JP3699782B2 - Method for catalytic cracking of hydrocarbon-containing oil feedstock in the presence of catalyst - Google Patents

Method for catalytic cracking of hydrocarbon-containing oil feedstock in the presence of catalyst Download PDF

Info

Publication number
JP3699782B2
JP3699782B2 JP18713696A JP18713696A JP3699782B2 JP 3699782 B2 JP3699782 B2 JP 3699782B2 JP 18713696 A JP18713696 A JP 18713696A JP 18713696 A JP18713696 A JP 18713696A JP 3699782 B2 JP3699782 B2 JP 3699782B2
Authority
JP
Japan
Prior art keywords
catalytic cracking
catalyst
borate
weight
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18713696A
Other languages
Japanese (ja)
Other versions
JPH09104875A (en
Inventor
アール.カレンバッチ ライル
ドウェイン,アール.セン
エム.ジョンソン マービン
Original Assignee
フイリツプス ピトローリアム カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フイリツプス ピトローリアム カンパニー filed Critical フイリツプス ピトローリアム カンパニー
Publication of JPH09104875A publication Critical patent/JPH09104875A/en
Application granted granted Critical
Publication of JP3699782B2 publication Critical patent/JP3699782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホウ酸金属塩を含む新規な分解触媒組成物を用いて、炭化水素含有油を接触分解する方法に関するものである。
【0002】
【従来技術】
多くの接触分解触媒(特にゼオライト含有触媒)がよく知られているが、新触媒に対するニーズが常にあり、既知の接触分解触媒に対して特殊な利点をもつ触媒が求められている。
【0003】
【発明が解決しようとする課題】
本発明の1つの目的は、ホウ酸金属塩を含む分解触媒を用いた接触分解方法を提供することである。本発明のもう1つの目的は、高められた量の分岐した環状モノオレフィンを生成する接触分解方法を提供することである。他の目的および利点は、本発明の詳細な説明と特許請求の範囲から明白になるであろう。
【0004】
【課題を解決するための手段】
本発明に従えば、実質的に添加水素ガスの不在下、そしてホウ酸アルミニウムとホウ酸ジルコニウムを含む接触分解触媒の存在下で、炭化水素含有油原料を接触分解する方法が提供される。好適な実施態様では、前記接触分解触媒は、さらに少なくとも1種のゼオライトを含んでいる。
【0005】
【発明の実施の形態】
本発明の分解方法において、触媒組成物として用いるホウ酸金属塩触媒組成物は、ホウ酸アルミニウムとホウ酸ジルコニウム(好適には、ホウ酸Alとホウ酸Zrの共沈物)を含み、通常、AlとZrの重量比は約2:1〜約20:1(好適には約4:1〜約12:1)そして(Al+Zr)とBの重量比は約1:1〜約6:1(好適には約1.5:1〜約3:1)である。
【0006】
通常、本発明の分解触媒は、約150〜500m2 /gの表面積(N2 を用いBET法で測定)と約0.2〜1.5cc/gの孔隙容積(水を用い侵入(intrusion )法で測定)を有する。本発明の分解触媒組成物の粒子は、いかような適切な形状(球状、円筒状、三裂状または不規則状)およびいかような適切な粒子サイズ(好適には約0.4〜0.8mm)でもよい。これらの粒子を圧縮、押出成形した時、形成された円筒状押出成形物は、通常約1〜4mmの直径と約3〜10mmの長さを有する。
【0007】
本発明の方法で用いる接触分解触媒組成物は、本質的にはAlのホウ酸塩とZrのホウ酸塩(以後、AlZrホウ酸塩とも呼ぶ)から成る。しかし、ゼオライト含有物質(接触分解活性を発揮する)、または結合剤或いはマトリックス物質として用いる耐火性無機酸化物(特に、アルミナ、シリカ、シリカ−アルミナ、クレー、燐酸アルミニウム)、または金属含有油原料の分解に用いた時に分解触媒上に堆積する金属(特にNi及び/又はV)の有害な影響を解消する、所謂金属不動態化剤(例えば、アンチモニー、ビスマス、錫、ジルコニウム、タングステン、ボロン、燐など)のような他の物質が存在することも本発明の範囲に属する。
【0008】
好適な実施態様では、本発明の分解触媒は、約50〜90重量%のAlZrホウ酸塩、約3〜30のゼオライト、と所望により約2〜20のシリカ−アルミナ(結合剤として)を含む。これらの触媒成分は、完全に混合して実質的に均質な分解触媒粒子と成すか、または分解触媒は、AlZrホウ酸塩粒子とシリカ−アルミナマトリックスに埋め込まれたゼオライトを含む粒子の物理的混合物と成される。
【0009】
分解触媒組成物中にゼオライト成分が存在する時、ゼオライト成分は、分解活性を示す天然または合成の結晶性アルミノシリケートゼオライトが用いられる。このゼオライトを例示すれば、フォージャサイト、カバザイト、モルデナイト、オフレタイト、エリオナイト、ゼオロン、ゼオライトX、ゼオライトY、ゼオライトL、ゼオライトZSM−4、ゼオライトZSM−5、ゼオライトZSM−11、ゼオライトZSM−12、ゼオライトZSM−23、ゼオライトZSM−35、ゼオライトZSM−38、ゼオライトZSM−48やそれらの混合物があるが、これらに限定するものではない。
【0010】
その他の適切なゼオライトの例は米国特許第4158621号に掲載される。本発明で用いる「ゼオライト」の用語には、結晶骨格からAlの一部を除去したような前処理ゼオライトや、希土類金属やアンモニウムでイオン交換したまたは他の慣用のイオン交換法でイオン交換したゼオライトも含む。本発明で用いる用語「ゼオライト」は、米国特許第4556749号に開示される如きシリカライト、クロミアシリケート、フェロシリケート、ボロシリケート等のような本質的にアルミニウムを含まないシリカ同質異像体(polymorph )を含む。
【0011】
通常、接触分解触媒組成物のゼオライト成分は、適切な固体の耐火性無機マトリックス物質、例えば、アルミナ、シリカ、シリカ−アルミナ(現在は好適)、クレー、燐酸アルミニウム、酸化マグネシウム、前記物質の2またはそれ以上の混合物等に埋め込まれる。一般的に、接触分解触媒組成物中でゼオライトとマトリックス物質の重量比は、約1:20〜約1:1の範囲である。
【0012】
ホウ酸アルミニウムジルコニウム触媒組成物は、適切な方法で調整可能である。好ましくは、第1工程で、水溶性の非加水分解性アルミニウム塩(好適には硝酸アルミニウム)、水溶性の非加水分解性ジルコニウム塩(好適には硝酸ジルコニウム)や、水溶性の非加水分解性の酸性ホウ素化合物(好適にはホウ酸、より好適にはH3 BO3 )を含む第1水溶液を調整する。
これらの化合物は水溶液中で適切な濃度で用いられ、通常、所望のAl:Zr:Bの比率に応じてそれぞれ0.02〜1モル/Lの濃度で用いられる。概して、この第1水溶液の初期PHは約1〜3である。
【0013】
第2水溶液はアルカリ性(好適には約25〜28重量%のNH3 を含むアンモニア水溶液)であって、一般的には約10〜14のPHを有する。この第2水溶液を、第1水溶液のPHを7以上、好ましくは約8〜9に上げるための有効量を第1水溶液に加え、アルミニウムとジルコニウムのホウ酸共沈物を生成させる。そして、生成共沈物の水性分散液を、適切な固体−液体分離操作(好ましくは濾過)を行い、水性溶液から共沈物を実質的に分離する。好ましくは、共沈物を水洗し(付着溶液を除去)、所望によっては引き続き、水溶性有機溶剤、例えばメタノール、エタノール、イソプロパノール(好適である)、アセトン等で洗浄する。水洗した共沈物を通常は乾燥(好ましくは約110〜180℃の温度で約2〜16時間、真空炉中)した後に焼成(通常、空気中で約450〜550℃の温度で約3〜16時間)する。
【0014】
生成共沈物をゼオライト及び/又は少なくとも1種の炭素含有結合剤物質(焼成工程で実質的に焼滅する、例えばポリグリコール、ポリオキサゾリンまたはカーボンブラック)及び/又は耐火性無機結合剤物質(例えばアルミナ、シリカ、シリカ−アルミナ、クレー、燐酸アルミニウム、その他の既知の無機結合剤やそれらの混合物)と混合することも本発明の範囲である。
また、ゼオライト及び/又は結合剤物質を第1水溶液(前記した)中に分散させ、しかる後に第2水溶液(アルカリ性、前記した)を加えてAlZrホウ酸塩とゼオライト及び/又は結合剤の密な混合物を形成することも本発明の範囲である。
【0015】
本発明に従えば、AlZrホウ酸塩含有する接触分解触媒組成物は、ゼオライト成分及び/又は結合剤成分を含むか否かに係わらず、いかなる接触分解工程、例えば、全ての適切な分解反応器(一例として、FCC反応器やサーモフォア移動床反応器)中で炭化水素含有油原料を接触分解する工程で使用できる。
ここで用いる「接触分解」の用語は、本質的に水素添加分解が起きていないこと、および接触分解工程が実質的に添加水素ガスの不在下で炭化水素含有油原料で実施されることを意味し、このような条件下では原料より高API重量(60°Fで測定)の少なくとも1種の液体製品流を得ることができる。AlZrホウ酸塩含有触媒組成物は、単独または新鮮或いは使用ゼオライト含有触媒と混合して接触分解工程に用いることができる。
【0016】
本発明の接触分解方法に用いる炭化水素含有原料流は全ての適切な原料が使用可能である。通常、原料は大気圧条件で測定して少なくとも約400°Fの初期沸点(ASTM1160)をもち、且つ、好ましくは約400°F〜約1200°Fの沸点範囲、より好ましくは約500°F〜約1100°Fの沸点範囲をもつ。概して、この原料は金属不純物、特にニッケル、バナジウム化合物(通常は約0.01ppmを上回るNiと約0.01ppmを上回るV)を含有する。通常、API重量(60°Fで測定)は、約5〜約40、好適には約10〜約35の範囲である。
【0017】
通常、これらの原料はランスボトム炭素残渣(ASTM524;普通約0.1〜20重量%)、硫黄(通常約0.1〜5重量%のS)、窒素(通常約0.05〜2重量%のN)、ニッケル(通常約0.05〜30ppmのNi、即ち原料油100万重量部に対し約0.05〜30重量部のNi)およびバナジウム(通常約0.1〜50ppmのV、即ち原料油100万重量部に対し約0.1〜50重量部のV)を含む。少量の他の金属不純物(通常約0.01〜50ppm)、例えばCu、NaやFeも原料中に存在する。
【0018】
適切な原料を例示すれば、軽質軽油、重質軽油、真空軽油、分解再生油(軽質および重質再生油)、残渣(蒸留残油溜分など)、水素処理(hydrotreated)残渣(例えば、Ni、Co、Moを助触媒とするアルミナ触媒存在下で水素処理された)、液体石炭熱分解物、タールサンドの抽出または熱分解液状生成物、頁岩油、頁岩油の重質溜分などが挙げられるが、これらに限定するものではない。現在最適の原料は、重質軽油と水素処理残渣である。
【0019】
適切な反応器は、全て本発明の接触分解方法に使用可能である。通常、流動床接触分解(FCC)反応器(好ましくは1またはそれ以上の上昇管を含む)または移動床接触分解反応器(例えば、サーモフォア接触分解器)が使われる。好適には、反応器はFCC上昇管分解ユニットである。このようなFCC分解ユニットの実施例は米国特許第4377470号と第4424116号に解説がある。通常、触媒再生ユニット(堆積コークスの除去のため)は、前記引用特許に記載される如く、FCC分解ユニットと組み合わされる。
【0020】
分解操作の特定操作条件は、原料のタイプ、分解反応器のタイプと大きさおよび油供給速度に大いに依存する。操作条件の実施例は、前記引用特許およびその他の出版物に記載されている。通常、FCC操作では、触媒組成物と油原料(即ち、炭化水素含有原料)の重量比は約2:1〜約10:1の範囲であり、油原料と触媒の接触時間は約0.2〜約2.0秒の範囲であり、分解温度は約800°F〜約1200°Fの範囲である。通常、水蒸気が油原料と共にFCCに送られ、小滴として油の分散を助勢する。一般に、水蒸気と油原料の重量比は約0.05:1〜約0.5:1の範囲である。
【0021】
ガス状および液状の分解生成物(特に、炭化水素)から使用分解触媒の分離、と分解生成物から種々のガス状および液状製品溜分への分離は、既知の慣用分離手段で実施できる。最も望ましい製品溜分はガソリン(ASTM沸点範囲:約80〜400°F)である。このような分離の枠組みの例は、ジェームス・エッチ・ガリーとグレン・イー・ハンドウエルク著「石油精製」、マーセル・デッカー社、1975年に示されている。
【0022】
通常、分解したガス状および液状製品から分離(例えば遠心分離装置中で)された使用分解触媒組成物は、好ましくは付着油除去のため水蒸気−除去(steam-stripping )と引き続く酸化条件下での加熱によって炭素堆積物を焼却し、慣用的な手法で再生される。再生した分解触媒組成物の少なくとも一部は、前記した本発明の触媒処理方法で処理される。その後、再生され且つ活性化された触媒は、通常、新鮮な(未使用の)分解触媒と混合して接触分解反応器にリサイクルされる。
【0023】
炭化水素含有油原料流が接触分解反応器に入る前に(油原料中に存在する金属不純物、特にニッケルとバナジンの有害な影響を解消するべく)、少なくとも1種の既知不動態化剤(例えば、アンチモニー、ビスマス、錫、ジルコニウム、タングステン、ボロン、燐化合物など)を前記原料流に添加することも本発明の範囲である。よく知られるように、不動態化剤を油原料に直接注入するか、或いはスラリー状の油リサイクル流(通常、分散した触媒微粉を含み、最高沸点溜分の分解生成物)に注入し、これを新鮮な油原料と組み合わせるか、または不動態化剤を酸化再生器(前記した)に注入し、そこで加熱再生触媒と接触させることもできる。
【0024】
以下の実施例は、本発明を一層詳細に説明するために提供するものであって、本発明の範囲を不当に限定するように解釈してはならない。
【0025】
【実施例】
実施例1
本実施例は接触分解試験に使用する種々のアルミニウムジルコニウムホウ酸塩含有組成物の調整を詳細に説明する。
【0026】
触媒A(本発明)を次のように調整した。13.8g(0.05モル)のZrO(NO3 2 ・2H2 O(硝酸ジルコニル2水和物;化学式重量:267)、221.7g(0.59モル)のAl(NO3 3 ・9H2 O(水和硝酸アルミニウム;化学式重量:375)および49.5g(0.80モル)のH3 BO3 (オルトホウ酸;化学式重量:62)を、約60℃の温度で1.5Lの蒸留水に攪拌溶解した。この溶液に有効な濃度のアンモニア水を加え溶液のPHを8.4に高めた。生成したホウ酸AlZr共沈物とその分散液を濾過した。フィルターケーキを1.5Lの温水で洗浄し、さらにほぼ同量のイソプロパノールで洗浄した後、空気中で150℃で乾燥し、空気中で500℃で4時間焼成した。焼成した材料を粉砕、ふるい分けし、20〜40メッシュの範囲の粒子サイズを有する部分を試験用として保存した。
【0027】
触媒B(本発明)を以下のように調整した。約70gの希土類−交換ゼオライトY(製品名ダビソン「CSクレイ」、W.R.グレイス社、バルチモア、MD)をZrO(NO3 2 、Al(NO3 3 とH3 BO3 の水溶液に分散した後に、アンモニア水を添加した(PHを8.4に高め、AlZrホウ酸塩を沈殿させた)以外は、実質的に触媒Aに用いた手法に従って、80重量%のAlZrホウ酸塩と20重量%のゼオライトを含む触媒Bを調整した。生成したAlZrホウ酸塩とゼオライトの混合物を濾過、110℃で乾燥、500℃で4時間焼成した後、粉砕し、篩分けした。20〜40メッシュの部分を保存した。触媒Bは、約440m2 /gの表面積(BET法による測定)と約0.68m3 /gの総孔隙容積(水侵入法による測定)を有していた。
【0028】
触媒C(本発明)を次のように調整した。添加ゼオライトとしてリンドLZ−Y82触媒(UOP社製、デスプレインス、IL)を用いた以外は、触媒Bと本質的に同様な方法で、触媒Cを調整した。触媒Cは80重量%のAlZrホウ酸塩と20重量%のゼオライトを含んでいた。
【0029】
触媒D(本発明)を次のように調整した。35gのダビソン希土類−交換ゼオライトをZrO(NO3 2 、Al(NO3 3 とH3 BO3 の水溶液に分散したこと以外は、触媒Bと本質的に同様な方法で、触媒Dを調整した。触媒Dは90重量%のAlZrホウ酸塩と10重量%のゼオライトを含んでいた。350m2 /gのBET表面積と0.58m3 /gの総孔隙容積を有する20〜40メッシュの部分を保存した。
【0030】
触媒E(対照)はホウ酸アルミニウム、AlBO3 である。NH3 水溶液を加えることにより、Al(NO3 3 とH3 BO3 を含む水溶液からAlBO3 を沈殿させ、これを濾過、水洗、空気中で500℃で15時間焼成した。
【0031】
触媒F(対照)はホウ酸ジルコニウム、Zr3 (NO3 4 である。NH3 水溶液を加えることにより、ZrO(NO3 2 とH3 BO3 を含む水溶液からZr3 (NO3 4 を沈殿させ、これを濾過、水洗、空気中で500℃で15時間焼成した。
【0032】
触媒G(対照)はゼオライト含有の平衡TCC(サーモフォア)触媒(<40メシュ)であり、フィリップペテロリウム社ユタ精油所で使用のものであった。
【0033】
触媒H(対照)は新鮮な、市販のゼオライト含有TCC触媒(エンジェルハード社製、イセリン、NJ)であった。
【0034】
実施例2
実施例1に記載した数種の触媒組成物を研究室規模のMAT分解試験装置を用いて評価した。評価は、ASTM法D3907の記載に準じ、約16のAPI重量を有し、約5.4重量%のコンラドソン炭素、約0.5重量%の硫黄、約0.4重量%の窒素、約1.6重量%のn−ペンタン不溶物、1.1ppmのNiと約2.4ppmのVを含有する水素処理粗製油を用いて実施した。
MAT試験は、約3:1の触媒:油重量比、950°Fの反応温度、75秒の反応時間、10分の水蒸気−除去サイクル、と1250°Fの反応温度で30分の再生サイクルで実施した。
適切な試験結果(少なくとも2測定の平均値)を表1に要約した。製品収率は、時間当たりに生成した特殊製品成分の重量を時間当たりに変換された油原料の重量で除して算出した。
【0035】
【表1】

Figure 0003699782
【0036】
表1のデータは、Alホウ酸塩分解触媒(触媒E)に対し高原料変換率の点でAlZrホウ酸塩分解触媒(触媒A)の利点を証明している。Zrホウ酸塩(触媒F)は分解触媒として効果がなかった。触媒Aとゼオライト触媒(触媒GとH)の比較は、本発明の触媒Aが市販のゼオライト含有分解触媒の性能に匹敵する接触分解性能を示したことを表している。さらに、触媒Aは、n−C4 炭化水素に対し分岐C4 炭化水素が高比率の分解ガスを生成した(これは、分岐C4 炭化水素、即ちイソブタンとイソブテンがアルキル化、エーテル化および他の炭化水素変換に対し良好な原料である理由から、望ましい)。
【0037】
実施例3
本実施例は、炭化水素原料が若干異なる点を除いては、実質的に実施例2に記載した手法に従って実施した追加のMAT分解試験について説明する。特に、本原料は、より多くの不純物、約6ppmのNiと約8ppmのVを含有した。試験結果を表2に要約した。製品收率は全て実施例2で定めたように算出した。
【0038】
【表2】
Figure 0003699782
【0039】
表2の試験データは、ガソリン溜分中の芳香族炭化水素の低含有量(これは、自動車燃料中の芳香族含有量を低減するという行政が推進する環境改善の観点で望ましい)およびイソモノオレフィンと環式モノオレフィンの高含有量(これは、下流の化学工程用として有用な原料である)の点で、ゼオライト含有TCC平衡触媒に対して本発明の触媒A、BとCの利点を表している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for catalytic cracking of a hydrocarbon-containing oil using a novel cracking catalyst composition containing a metal borate.
[0002]
[Prior art]
Many catalytic cracking catalysts (especially zeolite-containing catalysts) are well known, but there is always a need for new catalysts and there is a need for catalysts with special advantages over known catalytic cracking catalysts.
[0003]
[Problems to be solved by the invention]
One object of the present invention is to provide a catalytic cracking method using a cracking catalyst containing a metal borate. Another object of the present invention is to provide a catalytic cracking process that produces increased amounts of branched cyclic monoolefins. Other objects and advantages will be apparent from the detailed description of the invention and from the claims.
[0004]
[Means for Solving the Problems]
According to the present invention, there is provided a method for catalytic cracking of a hydrocarbon-containing oil feedstock in the substantial absence of added hydrogen gas and in the presence of a catalytic cracking catalyst comprising aluminum borate and zirconium borate. In a preferred embodiment, the catalytic cracking catalyst further comprises at least one zeolite.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the decomposition method of the present invention, the metal borate salt catalyst composition used as the catalyst composition contains aluminum borate and zirconium borate (preferably, a coprecipitate of Al borate and Zr borate). The weight ratio of Al to Zr is about 2: 1 to about 20: 1 (preferably about 4: 1 to about 12: 1) and the weight ratio of (Al + Zr) to B is about 1: 1 to about 6: 1 ( Preferably from about 1.5: 1 to about 3: 1).
[0006]
Typically, the cracking catalyst of the present invention has a surface area of about 150-500 m 2 / g (measured by the BET method using N 2 ) and a pore volume of about 0.2-1.5 cc / g (intrusion with water). Method). The particles of the cracking catalyst composition of the present invention can have any suitable shape (spherical, cylindrical, trilobal or irregular) and any suitable particle size (preferably about 0.4-0. 8 mm). When these particles are compressed and extruded, the formed cylindrical extrudate usually has a diameter of about 1 to 4 mm and a length of about 3 to 10 mm.
[0007]
The catalytic cracking catalyst composition used in the method of the present invention consists essentially of an Al borate and a Zr borate (hereinafter also referred to as AlZr borate). However, zeolite-containing materials (demonstrating catalytic cracking activity), or refractory inorganic oxides used as binders or matrix materials (particularly alumina, silica, silica-alumina, clay, aluminum phosphate), or metal-containing oil raw materials So-called metal passivators (eg antimony, bismuth, tin, zirconium, tungsten, boron, phosphorus, which eliminate the harmful effects of metals (especially Ni and / or V) deposited on the decomposition catalyst when used for decomposition. It is also within the scope of the present invention that other substances such as
[0008]
In a preferred embodiment, the cracking catalyst of the present invention comprises about 50-90% by weight AlZr borate, about 3-30 zeolite, and optionally about 2-20 silica-alumina (as a binder). . These catalyst components are either thoroughly mixed to form substantially homogeneous cracking catalyst particles, or the cracking catalyst is a physical mixture of particles comprising AlZr borate particles and zeolite embedded in a silica-alumina matrix. It is done.
[0009]
When the zeolite component is present in the cracking catalyst composition, a natural or synthetic crystalline aluminosilicate zeolite exhibiting cracking activity is used as the zeolite component. Examples of this zeolite include faujasite, cabazite, mordenite, offretite, erionite, zeoron, zeolite X, zeolite Y, zeolite L, zeolite ZSM-4, zeolite ZSM-5, zeolite ZSM-11, and zeolite ZSM-12. Zeolite ZSM-23, Zeolite ZSM-35, Zeolite ZSM-38, Zeolite ZSM-48, and mixtures thereof, but are not limited thereto.
[0010]
Examples of other suitable zeolites are listed in US Pat. No. 4,158,621. The term “zeolite” used in the present invention includes a pretreated zeolite from which a part of Al is removed from the crystal skeleton, a zeolite ion-exchanged with a rare earth metal or ammonium, or ion-exchanged by other conventional ion exchange methods. Including. The term “zeolite” as used herein refers to an essentially aluminum free silica polymorph such as silicalite, chromia silicate, ferrosilicate, borosilicate, etc. as disclosed in US Pat. No. 4,556,749. including.
[0011]
Typically, the zeolitic component of the catalytic cracking catalyst composition is a suitable solid refractory inorganic matrix material such as alumina, silica, silica-alumina (currently preferred), clay, aluminum phosphate, magnesium oxide, 2 or Embedded in further mixtures. Generally, the weight ratio of zeolite to matrix material in the catalytic cracking catalyst composition ranges from about 1:20 to about 1: 1.
[0012]
The aluminum zirconium borate catalyst composition can be prepared in any suitable manner. Preferably, in the first step, water-soluble non-hydrolyzable aluminum salt (preferably aluminum nitrate), water-soluble non-hydrolyzable zirconium salt (preferably zirconium nitrate), water-soluble non-hydrolyzable A first aqueous solution containing an acidic boron compound (preferably boric acid, more preferably H 3 BO 3 ) is prepared.
These compounds are used at an appropriate concentration in an aqueous solution, and are usually used at a concentration of 0.02 to 1 mol / L depending on the desired ratio of Al: Zr: B. Generally, the initial pH of this first aqueous solution is about 1-3.
[0013]
The second solution is an alkaline (preferably an aqueous ammonia solution containing NH 3 to about 25 to 28% by weight), typically with about 10-14 PH. An effective amount of this second aqueous solution for increasing the pH of the first aqueous solution to 7 or more, preferably about 8 to 9, is added to the first aqueous solution to form a boric acid coprecipitate of aluminum and zirconium. The aqueous dispersion of the resulting coprecipitate is then subjected to a suitable solid-liquid separation operation (preferably filtration) to substantially separate the coprecipitate from the aqueous solution. Preferably, the coprecipitate is washed with water (removing the adherent solution) and, if desired, subsequently washed with a water-soluble organic solvent such as methanol, ethanol, isopropanol (preferred), acetone or the like. The co-precipitate washed with water is usually dried (preferably at a temperature of about 110 to 180 ° C. for about 2 to 16 hours in a vacuum furnace) and then fired (usually about 3 to 3 at a temperature of about 450 to 550 ° C. in air). 16 hours).
[0014]
The resulting coprecipitate is zeolite and / or at least one carbon-containing binder material (substantially burned off during the calcination process, eg polyglycol, polyoxazoline or carbon black) and / or a refractory inorganic binder material (eg alumina , Silica, silica-alumina, clay, aluminum phosphate, other known inorganic binders and mixtures thereof are within the scope of the present invention.
Also, the zeolite and / or binder material is dispersed in the first aqueous solution (described above), and then the second aqueous solution (alkaline, described above) is added to form a dense mixture of AlZr borate and zeolite and / or binder. It is also within the scope of the present invention to form a mixture.
[0015]
In accordance with the present invention, the catalytic cracking catalyst composition containing AlZr borate, regardless of whether it contains a zeolite component and / or a binder component, any catalytic cracking process, for example, all suitable cracking reactors. (As an example, it can be used in the step of catalytically cracking a hydrocarbon-containing oil feedstock in an FCC reactor or a thermophore moving bed reactor).
As used herein, the term “catalytic cracking” means that essentially no hydrocracking has occurred and that the catalytic cracking process is carried out on a hydrocarbon-containing oil feedstock substantially in the absence of added hydrogen gas. Under such conditions, it is possible to obtain at least one liquid product stream having a higher API weight (measured at 60 ° F.) than the raw material. The AlZr borate-containing catalyst composition can be used in the catalytic cracking step alone or mixed with fresh or used zeolite-containing catalyst.
[0016]
Any suitable feed can be used for the hydrocarbon-containing feed stream used in the catalytic cracking process of the present invention. Typically, the feedstock has an initial boiling point (ASTM 1160) of at least about 400 ° F as measured at atmospheric pressure, and preferably has a boiling range of about 400 ° F to about 1200 ° F, more preferably about 500 ° F to It has a boiling range of about 1100 ° F. In general, this feedstock contains metal impurities, particularly nickel, vanadium compounds (usually more than about 0.01 ppm Ni and more than about 0.01 ppm V). Typically, the API weight (measured at 60 ° F.) ranges from about 5 to about 40, preferably from about 10 to about 35.
[0017]
Usually these feedstocks are lance bottom carbon residue (ASTM 524; usually about 0.1-20% by weight), sulfur (usually about 0.1-5% by weight S), nitrogen (usually about 0.05-2% by weight). N), nickel (usually about 0.05 to 30 ppm Ni, ie about 0.05 to 30 parts by weight Ni per million parts by weight of feedstock) and vanadium (usually about 0.1 to 50 ppm V, ie About 0.1 to 50 parts by weight of V) per million parts by weight of the feedstock. A small amount of other metal impurities (usually about 0.01 to 50 ppm) such as Cu, Na and Fe are also present in the raw material.
[0018]
Examples of suitable raw materials are light gas oil, heavy gas oil, vacuum gas oil, cracked and regenerated oil (light and heavy recycled oil), residue (such as distillate residue), hydrotreated residue (such as Ni , Co and Mo co-catalyzed in the presence of an alumina catalyst), liquid coal pyrolysis product, tar sand extraction or pyrolysis liquid product, shale oil, heavy fraction of shale oil, etc. However, it is not limited to these. Currently, the optimal raw materials are heavy gas oil and hydroprocessing residue.
[0019]
Any suitable reactor can be used in the catalytic cracking process of the present invention. Usually a fluidized bed catalytic cracking (FCC) reactor (preferably comprising one or more risers) or a moving bed catalytic cracking reactor (eg a thermophore catalytic cracker) is used. Preferably, the reactor is an FCC riser cracking unit. Examples of such FCC decomposition units are described in US Pat. Nos. 4,377,470 and 4,424,116. Usually, the catalyst regeneration unit (for removal of deposited coke) is combined with the FCC cracking unit as described in the cited patent.
[0020]
The specific operating conditions of the cracking operation are highly dependent on the type of feed, the type and size of the cracking reactor and the oil feed rate. Examples of operating conditions are described in the cited patents and other publications. Typically, in FCC operation, the weight ratio of catalyst composition to oil feed (ie, hydrocarbon-containing feed) ranges from about 2: 1 to about 10: 1 and the contact time between the oil feed and catalyst is about 0.2. The decomposition temperature ranges from about 800 ° F to about 1200 ° F. Typically, water vapor is sent to the FCC along with the oil feedstock to assist the oil dispersion as droplets. Generally, the weight ratio of water vapor to oil feedstock ranges from about 0.05: 1 to about 0.5: 1.
[0021]
Separation of the used cracking catalyst from gaseous and liquid cracked products (especially hydrocarbons) and separation of the cracked products into various gaseous and liquid product fractions can be carried out by known conventional separation means. The most desirable product fraction is gasoline (ASTM boiling range: about 80-400 ° F.). An example of such a separation framework is given in “Petroleum Refining” by James Etch Gulley and Glenn E. Handwerk, Marcel Decker, 1975.
[0022]
Usually, the used cracking catalyst composition separated from the cracked gaseous and liquid product (eg in a centrifuge) is preferably subjected to steam-stripping and subsequent oxidation conditions for removal of adhering oil. Carbon deposits are incinerated by heating and regenerated in a conventional manner. At least a part of the regenerated cracking catalyst composition is treated by the catalyst treatment method of the present invention described above. The regenerated and activated catalyst is then usually mixed with fresh (unused) cracking catalyst and recycled to the catalytic cracking reactor.
[0023]
Before the hydrocarbon-containing oil feed stream enters the catalytic cracking reactor (to eliminate the detrimental effects of metal impurities present in the oil feed, particularly nickel and vanadium), at least one known passivating agent (e.g. It is also within the scope of the present invention to add antimony, bismuth, tin, zirconium, tungsten, boron, phosphorus compounds, etc.) to the feed stream. As is well known, the passivating agent is injected directly into the oil feed or into a slurry oil recycle stream (usually containing dispersed catalyst fines and the decomposition product of the highest boiling point distillate). Can be combined with fresh oil feed or a passivating agent can be injected into the oxidation regenerator (described above) where it is contacted with a heated regenerated catalyst.
[0024]
The following examples are provided to illustrate the invention in greater detail and should not be construed to unduly limit the scope of the invention.
[0025]
【Example】
Example 1
This example illustrates in detail the preparation of various aluminum zirconium borate containing compositions used for catalytic cracking tests.
[0026]
Catalyst A (invention) was prepared as follows. 13.8 g (0.05 mol) of ZrO (NO 3 ) 2 .2H 2 O (zirconyl nitrate dihydrate; formula weight: 267), 221.7 g (0.59 mol) of Al (NO 3 ) 3 9H 2 O (hydrated aluminum nitrate; chemical weight: 375) and 49.5 g (0.80 mol) of H 3 BO 3 (orthoboric acid; chemical weight: 62) at a temperature of about 60 ° C. And dissolved in distilled water. An effective concentration of aqueous ammonia was added to the solution to increase the pH of the solution to 8.4. The produced boric acid AlZr coprecipitate and its dispersion were filtered. The filter cake was washed with 1.5 L of warm water, further washed with approximately the same amount of isopropanol, dried in air at 150 ° C., and baked in air at 500 ° C. for 4 hours. The fired material was crushed and sieved, and the portion having a particle size in the range of 20-40 mesh was stored for testing.
[0027]
Catalyst B (invention) was prepared as follows. About 70 g of rare earth-exchanged zeolite Y (product name: Davison “CS Clay”, WR Grace, Baltimore, MD) in an aqueous solution of ZrO (NO 3 ) 2 , Al (NO 3 ) 3 and H 3 BO 3 After dispersion, 80 wt.% AlZr borate was substantially added according to the procedure used for Catalyst A except that ammonia water was added (PH was increased to 8.4 and AlZr borate was precipitated). Catalyst B containing 20 wt% zeolite was prepared. The resulting mixture of AlZr borate and zeolite was filtered, dried at 110 ° C., calcined at 500 ° C. for 4 hours, pulverized and sieved. A 20-40 mesh portion was stored. Catalyst B had a surface area of about 440 m 2 / g (measured by the BET method) and a total pore volume of about 0.68 m 3 / g (measured by the water intrusion method).
[0028]
Catalyst C (invention) was prepared as follows. Catalyst C was prepared in essentially the same manner as Catalyst B, except that Lind LZ-Y82 catalyst (UOP, Desplense, IL) was used as the added zeolite. Catalyst C contained 80 wt% AlZr borate and 20 wt% zeolite.
[0029]
Catalyst D (invention) was prepared as follows. Catalyst D was prepared in essentially the same manner as Catalyst B, except that 35 g of Davison rare earth-exchanged zeolite was dispersed in an aqueous solution of ZrO (NO 3 ) 2 , Al (NO 3 ) 3 and H 3 BO 3. did. Catalyst D contained 90 wt% AlZr borate and 10 wt% zeolite. A 20-40 mesh portion having a BET surface area of 350 m 2 / g and a total pore volume of 0.58 m 3 / g was stored.
[0030]
Catalyst E (control) is aluminum borate, AlBO 3 . By adding an aqueous NH 3 solution, AlBO 3 was precipitated from an aqueous solution containing Al (NO 3 ) 3 and H 3 BO 3 , filtered, washed with water, and baked in air at 500 ° C. for 15 hours.
[0031]
Catalyst F (control) is zirconium borate, Zr 3 (NO 3 ) 4 . By adding NH 3 aqueous solution, Zr 3 (NO 3 ) 4 was precipitated from an aqueous solution containing ZrO (NO 3 ) 2 and H 3 BO 3 , which was filtered, washed with water, and calcined at 500 ° C. for 15 hours in air. .
[0032]
Catalyst G (control) was a zeolite-containing equilibrium TCC (thermophore) catalyst (<40 mesh) and was used at the Philippe Peterlium Utah Refinery.
[0033]
Catalyst H (control) was a fresh, commercially available zeolite-containing TCC catalyst (Angelhard, Iserine, NJ).
[0034]
Example 2
Several catalyst compositions described in Example 1 were evaluated using a laboratory scale MAT decomposition test apparatus. Evaluation is in accordance with ASTM method D3907, having an API weight of about 16, about 5.4% Conradson carbon, about 0.5% sulfur, about 0.4% nitrogen, about 1% This was carried out using a hydrotreated crude oil containing .6 wt% n-pentane insolubles, 1.1 ppm Ni and about 2.4 ppm V.
The MAT test consists of a catalyst: oil weight ratio of about 3: 1, a reaction temperature of 950 ° F., a reaction time of 75 seconds, a 10 minute steam-removal cycle, and a regeneration cycle of 30 minutes at a reaction temperature of 1250 ° F. Carried out.
Appropriate test results (average of at least 2 measurements) are summarized in Table 1. The product yield was calculated by dividing the weight of the special product component produced per hour by the weight of the oil feed converted per hour.
[0035]
[Table 1]
Figure 0003699782
[0036]
The data in Table 1 demonstrates the advantage of the AlZr borate decomposition catalyst (Catalyst A) in terms of high feed conversion over the Al borate decomposition catalyst (Catalyst E). Zr borate (catalyst F) was not effective as a decomposition catalyst. Comparison of catalyst A and zeolite catalyst (catalysts G and H) indicates that catalyst A of the present invention showed catalytic cracking performance comparable to that of commercially available zeolite-containing cracking catalysts. Furthermore, Catalyst A produced a cracked gas with a high ratio of branched C 4 hydrocarbons to n-C 4 hydrocarbons (this is because branched C 4 hydrocarbons, ie, isobutane and isobutene are alkylated, etherified and others). This is desirable because it is a good feedstock for hydrocarbon conversion.
[0037]
Example 3
This example describes an additional MAT decomposition test conducted substantially in accordance with the procedure described in Example 2, except that the hydrocarbon feeds are slightly different. In particular, the raw material contained more impurities, about 6 ppm Ni and about 8 ppm V. The test results are summarized in Table 2. All product yields were calculated as defined in Example 2.
[0038]
[Table 2]
Figure 0003699782
[0039]
The test data in Table 2 shows the low content of aromatic hydrocarbons in the gasoline distillate (which is desirable from the viewpoint of environmental improvement promoted by the government to reduce the aromatic content in automobile fuel) and isomono. The advantages of Catalysts A, B and C of the present invention over zeolite-containing TCC equilibrium catalyst in terms of high content of olefins and cyclic monoolefins (which is a useful feed for downstream chemical processes) Represents.

Claims (15)

実質的に添加水素ガスの不在下、そしてホウ酸アルミニウムとホウ酸ジルコニウムを含む接触分解触媒の存在下で、炭化水素含有油原料を接触分解する方法。A process for catalytic cracking of a hydrocarbon-containing oil feedstock in the substantial absence of added hydrogen gas and in the presence of a catalytic cracking catalyst comprising aluminum borate and zirconium borate. 前記接触分解触媒がホウ酸アルミニウムとホウ酸ジルコニウムの共沈物を含む、請求項1に記載する方法。The method of claim 1, wherein the catalytic cracking catalyst comprises a coprecipitate of aluminum borate and zirconium borate. 前記共沈物が約2:1〜約20:1のAlとZrの重量比を有する、請求項2に記載する方法。The method of claim 2, wherein the coprecipitate has a weight ratio of Al to Zr of about 2: 1 to about 20: 1. 前記共沈物が約1:1〜約6:1の(Al+Zr)とBの重量比を有する、請求項3に記載する方法。4. The method of claim 3, wherein the coprecipitate has a (Al + Zr) to B weight ratio of about 1: 1 to about 6: 1. 前記共沈物が約4:1〜約12:1のAlとZrの重量比、および約1.5:1〜約3:1の(Al+Zr)とBの重量比を有する、請求項4に記載する方法。5. The coprecipitate has an Al to Zr weight ratio of about 4: 1 to about 12: 1 and an (Al + Zr) to B weight ratio of about 1.5: 1 to about 3: 1. How to describe. 前記接触分解触媒が少なくとも1種のゼオライトを含有する、請求項1〜5のいずれか1項に記載する方法。The method according to claim 1, wherein the catalytic cracking catalyst contains at least one zeolite. 前記接触分解触媒が、約50〜95重量%のホウ酸アルミニウムとホウ酸ジルコニウムの共沈物および約3〜30重量%の前記少なくとも1種のゼオライトを含む、請求項6に記載する方法。7. The method of claim 6, wherein the catalytic cracking catalyst comprises about 50-95% by weight aluminum borate and zirconium borate coprecipitate and about 3-30% by weight of the at least one zeolite. 前記接触分解触媒が、アルミナ、シリカ、シリカ−アルミニウム、クレーまたは燐酸アルミニウムから成る少なくとも1種の無機結合剤物質を含有する、請求項1〜7のいずれか1項に記載する方法。8. A process according to any one of the preceding claims, wherein the catalytic cracking catalyst contains at least one inorganic binder material consisting of alumina, silica, silica-aluminum, clay or aluminum phosphate. 前記接触分解触媒が、本質的にホウ酸アルミニウムとホウ酸ジルコニウムから成る、請求項1〜5のいずれか1項に記載する方法。6. A method according to any one of claims 1 to 5, wherein the catalytic cracking catalyst consists essentially of aluminum borate and zirconium borate. 前記接触分解触媒が、約150〜500m2 /gの表面積と約0.2〜1.5cc/gの孔隙容積を有する、請求項1〜9のいずれか1項に記載する方法。The catalytic cracking catalyst, a method having a pore volume of the surface area and about 0.2~1.5cc / g to about 150~500m 2 / g, according to any one of claims 1 to 9. 前記炭化水素含有油原料が、大気圧の条件下で測定して約400°F〜約1200°Fの沸点域を有する、請求項1〜10のいずれか1項に記載する方法。11. The method of any one of claims 1-10, wherein the hydrocarbon-containing oil feed has a boiling range of about 400 <0> F to about 1200 <0> F as measured under atmospheric pressure conditions. 前記炭化水素含有油原料が、約0.1〜20重量%のランスボトム(Ramsbottom)炭素残渣、約0.1〜5重量%の硫黄、約0.05〜2重量%の窒素、約0.05〜30ppmのニッケル、および約0.1〜50ppmのバナジュウムを含む、請求項11に記載する方法。The hydrocarbon-containing oil feedstock comprises from about 0.1 to 20% by weight of Lancesbottom carbon residue, from about 0.1 to 5% by weight of sulfur, from about 0.05 to 2% by weight of nitrogen and from about 0. 12. The method of claim 11, comprising 05-30 ppm nickel and about 0.1-50 ppm vanadium. 前記方法が流動床接触分解反応器中で行われる、請求項1〜12のいずれか1項に記載する方法。The process according to any one of claims 1 to 12, wherein the process is carried out in a fluidized bed catalytic cracking reactor. 前記方法が、約800°F〜約1200°Fの温度および前記接触分解触媒と前記炭化水素含有油原料の重量比が約2:1〜約10:1の範囲で行われる、請求項13に記載する方法。14. The process of claim 13, wherein the process is conducted at a temperature of about 800 ° F. to about 1200 ° F. and a weight ratio of the catalytic cracking catalyst to the hydrocarbon-containing oil feedstock of about 2: 1 to about 10: 1. How to describe. 水蒸気が、前記水蒸気と前記炭化水素含有油原料の重量比が約0.05:1〜約0.5:1で、前記反応器に添加される、請求項14に記載する方法。15. The method of claim 14, wherein steam is added to the reactor at a weight ratio of the steam to the hydrocarbon-containing oil feedstock of about 0.05: 1 to about 0.5: 1.
JP18713696A 1995-07-18 1996-07-17 Method for catalytic cracking of hydrocarbon-containing oil feedstock in the presence of catalyst Expired - Lifetime JP3699782B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/504,030 US5618407A (en) 1995-07-18 1995-07-18 Catalytic cracking process utilizing a catalyst comprising aluminum borate and zirconium borate
US504030 1995-07-18

Publications (2)

Publication Number Publication Date
JPH09104875A JPH09104875A (en) 1997-04-22
JP3699782B2 true JP3699782B2 (en) 2005-09-28

Family

ID=24004580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18713696A Expired - Lifetime JP3699782B2 (en) 1995-07-18 1996-07-17 Method for catalytic cracking of hydrocarbon-containing oil feedstock in the presence of catalyst

Country Status (8)

Country Link
US (1) US5618407A (en)
EP (1) EP0754747B1 (en)
JP (1) JP3699782B2 (en)
CA (1) CA2179945C (en)
DE (1) DE69604136T2 (en)
ES (1) ES2137601T3 (en)
MX (1) MX9602728A (en)
TW (1) TW460567B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994257A (en) * 1997-08-12 1999-11-30 Phillips Petroleum Company Hydrotreating catalyst composition and processes therefor and therewith
US5986153A (en) * 1997-09-30 1999-11-16 Phillips Petroleum Company Olefin color stabilization
US5948243A (en) * 1998-02-24 1999-09-07 Phillips Petroleum Company Catalyst comprising aluminum borate and zirconium borate and use thereof in a hydrotreating process
US6037299A (en) * 1998-04-30 2000-03-14 Phillips Petroleum Company Catalyst composition and processes therefor and therewith
US6833485B2 (en) * 2000-08-10 2004-12-21 Rj Lee Group, Inc. Low energy method of pyrolysis of hydrocarbon materials such as rubber
US6835861B2 (en) 2000-08-10 2004-12-28 Rj Lee Group, Inc. Low energy method of pyrolysis of hydrocarbon materials such as rubber
US9895680B2 (en) 2013-12-19 2018-02-20 Basf Corporation FCC catalyst compositions containing boron oxide
US20150174559A1 (en) 2013-12-19 2015-06-25 Basf Corporation Phosphorus-Modified FCC Catalysts
US9796932B2 (en) 2013-12-19 2017-10-24 Basf Corporation FCC catalyst compositions containing boron oxide and phosphorus
US9441167B2 (en) 2013-12-19 2016-09-13 Basf Corporation Boron oxide in FCC processes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2306218A (en) * 1941-09-27 1942-12-22 Atlantic Refining Co Treatment of hydrocarbons
US4496665A (en) * 1981-03-30 1985-01-29 Ashland Oil, Inc. Process for cracking high-boiling hydrocarbons using continuous addition of acidity enhancing additives
US5071539A (en) * 1985-08-30 1991-12-10 Engelhard Corporation FCC catalysts of increased effective heat capacity
EP0224992B1 (en) * 1985-08-30 1990-06-27 Engelhard Corporation Fcc catalysts of increased effective heat capacity
US5427689A (en) * 1994-10-17 1995-06-27 Phillips Petroleum Company Separation of polar substances from hydrocarbons
US5461021A (en) * 1994-10-17 1995-10-24 Phillips Petroleum Company Metal borate composition

Also Published As

Publication number Publication date
US5618407A (en) 1997-04-08
MX9602728A (en) 1997-01-31
DE69604136T2 (en) 2000-01-05
EP0754747A1 (en) 1997-01-22
TW460567B (en) 2001-10-21
CA2179945C (en) 2000-12-05
EP0754747B1 (en) 1999-09-08
CA2179945A1 (en) 1997-01-19
JPH09104875A (en) 1997-04-22
DE69604136D1 (en) 1999-10-14
ES2137601T3 (en) 1999-12-16

Similar Documents

Publication Publication Date Title
US4781816A (en) Cracking process
JP4964379B2 (en) An improved method for reducing gasoline sulfur in fluid catalytic cracking.
EP0072653B1 (en) Endothermic removal of coke deposited on sorbent materials during conversion of oils containing coke precursors and heavy metals
JP2000154388A (en) Reduction of sulfur in gasoline in fluid catalytic cracking
KR20090120525A (en) Fcc catalysts for feeds containing nickel and vanadium
CA1189845A (en) Process and catalyst for the conversion of carbo- metallic containing oils
US4814066A (en) Reactivation of spent catalytic cracking catalyst
JP4870890B2 (en) Thermally stable and high surface area modified mesoporous aluminophosphate
US4954244A (en) Treatment of spent cracking catalysts
US4919787A (en) Metal passivating agents
KR101509826B1 (en) Catalytic cracking catalyst compositions having improved bottoms conversion
JP3699782B2 (en) Method for catalytic cracking of hydrocarbon-containing oil feedstock in the presence of catalyst
US4765884A (en) Cracking catalyst and process
US4935121A (en) Reactivation of metal-contaminated cracking catalysts
US4846960A (en) Catalytic cracking
US5061362A (en) Process for hydrogenation of heavy oil
GB1570682A (en) Hydrocarbon catalytic cracking process
JP2000514863A (en) Catalysts for optimal resid cracking of heavy feedstocks.
US5141624A (en) Catalytic cracking process
US5322619A (en) FCC for producing low emission fuels from high hydrogen and low nitrogen and aromatic feeds with rare earth promoted catalyst
US5157006A (en) Additive and process for vanadium capture in catalytic cracking
US5389233A (en) Metals passivation of cracking catalysts
US5037786A (en) Metals passivation-zeolite containing cracking catalysts
JP2018158282A (en) Activation method of catalyst for fluidized catalytic cracking
JP3586544B2 (en) Catalyst composition for catalytic cracking of hydrocarbons

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5