JP3700110B2 - Transport method and equipment for underground excavated soil - Google Patents

Transport method and equipment for underground excavated soil Download PDF

Info

Publication number
JP3700110B2
JP3700110B2 JP11553299A JP11553299A JP3700110B2 JP 3700110 B2 JP3700110 B2 JP 3700110B2 JP 11553299 A JP11553299 A JP 11553299A JP 11553299 A JP11553299 A JP 11553299A JP 3700110 B2 JP3700110 B2 JP 3700110B2
Authority
JP
Japan
Prior art keywords
mud
excavated soil
underground
soil
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11553299A
Other languages
Japanese (ja)
Other versions
JP2000303791A (en
Inventor
勝 飯泉
彰 児島
孝 室井
正男 伊藤
秀樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP11553299A priority Critical patent/JP3700110B2/en
Publication of JP2000303791A publication Critical patent/JP2000303791A/en
Application granted granted Critical
Publication of JP3700110B2 publication Critical patent/JP3700110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、泥水式シールド工法により坑掘削を行うに際し、坑内で発生した坑内掘削土を坑外に輸送するための方法およびそのための設備に関する。
【0002】
【従来の技術】
周知のように、泥水式シールド工法は、泥水式シールド機を用いて泥水圧により切羽を保持しつつ掘進を行い、切羽で発生した掘削土を泥水と混合して排泥ラインを通して坑外に流体輸送し、坑外に設置した泥水処理プラントにおいて泥水と掘削土とを分離し、泥水を送泥ラインにより切羽に戻して循環させるものである。
【0003】
【発明が解決しようとする課題】
上記従来の泥水式シールド工法においては、切羽において発生した掘削土は上記のような泥水流体輸送により効率的に輸送できるが、切羽以外の坑内で発生する坑内掘削土、たとえば中間マンホール等を設置するための深礎工法等による立坑掘削により発生する掘削土、あるいは坑内を地中拡幅するための掘削により発生する掘削土等は、コンベアや搬送台車、ダンプトラック等により搬送するしかなく、したがってそのための搬送設備が必要であるのみならず必ずしも効率的な搬送を行い得ず、坑内掘削土をより効率的に輸送するための有効な手段が望まれていた。
【0004】
【課題を解決するための手段】
上記事情に鑑み、請求項1の発明は、泥水圧により切羽を保持するとともに、切羽で発生した掘削土を泥水と混合して排泥ラインを通して坑外に流体輸送し、坑外の泥水処理プラントにおいて泥水と掘削土とを分離して泥水を送泥ラインにより切羽に戻して循環させる構成の泥水式シールド工法に適用され、切羽以外で発生した坑内掘削土を坑外に輸送するための坑内掘削土の輸送方法であって、輸送するべき坑内掘削土を前記送泥ラインからの泥水と混合し、該混合泥水を前記排泥ラインに圧送して該排泥ラインを通して坑外に流体輸送するものである。
【0005】
請求項2の発明は、請求項1の発明の坑内掘削土の輸送方法であって、輸送するべき坑内掘削土を坑内において破砕して前記泥水と混合するものである。
【0006】
請求項3の発明は、請求項1または2の発明の坑内掘削土の輸送方法に適用される坑内掘削土の輸送設備であって、前記坑内掘削土を前記排泥ラインに圧送する圧送装置を備え、該圧送装置は、前記坑内掘削土と前記送泥ラインからの泥水とを混合撹拌する混合タンクと、前記坑内掘削土を前記混合タンクに圧送して混合泥水となすとともに該混合泥水を前記排泥ラインに圧送する圧送ポンプとを具備してなるものである。
【0007】
請求項4の発明は、請求項3の発明の坑内掘削土の輸送設備であって、前記圧送装置は、前記圧送ポンプの前段に、輸送するべき坑内掘削土を破砕する破砕機を具備してなるものである。
【0008】
請求項5の発明は、請求項3または4記載の坑内掘削土の輸送設備であって、輸送するべき坑内掘削土を前記圧送装置に搬送するための搬送手段を具備してなるものである。
【0009】
【発明の実施の形態】
図1は本発明の実施形態である坑内掘削土の輸送方法および輸送設備の実施形態を説明するための系統図、図2は坑内における配置図である。本実施形態の坑内掘削土の輸送方法および輸送設備は、周知の泥水式シールド機による泥水式シールド工法によって坑掘削を行う際に、切羽から発生する掘削土を通常のように泥水と混合して流体輸送を行うことに加え、切羽以外から発生する坑内掘削土も同じく流体輸送するものであり、そのための坑内掘削土の圧送装置1を坑内に備えているものである。
【0010】
