268687B (en) Organic clay composition and preparation method thereof
JP3700182B2 (en) Clay-organic composite, its composition, use and method for producing clay-organic composite
JP2514780B2 (en) New organoclay complex
JP2564095B2 (en) Novel clay-organic composite
EP1587755A1 (en) Process for the production of synthetic magnesium silicate compositions
US4255276A (en) Silicatic complexing agent for alkaline earth ions and method of preparing same
CN103168003B (en) Manufacture nano zeolite and from aqeous suspension, reclaim the method for nano zeolite
JP3502993B2 (en) Organic clay complex
JPH11131047A (en) Composition comprising organic-clay complex and organic solvent
EP0698578B1 (en) Synthetic mixed-layer silicate and methods for the preparation thereof
JP2003238819A (en) Heat-resistant filler
Min et al. Transcription of G-quartet supramolecular aggregates into hierarchical mesoporous silica nanotubes
JP3314184B2 (en) Method for producing swellable silicate
JP3998748B2 (en) Synthetic layered silicate
RU2674801C1 (en) Method of producing aluminosilicate glue binder
JP3528098B2 (en) Silicone oil-based electrorheological fluid with clay-organic composite dispersed therein and method of making same
JPH0624732A (en) Clay-organic composite component
JP3733407B2 (en) Lipophilic inorganic filler and composite resin composition
JP4584561B2 (en) Organoclay complex

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees