JP3697523B2 - Regenerative heat exchanger and regenerative heat exchange method - Google Patents

Regenerative heat exchanger and regenerative heat exchange method Download PDF

Info

Publication number
JP3697523B2
JP3697523B2 JP2003352449A JP2003352449A JP3697523B2 JP 3697523 B2 JP3697523 B2 JP 3697523B2 JP 2003352449 A JP2003352449 A JP 2003352449A JP 2003352449 A JP2003352449 A JP 2003352449A JP 3697523 B2 JP3697523 B2 JP 3697523B2
Authority
JP
Japan
Prior art keywords
heat exchanger
regenerative heat
fluid
concave
convex ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003352449A
Other languages
Japanese (ja)
Other versions
JP2005114324A (en
Inventor
伸英 笠木
直毅 鹿園
雄二 鈴木
賢一 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2003352449A priority Critical patent/JP3697523B2/en
Priority to PCT/JP2004/014961 priority patent/WO2005036086A1/en
Publication of JP2005114324A publication Critical patent/JP2005114324A/en
Application granted granted Critical
Publication of JP3697523B2 publication Critical patent/JP3697523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、空気調和機、冷凍機、ガスタービン、燃料電池などのエネルギーシステムに好適に用いることのできる再生熱交換器及び再生熱交換方法に関する。   The present invention relates to a regenerative heat exchanger and a regenerative heat exchange method that can be suitably used for energy systems such as air conditioners, refrigerators, gas turbines, and fuel cells.

従来の再生熱交換器では、波状に折り曲げられた隔壁(部材)を重ねることで、断面形状が長方形などの矩形状を呈する流路を構成したプライマリーサーフェス型熱交換器、及び並行平板隔壁間に波状のコルゲートフィンを挟んだインナーフィン型熱交換器などが多用されている。これらの熱交換器では、その性能向上やコンパクト化を目的に、波状に折り曲げられる伝熱面のピッチを細かくすることで伝熱性能に大きな影響を及ぼす水力直径の小径化が図られてきた。   In a conventional regenerative heat exchanger, a primary surface type heat exchanger configured with a flow path having a rectangular shape such as a rectangle by overlapping partition walls (members) bent in a wave shape, and a parallel plate partition wall. An inner fin type heat exchanger with a corrugated fin corrugated is used frequently. In these heat exchangers, for the purpose of improving the performance and downsizing, the hydraulic diameter that has a great influence on the heat transfer performance has been reduced by reducing the pitch of the heat transfer surface bent in a wave shape.

上述した従来型の再生熱交換器では、ガスタービンなどから排出される高温排気ガスや、腐食成分を含む排気ガスからの熱回収を行う場合、再生熱交換器の信頼性の面から隔壁やインナーフィンの肉厚にはある程度の厚さが要求される。   In the above-described conventional regenerative heat exchanger, when heat recovery is performed from high-temperature exhaust gas discharged from a gas turbine or the like or exhaust gas containing corrosive components, a partition wall or inner wall is used from the viewpoint of the reliability of the regenerative heat exchanger. A certain thickness is required for the thickness of the fin.

しかしながら、厚肉板に対してプレスによる曲げ加工などを施し、前述した肉厚の隔壁やインナーフィンを作製することは非常に困難であり、また、前記隔壁などを肉厚化することによって流路断面積が減少し、圧力損失が増大するなどの問題も生じる。さらに、前記隔壁などの肉厚化によって、空調機のフィンで行われているようなスリットなどの前縁効果による伝熱促進技術を適用することも、その肉厚に起因した加工性の問題及び切断部からの腐食などの問題から困難であった。   However, it is very difficult to produce a thick partition wall or inner fin by subjecting a thick plate to a bending process using a press, and the flow path can be increased by increasing the thickness of the partition wall. Problems such as a decrease in cross-sectional area and an increase in pressure loss also occur. Furthermore, by increasing the thickness of the partition wall or the like, it is also possible to apply heat transfer enhancement technology due to the leading edge effect such as slits performed by fins of air conditioners. It was difficult due to problems such as corrosion from the cut part.

この結果、従来の再生熱交換器では、伝熱性能の向上に限界があり、より一層の大幅なコンパクト化が困難である。   As a result, in the conventional regenerative heat exchanger, there is a limit to the improvement of the heat transfer performance, and it is difficult to further reduce the size.

本発明は、耐熱性及び耐食性などの信頼性を維持するとともに高い伝熱促進機能を有し、十分にコンパクト化することが可能な再生熱交換器を提供することを目的とする。さらに本発明は、前記再生熱交換器を利用した再生熱交換方法を提供することを目的とする。   It is an object of the present invention to provide a regenerative heat exchanger that maintains reliability such as heat resistance and corrosion resistance and has a high heat transfer promoting function and can be made sufficiently compact. A further object of the present invention is to provide a regenerative heat exchange method using the regenerative heat exchanger.