すなわち、本実施形態においては、従来の泥水式シールド工法の場合と同様に、泥水式シールド機(図示略)と地上に設置した泥水処理プラント2とを排泥ライン3および送泥ライン4により接続し、切羽で発生した掘削土を泥水と混合して排泥ライン3を通して泥水処理プラント2まで流体輸送し、そこで泥水と掘削土とを分離して掘削土を廃棄、処分するとともに、泥水は送泥ライン4により切羽に戻して循環させるようになっている。そして、そのような泥水の循環を行うために、排泥ライン3には複数の供給側圧送ポンプ(符号PD、P2〜P6、PE、PE’で示す)が備えられているとともに、送泥ライン4にも複数の返送側圧送ポンプ(符号P1−1〜3で示す)が備えられ、かつ要所にバイパスバルブが備えられている他、図示を略しているが各種の補機類、制御機器類が備えられているものである。また、泥水処理プラント2には泥水と掘削土とを分離するための諸機器および水槽類、すなわち図1に示すように調整槽、一次処理槽、土砂ヤード、原水槽、貯泥槽、清水槽、フィルタープレス、ケーキヤード、濾液水槽、濁水処理装置、PH処理槽、等が備えられているものである。
【0011】
以上の構成に加えて坑内に備えられている上記の圧送装置1は、切羽以外の坑内から発生する坑内掘削土を上記の排泥ライン3に対して圧送するためのものであり、坑内掘削土を破砕する破砕機5と、その破砕機5により破砕した坑内掘削土と送泥ライン4からの泥水とを混合撹拌するための混合タンク6と、それら破砕機5と混合タンク6との間に配置された圧送ポンプ7を備え、破砕機5により破砕した坑内掘削土を圧送ポンプ7により混合タンク6に圧送してそこで混合泥水となすとともにその混合泥水を排泥ライン3に圧送するようになっている。そして、破砕機5の前段には、中間マンホール等を施工するための立坑掘削を深礎工法等により行う際に発生する坑内掘削土(深礎掘削土)を破砕機5に搬送するためのロータリーポンプ8と、坑内を拡幅するための掘削の際に発生する坑内掘削土(拡幅掘削土)を破砕機5に搬送するためのポータブルコンベア9が設置可能とされている。
【0012】
上記の破砕機5はたとえば可変速油圧モータにより駆動されるもので、坑内掘削土を40mm程度の大きさに破砕し、それをスクリューコンベア10により圧送ポンプ7に移送するものである。
【0013】
上記の圧送ポンプ7は、たとえば可変速油圧モーターにより駆動される可変プランジャーポンプであって、破砕機5から送られてきた坑内掘削土をフィーダー11により受けて混合タンク6に圧送し、その混合タンク6を経て排泥ライン3に圧送するものである。圧送ポンプ7の出口側にはこの圧送ポンプ7と連動して開閉する圧送弁12が設けられており、この圧送弁12は圧送ポンプ7が運転されるときのみ開かれることで排泥ライン3における泥水圧力を保持しかつ泥水の逆流を防止するようになっている。また、図示は省略しているが、圧送ポンプ7に備えられているフィーダー11の上部には超音波レベル検出器が取り付けられていてフィーダー11内の掘削土量が連続的に計測されるようになっている。さらに、圧送ポンプ7が空転してフィーダー11から空気を吸い込むことを防止し、かつ破砕機5からフィーダー11への過剰投入を防止するために、フィーダー11側面の上下には静電式レベルスイッチが取り付けられており、フィーダー11内の坑内掘削土のレベルが上限および下限を越えた際に警報を発するとともに、その検知信号に基づいて圧送ポンプ7の起動と停止、圧送弁12の開閉が制御されるようになっている。
【0014】
上記の混合タンク6は、圧送ポンプ7により圧送された坑内掘削土と、送泥ライン4からの泥水とがここで混合され、その混合泥水が排泥ライン3に圧送されるものである。混合タンク6に接続されている各管路にはそれぞれ圧力計13が設けられ、それら圧力計13により検出される各部の圧力に応じて圧送ポンプ7、圧送弁12、送泥調整弁14が制御されて、送泥ライン4からの泥水量と圧送ポンプ7からの坑内掘削土の圧送量がそれぞれ適正に制御されるようになっている。なお、この混合タンク6としてはたとえば呼称14B程度の大径のチーズ(鋼管継手)を加工して製作することができ、その側面には点検口を設けておくと良い。
【0015】
上記のロータリーポンプ8は、深礎掘削土等を坑内に投入するためのシャフト15の下部に取り付けられ、たとえば可変速油圧モータにより駆動されて適正量の深礎掘削土等を破砕機5まで搬送するためのものである。また、上記のポータブルコンベア9は坑内を拡幅する掘削を行うに際して上記のロータリーポンプ8に代えて、あるいはそれに加えて、坑内に配置されて拡幅掘削土を破砕機5に搬送するためのものであり、これは汎用のものを用いれば良い。
【0016】
さらに、上記の破砕機5、圧送ポンプ7、ロータリーポンプ8には、送泥ライン4から分岐された泥水供給管16を通して泥水の一部が供給可能とされており、必要に応じて適量の泥水をそれらに供給することで坑内掘削土の粘性を適正に維持できるようになっている。また、図示は省略しているが、空気抜き弁や安全弁、バイパス弁、保守用の手動操作弁、制御および計測ならびにデータ採取用の各種センサや制御機器類が必要カ所に設けられ、坑内の要所には図2に示すように上記各機器の駆動源である油圧ユニットや操作盤が設置されている。
【0017】
上記構成の圧送装置1により、坑内掘削土を排泥ライン3に圧送することにより、切羽からの掘削土のみならず、深礎掘削土や拡幅掘削土等の坑内掘削土をも連続的に流体輸送することが可能となり、従来においては搬送台車やダンプトラックにより搬送していた坑内掘削土の輸送効率を格段に向上させることができる。勿論、そのように流体輸送した坑内掘削土は泥水処理プラント2において支障なく分離して廃棄処分することができるし、流体輸送設備全体は従来の泥水式シールド工法におけるものをほぼそのまま使用できるので合理的であり、さしたるコスト増にはならない。しかも、輸送距離が長い場合や輸送経路が急勾配であっても支障なく適用することができる。
