JP3699691B2 - High corrosion resistance hot dipped steel wire and method for producing the same - Google Patents

High corrosion resistance hot dipped steel wire and method for producing the same Download PDF

Info

Publication number
JP3699691B2
JP3699691B2 JP2002139253A JP2002139253A JP3699691B2 JP 3699691 B2 JP3699691 B2 JP 3699691B2 JP 2002139253 A JP2002139253 A JP 2002139253A JP 2002139253 A JP2002139253 A JP 2002139253A JP 3699691 B2 JP3699691 B2 JP 3699691B2
Authority
JP
Japan
Prior art keywords
plating
air
cooling
steel wire
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002139253A
Other languages
Japanese (ja)
Other versions
JP2003293109A (en
Inventor
秀典 大橋
好雄 榎並
富夫 木津和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Tech Corp
Original Assignee
Sakura Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Tech Corp filed Critical Sakura Tech Corp
Priority to JP2002139253A priority Critical patent/JP3699691B2/en
Publication of JP2003293109A publication Critical patent/JP2003293109A/en
Application granted granted Critical
Publication of JP3699691B2 publication Critical patent/JP3699691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金網、落石防止網、護岸工事用の籠マット、ワイヤーロープ、鋼撚り線等の屋外で使用されるメッキ鋼線における耐食性と加工性を高めた高耐食性溶融メッキ鋼線およびその製造方法に関する。
【0002】
【従来の技術】
鋼線に耐食性を付与する方法として、Znメッキが一般的に行なわれている。最近では、一回目に溶融Znメッキを行ない、引き続いて二回目にZn−Al合金メッキを行なう二浴法によるZn−6%Al合金メッキまたはZn−11%Al合金メッキが行なわれている。
他方、鋼板の分野では、Zn−Al合金メッキの耐食性をさらに高耐食にする方法として、Mgを重量比で3%添加するZn−6%Al−3%Mg合金メッキが鋼板用のメッキ製造方法として特開平10−306357等に提案されている。
この鋼板分野におけるZn−Al−Mg合金メッキを鋼線に適用すべくZn−6%Al−3%MgおよびZn−11%Al−3%Mg合金メッキの試作を行なってきた。ところが、耐食性は良いものの、メッキ層の硬度が高いために、曲げ加工した際に、メッキ層の偏肉による肉厚部及びブツ等の表面欠陥部に集中して剥離及びクラックが多発した。そして、実際的にメッキ鋼線には必ず前述した表面欠陥を多少は伴うので、曲げ加工を避けられない製品であるメッキ鋼線には応用できない問題があった。
また、メッキ付着量についても、外観、偏肉が良好であっても、曲げ加工時のメッキ部の剥離、クラックが発生するため、合金層とメッキ層を合わせたメッキ厚さに限界があり、300g/m2以上の厚メッキが安定して製造できない問題があった。
また、Zn−Al−3%Mg合金は、Zn−Al合金に比較して表面粗度が大きく、表面が梨地状になり、平滑性に乏しく、外観上の問題があった。
また、公知の通常の製造装置による製造方法では、偏肉比は3〜5程度に悪化し、メッキの剥離及びクラックが発生する問題があった。
【0003】
【発明が解決しようとする課題】
解決しようとする課題は、第1には、耐食性を有し、同時に、鋼線特有の要求品質である曲げ加工時のメッキ部の剥離及びクラックの問題が解消されているZn−Al−Mg合金組成の高耐食性溶融メッキ鋼線を、第2には、耐食性、加工性に優れ、且つ、メッキ表面が平滑で表面粗度の小さいZn−Al−Mg合金組成の高耐食性溶融メッキ鋼線を、第3には、さらに、曲げ加工時にメッキ部に剥離及びクラックが発生し難く、偏肉が少なくて、ブツ、ザラ等の表面欠陥のない外観良好なメッキ層からなる高耐食性溶融メッキ鋼線を、第4には、前記した高耐食性溶融メッキ鋼線を効率良く安定して量産することが可能な高耐食性溶融メッキ鋼線の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は前記した課題を達成するため、高耐食性溶融メッキ鋼線では、2浴法により溶融メッキされ、低速の空気流冷却の後に相対的に高速の空気流で冷却する二段階空冷のZn−Al−Mg合金メッキ鋼線において、メッキ層のビッカース硬度が60〜90で、合金層のビッカース硬度が100〜140で、メッキ層がZnを主成分とし、メッキ層および合金層全体における組成比が、Mg:0.03〜0.15%、Al:8〜15%、Zn:残部からなり、メッキ層と合金層を合わせたメッキ厚さに関して、横断面上の最大厚さを最小厚さで除した偏肉比の平均値が2.0以下であることを特徴とする。
また、本発明の高耐食性溶融メッキ鋼線では、2浴法により溶融メッキされ、低速の空気流冷却の後に相対的に高速の空気流で冷却する二段階空冷のZn−Al−Mg合金メッキ鋼線において、メッキ層のビッカース硬度が60〜90で、合金層のビッカース硬度が100〜140で、メッキ層がZnを主成分とし、メッキ層および合金層全体における組成比が、Mg:0.03〜0.15%、Al:8〜15%、Zn:残部からなり、メッキ表面の円周方向の表面粗度がRa:1.0μm以下で、メッキ層と合金層を合わせたメッキ厚さに関して、横断面上の最大厚さを最小厚さで除した偏肉比の平均値が2.0以下で、前記メッキ厚さが553〜740g/m2であることを特徴とする。