上記目的を達成すべく、本発明は、
温度の異なる複数の流体を流すための、互いに隣接した複数の矩形状部材を有し、前記複数の矩形状部材それぞれの、前記流体と接触する少なくとも一つの内側面部分に、前記流体の流れ方向と所定の角度をなすように複数の凹凸リブを設け
前記複数の凹凸リブの、前記流体の流れ方向とのなす角度を、30度〜80度としたことを特徴とする、再生熱交換器に関する。
In order to achieve the above object, the present invention provides:
A plurality of rectangular members adjacent to each other for flowing a plurality of fluids having different temperatures, and a flow direction of the fluid on at least one inner surface portion of each of the plurality of rectangular members in contact with the fluid and a plurality of concave-convex ribs to form a predetermined angle,
The present invention relates to a regenerative heat exchanger characterized in that an angle between the plurality of concave and convex ribs and the flow direction of the fluid is 30 to 80 degrees .

本発明の再生熱交換器によれば、熱交換を行うための、温度の異なる複数の流体を流す互いに隣接した複数の矩形状部材の少なくとも一つの内側面部分、すなわち隔壁部分に前記流体の流れ方向と所定の角度をなすように複数の凹凸リブを設けている。このとき、前記流体が前記隔壁と接触する際に、流路断面内に二次流れ成分、すなわち縦渦が発生し旋回流を生成するようになる。この旋回流によって、前記流体の、前記隔壁近傍で熱交換した成分と、前記流体の、前記矩形状部材の略中心部を流れる主流成分との混合が促進されるため、極めて高い伝熱性能が得られるようになる。   According to the regenerative heat exchanger of the present invention, the flow of the fluid to at least one inner surface portion of the plurality of rectangular members adjacent to each other for flowing a plurality of fluids having different temperatures for heat exchange, that is, the partition wall portion. A plurality of concave and convex ribs are provided so as to form a predetermined angle with the direction. At this time, when the fluid comes into contact with the partition wall, a secondary flow component, that is, a vertical vortex is generated in the cross section of the flow path to generate a swirling flow. This swirl flow facilitates mixing of the fluid heat-exchanged component in the vicinity of the partition wall and the main-flow component of the fluid that flows through the substantially central portion of the rectangular member, so that extremely high heat transfer performance is achieved. It will be obtained.

さらに、前記隔壁近傍での流体の速度が増大するため、前記隔壁から伝わってくる熱を前記流体の対流を通じて効率的に伝搬させることができ、前記伝熱性能をさらに向上させることができる。   Furthermore, since the velocity of the fluid in the vicinity of the partition increases, heat transferred from the partition can be efficiently propagated through the convection of the fluid, and the heat transfer performance can be further improved.

また、前記旋回流は、前記隔壁からの剥離によって増速したり、乱れたりすることがないため、大きな圧力損失を生じることもない。   Further, the swirling flow is not accelerated or disturbed by the separation from the partition wall, so that no large pressure loss occurs.

さらに、前記凹凸リブはプレス加工で容易に成形することが可能であるため、局所的な薄肉化や切断面の露出などによる信頼性の低下を招くことがない。   Furthermore, since the concave and convex ribs can be easily formed by press working, reliability is not reduced due to local thinning or exposure of the cut surface.

したがって、本発明によれば、耐熱性及び耐食性などの信頼性を維持するとともに高い伝熱促進機能を有し、十分にコンパクト化することが可能な再生熱交換器を得ることができる。   Therefore, according to the present invention, it is possible to obtain a regenerative heat exchanger that maintains reliability such as heat resistance and corrosion resistance, has a high heat transfer promoting function, and can be made sufficiently compact.

なお、本発明の好ましい態様においては、前記複数の凹凸リブは、前記内側面上において互いに交差させる。さらには、前記内側面上において、前記流体の流れ方向に対して前記角度の符号が交互に入れ替わるようにして交差させる。この場合、前記複数の凹凸リブが形成された同一の内側面上、すなわち隔壁上で回転方向の異なる旋回流を生成することができ、上述した伝熱性能をさらに向上させることができるようになる。   In a preferred embodiment of the present invention, the plurality of concave and convex ribs intersect each other on the inner side surface. Furthermore, on the inner side surface, the angle of the angle intersects with the fluid flow direction so as to alternate. In this case, it is possible to generate swirl flows having different rotation directions on the same inner surface on which the plurality of concave and convex ribs are formed, that is, on the partition walls, and to further improve the heat transfer performance described above. .

また、本発明においては、前記前記複数の凹凸リブの、前記流体の流れ方向とのなす角度を30度〜80度とする。前記角度が30度より小さいと旋回流生成による十分な伝熱性能を実現できない。また、前記角度が80度より大きいと圧力損失が増大して、大きな流動損失が生じ、上述した伝熱性能を発源できない。Moreover, in this invention, the angle which the said some uneven | corrugated rib makes with the said fluid flow direction shall be 30 to 80 degree | times. If the angle is smaller than 30 degrees, sufficient heat transfer performance by generating swirl flow cannot be realized. On the other hand, if the angle is larger than 80 degrees, the pressure loss increases and a large flow loss occurs, and the heat transfer performance described above cannot be generated.

さらに、本発明のその他の好ましい態様においては、前記複数の凹凸リブのピッチが前記矩形状部材の断面における短辺の長さ以下とする。前記ピッチが前記短辺の長さを越えて大きくなると、前記凹凸リブによって前記旋回流を生成することができず、十分な伝熱性能を発源できない場合がある。   Furthermore, in another preferable aspect of the present invention, the pitch of the plurality of concave and convex ribs is equal to or shorter than the length of the short side in the cross section of the rectangular member. If the pitch exceeds the length of the short side, the swirl flow cannot be generated by the concave and convex ribs, and sufficient heat transfer performance may not be generated.

なお、本発明は、上述した再生熱交換器を利用した再生熱交換方法に関し、
複数の矩形状部材を互いに隣接するように組み合わせて再生熱交換器を構成する工程と、
前記複数の矩形状部材それぞれの、前記流体と接触する少なくとも一つの内側面部分に、前記流体の流れ方向と所定の角度をなすように複数の凹凸リブを設ける工程と、
前記複数の矩形状部材中に温度の異なる複数の流体を流し、隣接した前記矩形状部材間の隔壁を通じて熱交換を行う工程とを具え
前記複数の凹凸リブの、前記流体の流れ方向とのなす角度を、30度〜80度とすることを特徴とする。
本発明のその他の特徴及び利点については以下に詳述する。
In addition, this invention relates to the regeneration heat exchange method using the regeneration heat exchanger mentioned above,
A step of configuring a regenerative heat exchanger by combining a plurality of rectangular members adjacent to each other;
Providing a plurality of concave and convex ribs on at least one inner surface portion of each of the plurality of rectangular members in contact with the fluid so as to form a predetermined angle with the flow direction of the fluid;
Flowing a plurality of fluids having different temperatures through the plurality of rectangular members, and performing heat exchange through a partition wall between the adjacent rectangular members ,
An angle between the plurality of concave and convex ribs and the fluid flow direction is 30 degrees to 80 degrees .
Other features and advantages of the present invention are described in detail below.

以下、本発明を発明の実施の形態に基づいて詳細に説明する。
図1は、本発明の再生熱交換器の一例を示す構成図である。図1においては、波状に折り曲げられた複数の矩形状部材11が、互いに段差をなして隣接するように組み合わされることにより、プライマリーサーフェス型の再生熱交換器10を構成している。矩形状部材11の内部は空洞になっており、流体が伝播する流路を構成している。各矩形状部材11の内側面11A、すなわち互いに隣接する流路に対する隔壁11A上には複数の凹凸リブ12が形成されている。
Hereinafter, the present invention will be described in detail based on embodiments of the invention.
FIG. 1 is a block diagram showing an example of a regenerative heat exchanger according to the present invention. In FIG. 1, a primary surface type regenerative heat exchanger 10 is configured by combining a plurality of rectangular members 11 bent in a wave shape so as to be adjacent to each other while forming a step. The inside of the rectangular member 11 is hollow and constitutes a flow path through which the fluid propagates. A plurality of concavo-convex ribs 12 are formed on the inner surface 11A of each rectangular member 11, that is, on the partition wall 11A for the flow paths adjacent to each other.

図1に示す再生熱交換器10の矩形状部材11内をそれぞれ温度の異なる流体が流れると、これらの流体は隔壁11Aを通じて互いに熱の授受を行い、結果として熱交換が行われるようになる。このとき、前記流体が隔壁11Aと接触する際に、その流路断面内に二次流れ成分、すなわち縦渦が発生し旋回流を生成するようになる。この旋回流によって、前記流体の、隔壁11A近傍で熱交換した成分と、前記流体の、矩形状部材11の略中心部を流れる主流成分との混合が促進されるため、極めて高い伝熱性能が得られるようになる。   When fluids having different temperatures flow through the rectangular member 11 of the regenerative heat exchanger 10 shown in FIG. 1, these fluids exchange heat with each other through the partition wall 11A, and as a result, heat exchange is performed. At this time, when the fluid comes into contact with the partition wall 11A, a secondary flow component, that is, a vertical vortex is generated in the cross section of the flow path to generate a swirling flow. This swirl flow promotes mixing of the fluid heat-exchanged component in the vicinity of the partition wall 11 </ b> A and the main-flow component of the fluid flowing through the substantially central portion of the rectangular member 11, so that extremely high heat transfer performance is achieved. It will be obtained.

さらに、隔壁11A近傍での流体の速度が増大するため、隔壁11Aから伝わってくる熱を前記流体の対流を通じて効率的に伝搬させることができ、前記伝熱性能をさらに向上させることができる。また、前記旋回流は、前記隔壁からの剥離によって増速したり、乱れたりすることがないため、大きな圧力損失を生じることもない。さらに、前記凹凸リブはプレス加工で容易に成形することが可能であるため、局所的な薄肉化や切断面の露出などによる信頼性の低下を招くことがない。   Further, since the velocity of the fluid in the vicinity of the partition wall 11A increases, the heat transferred from the partition wall 11A can be efficiently propagated through the convection of the fluid, and the heat transfer performance can be further improved. Further, the swirling flow is not accelerated or disturbed by the separation from the partition wall, so that no large pressure loss occurs. Furthermore, since the concave and convex ribs can be easily formed by press working, reliability is not reduced due to local thinning or exposure of the cut surface.

したがって、図1に示す再生熱交換器10は、耐熱性及び耐食性などの信頼性を維持するとともに高い伝熱促進機能を有し、十分にコンパクト化することが可能となる。   Accordingly, the regenerative heat exchanger 10 shown in FIG. 1 maintains reliability such as heat resistance and corrosion resistance and has a high heat transfer promoting function, and can be made sufficiently compact.

なお、複数の凹凸リブ12の、図中矢印で示す前記流体の流れ方向とのなす角度θは30度〜80度とする。角度θが30度より小さいと旋回流生成による十分な伝熱性能を実現できない。また、角度θが80度より大きいと圧力損失が増大して、大きな流動損失が生じ、上述した伝熱性能を発源できない。In addition, the angle θ between the plurality of concave and convex ribs 12 and the fluid flow direction indicated by the arrows in the drawing is 30 to 80 degrees. If the angle θ is smaller than 30 degrees, sufficient heat transfer performance due to swirl flow generation cannot be realized. On the other hand, if the angle θ is greater than 80 degrees, the pressure loss increases and a large flow loss occurs, so that the heat transfer performance described above cannot be generated.

また、複数の凹凸リブ12のピッチPが矩形状部材12の断面における短辺の長さL以下であることが好ましい。ピッチPが前記短辺の長さLを越えて大きくなると、凹凸リブ12によって前記旋回流を生成することができず、十分な伝熱性能を発源できない場合がある。   Further, the pitch P of the plurality of concave and convex ribs 12 is preferably equal to or shorter than the length L of the short side in the cross section of the rectangular member 12. If the pitch P increases beyond the length L of the short side, the swirl flow cannot be generated by the uneven rib 12, and sufficient heat transfer performance may not be generated.

なお、再生熱交換器10を構成する矩形状部材11の断面の大きさや長さなどは、熱交換の度合いや、その用途に応じて適宜に設定することができる。   In addition, the magnitude | size, length, etc. of the cross section of the rectangular member 11 which comprises the regenerative heat exchanger 10 can be suitably set according to the degree of heat exchange and its use.

図2は、本発明の再生熱交換器の他の例を示す構成図である。図2においては、波状に折り曲げられた複数の矩形状部材21が、互いに隣接するとともに平板25間に挟まれるように組み合わされることにより、インナーフィン型の再生熱交換器20を構成している。矩形状部材21の内部は空洞になっており、流体が伝播する流路を構成している。各矩形状部材21の内側面21A、すなわち互いに隣接する流路に対する隔壁21A上には複数の凹凸リブ22が形成されている。   FIG. 2 is a configuration diagram showing another example of the regenerative heat exchanger of the present invention. In FIG. 2, a plurality of rectangular members 21 bent in a wave shape are combined so as to be adjacent to each other and sandwiched between flat plates 25 to constitute an inner fin type regenerative heat exchanger 20. The inside of the rectangular member 21 is hollow and constitutes a flow path through which the fluid propagates. A plurality of concavo-convex ribs 22 are formed on the inner surface 21A of each rectangular member 21, that is, on the partition wall 21A for the flow paths adjacent to each other.

図2に示す再生熱交換器20の矩形状部材21内をそれぞれ温度の異なる流体が流れると、これらの流体は隔壁21Aを通じて互いに熱の授受を行い、結果として熱交換が行われるようになる。このとき、前記流体が隔壁21Aと接触する際に、その流路断面内に二次流れ成分、すなわち縦渦が発生し旋回流を生成するようになる。この旋回流によって、前記流体の、隔壁21A近傍で熱交換した成分と、前記流体の、矩形状部材21の略中心部を流れる主流成分との混合が促進されるため、極めて高い伝熱性能が得られるようになる。   When fluids having different temperatures flow through the rectangular member 21 of the regenerative heat exchanger 20 shown in FIG. 2, these fluids exchange heat with each other through the partition wall 21A, and as a result, heat exchange is performed. At this time, when the fluid comes into contact with the partition wall 21A, a secondary flow component, that is, a vertical vortex is generated in the cross section of the flow path to generate a swirling flow. This swirl flow promotes mixing of the fluid heat-exchanged component in the vicinity of the partition wall 21A and the main-stream component of the fluid that flows through the substantially central portion of the rectangular member 21, so that extremely high heat transfer performance is achieved. It will be obtained.

さらに、隔壁21A近傍での流体の速度が増大するため、隔壁21Aから伝わってくる熱を前記流体の対流を通じて効率的に伝搬させることができ、前記伝熱性能をさらに向上させることができる。また、前記旋回流は、前記隔壁からの剥離によって増速したり、乱れたりすることがないため、大きな圧力損失を生じることもない。さらに、前記凹凸リブはプレス加工で容易に成形することが可能であるため、局所的な薄肉化や切断面の露出などによる信頼性の低下を招くことがない。   Further, since the fluid velocity in the vicinity of the partition wall 21A increases, the heat transferred from the partition wall 21A can be efficiently propagated through the convection of the fluid, and the heat transfer performance can be further improved. Further, the swirling flow is not accelerated or disturbed by the separation from the partition wall, so that no large pressure loss occurs. Furthermore, since the concave and convex ribs can be easily formed by press working, reliability is not reduced due to local thinning or exposure of the cut surface.

したがって、図2に示す再生熱交換器20は、耐熱性及び耐食性などの信頼性を維持するとともに高い伝熱促進機能を有し、十分にコンパクト化することが可能となる。   Therefore, the regenerative heat exchanger 20 shown in FIG. 2 maintains reliability such as heat resistance and corrosion resistance and has a high heat transfer promoting function, and can be made sufficiently compact.

なお、複数の凹凸リブ22の、図中矢印で示す前記流体の流れ方向とのなす角度ψは30度〜80度とする。角度ψが30度より小さいと旋回流生成による十分な伝熱性能を実現できない。また、角度ψが80度より大きいと圧力損失が増大して、大きな流動損失が生じ、上述した伝熱性能を発源できない。The angle ψ between the plurality of concave and convex ribs 22 and the fluid flow direction indicated by the arrows in the figure is 30 to 80 degrees. If the angle ψ is smaller than 30 degrees, sufficient heat transfer performance due to swirl flow generation cannot be realized. On the other hand, when the angle ψ is larger than 80 degrees, the pressure loss increases and a large flow loss occurs, so that the heat transfer performance described above cannot be generated.

また、複数の凹凸リブ22のピッチQが矩形状部材21の断面における短辺の長さR以下であることが好ましい。ピッチQが前記短辺の長さRを越えて大きくなると、凹凸リブ22によって前記旋回流を生成することができず、十分な伝熱性能を発源できない場合がある。   In addition, the pitch Q of the plurality of concave and convex ribs 22 is preferably equal to or shorter than the short side length R in the cross section of the rectangular member 21. If the pitch Q increases beyond the length R of the short side, the swirl flow cannot be generated by the concave and convex ribs 22 and sufficient heat transfer performance may not be generated.

なお、再生熱交換器20を構成する矩形状部材21の断面の大きさや長さなどは、熱交換の度合いや、その用途に応じて適宜に設定することができる。   In addition, the magnitude | size of the cross section of the rectangular member 21 which comprises the regenerative heat exchanger 20, a length, etc. can be suitably set according to the degree of heat exchange and its use.

図3は、図1に示す再生熱交換器の変形例を示す構成図である。図3においても、図1同様に、波状に折り曲げられた複数の矩形状部材31が、互いに段差をなして隣接するように組み合わせれることにより、プライマリーサーフェス型の再生熱交換器30を構成している。矩形状部材31の内部は空洞になっており、流体が伝播する流路を構成している。そして、各矩形状部材31の内側面31A、すなわち互いに隣接する流路に対する側隔壁31A上には、前記流体の流れ方向において、角度の符号が互いに異なるように交差させ、全体としてV字を呈するように複数の凹凸リブ32が形成されている。   FIG. 3 is a configuration diagram illustrating a modified example of the regenerative heat exchanger illustrated in FIG. 1. 3, similarly to FIG. 1, a primary surface type regenerative heat exchanger 30 is configured by combining a plurality of rectangular members 31 bent in a wave shape so as to be adjacent to each other while forming a step. Yes. The interior of the rectangular member 31 is hollow and constitutes a flow path through which the fluid propagates. Then, on the inner side surface 31A of each rectangular member 31, that is, on the side partition wall 31A with respect to the flow paths adjacent to each other, the fluid flows in the direction of the fluid so that the signs of the angles are different from each other, so A plurality of concave and convex ribs 32 are formed as described above.

図3に示す再生熱交換器30の矩形状部材31内をそれぞれ温度の異なる流体が流れると、これらの流体は隔壁31Aを通じて互いに熱の授受を行い、結果として熱交換が行われるようになる。このとき、前記流体が隔壁31Aと接触する際に、その流路断面内に互いに逆向きの二次流れ成分、すなわち縦渦が発生し互いに逆方向の旋回流を生成するようになる。すなわち、同一の内隔壁31A上で回転方向の異なる旋回流を生成することができ、上述した伝熱性能をさらに向上させることができるようになる。   When fluids having different temperatures flow through the rectangular member 31 of the regenerative heat exchanger 30 shown in FIG. 3, these fluids exchange heat with each other through the partition wall 31A, and as a result, heat exchange is performed. At this time, when the fluid comes into contact with the partition wall 31A, secondary flow components in opposite directions, that is, longitudinal vortices are generated in the flow path cross section, and swirl flows in opposite directions are generated. That is, it is possible to generate swirl flows having different rotation directions on the same inner partition wall 31A, and the heat transfer performance described above can be further improved.

なお、図3に示す再生熱交換器30に要求されるその他の特性は図1に示す再生熱交換器10に要求されるものと同じである。   Other characteristics required for the regenerative heat exchanger 30 shown in FIG. 3 are the same as those required for the regenerative heat exchanger 10 shown in FIG.

以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

例えば、上記具体例では凹凸リブのピッチを矩形状部材の断面における短辺との比較で規定しているが、前記矩形状部材の断面が正方形である場合は、いずれかの片の長さとの比較で規定することができる。   For example, in the above specific example, the pitch of the concavo-convex ribs is defined by comparison with the short side in the cross section of the rectangular member, but when the cross section of the rectangular member is a square, It can be defined by comparison.

また、図3に示す再生熱交換器においては、凹凸リブを流体の流れ方向に対して角度の符号が異なるように交差させ、全体形状がV字型となるように形成したが、W字型となるように形成することもできる。   Further, in the regenerative heat exchanger shown in FIG. 3, the concavo-convex ribs are formed so as to intersect with each other so that the sign of the angle is different from the flow direction of the fluid, and the overall shape is formed into a V shape. It can also be formed.

本発明の再生熱交換器の一例を示す構成図である。It is a block diagram which shows an example of the regenerative heat exchanger of this invention. 本発明の再生熱交換器の他の例を示す構成図である。It is a block diagram which shows the other example of the regenerative heat exchanger of this invention. 図1に示す再生熱交換器の変形例を示す構成図である。It is a block diagram which shows the modification of the regenerative heat exchanger shown in FIG.

符号の説明Explanation of symbols

10、20、30 再生熱変換器
11、21、31 矩形状部材
11A、21A、31A 矩形状部材の内側面(隔壁)
12、22、32 凹凸リブ
10, 20, 30 Regenerative heat converter 11, 21, 31 Rectangular member 11A, 21A, 31A Inner side surface (partition) of rectangular member
12, 22, 32 Uneven rib

Claims (14)

温度の異なる複数の流体を流すための、互いに隣接した複数の矩形状部材を有し、前記複数の矩形状部材それぞれの、前記流体と接触する少なくとも一つの内側面部分に、前記流体の流れ方向と所定の角度をなすように複数の凹凸リブを設け
前記複数の凹凸リブの、前記流体の流れ方向とのなす角度を、30度〜80度としたことを特徴とする、再生熱交換器。
A plurality of rectangular members adjacent to each other for flowing a plurality of fluids having different temperatures, and a flow direction of the fluid on at least one inner surface portion of each of the plurality of rectangular members in contact with the fluid and a plurality of concave-convex ribs to form a predetermined angle,
The regenerative heat exchanger characterized in that an angle between the plurality of concave and convex ribs and the fluid flow direction is 30 degrees to 80 degrees .
前記複数の凹凸リブは、前記内側面上において互いに交差させたことを特徴とする、請求項1に記載の再生熱交換器。   The regenerative heat exchanger according to claim 1, wherein the plurality of concave and convex ribs intersect each other on the inner side surface. 前記複数の凹凸リブは、前記内側面上において、前記流体の流れ方向に対して前記角度の符号が互いに異なるように交差させたことを特徴とする、請求項2に記載の再生熱交換器。   3. The regenerative heat exchanger according to claim 2, wherein the plurality of concave and convex ribs intersect on the inner side surface such that the signs of the angles are different from each other with respect to the flow direction of the fluid. 前記複数の凹凸リブのピッチが前記矩形状部材の断面における短辺の長さ以下であることを特徴とする、請求項1〜のいずれか一に記載の再生熱交換器。 The regenerative heat exchanger according to any one of claims 1 to 3 , wherein a pitch of the plurality of concave and convex ribs is equal to or shorter than a length of a short side in a cross section of the rectangular member. 前記複数の凹凸リブによって、流路断面内に前記流体の旋回流を生成することを特徴とする、請求項1〜のいずれか一に記載の再生熱交換器。 The regenerative heat exchanger according to any one of claims 1 to 4 , wherein a swirl flow of the fluid is generated in a cross section of the flow path by the plurality of uneven ribs. プライマリーサーフェス型の熱交換器を構成することを特徴とする、請求項1〜のいずれか一に記載の再生熱交換器。 The regenerative heat exchanger according to any one of claims 1 to 5 , wherein the heat exchanger is a primary surface type heat exchanger. インナーフィン型の熱交換器を構成することを特徴とする、請求項1〜のいずれか一に記載の再生熱交換器。 The regenerative heat exchanger according to any one of claims 1 to 5 , wherein the heat exchanger is an inner fin type heat exchanger. 複数の矩形状部材を互いに隣接するように組み合わせて再生熱交換器を構成する工程と、
前記複数の矩形状部材それぞれの、前記流体と接触する少なくとも一つの内側面部分に、前記流体の流れ方向と所定の角度をなすように複数の凹凸リブを設ける工程と、
前記複数の矩形状部材中に温度の異なる複数の流体を流し、隣接した前記矩形状部材間の隔壁を通じて熱交換を行う工程とを具え
前記複数の凹凸リブの、前記流体の流れ方向とのなす角度を、30度〜80度とすることを特徴とする、再生熱交換方法。
A step of configuring a regenerative heat exchanger by combining a plurality of rectangular members adjacent to each other;
Providing a plurality of concave and convex ribs on at least one inner surface portion of each of the plurality of rectangular members in contact with the fluid so as to form a predetermined angle with the flow direction of the fluid;
Flowing a plurality of fluids having different temperatures through the plurality of rectangular members, and performing heat exchange through a partition wall between the adjacent rectangular members ,
The regenerative heat exchange method , wherein an angle formed by the plurality of concave and convex ribs with the fluid flow direction is 30 degrees to 80 degrees .
前記複数の凹凸リブは、前記内側面上において互いに交差させることを特徴とする、請求項に記載の再生熱交換方法。 The regenerative heat exchange method according to claim 8 , wherein the plurality of concave and convex ribs intersect each other on the inner side surface. 前記複数の凹凸リブは、前記内側面上において、前記流体の流れ方向に対して前記角度の符号が互いに異なるように交差させることを特徴とする、請求項に記載の再生熱交換方法。 The regenerative heat exchange method according to claim 9 , wherein the plurality of concave and convex ribs intersect on the inner side surface so that the signs of the angles are different from each other with respect to the fluid flow direction. 前記複数の凹凸リブのピッチを前記矩形状部材の断面における短辺の長さ以下とすることを特徴とする、請求項8〜10のいずれか一に記載の再生熱交換方法。 The regenerative heat exchange method according to any one of claims 8 to 10 , wherein a pitch of the plurality of concave and convex ribs is set to be equal to or less than a length of a short side in a cross section of the rectangular member. 前記複数の凹凸リブによって、流路断面内に前記流体の旋回流を生成することを特徴とする、請求項8〜11のいずれか一に記載の再生熱交換方法。 The regenerative heat exchange method according to any one of claims 8 to 11 , wherein a swirl flow of the fluid is generated in a cross section of the flow path by the plurality of uneven ribs. 前記再生熱交換器はプライマリーサーフェス型の熱交換器を構成することを特徴とする、請求項8〜12のいずれか一に記載の再生熱交換方法。 The regenerative heat exchange method according to any one of claims 8 to 12 , wherein the regenerative heat exchanger constitutes a primary surface type heat exchanger. 前記再生熱交換器はインナーフィン型の熱交換器を構成することを特徴とする、請求項8〜12のいずれか一に記載の再生熱交換方法。 The regenerative heat exchanger method according to any one of claims 8 to 12 , wherein the regenerative heat exchanger constitutes an inner fin type heat exchanger.
JP2003352449A 2003-10-10 2003-10-10 Regenerative heat exchanger and regenerative heat exchange method Expired - Lifetime JP3697523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003352449A JP3697523B2 (en) 2003-10-10 2003-10-10 Regenerative heat exchanger and regenerative heat exchange method
PCT/JP2004/014961 WO2005036086A1 (en) 2003-10-10 2004-10-08 Recovery heat exchanger and recovery heat exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352449A JP3697523B2 (en) 2003-10-10 2003-10-10 Regenerative heat exchanger and regenerative heat exchange method

Publications (2)

Publication Number Publication Date
JP2005114324A JP2005114324A (en) 2005-04-28
JP3697523B2 true JP3697523B2 (en) 2005-09-21

Family

ID=34431109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352449A Expired - Lifetime JP3697523B2 (en) 2003-10-10 2003-10-10 Regenerative heat exchanger and regenerative heat exchange method

Country Status (2)

Country Link
JP (1) JP3697523B2 (en)
WO (1) WO2005036086A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112331A (en) * 2009-11-30 2011-06-09 T Rad Co Ltd Heat exchanger for exhaust gas
JP5727327B2 (en) * 2011-08-08 2015-06-03 株式会社神戸製鋼所 Heat exchanger
CN102735083A (en) * 2012-07-25 2012-10-17 黄学明 Plate type heat exchanger
JP2012198023A (en) * 2012-07-26 2012-10-18 Komatsu Ltd Corrugated fin, and heat exchanger including the same
JP5694282B2 (en) * 2012-12-10 2015-04-01 株式会社小松製作所 Corrugated fin and heat exchanger provided with the same
JP2014142180A (en) * 2014-04-24 2014-08-07 Komatsu Ltd Corrugated fin and heat exchanger including the same
JP6393135B2 (en) * 2014-09-25 2018-09-19 住友精密工業株式会社 heatsink
JP6560564B2 (en) * 2015-08-26 2019-08-14 日立造船株式会社 Fuel cell system
GB2565143B (en) 2017-08-04 2021-08-04 Hieta Tech Limited Heat exchanger
CN115997101A (en) * 2020-08-21 2023-04-21 三菱电机株式会社 Heat exchange element and heat exchange ventilator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE423750B (en) * 1977-01-14 1982-05-24 Munters Ab Carl DEVICE EXCHANGER FOR SENSIBLE AND / OR LATENT TRANSMISSION
JPS61186794A (en) * 1985-02-15 1986-08-20 Hisaka Works Ltd Plate type heat exchanger
DE69709716T2 (en) * 1996-04-12 2002-08-14 Honeywell International Inc., Morristown METHOD FOR PRODUCING A CARBON / CARBON HEAT EXCHANGER
JPH10211537A (en) * 1997-01-24 1998-08-11 Furukawa Electric Co Ltd:The Heat transfer tube and its production
JP2002054511A (en) * 2000-08-14 2002-02-20 Hino Motors Ltd Egr cooler
JP2002323295A (en) * 2001-04-24 2002-11-08 Mitsubishi Heavy Ind Ltd Plate fin type heat exchanger
JP2003184573A (en) * 2001-12-13 2003-07-03 Toyo Radiator Co Ltd Gas turbine system

Also Published As

Publication number Publication date
WO2005036086A1 (en) 2005-04-21
JP2005114324A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
US6349761B1 (en) Fin-tube heat exchanger with vortex generator
JP3697523B2 (en) Regenerative heat exchanger and regenerative heat exchange method
JP2008128574A (en) Heat exchanger
KR970016513A (en) Heat exchanger with uneven fins and air conditioner with heat exchanger
WO2019120278A1 (en) Outer fin heat exchange tube and use method therefor
WO2013001744A1 (en) Fin tube heat exchanger
JP2014020580A (en) Fin tube type heat exchanger
JPH08247677A (en) Heat exchanger for air conditioner
Kapustenko et al. Intensification of heat transfer processes
JP2002350083A (en) Inner fin for heat exchanger
JP7244440B2 (en) Header plateless heat exchanger
JPS58164995A (en) Heat exchanger and manufacture thereof
JP2002048491A (en) Heat exchanger for cooling
CN211178075U (en) Liquid injection seal radiator
CN211178077U (en) Ohm type special-shaped seal radiator
JPH11223484A (en) Heat exchanger
CN211626195U (en) Rhombus dysmorphism strip of paper used for sealing radiator
CN215724136U (en) Thermal expansion compensation device and gas heating equipment
CN218480949U (en) Heat exchanger core and printed circuit board type heat exchanger comprising same
JP2005061648A (en) Heat exchanger
CN114370777B (en) Heat exchange channel structure of printed circuit board heat exchanger and printed circuit board heat exchanger
WO2021054173A1 (en) Heat transfer fin and manufacturing method therefor
CN211178076U (en) Regular hexagonal special-shaped seal radiator
CN210512767U (en) Cooling pipe for intercooler
Biswas et al. Longitudinal vortex generators for enhancement of heat transfer in heat exchanger applications

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Ref document number: 3697523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term