【0018】
特に本実施形態の圧送装置1は、坑内掘削土を破砕機5により破砕し、破砕した坑内掘削土を圧送ポンプ7により圧送して混合タンク6において泥水と混合撹拌した上で排泥ライン3に圧送する構成であるので、泥水が加圧状態で循環している排泥ライン3に対して、シールド機が掘進作業中であっても坑内掘削土を支障なく割り込ませることができる。
【0019】
なお、圧送装置1の構成、特に破砕機5、圧送ポンプ7、混合タンク6等の具体的な構成は、坑内掘削土を泥水と効率的に混合撹拌して排泥ライン3に割り込ませることができるものである限りにおいて任意であり、上記実施形態のものに限定されることなく種々の設計的変更が可能であることは当然である。
【0020】
また、坑内掘削土が固結している土質の場合には上記実施形態のように破砕機5により破砕してから圧送ポンプ7に導くことが好ましいが、坑内掘削土が砂や軟弱土等であって破砕の必要がない場合には、上記実施形態における破砕機5を省略し、坑内掘削土をそのまま圧送ポンプ7に導けば良い。
【0021】
さらに、上記実施形態では坑内掘削土を圧送装置1まで搬送するための搬送手段として深礎掘削等を行う際に用いるロータリーポンプ8と地中拡幅時に用いるポータブルコンベア9を例示したが、他の適宜の搬送手段も勿論採用可能であるし、深礎掘削土や拡幅掘削土のみならず坑内において手掘りにより発生した少量の掘削土や坑内清掃により各所から集めた残土等も、ポータブルコンベア9や破砕機5、圧送ポンプ7に投入することで流体輸送できることは言うまでもない。
【0022】
【発明の効果】
請求項1の発明は、切羽以外で発生する深礎掘削土や拡幅掘削土等の坑内掘削土を送泥ラインからの泥水と混合し、その混合泥水を排泥ラインに圧送することで、坑内掘削土を排泥ラインを通して坑外に流体輸送するので、切羽からの掘削土のみならず坑内掘削土の流体輸送も可能となり、したがって坑内掘削土を効率的に輸送することができる。
【0023】
請求項2の発明は、坑内掘削土を坑内において破砕して圧送するので、坑内掘削土が固結しているような場合であっても支障なく圧送することができる。
【0024】
請求項3の発明は、坑内掘削土を排泥ラインに圧送するための圧送装置を備え、その圧送装置は、坑内掘削土と送泥ラインからの泥水とを混合撹拌する混合タンクと、坑内掘削土を混合タンクに圧送して混合泥水となすとともにその混合泥水を排泥ラインに圧送する圧送ポンプとを具備してなるものであるから、坑内掘削土と泥水との混合撹拌を効率的に行うことができるとともに、坑内掘削土の排泥ラインへの割り込みを支障なく行うことができ、しかも従来の泥水式シールド工法における泥水流体輸送設備をほぼそのまま使用することができ、上記輸送方法を有効に実施することができる。
【0025】
請求項4の発明は、圧送ポンプの前段に坑内掘削土を破砕する破砕機を備えたので、坑内掘削土が固結しているような場合であっても破砕機により破砕することで支障なく圧送することができる。
【0026】
請求項5の発明は、坑内掘削土を圧送装置に搬送するためのロータリーポンプやポータブルコンベア等の搬送手段を具備するので、深礎掘削土や拡幅掘削土等の坑内掘削土の坑内搬送を支障なく効率的に行うことができる。
【図面の簡単な説明】
【図1】 本発明の坑内掘削土の輸送方法および輸送設備の実施形態を説明するための系統図である。
【図2】 同、坑内における配置図である。
【符号の説明】
1 圧送装置
2 泥水処理プラント
3 排泥ライン
4 送泥ライン
5 破砕機
6 混合タンク
7 圧送ポンプ
8 ロータリーポンプ(搬送手段)
9 ポータブルコンベア(搬送手段)
10 スクリューコンベア
11 フィーダー
12 圧送弁
13 圧力計
14 送泥調整弁
15 シャフト
16 泥水供給管
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for transporting underground excavated soil generated in a mine to the outside of the mine when performing mine excavation by a muddy water type shield construction method, and an installation therefor.
[0002]
[Prior art]
As is well known, the muddy water type shield method uses a muddy water type shield machine to carry out excavation while holding the face with the muddy water pressure, mixes the excavated soil generated at the face with the muddy water, and fluids to the outside of the tunnel through the mud drain line. In the mud treatment plant that is transported and installed outside the mine, the mud and the excavated soil are separated, and the mud is returned to the face by the mud line and circulated.