そして、本発明の高耐食性溶融メッキ鋼線の製造方法では、2浴法による高耐食性溶融メッキ鋼線の製造方法において、線材にZnを主成分とする溶融Znメッキを行なった後、組成比が、Mg:0.03〜0.15%、Al:8〜15%、Zn:残部からなる溶融Zn−Al−Mg合金メッキを行ない、Zn−Al−Mg合金メッキ浴面からメッキ絞り部を経て立ち上がる複数本の線材を、加圧空気部下部の下側冷却部と加圧空気部上部の上側冷却部からなる空冷装置に通過させて、前記加圧空気部の空気噴出口から前記上側冷却部内に形成された線材ごとの各整流空間部に流入して、前記上側冷却部上端出口より流出する高速の主冷却空気と、この主冷却空気流に吸引されて前記下側冷却部下端の入口から前記下側冷却部内に形成された線材ごとの各整流空間部に流入して前記主冷却空気に合流する相対的に低速の副冷却空気とで前記空冷装置内で二段階に空冷して製造することを特徴とする。
【0005】
本発明におけるAl重量比については、下限を8%以上にすることで高耐食性が確保され、上限を15%にすることにより厚メッキ製品にできることを確認し、8〜15%とした。Mg重量比は0.15%以下で巻付テストの合格率が100%になることを確認し、硬度が下がって加工性が向上し且つ高耐食が得られる0.03〜0.15%とした。メッキ層と合金層を合わせたメッキ厚さに関して、横断面上の最大厚さを最小厚さで叙した偏肉比の平均値を2.0以下に設定することは、高耐食である反面、半面硬度が高くて低加工性のZn−Al−Mg合金メッキ鋼線を曲げ加工性良好にする重要な項目である。2浴法においては、1次メッキと二次メッキを連続的または断続的のどちらの方式で行なっても良い。
【0006】
【発明の実施の形態】
図8〜図13には本発明の高耐食性溶融メッキ鋼線を製造するのに採用した製造装置を例示しており、1次メッキとしての溶融Znメッキ槽1と、二次メッキとしてのZn−Al−Mgメッキ槽2を連続状に配設してあると共に、Zn−Al−Mgメッキ槽2のメッキ浴面2aにおけるメッキ絞り部3の上部には空冷装置4を、この空冷装置4の上部には水冷装置8を、それぞれ配設していて、複数本の線材Lが、溶融Znメッキ槽1を通過した後、Zn−Al−Mgメッキ槽2内のシンカーローラー9を経てメッキ浴面2aから無酸化性の雰囲気ガスで覆われたメッキ絞り部3を通過して同時に立ち上がり、空冷装置4および水冷装置5を通過する過程でメッキ層L1を空冷そして水冷された後にトップローラー10を経てドラム(図示せず)に同時に巻き取られるようにしてある。水冷装置8は用途に応じて使用しなくても良い。
空冷装置4は、加圧空気部5と、加圧空気部5下部の下側冷却部6と、加圧空気部5上部の上側冷却部7からなり、この空冷装置4を通過する複数本の線材Lが、加圧空気部5の空気噴出口5aから上側冷却部7内に流入して同上側冷却部7上端の出口7aより流出する高速の主冷却空気aと、主冷却空気流に自然吸引されて下側冷却部6下端の入口6aから同下側冷却部6内に流入して主冷却空気aに合流する低速の副冷却空気bとで、それぞれ同時に二段階に空冷されるようにしてある。
【0007】
加圧空気部5は、二又状左右先部5b間に、前後に並列状の複数本の線材Lが同時に通過可能な長孔状の線材通し部5cを形成していると共に、左右の先部5b上面に左右一対の空気噴出口5aを上側冷却部7における各整流空間部7bと連通状にそれぞれ開口形成していて、各空気噴出口5aから20〜50m/s程度の風速の主冷却空気aが整流空間部7bに噴出するようにしてある。
【0008】
下側冷却部6は、横断面略長四角形状の筒体の内部に副冷却空気bの乱流を抑制する複数の乱流防止板6bを各線材Lの通過軌道脇に沿いそれぞれ左右対向状に配設してあると共に、前後および左右に隣接する各乱流防止板6bで隔てられた複数の整流空間部6cを形成していて、上側冷却部7内を流れる主冷却空気流に吸引されて、5〜15m/Sの風速の副冷却空気bが入口6aから整流空間部6c内に流入して乱流を抑制されて整流された状態で、メッキ絞り部3通過直後における複数の線材Lのメッキ層L1を同時に冷却するようにしてある。
【0009】
上側冷却部7は、横断面略長四角形状の筒体の内部に主冷却空気aの乱流を抑制する複数の乱流防止板7cを各線材Lの通過軌道脇に沿いそれぞれ左右対向状に配設してあると共に、前後および左右に隣接する各乱流防止板7cで隔てられた複数の整流空間部7bを形成していて、空気噴出口5aから噴出する主冷却空気aが整流空間部7b内に流入して乱流を抑制されて整流された状態で、副冷却空気bによる冷却直後の複数の線材Lにおけるメッキ層L1を同時に冷却するようにしてある。
【0010】
そして、空冷装置4における加圧空気部5と下側冷却部6と上側冷却部7は、相互に位置出しすることで一体的に組み付けて形成してあり、空冷装置5のメンテナンス時或いは線材Lの断線時等に装脱着して迅速に対応し得るようにしてある。
【0011】
このことにより、低速と高速の二つの速度が異なる整流空気すなわち主冷却空気aと副冷却空気bがひとつの空冷装置4に発生することによって、メッキ絞り部3通過直後における偏肉が発生し易い高温のメッキ層を低速の副冷却空気bという整流空気で冷却し、しかる後に、副冷却空気bによる冷却直後の比較的偏肉が発生しにくい低温のメッキ層L1を高速の主冷却空気aという整流空気で冷却することにより、メッキ層L1は偏肉を防止されて効率的に冷却されることになる。
【0012】
次に、前記した製造装置により製造した本発明の高耐食性溶融メッキ鋼線の一例を説明する。
線材(軟鋼線材JIS G3505 SWRM6K、4mm)Lに通常の条件で溶融Znメッキ槽1による1次メッキとしてのZnメッキを行なった後、比較のため、図1および図2の条件で、Zn−6%Al合金メッキした各比較品と、Zn−Al−Mgメッキ槽2による二次メッキとしてのZn−11%Al−Mg合金メッキした本発明品を得た。Mg重量比については、3%、2%、1.5%、0.8%、0.3%、0.15%、0.08%、0.03%、0%の9種類で行なった。そして、比較品および本発明品について、耐食性、加工性、メッキ層硬度、合金層硬度、メッキ層表面粗度の各項目について総合的に確認した。
【0013】
耐食性評価:JIS Z2371に示す塩水噴霧テストを連続500時間行なった後、腐食生成物を同JISに基づき酢酸アンモン溶液で除去し、試験前後の重量差により腐食原料を求めた。結果は図1、図2、図4に示す。
結果は、図1、図2、図4に示す如く、Zn−6%Al−Mg合金層およびZn−11%Al−Mg合金層ともに、Mgが3.0〜0.8%の間では耐食性は大差なく良好である。また、Mgが0.8〜0.03%の間ではMgの量に比例して順次耐食性が低下するものの、0.08%Mgで0%Mgのものと比較して約2倍程度の耐食性を有し、0.03%Mgで0%Mgのものと比較して約1.7程度の耐食性の改善効果があり、Mgは少量でも大きな効果が認められた。また、Mgの量が同じであれば、耐食性はZn−11%Al−Mg合金層がZn−6%Al−Mg合金層を上回っており、特にMgが1.5%以下の低い領域でこの傾向が大きく認められる。そして、Al重量比については、下限を8%以上にすることで高耐食性が確保され、上限を15%にすることにより厚メッキ製品にできることを確認した。
【0014】
加工性評価:線材Lを6mm(1.5×d)の鋼線に6回巻き付けて、メッキ層表面を目視確認し判定した。剥離がないこと及び鋼線が見えるような大きなクラックがないことを巻付テストの合格条件とし、各比較品および本発明品ともにそれぞれ20本宛てテストを行なった。結果は図1、図2に示す。加工性は、メッキ層の硬度による影響を受けるため、各テスト品毎のメッキ層と合金層の硬度についての測定を併せて行なった(図1、図2、図5、図6参照)。
加工性の評価結果は、両者ともMg量の低下に伴いメッキ層と合金層の硬度が低下して合格率が向上する。Mg重量比は1.5%以下で合格率が大幅に向上し、0.8%以下で合格率が100%になることを確認した。Mg重量比は、硬度が下がって加工性が向上し且つ高耐食が得られる0.03〜1.5%とした。特に加工性が向上するMg0.03〜0.8%未満は厚めっき用として好適である。Mg重量比によるメッキ層の硬度変化を図5に、合金層の硬度変化を図6に示している。
【0015】
メッキ層表面粗度評価:JIS B0601に基づき、Zn−Al−Mg合金層の円周方向の中心線平均粗さRaを測定することで行い、結果を図7に示している。
結果は、Mg重量比の低下とともにRaが低下しており、Mgが合金浴の溶湯の流動性を低下する添加元素であり、メッキ層凝固時にメッキ層表面に微細な収縮引による表面のへこみが発生していることを示している。
Zn−11%Al−Mg合金層の場合、Mgが1.5%で中心線平均粗さRaは1.0μm以下、Mgが0.8%でRaは0.8μm以下を示しており、0.2μm程度のバラツキを考慮すると、Mgが1.5%でRaは1.2μm以下、Mgが0.8%でRaは1.0μm以下となる。
【0016】
厚メッキ実績および耐食性評価:Mg重量比の低下にともない耐食性は低下するが、逆にメッキ層の硬度低下に伴いメッキ層の加工性が向上して、厚メッキが可能となり、結果としてはMgが0.03%〜1.5%の低いMg重量比のものでも、Mg1.6〜3%の高いMg重量比のものと同等以上の耐食性を示すことになる(図3参照)。
【0017】
【発明の効果】
A.請求項1により、耐食性を有し、同時に、鋼線特有の要求品質である曲げ加工時におけるメッキ部の剥離及びクラックの発生の心配がなく、しかも、耐食性については、Zn−Al合金メッキ鋼線に比較して約1.5〜3倍の高耐食性を有していて、偏肉が少なくて、良好な耐食性及び曲げ加工性を要望されるメッキ鋼線として有用である。
B.請求項2により、耐食性を有し、同時に、鋼線特有の要求品質である曲げ加工時におけるメッキ部の剥離及びクラックの発生の心配がなく、しかも、耐食性については、Zn−Al合金メッキ鋼線に比較して約1.5〜3倍の高耐食性を有していて、良好な耐食性、曲げ加工性、表面粗度と、曲げ加工時にメッキ部に剥離及びクラックが発生し難く、偏肉が少なくて、ブツ、ザラ等の表面欠陥のない外観良好なメッキ層を要望されるメッキ鋼線として有用である。
C.請求項3により、メッキ絞り部通過直後の線材における高温で流動性が大きく偏肉の発生し易いメッキ層を、整流されている低速の副冷却空気で冷却し、そして、この副冷却空気による冷却直後の低温で流動性が低く偏肉しにくいメッキ層を、整流されている高速の主冷却空気で冷却するようにしてあるため、偏肉を抑制した効率的冷却が可能である。したがって、偏肉比が従来品と同等以上に少なくて、しかも、外観良好で、高加工性を有する高耐食性溶融メッキ鋼線を効率良く安定して量産することができる。
【図面の簡単な説明】
【図1】 比較品の塩水噴霧テスト結果、巻付テスト結果、メッキ層硬度、合金層硬度を示しているデーター表。
【図2】 本発明の高耐食性溶融メッキ鋼線および比較品の塩水噴霧テスト結果、巻付テスト結果、メッキ層硬度、合金層硬度を示しているデーター表。
【図3】 本発明の高耐食性溶融メッキ鋼線および比較品の巻付テストおよび厚メッキ実績を示しているデーター表。
【図4】 本発明の高耐食性溶融メッキ鋼線および比較品の塩水噴霧テスト結果を示しているグラフ。
【図5】 本発明の高耐食性溶融メッキ鋼線および比較品のメッキ層硬度を示しているグラフ。
【図6】 本発明の高耐食性溶融メッキ鋼線および比較品の合金層硬度を示しているグラフ。
【図7】 本発明の高耐食性溶融メッキ鋼線および比較品の表面粗度を示しているグラフ。
【図8】 本発明の高耐食性溶融メッキ鋼線を製造するのに採用した製造装置を例示している概略図。
【図9】 側面図。
【図10】 図9の(10)−(10)縦断面図。
【図11】 図9の(11)−(11)縦断面図。
【図12】 図9の(12)−(12)縦断面図。
【図13】 図9の(13)−(13)縦断面図。
【符号の説明】
L 線材
L1 メッキ層
1 溶融Znメッキ槽
2 Zn−Al−Mgメッキ槽
2a メッキ浴面
3 メッキ絞り部
4 空冷装置
5 加圧空気部
5a 空気噴出口
5b 二又状左右先部
5c 線材通し部
6 下側冷却部
6a 入口
6b 乱流防止板
6c 整流空間部
7 上側冷却部
7a 出口
7b 整流空間部
7c 乱流防止板
8 水冷装置
9 シンカーローラー
10 トップローラー
a 主冷却空気
b 副冷却空気
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly corrosion-resistant hot-dip galvanized steel wire having improved corrosion resistance and workability in plated steel wires used outdoors such as wire nets, rockfall prevention nets, reed mats for wire protection works, wire ropes, and steel stranded wires, and a method for producing the same About.
[0002]
[Prior art]
As a method for imparting corrosion resistance to a steel wire, Zn plating is generally performed. Recently, Zn-6% Al alloy plating or Zn-11% Al alloy plating is performed by a two-bath method in which hot-dip Zn plating is performed first and then Zn-Al alloy plating is performed a second time.
On the other hand, in the field of steel sheets, Zn-6% Al-3% Mg alloy plating in which 3% by weight of Mg is added as a method for making the corrosion resistance of Zn-Al alloy plating higher corrosion resistance is a plating manufacturing method for steel sheets. This is proposed in Japanese Patent Laid-Open No. 10-306357.
In order to apply Zn—Al—Mg alloy plating in the steel sheet field to steel wires, trial production of Zn-6% Al-3% Mg and Zn-11% Al-3% Mg alloy plating has been performed. However, although the corrosion resistance is good, the plating layer has a high hardness, and therefore, when bent, peeling and cracks frequently occur on the surface defects such as thick portions and unevenness due to uneven thickness of the plating layer. In practice, the plated steel wire always has some of the surface defects described above, so that there is a problem that it cannot be applied to the plated steel wire, which is a product that cannot be bent.
Also, regarding the amount of plating adhesion, even if the appearance and uneven thickness are good, peeling of the plating part at the time of bending processing, cracks occur, so there is a limit to the plating thickness that combines the alloy layer and the plating layer, There was a problem that a thick plating of 300 g / m 2 or more could not be produced stably.
Further, the Zn—Al-3% Mg alloy has a surface roughness larger than that of the Zn—Al alloy, the surface is textured, has poor smoothness, and has a problem in appearance.
In addition, in the manufacturing method using a known normal manufacturing apparatus, the uneven thickness ratio deteriorates to about 3 to 5, and there is a problem that peeling of the plating and cracking occur.
[0003]
[Problems to be solved by the invention]
The problem to be solved is, firstly, a Zn-Al-Mg alloy that has corrosion resistance, and at the same time, has solved the problem of peeling and cracking of the plated portion during bending, which is a required quality peculiar to steel wires. High corrosion resistance hot dip galvanized steel wire having a composition, and secondly, a high corrosion resistance hot dip galvanized steel wire having a Zn-Al-Mg alloy composition that is excellent in corrosion resistance and workability, and has a smooth plating surface and low surface roughness. Thirdly, a highly corrosion-resistant hot-dip galvanized steel wire consisting of a plating layer that is less prone to peeling and cracking at the time of bending, has a small thickness deviation, and has a good appearance without surface defects such as bumps and roughness. 4th is providing the manufacturing method of the high corrosion-resistant hot-dip galvanized steel wire which can mass-produce the above-mentioned high corrosion-resistant hot-dip steel wire efficiently and stably.
[0004]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present invention is a two-stage air-cooled Zn— which is hot-plated by a two-bath method and is cooled by a relatively high-speed air flow after low-speed air-flow cooling. In an Al-Mg alloy plated steel wire, the plating layer has a Vickers hardness of 60 to 90, the alloy layer has a Vickers hardness of 100 to 140, the plating layer is mainly composed of Zn, and the composition ratio of the plating layer and the entire alloy layer is Mg: 0.03 to 0.15%, Al: 8 to 15%, Zn: the balance, and the maximum thickness on the cross section is the minimum thickness with respect to the total plating thickness of the plating layer and the alloy layer. The average thickness deviation ratio is 2.0 or less .
Further, in the high corrosion resistance hot-dip galvanized steel wire of the present invention, a two-stage air-cooled Zn—Al—Mg alloy-plated steel that is hot-dip plated by a two-bath method and cooled by a relatively high-speed air flow after low-speed air-flow cooling. In the wire, the Vickers hardness of the plating layer is 60 to 90, the Vickers hardness of the alloy layer is 100 to 140, the plating layer is mainly composed of Zn, and the composition ratio in the entire plating layer and the alloy layer is Mg: 0.03 About 0.15%, Al: 8-15%, Zn: The balance, the surface roughness in the circumferential direction of the plating surface is Ra: 1.0 μm or less, and the plating thickness of the combined plating layer and alloy layer The average thickness deviation ratio obtained by dividing the maximum thickness on the cross section by the minimum thickness is 2.0 or less, and the plating thickness is 553 to 740 g / m 2 .
And in the manufacturing method of the high corrosion resistance hot dip galvanized steel wire of the present invention, in the manufacturing method of the high corrosion resistance hot dip galvanized steel wire by the two-bath method, after performing hot dip Zn plating mainly containing Zn on the wire, the composition ratio is , Mg: 0.03 to 0.15%, Al: 8 to 15%, Zn: Molten Zn-Al-Mg alloy plating consisting of the remainder, and from the Zn-Al-Mg alloy plating bath surface through the plating throttle part A plurality of rising wires are passed through an air cooling device comprising a lower cooling part at the lower part of the pressurized air part and an upper cooling part at the upper part of the pressurized air part, and from the air outlet of the pressurized air part into the upper cooling part. High-speed main cooling air that flows into each rectification space portion of each wire formed in and flows out from the upper cooling portion upper end outlet, and is sucked into the main cooling air flow from the lower cooling portion lower end inlet Formed in the lower cooling part Wherein the produced air-cooled in two steps in the air cooling in the secondary cooling air relatively low speed flows into the rectifying space merges into the main cooling air per timber.
[0005]
About Al weight ratio in this invention, it confirmed that high corrosion resistance was ensured by making a minimum into 8% or more, and it can be made into a thick plating product by making an upper limit into 15%, and set it as 8 to 15%. It is confirmed that the Mg weight ratio is 0.15% or less and the passing rate of the winding test is 100%, the hardness is lowered, the workability is improved, and high corrosion resistance is obtained. 0.03 to 0.15 % did. Regarding the plating thickness of the plating layer and the alloy layer, setting the average value of the uneven thickness ratio with the maximum thickness on the cross section as the minimum thickness is set to 2.0 or less, while having high corrosion resistance, This is an important item for improving the workability of a Zn-Al-Mg alloy-plated steel wire having high half-surface hardness and low workability. In the two-bath method, the primary plating and the secondary plating may be performed either continuously or intermittently.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
8 to 13 exemplify a production apparatus employed for producing the highly corrosion-resistant hot-dip galvanized steel wire of the present invention, and a hot-dip Zn plating tank 1 as primary plating and Zn-- as secondary plating. The Al—Mg plating tank 2 is continuously arranged, and an air cooling device 4 is provided above the plating throttle portion 3 on the plating bath surface 2 a of the Zn—Al—Mg plating tank 2. Are provided with water cooling devices 8, respectively, and after a plurality of wire rods L have passed through the molten Zn plating tank 1, the plating bath surface 2 a passes through the sinker roller 9 in the Zn—Al—Mg plating tank 2. The plate passes through the diaphragm 3 covered with the non-oxidizing atmosphere gas and rises at the same time. In the process of passing through the air-cooling device 4 and the water-cooling device 5, the plating layer L1 is air-cooled and water-cooled, and then the drum passes through the top roller 10. (Not shown ) In it is then to be wound simultaneously. The water cooling device 8 may not be used depending on the application.
The air cooling device 4 includes a pressurized air unit 5, a lower cooling unit 6 below the pressurized air unit 5, and an upper cooling unit 7 above the pressurized air unit 5. The wire L flows naturally into the main cooling air flow and the high-speed main cooling air a that flows into the upper cooling portion 7 from the air outlet 5a of the pressurized air portion 5 and flows out from the outlet 7a at the upper end of the upper cooling portion 7. The low-speed sub-cooling air b that is sucked and flows into the lower-side cooling unit 6 from the inlet 6a at the lower end of the lower-side cooling unit 6 and merges with the main cooling air a is simultaneously cooled in two stages. It is.
[0007]
The pressurized air portion 5 is formed with a long hole-like wire rod passage portion 5c through which a plurality of parallel wire rods L can pass simultaneously in the front and rear between the bifurcated left and right tip portions 5b, and the left and right tip portions. A pair of left and right air jets 5a are formed in the upper surface of the part 5b so as to communicate with the respective rectifying spaces 7b in the upper cooling part 7, and main cooling at a wind speed of about 20 to 50 m / s from each air jet 5a. Air a is ejected to the rectifying space 7b.
[0008]
The lower cooling section 6 has a plurality of turbulent flow prevention plates 6b for suppressing the turbulent flow of the sub-cooling air b inside the cylindrical body having a substantially rectangular cross section along the side of the trajectory of each wire L. And a plurality of rectifying space portions 6c separated by the respective turbulent flow prevention plates 6b adjacent to each other in the front-rear direction and the left-right direction are formed, and are sucked by the main cooling air flow flowing in the upper cooling portion 7. Then, the sub cooling air b having a wind speed of 5 to 15 m / S flows into the rectifying space 6c from the inlet 6a and is rectified while suppressing the turbulent flow. The plating layer L1 is cooled at the same time.
[0009]
The upper cooling section 7 has a plurality of turbulent flow prevention plates 7c for suppressing the turbulent flow of the main cooling air a inside the cylindrical body having a substantially long rectangular cross section so as to be opposed to each other along the side of the passing track of each wire L. A plurality of rectifying space portions 7b separated by the respective turbulent flow prevention plates 7c adjacent to each other are formed, and the main cooling air a ejected from the air outlet 5a serves as the rectifying space portion. The plating layer L1 in the plurality of wires L immediately after cooling by the sub cooling air b is cooled at the same time in a state where the turbulent flow is suppressed and rectified while flowing into the 7b.
[0010]
And the pressurized air part 5, the lower cooling part 6, and the upper cooling part 7 in the air cooling device 4 are formed integrally by being positioned with respect to each other, and at the time of maintenance of the air cooling device 5 or the wire L In case of disconnection, etc., it is possible to respond quickly by attaching and detaching.
[0011]
As a result, the rectified air, that is, the main cooling air a and the sub-cooling air b having two different speeds of low speed and high speed are generated in one air cooling device 4, so that uneven thickness is likely to occur immediately after passing through the plating throttle portion 3. The high-temperature plating layer is cooled with the rectified air called the low-speed sub-cooling air b, and then the low-temperature plating layer L1 that is relatively free from uneven thickness immediately after being cooled by the sub-cooling air b is called the high-speed main cooling air a. By cooling with rectified air, the plating layer L1 is efficiently cooled while preventing uneven thickness.
[0012]
Next, an example of the high corrosion resistance hot-dip galvanized steel wire of the present invention manufactured by the manufacturing apparatus described above will be described.
After performing Zn plating as primary plating in the molten Zn plating bath 1 under normal conditions on a wire rod (soft steel wire JIS G3505 SWRM6K, 4 mm) L, for comparison, under the conditions of FIGS. Each comparative product plated with% Al alloy and a product according to the present invention plated with Zn-11% Al—Mg alloy as secondary plating in the Zn—Al—Mg plating tank 2 were obtained. Regarding the Mg weight ratio, 9 kinds of 3%, 2%, 1.5%, 0.8%, 0.3%, 0.15%, 0.08%, 0.03%, and 0% were used. . The comparative product and the product of the present invention were comprehensively confirmed for each item of corrosion resistance, workability, plating layer hardness, alloy layer hardness, and plating layer surface roughness.
[0013]
Corrosion resistance evaluation: After performing a salt spray test shown in JIS Z2371 continuously for 500 hours, a corrosion product was removed with an ammonium acetate solution based on the JIS, and a corrosion raw material was determined from a weight difference before and after the test. The results are shown in FIG. 1, FIG. 2, and FIG.
As a result, as shown in FIGS. 1, 2, and 4, the corrosion resistance of the Zn-6% Al—Mg alloy layer and the Zn-11% Al—Mg alloy layer is between 3.0% and 0.8%. Is good without much difference. In addition, when Mg is between 0.8 and 0.03%, the corrosion resistance gradually decreases in proportion to the amount of Mg, but the corrosion resistance is approximately twice that of 0.08% Mg and 0% Mg. 0.03% Mg has an effect of improving the corrosion resistance of about 1.7 compared with 0% Mg, and a large effect of Mg was recognized even in a small amount. If the amount of Mg is the same, the corrosion resistance of the Zn-11% Al-Mg alloy layer is higher than that of the Zn-6% Al-Mg alloy layer. There is a large trend. And about Al weight ratio, it confirmed that high corrosion resistance was ensured by making a minimum into 8% or more, and it can be made into a thick plating product by making an upper limit into 15%.
[0014]
Workability evaluation: The wire L was wound around a 6 mm (1.5 × d) steel wire 6 times, and the surface of the plating layer was visually confirmed and judged. The absence of peeling and the absence of large cracks where the steel wire could be seen were regarded as acceptable conditions for the winding test, and each comparative product and the present invention product were tested for 20 each. The results are shown in FIGS. Since the workability is affected by the hardness of the plating layer, the measurement of the hardness of the plating layer and the alloy layer for each test product was performed together (see FIGS. 1, 2, 5, and 6).
As for the evaluation results of workability, both the hardness of the plating layer and the alloy layer are lowered and the acceptance rate is improved as the amount of Mg is lowered. It was confirmed that the acceptance ratio was significantly improved when the Mg weight ratio was 1.5% or less, and the acceptance ratio was 100% when it was 0.8% or less. The Mg weight ratio was 0.03 to 1.5% at which the hardness decreased, the workability improved, and high corrosion resistance was obtained. In particular, Mg of 0.03 to less than 0.8%, which improves workability, is suitable for thick plating. FIG. 5 shows the change in hardness of the plated layer depending on the Mg weight ratio, and FIG. 6 shows the change in hardness of the alloy layer.
[0015]
Evaluation of plating layer surface roughness: Based on JIS B0601, the center line average roughness Ra in the circumferential direction of the Zn—Al—Mg alloy layer was measured, and the results are shown in FIG.
As a result, Ra is decreased with decreasing Mg weight ratio, and Mg is an additive element that decreases the fluidity of the molten metal in the alloy bath. It is occurring.
In the case of a Zn-11% Al—Mg alloy layer, Mg is 1.5%, the center line average roughness Ra is 1.0 μm or less, Mg is 0.8%, and Ra is 0.8 μm or less. Considering a variation of about 2 μm, Mg is 1.5% and Ra is 1.2 μm or less, Mg is 0.8% and Ra is 1.0 μm or less.
[0016]
Thick Plating Results and Corrosion Resistance Evaluation: Corrosion resistance decreases with decreasing Mg weight ratio, but conversely, with the decrease in plating layer hardness, the workability of the plating layer is improved and thick plating is possible. Even those having a low Mg weight ratio of 0.03% to 1.5% exhibit corrosion resistance equivalent to or higher than that of a high Mg weight ratio of 1.6 to 3% (see FIG. 3).
[0017]
【The invention's effect】
A. According to claim 1, there is no fear of peeling and cracking of the plating part at the time of bending, which is corrosion-resistant, and at the same time, the required quality peculiar to steel wire, and the corrosion resistance is Zn-Al alloy plated steel wire It has a high corrosion resistance of about 1.5 to 3 times that of the steel plate , is less uneven , and is useful as a plated steel wire that requires good corrosion resistance and bending workability.
B. According to claim 2, there is corrosion resistance, and at the same time, there is no fear of peeling of the plating part and occurrence of cracks at the time of bending, which is the required quality peculiar to the steel wire, and the corrosion resistance is Zn-Al alloy plated steel wire. Compared to the above, it has a high corrosion resistance of about 1.5 to 3 times, good corrosion resistance, bending workability, surface roughness, peeling and cracking hardly occur in the plated part during bending, and uneven thickness At least, it is useful as a plated steel wire for which a plating layer having a good appearance free from surface defects such as bumps and roughness is desired.
C. According to the third aspect, the plating layer which has high fluidity and is likely to cause uneven thickness at a high temperature in the wire just after passing through the plating throttle portion is cooled by the rectified low-speed subcooling air, and cooling by the subcooling air is performed. Since the plating layer that has low fluidity at the low temperature immediately after and is not easily uneven is cooled by the rectified high-speed main cooling air, efficient cooling with suppressed unevenness is possible. Therefore, it is possible to efficiently and stably mass-produce a highly corrosion-resistant hot-dip galvanized steel wire having an uneven thickness ratio that is equal to or less than that of the conventional product, and having a good appearance and high workability.
[Brief description of the drawings]
FIG. 1 is a data table showing a salt spray test result, a winding test result, a plating layer hardness, and an alloy layer hardness of a comparative product.
FIG. 2 is a data table showing salt spray test results, winding test results, plating layer hardness, and alloy layer hardness of the highly corrosion resistant hot-dip steel wire of the present invention and a comparative product.
FIG. 3 is a data table showing the winding test and thick plating results of the highly corrosion-resistant hot-dip galvanized steel wires of the present invention and comparative products.
FIG. 4 is a graph showing a salt spray test result of the high corrosion resistance hot-dip steel wire of the present invention and a comparative product.
FIG. 5 is a graph showing the plating layer hardness of the high corrosion resistance hot-dip steel wire of the present invention and a comparative product.
FIG. 6 is a graph showing the alloy layer hardness of the high corrosion resistance hot-dip galvanized steel wire of the present invention and a comparative product.
FIG. 7 is a graph showing the surface roughness of the highly corrosion-resistant hot-dip galvanized steel wire of the present invention and a comparative product.
FIG. 8 is a schematic view illustrating a production apparatus employed for producing the high corrosion resistance hot-dip galvanized steel wire of the present invention.
FIG. 9 is a side view.
10 is a longitudinal sectional view of (10)-(10) in FIG. 9. FIG.
11 is a longitudinal sectional view of (11)-(11) in FIG. 9;
12 is a longitudinal sectional view of (12)-(12) in FIG. 9;
13 is a longitudinal sectional view of (13)-(13) in FIG. 9;
[Explanation of symbols]
L Wire rod L1 Plating layer 1 Molten Zn plating bath 2 Zn-Al-Mg plating bath 2a Plating bath surface 3 Plating throttle portion 4 Air cooling device 5 Pressurized air portion 5a Air outlet 5b Bifurcated left and right tip portion 5c Wire rod passage portion 6 Lower cooling part 6a Inlet 6b Turbulence prevention plate 6c Rectification space part 7 Upper cooling part 7a Outlet 7b Rectification space part 7c Turbulence prevention plate 8 Water cooling device 9 Sinker roller 10 Top roller a Main cooling air b Sub cooling air

Claims (3)

2浴法により溶融メッキされ、低速の空気流冷却の後に相対的に高速の空気流で冷却する二段階空冷のZn−Al−Mg合金メッキ鋼線において、メッキ層のビッカース硬度が60〜90で、合金層のビッカース硬度が100〜140で、メッキ層がZnを主成分とし、メッキ層および合金層全体における組成比が、Mg:0.03〜0.15%、Al:8〜15%、Zn:残部からなり、メッキ層と合金層を合わせたメッキ厚さに関して、横断面上の最大厚さを最小厚さで除した偏肉比の平均値が2.0以下であることを特徴とする高耐食性溶融メッキ鋼線。 In a two-stage air - cooled Zn—Al—Mg alloy-plated steel wire that is hot-dip plated by a two-bath method and cooled by a relatively high-speed air flow after low-speed air-flow cooling , the plating layer has a Vickers hardness of 60 to 90 The alloy layer has a Vickers hardness of 100 to 140, the plating layer is mainly composed of Zn, and the composition ratio of the plating layer and the entire alloy layer is Mg: 0.03 to 0.15%, Al: 8 to 15%, Zn: It consists of the remainder, and with respect to the plating thickness of the plating layer and the alloy layer, the average thickness deviation ratio obtained by dividing the maximum thickness on the cross section by the minimum thickness is 2.0 or less. High corrosion resistance hot dipped steel wire. 2浴法により溶融メッキされ、低速の空気流冷却の後に相対的に高速の空気流で冷却する二段階空冷のZn−Al−Mg合金メッキ鋼線において、メッキ層のビッカース硬度が60〜90で、合金層のビッカース硬度が100〜140で、メッキ層がZnを主成分とし、メッキ層および合金層全体における組成比が、Mg:0.03〜0.15%、Al:8〜15%、Zn:残部からなり、メッキ表面の円周方向の表面粗度がRa:1.0μm以下で、メッキ層と合金層を合わせたメッキ厚さに関して、横断面上の最大厚さを最小厚さで除した偏肉比の平均値が2.0以下で、前記メッキ厚さが553〜740g/m2であることを特徴とする高耐食性溶融メッキ鋼線。In a two-stage air-cooled Zn—Al—Mg alloy-plated steel wire that is hot-dip plated by a two-bath method and cooled by a relatively high-speed air flow after low-speed air-flow cooling, the plating layer has a Vickers hardness of 60 to 90 The alloy layer has a Vickers hardness of 100 to 140, the plating layer is mainly composed of Zn, and the composition ratio of the plating layer and the entire alloy layer is Mg: 0.03 to 0.15%, Al: 8 to 15%, Zn: the remainder, the surface roughness in the circumferential direction of the plating surface is Ra: 1.0 μm or less, and the maximum thickness on the cross section is the minimum thickness with respect to the total plating thickness of the plating layer and the alloy layer. A high corrosion-resistant hot-dip galvanized steel wire having an average thickness deviation ratio of 2.0 or less and a plating thickness of 553 to 740 g / m 2 . 2浴法による高耐食性溶融メッキ鋼線の製造方法において、線材にZnを主成分とする溶融Znメッキを行なった後、組成比が、Mg:0.03〜0.15%、Al:8〜15%、Zn:残部からなる溶融Zn−Al−Mg合金メッキを行ない、Zn−Al−Mg合金メッキ浴面からメッキ絞り部を経て立ち上がる複数本の線材を、加圧空気部下部の下側冷却部と加圧空気部上部の上側冷却部からなる空冷装置に通過させて、前記加圧空気部の空気噴出口から前記上側冷却部内に形成された線材ごとの各整流空間部に流入して、前記上側冷却部上端出口より流出する高速の主冷却空気と、この主冷却空気流に吸引されて前記下側冷却部下端の入口から前記下側冷却部内に形成された線材ごとの各整流空間部に流入して前記主冷却空気に合流する相対的に低速の副冷却空気とで前記空冷装置内で二段階に空冷して製造することを特徴とする高耐食性溶融メッキ鋼線の製造方法。In the method for producing a highly corrosion-resistant hot-dip galvanized steel wire by the two-bath method, the composition ratio is Mg: 0.03-0.15%, Al: 8- 15%, Zn: The remaining Zn-Al-Mg alloy plating is performed, and a plurality of wires rising from the Zn-Al-Mg alloy plating bath surface through the plating throttle portion are cooled below the pressurized air portion. Passing through an air cooling device composed of an upper cooling part at the upper part of the pressurized air part and flowing into each rectifying space part for each wire formed in the upper cooling part from the air outlet of the pressurized air part, High-speed main cooling air that flows out from the upper cooling unit upper end outlet, and each rectification space portion for each wire rod that is sucked into the main cooling air flow and formed in the lower cooling unit from the lower cooling unit lower end inlet Into the main cooling air Method for producing a high corrosion resistance hot dip coating steel wire, characterized in that prepared by cooling in two steps in the air cooling in the secondary cooling air relatively slow.
JP2002139253A 2002-04-05 2002-04-05 High corrosion resistance hot dipped steel wire and method for producing the same Expired - Lifetime JP3699691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139253A JP3699691B2 (en) 2002-04-05 2002-04-05 High corrosion resistance hot dipped steel wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139253A JP3699691B2 (en) 2002-04-05 2002-04-05 High corrosion resistance hot dipped steel wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003293109A JP2003293109A (en) 2003-10-15
JP3699691B2 true JP3699691B2 (en) 2005-09-28

Family

ID=29244284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139253A Expired - Lifetime JP3699691B2 (en) 2002-04-05 2002-04-05 High corrosion resistance hot dipped steel wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP3699691B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664844B2 (en) * 2006-03-24 2011-04-06 サクラテック株式会社 Zn-Al alloy plated steel wire having high corrosion resistance, Zn-Al-Mn alloy plated steel wire and method for producing the same
WO2009030549A1 (en) 2007-09-06 2009-03-12 Nv Bekaert Sa Steel rope safety system with compacted ropes
CN107513742B (en) * 2017-08-29 2019-01-04 重庆鑫盟精密模具有限公司 The galvanizing rig of precision die cutting electrode silk core material
WO2019124485A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Hot-dip plated steel wire and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207421A (en) * 1994-01-13 1995-08-08 Mitsui Mining & Smelting Co Ltd Galvanizing method
JP2000045056A (en) * 1998-07-28 2000-02-15 Hokkai Koki Kk Cooling device for hot dip zinc-aluminum alloy plated wire
JP3476408B2 (en) * 1999-08-03 2003-12-10 新日本製鐵株式会社 Hot-dip Zn-Mg-Al alloy-plated steel wire and method for producing the same
DE60029428T2 (en) * 1999-10-25 2007-04-19 Nippon Steel Corp. METAL-COATED STEEL WIRE WITH EXCELLENT CORROSION RESISTANCE AND PROCESSABILITY AND MANUFACTURING METHOD
JP3399895B2 (en) * 2000-01-27 2003-04-21 新日本製鐵株式会社 Hot-dip galvanized steel wire having high corrosion resistance and method for producing the same
JP3854468B2 (en) * 2000-03-31 2006-12-06 新日本製鐵株式会社 Plated steel material having high corrosion resistance and excellent workability, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003293109A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP5482914B2 (en) High corrosion resistance hot-dip galvanized steel sheet with excellent appearance uniformity and method for producing the same
JP4174058B2 (en) High corrosion resistance hot-dip galvanized steel with excellent surface smoothness and formability and method for producing hot-dip galvanized steel
WO2014119268A1 (en) HOT-DIP Al-Zn GALVANIZED STEEL PLATE AND METHOD FOR PRODUCING SAME
EP1285973B1 (en) Plated metal wire and production method and production device therefor
JP6001469B2 (en) Fused Al-Zn plated steel sheet and method for producing the same
JP3699691B2 (en) High corrosion resistance hot dipped steel wire and method for producing the same
WO2011001640A1 (en) Zinc-aluminum galvanized iron wire and manufacturing method therefor
KR101568474B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING-RESISTANCE AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE SAME
JP3148542B2 (en) Hot-dip galvanized steel sheet with excellent glare resistance
JP3399895B2 (en) Hot-dip galvanized steel wire having high corrosion resistance and method for producing the same
JP3886331B2 (en) Hot-dip galvanized steel sheet with excellent plating adhesion and weldability and method for producing the same
CN1303236C (en) Zinc bismuth multicomponent alloy used for hot dip galvanizing of steel and iron members and hot dip galvanizing method therefor
JP4464880B2 (en) Zn-Al alloy plated steel wire having high corrosion resistance and method for producing the same
CN112575273A (en) Medium-aluminum zinc-aluminum-magnesium coated steel plate with excellent coating plasticity and production method thereof
JP3654520B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JPH02274851A (en) Zinc alloy for hot dip plating
JP2006183101A (en) Plated steel wire with high corrosion resistance and high workability, plating bath composition, method for manufacturing plated steel wire with high corrosion resistance and high workability, and metal gauze product
JP4529380B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3637702B2 (en) Method for producing hot-dip galvanized steel sheet with excellent workability
JP4835073B2 (en) Manufacturing method of molten metal plated steel strip
JP3793495B2 (en) Hot-dip galvanized steel sheet with excellent appearance quality and manufacturing method of galvanized steel sheet
JP2769843B2 (en) Manufacturing method of alloy plated steel wire
KR100343010B1 (en) The method of high image clarity alloyed hot dip galvanized steel for outcase of automobile
CN210346038U (en) Wire drawing panel and household appliance
JPH08176975A (en) Abrasion and corrosion resistant wire rope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050708

R150 Certificate of patent or registration of utility model

Ref document number: 3699691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term