[0003]
[Problems to be solved by the invention]
In the conventional muddy water type shield construction method, the excavated soil generated in the face can be efficiently transported by the muddy fluid transportation as described above, but the underground excavated soil generated in the well other than the face, such as an intermediate manhole, is installed. Excavation soil generated by shaft excavation by the deep foundation method, etc., or excavation soil generated by excavation for expanding the underground underground can only be transported by conveyors, transport carts, dump trucks, etc. There is a need for an effective means for transporting underground excavated soil more efficiently because not only transportation facilities are necessary, but also efficient transportation is not always possible.
[0004]
[Means for Solving the Problems]
In view of the above circumstances, the invention of claim 1 holds the face by the mud pressure, mixes the excavated soil generated at the face with the mud and transports the fluid to the outside through the mud drain line, Is applied to the muddy water shield construction method in which the muddy water and the excavated soil are separated and returned to the face by the mud feed line for circulation, and the underground excavation for transporting the underground excavated soil generated outside the face to the outside of the well A method for transporting soil, in which underground excavated soil to be transported is mixed with mud from the mud line, the mixed mud is pumped to the mud line, and fluid is transported to the outside through the mud line. It is.
[0005]
The invention of claim 2 is a method for transporting underground excavated soil according to the invention of claim 1, wherein the underground excavated soil to be transported is crushed in the underground and mixed with the mud water.
[0006]
The invention of claim 3 is a transport facility for underground excavated soil applied to the method for transporting underground excavated soil according to claim 1 or 2, wherein a pumping device for pumping the underground excavated soil to the sludge line is provided. The pressure feeding device includes a mixing tank for mixing and stirring the underground excavation soil and the mud from the mud feeding line, and pumping the underground excavation soil to the mixing tank to form mixed mud and the mixed mud It comprises a pumping pump that pumps to the sludge line.
[0007]
The invention of claim 4 is the underground excavation soil transport facility of the invention of claim 3, wherein the pumping device includes a crusher for crushing the underground excavation soil to be transported in a stage preceding the pumping pump. It will be.
[0008]
The invention of claim 5 is the underground excavation soil transport facility according to claim 3 or 4, comprising transport means for transporting the underground excavation soil to be transported to the pumping device.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram for explaining an embodiment of a method for transporting underground excavated soil and transport equipment according to an embodiment of the present invention, and FIG. 2 is a layout diagram in the underground. The transport method and transport equipment for underground excavated soil according to the present embodiment mix the excavated soil generated from the face with mud water as usual when performing excavation by the mud shield method using a known mud shield machine. In addition to performing fluid transportation, underground excavated soil generated from other than the face is also transported in the same manner, and the underground excavated soil pumping device 1 is provided in the underground.
[0010]
That is, in the present embodiment, a mud shield machine (not shown) and a mud treatment plant 2 installed on the ground are connected by a mud line 3 and a mud line 4 as in the case of the conventional mud shield method. The excavated soil generated at the face is mixed with the mud and transported to the mud treatment plant 2 through the mud drain line 3 where the mud and the excavated soil are separated and discarded and disposed of. The mud line 4 circulates it back to the face. In order to circulate such mud water, the mud discharge line 3 is provided with a plurality of supply-side pressure feed pumps (indicated by symbols PD, P2 to P6, PE, and PE ′), and the mud feed line. 4 is provided with a plurality of return-side pressure pumps (indicated by reference numerals P1-1 to P3-1), a bypass valve is provided at an important point, and various auxiliary machines and control devices are not shown. There is a kind. Further, the muddy water treatment plant 2 includes various devices and water tanks for separating muddy water and excavated soil, that is, adjustment tank, primary treatment tank, earth and sand yard, raw water tank, mud tank, fresh water tank as shown in FIG. , Filter press, cake yard, filtrate water tank, turbid water treatment device, PH treatment tank, and the like.
[0011]
In addition to the above-described configuration, the above-described pumping device 1 provided in the mine is for pumping mine excavation soil generated from the pit other than the face to the above-described mud drain line 3. Between the crushing machine 5 for crushing, the mixing tank 6 for mixing and stirring the underground excavated soil crushed by the crushing machine 5 and the mud water from the mud line 4, and between the crushing machine 5 and the mixing tank 6 An underground excavated soil crushed by the crusher 5 is pumped to the mixing tank 6 by the pumping pump 7 and converted into mixed mud water, and the mixed mud water is pumped to the waste mud line 3. ing. A rotary for transporting to the crusher 5 underground excavated soil (deep foundation excavated soil) generated when a shaft excavation for constructing an intermediate manhole or the like is performed by a deep foundation method or the like. A pump 8 and a portable conveyor 9 for transporting underground excavated soil (expanded excavated soil) generated during excavation for widening the underground to the crusher 5 can be installed.
[0012]
The crusher 5 is driven by, for example, a variable speed hydraulic motor. The crusher 5 crushes underground excavated soil into a size of about 40 mm and transfers it to the pressure pump 7 by the screw conveyor 10.
[0013]
The pressure pump 7 is, for example, a variable plunger pump driven by a variable speed hydraulic motor. The underground excavated soil sent from the crusher 5 is received by the feeder 11 and is pumped to the mixing tank 6 and mixed. It is pumped to the sludge line 3 through the tank 6. A pressure feed valve 12 that opens and closes in conjunction with the pressure feed pump 7 is provided on the outlet side of the pressure feed pump 7, and this pressure feed valve 12 is opened only when the pressure feed pump 7 is operated, so The muddy water pressure is maintained and the backflow of muddy water is prevented. Although not shown, an ultrasonic level detector is attached to the upper part of the feeder 11 provided in the pumping pump 7 so that the amount of excavated soil in the feeder 11 can be continuously measured. It has become. Furthermore, in order to prevent the pumping pump 7 from idling and sucking air from the feeder 11, and to prevent excessive feeding from the crusher 5 to the feeder 11, electrostatic level switches are provided above and below the side of the feeder 11. It is attached and issues an alarm when the level of underground excavated soil in the feeder 11 exceeds the upper limit and lower limit, and the activation and stop of the pressure feed pump 7 and the opening and closing of the pressure feed valve 12 are controlled based on the detection signal. It has become so.
[0014]
In the mixing tank 6, the underground excavated soil pumped by the pumping pump 7 and the mud water from the mud feeding line 4 are mixed here, and the mixed mud water is pumped to the mud draining line 3. Each pipe line connected to the mixing tank 6 is provided with a pressure gauge 13, and the pressure feed pump 7, the pressure feed valve 12, and the mud feed adjustment valve 14 are controlled according to the pressure of each part detected by the pressure gauge 13. Thus, the amount of muddy water from the mud feed line 4 and the pressure feed amount of the underground excavated soil from the pressure feed pump 7 are appropriately controlled. The mixing tank 6 can be manufactured by processing a large-diameter cheese (steel pipe joint) having a name of about 14B, for example, and an inspection port is preferably provided on the side surface.
[0015]
The rotary pump 8 is attached to a lower portion of a shaft 15 for introducing deep foundation excavation soil into the mine, and is driven by, for example, a variable speed hydraulic motor to convey an appropriate amount of deep excavation soil to the crusher 5. Is to do. In addition, the portable conveyor 9 is arranged in the mine to convey the widened excavated soil to the crusher 5 in place of or in addition to the rotary pump 8 when excavating to widen the mine. This can be a general purpose one.
[0016]
Furthermore, a part of the muddy water can be supplied to the crusher 5, the pressure feed pump 7, and the rotary pump 8 through a muddy water supply pipe 16 branched from the muddy line 4, and an appropriate amount of muddy water can be supplied as necessary. The viscosity of the underground excavated soil can be appropriately maintained by supplying them to the above. Although not shown, air vent valves, safety valves, bypass valves, manual operation valves for maintenance, various sensors and control equipment for control and measurement and data collection are provided at necessary locations, As shown in FIG. 2, a hydraulic unit and an operation panel, which are driving sources of the above-described devices, are installed.
[0017]
By pumping the underground excavated soil to the sludge line 3 by the pumping device 1 having the above-described configuration, not only excavated soil from the face but also underground excavated soil such as deep foundation excavated soil and widened excavated soil are continuously fluidized. It becomes possible to transport, and the transport efficiency of underground excavated soil that has been transported by a transport cart or dump truck in the past can be significantly improved. Of course, the underground excavated soil transported in such a manner can be separated and disposed of without any trouble in the mud treatment plant 2, and the entire fluid transport equipment can be used almost as it is in the conventional mud shield method. Is not a significant increase in costs. Moreover, even when the transport distance is long or the transport route is steep, the present invention can be applied without any problem.
[0018]
In particular, the pressure feeding device 1 of the present embodiment crushes the underground excavated soil with the crusher 5, feeds the crushed underground excavated soil with the pressure pump 7, mixes and agitates with mud water in the mixing tank 6, and then enters the mud drain line 3. Since it is a structure which pumps, it can interrupt an underground digging soil without trouble even if a shield machine is excavating with respect to the mud drain line 3 in which mud water circulates in a pressurized state.
[0019]
It should be noted that the specific configuration of the pressure feeding device 1, particularly the crusher 5, the pressure pump 7, the mixing tank 6, etc., allows the underground excavated soil to be efficiently mixed and agitated with mud water and interrupted into the mud drain line 3. It is arbitrary as long as it can be done, and it is a matter of course that various design changes are possible without being limited to the above-described embodiment.
[0020]
In addition, when the underground excavated soil is solid, it is preferable that the underground excavated soil is crushed by the crusher 5 and then guided to the pumping pump 7 as in the above embodiment, but the underground excavated soil is sand, soft soil or the like. If there is no need for crushing, the crusher 5 in the above embodiment may be omitted, and the underground excavated soil may be introduced to the pressure pump 7 as it is.
[0021]
Further, in the above embodiment, the rotary pump 8 used when carrying out deep foundation excavation and the like and the portable conveyor 9 used when expanding underground are exemplified as the conveying means for conveying the underground excavated soil to the pressure feeding device 1. Of course, it is also possible to adopt other transport methods, including not only deep foundation excavation soil and widening excavation soil, but also small amounts of excavated soil generated by manual digging in the mine, residual soil collected from various places by mine cleaning, etc. Needless to say, the fluid can be transported by inserting it into the machine 5 and the pressure pump 7.
[0022]
【The invention's effect】
The invention of claim 1 mixes underground excavated soil such as deep foundation excavated soil and widened excavated soil other than the working face with mud from the mud feeding line, and pumps the mixed mud into the mud draining line. Since the excavated soil is fluidly transported to the outside of the tunnel through the mud drain line, not only excavated soil from the face but also the fluid transport of the underground excavated soil is possible, and therefore the underground excavated soil can be efficiently transported.
[0023]
In the invention of claim 2, since the underground excavated soil is crushed and pumped in the pit, even if the underground excavated soil is consolidated, it can be pumped without any trouble.
[0024]
The invention of claim 3 includes a pumping device for pumping the underground excavated soil to the mud discharge line, and the pumping device includes a mixing tank for mixing and stirring the underground excavated soil and the mud water from the mud line, and the underground excavation. Since the soil is pumped to the mixing tank to form mixed mud, and the mixed mud is pumped to the mud discharge line, the mixing and stirring of the underground excavated soil and mud is efficiently performed. It is possible to interrupt the mud drain line of the underground excavation soil without any trouble, and it is possible to use the mud fluid transport equipment in the conventional mud type shield construction method almost as it is. Can be implemented.
[0025]
Since the invention of claim 4 includes the crusher for crushing the underground excavated soil at the front stage of the pressure pump, there is no problem by crushing with the crusher even when the underground excavated soil is consolidated. Can be pumped.
[0026]
The invention of claim 5 is provided with transport means such as a rotary pump and a portable conveyor for transporting the underground excavated soil to the pressure feeding device, and therefore obstructs the transport of underground excavated soil such as deep foundation excavated soil and widened excavated soil. Can be done efficiently.
[Brief description of the drawings]
FIG. 1 is a system diagram for explaining an embodiment of a method for transporting underground excavated soil and transport equipment according to the present invention.
FIG. 2 is a layout diagram in the pit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressure feeding apparatus 2 Muddy water treatment plant 3 Waste mud line 4 Mud feeding line 5 Crusher 6 Mixing tank 7 Pressure feed pump 8 Rotary pump (conveyance means)
9 Portable conveyor (conveyance means)
DESCRIPTION OF SYMBOLS 10 Screw conveyor 11 Feeder 12 Pressure feed valve 13 Pressure gauge 14 Mud feed adjustment valve 15 Shaft 16 Muddy water supply pipe

Claims (5)

泥水圧により切羽を保持するとともに、切羽で発生した掘削土を泥水と混合して排泥ラインを通して坑外に流体輸送し、坑外の泥水処理プラントにおいて泥水と掘削土とを分離して泥水を送泥ラインにより切羽に戻して循環させる構成の泥水式シールド工法に適用され、切羽以外で発生した坑内掘削土を坑外に輸送するための坑内掘削土の輸送方法であって、輸送するべき坑内掘削土を前記送泥ラインからの泥水と混合し、該混合泥水を前記排泥ラインに圧送して該排泥ラインを通して坑外に流体輸送することを特徴とする坑内掘削土の輸送方法。While holding the face by mud pressure, the excavated soil generated at the face is mixed with the mud and transported to the outside of the tunnel through the mud drain line, and the mud and the excavated soil are separated at the mud treatment plant outside the well. A method for transporting underground excavated soil for transporting underground excavated soil generated outside the working face to the outside of the tunnel, which is applied to the mud type shield construction method in which the mud line returns to the working face and circulates. A method for transporting underground excavated soil, wherein the excavated soil is mixed with mud from the mud supply line, the mixed mud is pumped to the exhaust mud line, and fluid is transported to the outside of the well through the exhaust mud line. 輸送するべき坑内掘削土を坑内において破砕して前記泥水と混合することを特徴とする請求項1記載の坑内掘削土の輸送方法。2. The method for transporting underground excavated soil according to claim 1, wherein the underground excavated soil to be transported is crushed in the underground and mixed with the muddy water. 請求項1または2記載の坑内掘削土の輸送方法に適用される坑内掘削土の輸送設備であって、前記坑内掘削土を前記排泥ラインに圧送する圧送装置を備え、該圧送装置は、前記坑内掘削土と前記送泥ラインからの泥水とを混合撹拌する混合タンクと、前記坑内掘削土を前記混合タンクに圧送して混合泥水となすとともに該混合泥水を前記排泥ラインに圧送する圧送ポンプとを具備してなることを特徴とする坑内掘削土の輸送設備。The underground excavation soil transportation equipment applied to the underground excavation soil transportation method according to claim 1 or 2, further comprising a pumping device that pumps the underground excavation soil to the sludge line, A mixing tank that mixes and stirs underground excavated soil and mud from the mud feeding line, and a pump that pumps the underground excavated soil to the mixed tank to form mixed mud and pumps the mixed mud to the exhaust mud line A facility for transporting underground excavated soil. 請求項3記載の坑内掘削土の輸送設備であって、前記圧送装置は、前記圧送ポンプの前段に、輸送するべき坑内掘削土を破砕する破砕機を具備してなることを特徴とする坑内掘削土の輸送設備。4. The underground excavation soil transportation facility according to claim 3, wherein the pumping device includes a crusher for crushing the underground excavation soil to be transported in a stage preceding the pumping pump. Soil transportation equipment. 請求項3または4記載の坑内掘削土の輸送設備であって、輸送するべき坑内掘削土を前記圧送装置に搬送するための搬送手段を具備してなることを特徴とする坑内掘削土の輸送設備。5. The underground excavated soil transport facility according to claim 3 or 4, further comprising transport means for transporting the underground excavated soil to be transported to the pumping device. .
JP11553299A 1999-04-22 1999-04-22 Transport method and equipment for underground excavated soil Expired - Fee Related JP3700110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11553299A JP3700110B2 (en) 1999-04-22 1999-04-22 Transport method and equipment for underground excavated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11553299A JP3700110B2 (en) 1999-04-22 1999-04-22 Transport method and equipment for underground excavated soil

Publications (2)

Publication Number Publication Date
JP2000303791A JP2000303791A (en) 2000-10-31
JP3700110B2 true JP3700110B2 (en) 2005-09-28

Family

ID=14664872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11553299A Expired - Fee Related JP3700110B2 (en) 1999-04-22 1999-04-22 Transport method and equipment for underground excavated soil

Country Status (1)

Country Link
JP (1) JP3700110B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009576A (en) * 2005-06-30 2007-01-18 Fukuda Corp Excavated earth and sand exhausting device and shield device
JP2010270477A (en) * 2009-05-20 2010-12-02 Shimizu Corp Muddy-water-supplied propelling apparatus and method of continuously discharging excavated earth and sand

Also Published As

Publication number Publication date
JP2000303791A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
JPH11217822A (en) Self-propelled soil improvement machine
JP5627082B2 (en) Fluid transport method of excavated soil using foam suppressor in bubble shield method
CN205977222U (en) Double mode shield constructs quick -witted structure
JP6207025B2 (en) In-flight disposal system for underground excavation machine
KR100902364B1 (en) Shield tunneling apparatus and constructing method thereof
JP3700110B2 (en) Transport method and equipment for underground excavated soil
CN111877367A (en) Closed pit open-pit mine flow state backfill circulation process system
EP1147286A1 (en) Slurry treatment
JP5826347B2 (en) Fluid transport method of excavated soil using foam suppressor in bubble shield method
JP5049662B2 (en) Method and system for producing fluidized soil
JP2003239686A (en) Pipe-jacking shield method and pipe-jacking shield machine
JP2003239686A5 (en)
JP3604209B2 (en) Piping construction method in tunnel
US6039504A (en) Process and apparatus for the treatment of waste
Zhu et al. Slurry Circulation System of Slurry Shield Machine
JP3338389B2 (en) Self-propelled soil improvement machine
JPH02167996A (en) Continuous solidifying system of high moisture-content mud
JPS6119800B2 (en)
JP2010270477A (en) Muddy-water-supplied propelling apparatus and method of continuously discharging excavated earth and sand
JP3604208B2 (en) Mud water transport method and tunnel construction method in mud shield method
JP2004156276A (en) Back-filling method for slurry shield method
JPH0366898A (en) Soil and sand carryout method in shield method and soil modifying device
JP2006016933A (en) Excavated soil treatment device for shield excavator
JPH09239399A (en) Continuous waste mud water treatment device
JP3638779B2 (en) Solid amount calculation system and method, and control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees