JP3697206B2 - Composite metal member manufacturing equipment - Google Patents

Composite metal member manufacturing equipment Download PDF

Info

Publication number
JP3697206B2
JP3697206B2 JP2001370812A JP2001370812A JP3697206B2 JP 3697206 B2 JP3697206 B2 JP 3697206B2 JP 2001370812 A JP2001370812 A JP 2001370812A JP 2001370812 A JP2001370812 A JP 2001370812A JP 3697206 B2 JP3697206 B2 JP 3697206B2
Authority
JP
Japan
Prior art keywords
frequency induction
coil
metal
induction coil
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001370812A
Other languages
Japanese (ja)
Other versions
JP2003170265A (en
Inventor
隆 松本
正 野田
幸雄 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001370812A priority Critical patent/JP3697206B2/en
Publication of JP2003170265A publication Critical patent/JP2003170265A/en
Application granted granted Critical
Publication of JP3697206B2 publication Critical patent/JP3697206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、母材板の表面に係る母材板の素材と異なる金属または合金を単層あるいは復層にして溶着した複合金属部材の製造装置に関する。
【0002】
【従来の技術】
摩耗部分の保護または補修のため、例えば鋼材からなる母材板の表面に耐磨耗性の金属または合金を被覆した複合金属部材が、一般に用いられている。係る金属または合金の被覆には、例えばアトマイズ粉末を母材板の表面に載せた状態で加熱して溶着する溶着法が用いられている。
係る溶着法により得られる複合部材における幅方向の両側端部において、溶着金属のダレ(コーナー欠け)を防ぎ且つ能率的に溶着を行うため、図4(A),(B)に示す製造装置30を用いる複合金属部材の製造方法が提案されている。
【0003】
上記製造装置30は、図4(A),(B)に示すように、左右に分割された一対の搬送ローラ31,32と、これらの間に位置する高周波誘導コイル40と、係るコイル40の内側を貫通し且つ両端部を搬送ローラ31,32に支持される一対の堰板38,38と、搬送ローラ31,32上を搬送され且つ堰板38,38間を通過する長尺な母材板39の表面上に金属粉末Pを供給するホッパー44と、を備えている。搬送ローラ31,32は、それぞれ水平な一対のフレーム33,33間に駆動または従動回転する複数のローラ34を配置しており、図4(A),(B)においては上流側の搬送ローラ31上に、母材板39が載置されている。
【0004】
図4(A),(B)に示すように、搬送ローラ31,32間には、右側の入口41寄りほど小径で且つ狭ピッチに巻き付けられ、左側の出口42寄りほど大径で且つ広ピッチに巻き付けた全体がほぼラッパ形状を呈する高周波誘導コイル40が配置されている。係るコイル40の内側には、その軸心方向に沿って対向する一対の堰板38,38が貫通する。係る堰板38,38は、長尺な耐熱鋼またはセラミックなどの板材から形成され、その長手方向の両端部は、搬送ローラ31,32のフレーム33,33から突出する水平なピン35,35に巻き付けたコイルバネ36,36を介して、上記フレーム33,33に支持される共に、対向する堰板38,38は互いに接近し合うよう水平方向に押圧されている。
【0005】
尚、上記ピン35およびコイルバネ36は、搬送ローラ31,32における上記ローラ34,34間またはフレーム33,33の端部に配置されると共に、一対の堰板38,38は、各ローラ34,34よりも高い位置に配置されている。また、図4(A),(B)に示すように、上流側の搬送ローラ31の上方で且つ堰板38,38間には、金属粉末Pを充填したホッパー44が配置され、係るホッパー44の下端に位置する粉末供給口46は、母材板39に対向して配置されている。係る供給口46の下流側には、図示しない昇降機構により昇降自在とされている均し板48が配置されている。
【0006】
図4(B)に示すように、右側から左側に搬送される母材板39上に投下された金属粉末Pは、均し板48により表面が平坦に均され且つ両側を堰板38,38に挟まれつつ高周波誘導コイル40の内側を母材板39と共に水平に移動する。この間において、例えば300KHzの高周波電流が流れる上記コイル40の電磁誘導により母材板39の表面には渦電流が流れるため、当該母材板39が発熱する。係る母材板39からの熱伝達により金属粉末Pが加熱され且つ溶融状態になった後、ジュール熱による上記コイル40からの直接加熱が開始される。
【0007】
ところで、母材板39における渦電流の浸透深さ(加熱深度)が深くなると、母材板39内への熱移動速度は、上記粉末Pの吸熱速度と同じかそれ以上となるため、当該母材板39の温度上昇が加速され、粉末Pよりも速く溶融してしまうおそれがある、という問題があった。
上記渦電流の浸透深さは、高周波誘導コイル40に流す高周波電流の周波数に反比例するため、かかる電流の周波数が大きいほど浸透深さは浅くなる。このため、上述した母材板39の溶融を防ぐべく、粉末Pの溶着に適用する上記コイル40の周波数は、浸透深さが浅い300〜400KHzが一般的であった。この結果、例えば厚み約2〜3mmのFe系の溶着金属を被覆する場合、母材板39の搬送速度は約100〜120mm/分と低速度となるため、複合金属部材の生産性が低くなりコスト高になる、という問題もあった。
【0008】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、溶着すべき金属粉末が母材板よりも速く溶融し且つ効率良く低コストで複合金属部材を製造することができる複合金属部材の製造装置を提供する、ことを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、発明者らの鋭意研究および実験の結果、高周波誘導コイルを複数に分割し且つこれらにより形成される渦電流の母材板への浸透深さを相違させる、こと着想して成されたものである。
即ち、本発明の複合金属部材の製造装置(請求項1)は、周波数の異なる複数の高周波誘導コイルと、係るコイルの軸心方向に沿った前後に配置され且つ金属粉末を載置した母材板を上記高周波誘導コイルの内側を貫通して搬送する搬送手段と、を備え、上記高周波誘導コイルのうち、上記母材板の搬送方向において上流寄りの高周波誘導コイルは比較的高周波数であり、且つ下流寄りの高周波誘導コイルは比較的低周波数である、ことを特徴とする。
【0010】
これによれば、上流寄りの高周波誘導コイルが比較的高周波数であるため、母材板の表面付近には浸透深度の浅い渦電流が形成され、係る母材板の発熱により金属粉末が加熱され且つ一部が溶融され始める。次いで、下流寄りの高周波誘導コイルは比較的低周波数であるため、金属粉末から溶けた溶融(溶着)金属には浸透深度の深い渦電流が形成され、係る渦電流の抵抗で生じるジュール熱により溶融金属自体が直に加熱される。このため、溶融金属の発熱量が増加して残っていた金属粉末も加熱され且つ溶融される。これにより、金属粉末全体が迅速に溶融し且つ上記コイルに基づくジュール熱により急速に加熱されるため、全体に均一な溶着金属の層を母材板の表面に被覆した複合金属部材を迅速に形成することが容易となる。しかも、母材板はその内部まで加熱されにくいため、金属粉末よりも速く溶融する事態を確実に防ぐことができる。
【0011】
尚、上流寄りおよび下流寄りの高周波誘導コイルとは、母材板の搬送方向における相対的な呼び名であり、係るコイルは、上記搬送方向に沿って2段または3段以上に分割して配置する複数の高周波誘導コイルを表すものである。また、高周波誘導コイルの周波数は、当該コイルに通電される電流の周波数を示す。
更に、母材板の表面上に供給する金属粉末には、耐摩耗性、耐食性、または耐熱性などを改善するため、硬質金属または合金や、耐食性や耐熱性の金属または合金の他、同様の改善を可能とし得る金属およびセラミックを含む複合材料、例えばサーメット(cermet)やサイアロン(SIALON)なども含まれる。
尚また、前記金属粉末の供給位置は、上記各高周波誘導コイルの内側を貫通しつつ母材板を両側から挟み付ける一対の堰板間であって高周波加熱コイルよりも上流寄りで、且つ上記堰板間の先端側とするのが望ましい。
【0012】
また、本発明は、前記上流寄りの高周波誘導コイルの周波数は100〜200KHzで且つ前記下流寄りの高周波誘導コイルの周波数は50〜150KHzであると共に、これら上流寄りおよび下流寄りの各コイルの周波数間の差は40KHz以上である、複合金属部材の製造装置(請求項2)も含む。
これによれば、従来の前記製造装置30における周波数300〜400KHzに比べて、何れも低い周波数で且つ100〜200KHzの上流寄りの高周波誘導コイルにより母材板の表層付近を加熱し金属粉末を急速に加熱する。次いで、50〜150KHzの下流寄りの高周波誘導コイルにより、金属粉末が溶けた溶融(溶着)金属自体を深く加熱する。且つ、係る母材板からの伝達熱と金属粉末が溶けた溶融金属自体のジュール熱とにより、残っていた金属粉末および溶融金属全体を迅速に加熱して母材板の表面に被覆させることができる。
【0013】
尚、上流寄りの高周波誘導コイルの周波数が例えば100,150,200KHzである場合、下流寄りの高周波誘導コイルの周波数は50,100,150KHzと何れも50KHz(40KHz以上)の差とすることが望ましい。
また、上記各コイルの周波数を50〜200KHzの範囲としたのは、50KHz未満では安定した制御が得にくく、一方200KHzを越えると渦電流の浸透深さが浅くなり過ぎて金属粉末や溶融金属の加熱速度が低下するためである。更に、上流寄りと下流寄りのコイルの周波数の差を40KHz以上としたのは、これ未満では両者により母材板や粉末が溶けた溶融金属に生じる渦電流の浸透深さの差が過少となり、母材板が深く加熱されたり、あるいは溶融金属が浅く加熱されるおそれが生じ得るためである。
付言すれば、前記高周波誘導コイルを上流寄り、中流、下流寄りの3段階とする形態では、各コイルの周波数は、例えば上流寄りを100〜200KHz、中流を100〜150KHz、下流寄りを50〜100KHzとし、且つ互いに隣接するコイルにおける周波数間の差を40KHz以上と設定することができる。
【0014】
更に、本発明には、前記上流寄りの高周波誘導コイルおよび下流寄りの高周波誘導コイルの間において、上流寄りの上記コイルにより加熱された前記母材板上の金属粉末または溶着金属の温度を測定する測温手段が更に配置されている、複合金属部材の製造装置(請求項3)も含まれる。
これによれば、上流寄りの上記コイルにより加熱された金属粉末または溶着金属の温度を測定し、その過加熱または加熱不足を検出することにより、下流寄りの高周波誘導コイルの電源装置に対しその出力を増加または低減するフィードフォワード制御を容易に行うことが可能となる。これにより、母材板の表面に所望の金属または合金を溶着して被覆した複合金属部材を一層確実に且つ安定して製造することが可能となる。尚、上記測温結果に応じて、上流寄りの高周波誘導コイルの出力を増加または低減するフィードバック制御を行うことも可能である。
【0015】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1(A),(B)は、本発明による複合金属部材の製造装置1の平面図および垂直断面図を示す。この製造装置1は、図1(A),(B)に示すように、左右に分割された一対の搬送ローラ(搬送手段:ローラーコンベア)2a,2bと、これらの中間に位置する高周波誘導コイル10と、係るコイル10の内側を貫通し且つ両端部を搬送ローラ2a,2bに支持される一対の堰板8a,8bと、搬送ローラ2a,2b上を搬送され且つ堰板8a,8b間を通過する長尺な母材板18の表面上に金属粉末Pを供給するホッパー14と、を備えている。
搬送ローラ2a,2bは、それぞれ水平な一対のフレーム3,3間に駆動または従動回転するローラ4,4,…を複数配置しており、図1(A),(B)では、上流(右)側の搬送ローラ2a上に、母材板18が載置された状態となっている。
【0016】
上流側の搬送ローラ2aの上方で且つ一対の堰板8a,8b間には、金属粉末Pを充填したホッパー14が配置され、その下端に位置する粉末供給口15は、母材板18に対向して配置されている。係る供給口15の下流側には、次述する昇降機構20により昇降自在とされている均し板16が配置されている。
上記均し板16の昇降機構20は、図2(A)に示すように、ホッパー14の下端に位置する粉末供給口15の下流側に固定した軸受け21と、この軸受け21に回転可能に支持されるボルト22と、このボルト22の上端に固定したハンドル24と、上記ボルト22の下端部でネジ結合するナット23と、を備えている。係るナット23は、幅広な均し板16の側面の中央に固定されている。
【0017】
また、ホッパー14の供給口15から斜め下流側に突出する一対の対称な水平棒27,27の先端に固定したリング26,26には、均し板16の左右において垂直に固定されたガイドピン25,25が貫通している。従って、上記ハンドル24を回しボルト22を回転することにより、これとネジ結合するナット23と共に均し板16を、図2(A)中の矢印方向に沿って昇降させることができる。この結果、前記図1(A)に示したように、供給口15から投下された直後の金属粉末Pを、母材板18の表面上で所望の均一な厚みに均すことができる。
【0018】
上記均し板16は、図1(A)に示すように、搬送ローラ2a上を左側に搬送される母材板18の表面上に投下された金属粉末Pの表面を平坦で且つ所要の厚みに均す。また、均し板16は、一対の堰板8a,8b間の上流寄りに位置し、係る堰板8a,8bに両側面を接触させつつ搬送される母材板18の真上に位置する。このため、母材板18、一対の堰板8a,8b、および均し板16に囲まれた断面矩形の空間を通じて、金属粉末Pを所望の厚みで供給することができる。
【0019】
図1(A),(B)に示すように、搬送ローラ2a,2b間に配置される高周波誘導コイル10は、母材板18の搬送方向において上流寄りに位置し且つ比較的高周波数(例えば100KHz)の誘導コイル11と、下流寄りに位置し且つ比較的低周波数(例えば50KHz)の誘導コイル12と、に分割されている。尚、係るコイル11,12は、断面ほぼ角形で螺旋状に巻き付けられている。
図1(A)に示すように、高周波誘導コイル11,12には、電源装置(トランジスタインバータ)13a,13bが個別に接続される。電源装置13a,13bは、周波数:20〜250KHz、電力容量:〜1000Kw、電力制御方式:周波数振幅変調方式、制御速度:0.01秒、総合変換効率:96%(定格出力時)、電力調整:インバータの位相制御(γ角)によるものである。
【0020】
高周波誘導コイル11,12の内側には、それらの軸心方向に沿って対向する一対の堰板8a,8bが貫通する。係る堰板8a,8bは、長尺な耐熱鋼またはセラミックなどの板材から形成され、その内部を冷却水が強制循環している。
上記堰板8a,8bの長手方向の両端部は、図1(A)および図2(B)に示すように、搬送ローラ2a,2bのフレーム3,3から突出する水平なピン5,5に巻き付けたコイルバネ6,6を介して、上記フレーム3,3に支持される共に、対向する堰板8a,8bは互いに接近し合うよう水平方向に押圧されている。
尚、上記ピン5およびコイルバネ6は、搬送ローラ2a,2bにおける上記ローラ4,4間またはフレーム3,3の端部に配置されると共に、一対の堰板8a,8bは、各ローラ4,4,…よりも高い位置に配置されている。
【0021】
また、図1(A),(B)に示すように、高周波誘導コイル11,12間の上方には、放射温度計(測温手段)19が高周波誘導コイル11の出口付近に向けて斜め下向きの姿勢で配置されている。この放射温度計19は、上記コイル11により母材板18の表面上に形成される溶着金属Mが発光する赤外線などから熱エネルギ量を検出し、これを基に溶着金属Mの温度を測定するものである。
放射温度計19からの電気(温度)信号は、図1(A)に示すように、下流寄りの高周波誘導コイル12の電源装置13bに送信され、図示しない演算部において基準データと比較される共に、過加熱または加熱不足である場合には、電源装置13bからの供給電力を調整するフィードフォワード制御が行われている。
尚、放射温度計19から上流寄りの高周波誘導コイル11の電源装置13aに送り、その供給電力を調整するフィードバック制御を独立して行ったり、あるいは上記フィードフォワード制御と併行して行うことも可能である。更に、係る電源装置13a,13bをPID制御により入熱コントロールすることもできる。
【0022】
以下において、前述した製造装置1の使用方法について説明する。
図3(A)に示すように、母材板18の表面上で均一な厚みとされた金属粉末Pは、当該母材板18と共に、上流寄りの高周波誘導コイル11の内側を、一対の堰板8a,8bに挟まれた状態で貫通する。係るコイル11付近において、例えば100KHzの高周波電流が流れる当該コイル11の電磁誘導により、母材板18の表面には浸透深さの浅い渦電流が生じて当該母材板18を加熱する。係る母材板18からの伝達熱で加熱された金属粉末Pは、溶融状態となり母材板18の表面に溶着金属Mとして溶着しつつ、図3(B)に示すように、上記コイル11の出口寄りに順次搬送される。
【0023】
図3(B)に示すように、高周波誘導コイル11,12の間から放射温度計19が、上記コイル11により母材板18の表面上に形成される溶着金属Mが発する赤外線などから熱エネルギ量を検出し、これを基に溶着金属Mの温度を測定する。係る放射温度計19からの信号は、前記電源装置13bに送られ、例えば溶着金属Mの温度が基準データよりも低い場合は、当該電源装置13bから下流寄りのコイル12への供給電力を増加させるフィードフォワード制御が行われる。
尚、上記の場合、温度計19からの信号を前記電源装置13aに送り、当該電源装置13aから上流寄りのコイル11への供給電力を増加させるフィードバック制御や、電源装置13a,13bに対しPID制御を行うことも可能である。
【0024】
図3(C)に示すように、表面に溶融状態にある溶着金属Mを有する母材板18は、下流寄りの高周波誘導コイル12の内側を、一対の堰板8a,8bに挟まれた状態で貫通する。係るコイル12付近において、例えば50KHzの高周波電流が流れる当該コイル12の電磁誘導により、溶融状態にある溶着金属Mに浸透深さの深い渦電流を形成する。係る渦電流に対する抵抗によって生じるジュール熱により、当該溶着金属Mは直に加熱される。この結果、係る溶着金属Mは、急速に加熱され母材板18の表面に溶着した状態で、下流寄りの高周波誘導コイル12から搬送ローラ2b側へ送られる。
因みに、上記渦電流の浸透深さ(δ)は、周波数の平方根に反比例するため、普通鋼の場合、周波数50KHzで2.5mm、周波数100KHzで1.7mm、周波数300KHzで1.0mmとなる。
【0025】
図3(B),(C)に示したように、母材板18の表面に投下された金属粉末Pは、その両側を堰板8a,8bに規制されつつ母材板18と共に搬送され、上流寄りの高周波コイル11の電磁誘導により母材板18に形成される浸透深さの浅い渦電流に対する抵抗で生じるジュール熱からの伝達熱を受けて加熱され且つ溶融し始める。次いで、下流寄りの高周波コイル12の電磁誘導により、溶着金属Mに浸透深さの深い渦電流を形成し、係る渦電流に対する抵抗によるジュール熱によって溶着金属Mを直に加熱するため、当該溶着金属Mは、急速に加熱され母材板18の表面に溶着し被覆される。従って、金属粉末Pと同じ金属または合金からなり所望の厚みの溶着金属Mを母材板18の表面に被覆した複合金属部材を、短時間で能率良く確実に製造することが可能となる。
【0026】
因みに、高Cr鋳鉄系の粉末Pを、普通鋼からなる母材板18の表面に厚さ3mmの溶着金属Mとして被覆する際に、前記製造装置1で上流寄りのコイル11を100KHzとし且つ下流寄りのコイル12を50KHzとした場合、母材板18の搬送速度は、約600mm/分であった。
一方、前記図4(A),(B)で示した従来の製造装置30および上記と同じ素材とサイズの母材板39を用い、且つその誘導コイル40の周波数を300KHzとした場合、母材板39の搬送速度は、100〜120mm/分であった。
以上の結果から、本発明による複合金属部材の製造装置1の効果および優位性が十分に確認された。
【0027】
尚、2層以上の溶着金属層Mを形成する場合は、単層の溶着金属層Mを形成した母材板18を、再度図1(A),(B)の右側に位置する上流側の搬送ローラ2a上に載置し、前記同様にして同種または異種の金属粉末Pをホッパー14から供給し且つ前記一対の堰板8a,8b間に沿って移動させ、高周波誘導コイル10(11,12)の内側を貫通させる。これにより、例えば同種の金属または合金からなり、例えば厚みが4mm以上の溶着金属層Mを母材板18の表面上に均一な厚みで被覆した複合金属部材をした能率良く製造できる。
【0028】
また、異種金属または合金からなり、それぞれ特性に応じて母材板18の表面寄りまたは外側(表層)寄りとした2層以上にして均一な厚みで被覆した複数の溶着金属層Mを併有する複合金属部材を製造することも可能である。更に、幅寸法が多少異なる母材板18を用いる場合は、前記コイルバネ6を介して堰板8a,8bを押圧した状態のままで前記同様に使用できる。但し、幅寸法がかなり異なる母材板18を用いる場合は、前記ピン5からコイルバネ6を取り外し、軸方向の長さと弾性とが適度な別のコイルバネ6と交換した状態で、使用する。
【0029】
本発明は、以上において説明した各形態に限定されるものではない。
例えば、搬送手段は、前記搬送ローラに限らず、ベルトコンベアやメッシュコンベアなどにすることもできる。且つ、母材板の搬送方向は、上流側から前記高周波誘導コイル10を経た下流側に向けて緩く下がるような斜め方向でも良い。また、前記均し板16の昇降には、前記昇降機構20の他、例えば油圧シリンダやワイヤまたはチェーンによる巻き上げ機構などを適用することもできる。
更に、前記母材板18の搬送方向に沿って、複数の前記ホッパー14および複数組の前記高周波誘導コイル10(11,12)を交互に配置した形態の製造装置としても良い。これによれば、異なる金属粉末Pを順次供給し且つ溶着することにより、複数の溶着金属層を形成した複合金属部材を連続的に且つ効率良く製造することができる。
【0030】
また、前記図2(B)中の一点鎖線で示す耐熱性金属部材29を、上流側の高周波誘導コイル11と搬送される母材板18との間に配置しても良い。係る耐熱性金属部材29は、例えばJIS:SUH3などの板材からなり、上流寄りのコイル11の電磁誘導により表面に生じる浸透深さの浅い渦電流に対する抵抗によるジュール熱を、母材板18上の金属粉末Pに輻射熱として放射する。これにより、係る粉末Pの加熱を加速できる。尚、耐熱性金属部材29は平坦な板材の他、複数の凸条および凹溝を交互に形成した凹凸板でも良く、且つ母材板18の送り方向に対し傾斜して配置する形態としても良い。
尚、前記測温手段には、前記溶着金属における表面の明度や色彩を温度に応じた電気信号に変換する素子を含む例えばCCDカメラなどを用いても良い。
【0031】
【発明の効果】
以上に説明した本発明による複合金属部材の製造装置(請求項1)によれば、上流寄りの比較的高周波数である高周波誘導コイルにより、母材板の表面付近には浸透深度の浅い渦電流が形成され、係る母材板の発熱により金属粉末が加熱され且つ一部が溶融され始める。また、下流寄りの比較的低周波数である高周波誘導コイルにより、金属粉末から溶けた溶融(溶着)金属には浸透深度の深い渦電流が形成され、係る渦電流の抵抗で生じるジュール熱により直に加熱されるため、溶融金属の発熱量が増加して残った金属粉末も加熱され且つ溶融される。従って、金属粉末全体が溶融し且つ上記コイルに基づくジュール熱により急速に加熱されるため、全体に均一な溶着金属の層を母材板の表面に被覆した複合金属部材を迅速に形成することが容易となる。しかも、母材板はその内部まで加熱されにくいため、金属粉末よりも速く溶融する事態を確実に防ぐことができる。
【0032】
また、請求項2の製造装置によれば、従来の周波数よりも何れも低い上流寄りおよび下流寄りの高周波誘導コイルを用いるため、上流寄りのコイルで母材板への浸透が浅い渦電流からの伝達熱により金属粉末を加熱し、且つ下流寄りのコイルで溶け始めた溶着金属を直にジュール熱により急速に加熱できる。従って、母材板の溶融を防ぎつつ複合金属部材を能率良く製造することが可能となる。
更に、請求項3の製造装置によれば、上流寄りの高周波誘導コイルにより加熱された金属粉末または溶着金属の温度を測定し、その過加熱または加熱不足を検出することにより、下流寄りの高周波誘導コイルの電源に対しその出力を増加または低減するフィードフォワード制御を容易に行うことが可能となる。この結果、母材板の表面に所望の金属または合金を溶着して被覆した複合金属部材を一層確実に且つ安定して製造することが可能となる。
【図面の簡単な説明】
【図1】 (A)は本発明による複合金属部材の製造装置を示す平面図、(B)は(A)中のB−B線に沿った視角における断面図。
【図2】 (A)は図1の製造装置に用いる均し板の昇降機構を示す概略図、(B)は図1の製造装置における堰板の端部付近を示す垂直断面図。
【図3】 (A)〜(C)は図1の製造装置の使用方法を示す概略図。
【図4】 (A)は従来の複合金属部材の製造装置を示す平面図、(B)は(A)中のB−B線に沿った視角における断面図。
【符号の説明】
1………………………………複合金属部材の製造装置
2a,2b……………………搬送ローラ(搬送手段)
10……………………………高周波誘導コイル
11……………………………上流寄りの高周波誘導コイル
12……………………………下流寄りの高周波誘導コイル
18……………………………母材板
19……………………………放射温度計(測温手段)
P………………………………金属粉末
M………………………………溶着金属/溶融金属
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for manufacturing a composite metal member in which a metal or an alloy different from a material of a base material plate on the surface of the base material plate is welded as a single layer or a reverse layer.
[0002]
[Prior art]
In order to protect or repair a worn portion, for example, a composite metal member in which a surface of a base plate made of steel is coated with a wear-resistant metal or alloy is generally used. For the metal or alloy coating, for example, a welding method is used in which atomized powder is heated and welded in a state where the powder is placed on the surface of the base material plate.
In order to prevent sag (corner chipping) of the weld metal and efficiently perform welding at both ends in the width direction of the composite member obtained by the welding method, a manufacturing apparatus 30 shown in FIGS. There has been proposed a method for manufacturing a composite metal member using the above.
[0003]
As shown in FIGS. 4A and 4B, the manufacturing apparatus 30 includes a pair of conveying rollers 31 and 32 that are divided into left and right, a high-frequency induction coil 40 that is positioned between them, and the coil 40. A pair of dam plates 38, 38 that pass through the inside and are supported by the conveying rollers 31, 32 at both ends, and a long base material that is conveyed on the conveying rollers 31, 32 and passes between the dam plates 38, 38. And a hopper 44 for supplying the metal powder P on the surface of the plate 39. The transport rollers 31 and 32 are each provided with a plurality of rollers 34 that are driven or driven to rotate between a pair of horizontal frames 33 and 33. In FIGS. 4A and 4B, the transport rollers 31 on the upstream side are arranged. A base material plate 39 is placed on the top.
[0004]
As shown in FIGS. 4A and 4B, between the transport rollers 31 and 32, the smaller the diameter toward the right inlet 41, the smaller the diameter and the narrower the pitch, the larger the distance toward the left outlet 42, the larger the diameter and wide pitch. The high-frequency induction coil 40 is disposed so that the whole of the coil is substantially in a trumpet shape. A pair of weir plates 38, 38 facing each other along the axial direction penetrates the inside of the coil 40. The dam plates 38, 38 are formed of a long plate material such as heat-resistant steel or ceramic, and both ends in the longitudinal direction thereof are provided on horizontal pins 35, 35 protruding from the frames 33, 33 of the transport rollers 31, 32. The supported weir plates 38 and 38 are pressed in the horizontal direction so as to approach each other while being supported by the frames 33 and 33 via the wound coil springs 36 and 36.
[0005]
The pins 35 and the coil springs 36 are disposed between the rollers 34 and 34 of the transport rollers 31 and 32 or at the ends of the frames 33 and 33, and the pair of barrier plates 38 and 38 are respectively connected to the rollers 34 and 34. It is arranged at a higher position. 4A and 4B, a hopper 44 filled with metal powder P is disposed above the upstream conveying roller 31 and between the weir plates 38, 38. The powder supply port 46 located at the lower end of the base plate 39 is disposed to face the base material plate 39. On the downstream side of the supply port 46, a leveling plate 48 that can be moved up and down by a lifting mechanism (not shown) is disposed.
[0006]
As shown in FIG. 4 (B), the metal powder P dropped onto the base material plate 39 conveyed from the right side to the left side is leveled by the leveling plate 48 and the weir plates 38, 38 on both sides. The inner side of the high frequency induction coil 40 is moved horizontally together with the base material plate 39 while being sandwiched between the two. During this time, for example, an eddy current flows on the surface of the base plate 39 due to the electromagnetic induction of the coil 40 through which a high frequency current of 300 KHz flows, so that the base plate 39 generates heat. After the metal powder P is heated and melted by heat transfer from the base material plate 39, direct heating from the coil 40 by Joule heat is started.
[0007]
By the way, when the penetration depth (heating depth) of the eddy current in the base material plate 39 becomes deep, the heat transfer speed into the base material plate 39 becomes equal to or higher than the endothermic speed of the powder P. There was a problem that the temperature rise of the material plate 39 was accelerated and could melt faster than the powder P.
Since the penetration depth of the eddy current is inversely proportional to the frequency of the high frequency current flowing through the high frequency induction coil 40, the penetration depth becomes shallower as the frequency of the current increases. For this reason, in order to prevent melting of the base material plate 39 described above, the frequency of the coil 40 applied to the welding of the powder P is generally 300 to 400 KHz where the penetration depth is shallow. As a result, for example, when coating a Fe-based weld metal having a thickness of about 2 to 3 mm, the conveying speed of the base plate 39 is as low as about 100 to 120 mm / min, so the productivity of the composite metal member is lowered. There was also a problem of high costs.
[0008]
[Problems to be Solved by the Invention]
The present invention solves the problems in the prior art described above, and a composite metal member in which a metal powder to be welded can be melted faster than a base plate and a composite metal member can be produced efficiently and at low cost. It is an object of the present invention to provide a manufacturing apparatus.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is based on the results of diligent research and experiments by the inventors, and divides the high-frequency induction coil into a plurality of parts and makes the penetration depth of the eddy current formed by these into the base material plate different. The idea was made with the idea.
That is, the composite metal member manufacturing apparatus of the present invention (Claim 1) includes a plurality of high-frequency induction coils having different frequencies and a base material placed on the front and rear along the axial direction of the coils and on which metal powder is placed. A conveying means for conveying the plate through the inside of the high-frequency induction coil, and among the high-frequency induction coils, the high-frequency induction coil closer to the upstream in the conveying direction of the base material plate has a relatively high frequency, And the high frequency induction coil near the downstream has a relatively low frequency.
[0010]
According to this, since the upstream high frequency induction coil has a relatively high frequency, an eddy current with a shallow penetration depth is formed near the surface of the base plate, and the metal powder is heated by the heat generated by the base plate. And part begins to melt. Next, since the downstream high-frequency induction coil has a relatively low frequency, an eddy current having a deep penetration depth is formed in the molten (welded) metal melted from the metal powder, and it is melted by Joule heat generated by the resistance of the eddy current. The metal itself is heated directly. For this reason, the amount of heat generated by the molten metal is increased and the remaining metal powder is also heated and melted. As a result, the entire metal powder is rapidly melted and rapidly heated by Joule heat based on the coil, so that a composite metal member in which a uniform weld metal layer is coated on the surface of the base metal plate is quickly formed. Easy to do. In addition, since the base material plate is difficult to be heated up to the inside, it is possible to reliably prevent the base material plate from melting faster than the metal powder.
[0011]
The upstream and downstream high-frequency induction coils are relative names in the conveying direction of the base material plate, and the coils are divided into two or more stages along the conveying direction. It represents a plurality of high-frequency induction coils. Further, the frequency of the high frequency induction coil indicates the frequency of the current passed through the coil.
Furthermore, in order to improve wear resistance, corrosion resistance, heat resistance, etc., the metal powder supplied on the surface of the base plate is similar to hard metal or alloy, corrosion resistance or heat resistant metal or alloy, and the like. Also included are composites comprising metals and ceramics that can be improved, such as cermets and sialons.
In addition, the supply position of the metal powder is between a pair of weir plates that sandwich the base material plate from both sides while penetrating the inside of each of the high frequency induction coils, upstream of the high frequency heating coil, and the weir. It is desirable to be the front end side between the plates.
[0012]
Further, according to the present invention, the frequency of the upstream high-frequency induction coil is 100 to 200 KHz, and the frequency of the downstream high-frequency induction coil is 50 to 150 KHz, and between the frequencies of the upstream and downstream coils. The difference includes a manufacturing apparatus (Claim 2) of the composite metal member which is 40 KHz or more.
According to this, compared to the frequency of 300 to 400 KHz in the conventional manufacturing apparatus 30, the surface layer of the base material plate is heated by the high frequency induction coil at a lower frequency and closer to the upstream of 100 to 200 KHz to rapidly move the metal powder. Heat to. Next, the molten (welded) metal itself in which the metal powder is melted is deeply heated by a high-frequency induction coil near 50 to 150 KHz. Moreover, the remaining metal powder and the entire molten metal can be quickly heated and coated on the surface of the base metal plate by the heat transferred from the base metal plate and the Joule heat of the molten metal itself in which the metal powder has melted. it can.
[0013]
When the frequency of the upstream high-frequency induction coil is, for example, 100, 150, and 200 KHz, the frequency of the downstream high-frequency induction coil is preferably 50, 100, and 150 KHz, and a difference of 50 KHz (40 KHz or more). .
Moreover, the frequency of each coil is set in the range of 50 to 200 KHz. If the frequency is less than 50 KHz, stable control is difficult to obtain. On the other hand, if the frequency exceeds 200 KHz, the penetration depth of the eddy current becomes too shallow, and metal powder or molten metal This is because the heating rate decreases. Furthermore, the difference in frequency between the upstream and downstream coils is set to 40 KHz or more, and if it is less than this, the difference in the penetration depth of the eddy current generated in the molten metal in which the base metal plate and the powder are melted is too small. This is because the base metal plate may be heated deeply or the molten metal may be heated shallowly.
In other words, in the form in which the high-frequency induction coil has three stages upstream, midstream, and downstream, the frequencies of the coils are, for example, 100 to 200 KHz upstream, 100 to 150 KHz midstream, and 50 to 100 KHz downstream. And the difference between frequencies in adjacent coils can be set to 40 KHz or more.
[0014]
Furthermore, the present invention measures the temperature of the metal powder or weld metal on the base metal plate heated by the upstream coil between the upstream high frequency induction coil and the downstream high frequency induction coil. An apparatus for manufacturing a composite metal member (claim 3) in which temperature measuring means is further arranged is also included.
According to this, by measuring the temperature of the metal powder or weld metal heated by the upstream coil, and detecting the overheating or underheating, the output to the power supply device of the downstream high frequency induction coil It is possible to easily perform feedforward control to increase or decrease the. This makes it possible to more reliably and stably manufacture a composite metal member in which a desired metal or alloy is deposited on the surface of the base material plate. It is also possible to perform feedback control for increasing or decreasing the output of the upstream high frequency induction coil in accordance with the temperature measurement result.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
1A and 1B show a plan view and a vertical sectional view of a composite metal member manufacturing apparatus 1 according to the present invention. As shown in FIGS. 1 (A) and 1 (B), the manufacturing apparatus 1 includes a pair of conveying rollers (conveying means: roller conveyors) 2a and 2b that are divided into left and right, and a high-frequency induction coil positioned between them. 10 and a pair of barrier plates 8a, 8b penetrating the inside of the coil 10 and supported at both ends by the transport rollers 2a, 2b, and transported on the transport rollers 2a, 2b and between the barrier plates 8a, 8b. And a hopper 14 for supplying the metal powder P onto the surface of the long base plate 18 that passes therethrough.
The transport rollers 2a and 2b each have a plurality of rollers 4, 4... That are driven or driven to rotate between a pair of horizontal frames 3 and 3, respectively. In FIGS. The base material plate 18 is placed on the transport roller 2a on the) side.
[0016]
A hopper 14 filled with metal powder P is disposed above the upstream conveying roller 2a and between the pair of weir plates 8a and 8b, and the powder supply port 15 located at the lower end thereof faces the base material plate 18. Are arranged. On the downstream side of the supply port 15, a leveling plate 16 that can be raised and lowered by an elevating mechanism 20 described below is disposed.
As shown in FIG. 2A, the lifting mechanism 20 for the leveling plate 16 has a bearing 21 fixed on the downstream side of the powder supply port 15 located at the lower end of the hopper 14 and is rotatably supported by the bearing 21. And a handle 24 fixed to the upper end of the bolt 22, and a nut 23 to be screwed at the lower end of the bolt 22. The nut 23 is fixed to the center of the side surface of the wide leveling plate 16.
[0017]
Further, guide pins fixed vertically on the right and left of the leveling plate 16 are attached to the rings 26 and 26 fixed to the ends of a pair of symmetrical horizontal bars 27 and 27 protruding obliquely downstream from the supply port 15 of the hopper 14. 25, 25 penetrates. Therefore, by rotating the handle 24 and rotating the bolt 22, the leveling plate 16 can be moved up and down along the direction of the arrow in FIG. As a result, as shown in FIG. 1A, the metal powder P immediately after being dropped from the supply port 15 can be leveled to a desired uniform thickness on the surface of the base plate 18.
[0018]
As shown in FIG. 1A, the leveling plate 16 is flat and has a required thickness of the surface of the metal powder P dropped on the surface of the base material plate 18 conveyed leftward on the conveying roller 2a. Level. Further, the leveling plate 16 is positioned upstream of the pair of dam plates 8a and 8b, and is positioned directly above the base material plate 18 which is conveyed while contacting both sides of the dam plates 8a and 8b. For this reason, the metal powder P can be supplied in a desired thickness through a rectangular space surrounded by the base material plate 18, the pair of weir plates 8 a and 8 b, and the leveling plate 16.
[0019]
As shown in FIGS. 1A and 1B, the high-frequency induction coil 10 disposed between the transport rollers 2a and 2b is located upstream in the transport direction of the base plate 18 and has a relatively high frequency (for example, 100 KHz) induction coil 11 and a relatively low frequency (for example, 50 KHz) induction coil 12 that is located on the downstream side. The coils 11 and 12 are spirally wound with a substantially square cross section.
As shown in FIG. 1A, power supply devices (transistor inverters) 13a and 13b are individually connected to the high-frequency induction coils 11 and 12, respectively. Power supply devices 13a and 13b have a frequency of 20 to 250 KHz, a power capacity of 1000 Kw, a power control method: a frequency amplitude modulation method, a control speed of 0.01 seconds, a total conversion efficiency of 96% (at the rated output), and a power adjustment. : By inverter phase control (γ angle).
[0020]
Inside the high frequency induction coils 11 and 12, a pair of weir plates 8a and 8b which opposes along the axial direction penetrates. The dam plates 8a and 8b are formed of a long plate material such as heat-resistant steel or ceramic, and cooling water is forcedly circulated therein.
As shown in FIGS. 1 (A) and 2 (B), both end portions in the longitudinal direction of the barrier plates 8a and 8b are connected to horizontal pins 5 and 5 protruding from the frames 3 and 3 of the transport rollers 2a and 2b. The dam plates 8a and 8b which are supported by the frames 3 and 3 via the wound coil springs 6 and 6 and are opposed to each other are pressed in the horizontal direction so as to approach each other.
The pin 5 and the coil spring 6 are disposed between the rollers 4 and 4 of the transport rollers 2a and 2b or at the ends of the frames 3 and 3, and the pair of dam plates 8a and 8b are respectively connected to the rollers 4 and 4. It is arranged at a position higher than.
[0021]
As shown in FIGS. 1 (A) and 1 (B), a radiation thermometer (temperature measuring means) 19 is obliquely downward toward the vicinity of the exit of the high frequency induction coil 11 above the high frequency induction coils 11 and 12. It is arranged with the posture. The radiation thermometer 19 detects the amount of heat energy from infrared rays emitted from the weld metal M formed on the surface of the base metal plate 18 by the coil 11, and measures the temperature of the weld metal M based on this. Is.
As shown in FIG. 1A, the electrical (temperature) signal from the radiation thermometer 19 is transmitted to the power supply device 13b of the high-frequency induction coil 12 closer to the downstream, and is compared with reference data by a calculation unit (not shown). In the case of overheating or underheating, feedforward control for adjusting the power supplied from the power supply device 13b is performed.
In addition, it is also possible to perform independent feedback control for adjusting the power supplied from the radiation thermometer 19 to the power supply device 13a of the upstream high frequency induction coil 11 or in parallel with the feedforward control. is there. Further, the power supply devices 13a and 13b can be controlled to input heat by PID control.
[0022]
Below, the usage method of the manufacturing apparatus 1 mentioned above is demonstrated.
As shown in FIG. 3 (A), the metal powder P having a uniform thickness on the surface of the base material plate 18, together with the base material plate 18, passes a pair of weirs inside the high frequency induction coil 11 closer to the upstream. It penetrates in a state sandwiched between the plates 8a and 8b. In the vicinity of the coil 11, eddy current having a shallow penetration depth is generated on the surface of the base material plate 18 by electromagnetic induction of the coil 11 through which a high frequency current of 100 KHz flows, for example, and the base material plate 18 is heated. As shown in FIG. 3B, the metal powder P heated by the heat transferred from the base material plate 18 is in a molten state and is welded to the surface of the base material plate 18 as a weld metal M. It is conveyed sequentially toward the exit.
[0023]
As shown in FIG. 3 (B), a radiation thermometer 19 is interposed between the high frequency induction coils 11 and 12, and heat energy is generated from infrared rays or the like emitted from the weld metal M formed on the surface of the base plate 18 by the coil 11. The amount is detected, and the temperature of the weld metal M is measured based on this amount. The signal from the radiation thermometer 19 is sent to the power supply device 13b. For example, when the temperature of the weld metal M is lower than the reference data, the power supplied from the power supply device 13b to the coil 12 closer to the downstream is increased. Feed forward control is performed.
In the above case, a signal from the thermometer 19 is sent to the power supply device 13a to increase the power supplied from the power supply device 13a to the upstream coil 11, and PID control is applied to the power supply devices 13a and 13b. It is also possible to perform.
[0024]
As shown in FIG. 3C, the base material plate 18 having the weld metal M in the molten state on the surface is in a state where the inner side of the high-frequency induction coil 12 closer to the downstream is sandwiched between a pair of weir plates 8a and 8b. It penetrates with. In the vicinity of the coil 12, an eddy current having a deep penetration depth is formed in the weld metal M in a molten state by electromagnetic induction of the coil 12 in which a high-frequency current of 50 KHz flows, for example. The weld metal M is directly heated by Joule heat generated by resistance to the eddy current. As a result, the weld metal M is rapidly heated and welded to the surface of the base material plate 18, and is sent from the high frequency induction coil 12 closer to the downstream to the conveying roller 2 b side.
Incidentally, since the penetration depth (δ) of the eddy current is inversely proportional to the square root of the frequency, in the case of ordinary steel, it becomes 2.5 mm at a frequency of 50 KHz, 1.7 mm at a frequency of 100 KHz, and 1.0 mm at a frequency of 300 KHz.
[0025]
As shown in FIGS. 3 (B) and 3 (C), the metal powder P dropped on the surface of the base material plate 18 is conveyed together with the base material plate 18 while both sides thereof are regulated by the weir plates 8a and 8b. It is heated and begins to melt by receiving heat transferred from Joule heat generated by resistance to the eddy current having a shallow penetration depth formed in the base material plate 18 by electromagnetic induction of the high-frequency coil 11 closer to the upstream. Next, an eddy current having a deep penetration depth is formed in the weld metal M by electromagnetic induction of the high-frequency coil 12 closer to the downstream side, and the weld metal M is directly heated by Joule heat due to resistance to the eddy current. M is rapidly heated and welded and coated on the surface of the base material plate 18. Therefore, a composite metal member made of the same metal or alloy as the metal powder P and having the desired thickness of the weld metal M coated on the surface of the base material plate 18 can be produced efficiently and reliably in a short time.
[0026]
Incidentally, when the high Cr cast iron-based powder P is coated on the surface of the base metal plate 18 made of ordinary steel as the weld metal M having a thickness of 3 mm, the upstream coil 11 is set to 100 KHz in the manufacturing apparatus 1 and the downstream side. When the close coil 12 was set to 50 KHz, the conveyance speed of the base material plate 18 was about 600 mm / min.
On the other hand, when the conventional manufacturing apparatus 30 shown in FIGS. 4A and 4B and the base material plate 39 having the same material and size as described above are used and the frequency of the induction coil 40 is 300 KHz, the base material The conveying speed of the plate 39 was 100 to 120 mm / min.
From the above results, the effect and superiority of the composite metal member manufacturing apparatus 1 according to the present invention were sufficiently confirmed.
[0027]
When two or more weld metal layers M are to be formed, the base plate 18 on which the single weld metal layer M is formed is again placed on the upstream side located on the right side of FIGS. 1 (A) and 1 (B). The same or different kind of metal powder P is placed from the hopper 14 and moved between the pair of weir plates 8a and 8b in the same manner as described above, and placed on the transport roller 2a, and the high frequency induction coil 10 (11, 12). ) Is penetrated inside. Thereby, for example, it is possible to efficiently manufacture a composite metal member made of, for example, the same kind of metal or alloy and having a uniform thickness on the surface of the base plate 18 with a weld metal layer M having a thickness of 4 mm or more.
[0028]
Further, a composite made of different metals or alloys and having a plurality of deposited metal layers M coated with a uniform thickness with two or more layers closer to the surface or outer side (surface layer) of the base material plate 18 depending on the characteristics. It is also possible to manufacture a metal member. Further, when the base material plate 18 having slightly different width dimensions is used, the base plate 18 can be used in the same manner as described above while the weir plates 8a and 8b are pressed through the coil spring 6. However, when using a base material plate 18 having a considerably different width dimension, the coil spring 6 is removed from the pin 5 and replaced with another coil spring 6 having an appropriate axial length and elasticity.
[0029]
The present invention is not limited to the embodiments described above.
For example, the conveying means is not limited to the conveying roller, but may be a belt conveyor or a mesh conveyor. In addition, the conveying direction of the base material plate may be an oblique direction in which the base plate is gently lowered from the upstream side toward the downstream side through the high-frequency induction coil 10. In addition to the elevating mechanism 20, for example, a hoisting mechanism using a hydraulic cylinder, a wire, or a chain can be applied to elevate and lower the leveling plate 16.
Furthermore, a manufacturing apparatus having a configuration in which a plurality of the hoppers 14 and a plurality of sets of the high-frequency induction coils 10 (11, 12) are alternately arranged along the conveying direction of the base material plate 18 may be employed. According to this, by sequentially supplying and welding different metal powders P, it is possible to continuously and efficiently manufacture a composite metal member in which a plurality of weld metal layers are formed.
[0030]
Further, the heat-resistant metal member 29 indicated by a one-dot chain line in FIG. 2B may be disposed between the high-frequency induction coil 11 on the upstream side and the base material plate 18 to be conveyed. The heat-resistant metal member 29 is made of, for example, a plate material such as JIS: SUH3, and the Joule heat due to the resistance to the eddy current having a shallow penetration depth generated on the surface due to the electromagnetic induction of the upstream coil 11 is applied to the base material plate 18. Radiates to the metal powder P as radiant heat. Thereby, the heating of the powder P can be accelerated. The heat-resistant metal member 29 may be a flat plate material, an uneven plate in which a plurality of ridges and grooves are alternately formed, and may be arranged to be inclined with respect to the feed direction of the base material plate 18. .
For example, a CCD camera including an element that converts the lightness and color of the surface of the weld metal into an electrical signal corresponding to the temperature may be used as the temperature measuring means.
[0031]
【The invention's effect】
According to the composite metal member manufacturing apparatus of the present invention described above (Claim 1), an eddy current having a shallow penetration depth is formed near the surface of the base metal plate by a high frequency induction coil having a relatively high frequency upstream. Is formed, and the metal powder is heated and part of the base metal plate starts to melt. Also, due to the relatively high frequency induction coil near the downstream, an eddy current with a deep penetration depth is formed in the molten (welded) metal melted from the metal powder, and the eddy current generated by the resistance of the eddy current directly Due to the heating, the amount of heat generated by the molten metal is increased and the remaining metal powder is also heated and melted. Accordingly, since the entire metal powder is melted and rapidly heated by Joule heat based on the coil, it is possible to quickly form a composite metal member in which a uniform weld metal layer is coated on the surface of the base plate. It becomes easy. In addition, since the base material plate is difficult to be heated up to the inside, it is possible to reliably prevent the base material plate from melting faster than the metal powder.
[0032]
Further, according to the manufacturing apparatus of claim 2, since the upstream and downstream high-frequency induction coils, which are both lower than the conventional frequency, are used, the upstream coil has a shallow penetration from the eddy current into the base metal plate. The metal powder is heated by the transfer heat, and the weld metal that has started to melt in the downstream coil can be rapidly heated directly by Joule heat. Therefore, it is possible to efficiently manufacture the composite metal member while preventing the base material plate from melting.
Furthermore, according to the manufacturing apparatus of claim 3, by measuring the temperature of the metal powder or weld metal heated by the upstream high frequency induction coil and detecting the overheating or underheating, the downstream high frequency induction It is possible to easily perform feedforward control for increasing or decreasing the output of the coil power supply. As a result, it becomes possible to more reliably and stably manufacture a composite metal member in which a desired metal or alloy is deposited on the surface of the base material plate.
[Brief description of the drawings]
FIG. 1A is a plan view showing a composite metal member manufacturing apparatus according to the present invention, and FIG. 1B is a cross-sectional view taken along a line BB in FIG.
2A is a schematic view showing a leveling plate lifting mechanism used in the manufacturing apparatus of FIG. 1, and FIG. 2B is a vertical sectional view showing the vicinity of an end portion of a weir plate in the manufacturing apparatus of FIG.
FIGS. 3A to 3C are schematic views showing how to use the manufacturing apparatus of FIG.
4A is a plan view showing a conventional composite metal member manufacturing apparatus, and FIG. 4B is a cross-sectional view at a viewing angle along the line BB in FIG. 4A.
[Explanation of symbols]
1 ……………………………… Composite metal member manufacturing equipment
2a, 2b …………………… Conveying roller (conveying means)
10 ……………………………… High-frequency induction coil
11 …………………………… High-frequency induction coil on the upstream side
12 …………………………… High-frequency induction coil closer to the downstream
18 ……………………………… Base material board
19 ……………………………… Radiation thermometer (temperature measuring means)
P ……………………………… Metal powder
M ……………………………… Welding metal / molten metal

Claims (3)

周波数の異なる複数の高周波誘導コイルと、係るコイルの軸心方向に沿った前後に配置され且つ金属粉末を載置した母材板を上記高周波誘導コイルの内側を貫通して搬送する搬送手段と、を備え、
上記高周波誘導コイルのうち、上記母材板の搬送方向において上流寄りの高周波誘導コイルは比較的高周波数であり、且つ下流寄りの高周波誘導コイルは比較的低周波数である、ことを特徴とする複合金属部材の製造装置。
A plurality of high-frequency induction coils having different frequencies, and a conveying means that conveys a base material plate that is disposed before and after the axial center direction of the coil and on which metal powder is placed, through the inside of the high-frequency induction coil; With
Among the high-frequency induction coils, the high-frequency induction coil closer to the upstream in the conveying direction of the base plate has a relatively high frequency, and the high-frequency induction coil closer to the downstream has a relatively low frequency. Metal member manufacturing equipment.
前記上流寄りの高周波誘導コイルの周波数は100〜200KHzで且つ前記下流寄りの高周波誘導コイルの周波数は50〜150KHzであると共に、これら上流寄りおよび下流寄りの各コイルの周波数間の差は40KHz以上である、ことを特徴とする請求項1に記載の複合金属部材の製造装置。The frequency of the upstream high frequency induction coil is 100 to 200 KHz, the frequency of the downstream high frequency induction coil is 50 to 150 KHz, and the difference between the frequencies of the upstream and downstream coils is 40 KHz or more. The composite metal member manufacturing apparatus according to claim 1, wherein the composite metal member manufacturing apparatus is provided. 前記上流寄りの高周波誘導コイルおよび下流寄りの高周波誘導コイルの間において、上流寄りの上記コイルにより加熱された前記母材板上の金属粉末または溶着金属の温度を測定する測温手段が更に配置されている、
ことを特徴とする請求項1または2に記載の複合金属部材の製造装置。
Between the upstream high-frequency induction coil and the downstream high-frequency induction coil, temperature measuring means for measuring the temperature of the metal powder or the weld metal on the base plate heated by the upstream coil is further disposed. ing,
The manufacturing apparatus of the composite metal member according to claim 1 or 2.
JP2001370812A 2001-12-05 2001-12-05 Composite metal member manufacturing equipment Expired - Fee Related JP3697206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370812A JP3697206B2 (en) 2001-12-05 2001-12-05 Composite metal member manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370812A JP3697206B2 (en) 2001-12-05 2001-12-05 Composite metal member manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2003170265A JP2003170265A (en) 2003-06-17
JP3697206B2 true JP3697206B2 (en) 2005-09-21

Family

ID=19179975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370812A Expired - Fee Related JP3697206B2 (en) 2001-12-05 2001-12-05 Composite metal member manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3697206B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212822A (en) * 2011-05-28 2011-10-12 青岛海纳等离子科技有限公司 Method and device for machining metal abrasion-resistant composite plate
CN105834404A (en) * 2016-04-29 2016-08-10 昆明贵金属研究所 Preparation method for metal-coated wire
CN107414081B (en) * 2017-06-19 2023-05-30 哈尔滨工业大学 Wire feed fuse system for metal increment manufacturing and application method thereof

Also Published As

Publication number Publication date
JP2003170265A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
RU2709494C1 (en) Compact homogenization line by continuous annealing
Huang Characterization of dilution action in laser-induction hybrid cladding
TW319720B (en)
US3985179A (en) Electromagnetic casting apparatus
TW201800164A (en) Wire manufactured by additive manufacturing methods
JPH0778242B2 (en) Method for manufacturing wear resistant composite metal member
JP3697206B2 (en) Composite metal member manufacturing equipment
WO2021079971A1 (en) Method for manufacturing continuous casting mold
US20050281946A1 (en) Method for producing a stratified composite material
US20080142510A1 (en) Heated transfer pipe
JP2003013112A (en) Apparatus for manufacturing complex metallic member
JP2022530716A (en) Melt feed for strip casting system
JP6326317B2 (en) Electric heating method and press-molded product manufacturing method.
WO1994004710A1 (en) Method and apparatus for producing sintered ore
US7281568B2 (en) Method for producing a stratified composite material
JP2017505892A (en) Apparatus for heating and transferring metallic materials for a melting plant and melting plant comprising the apparatus
KR20100131126A (en) Furnace
CN102497945B (en) Method and device for producing steel strips by means of belt casting
CN103025456B (en) For the melt delivery system of belt casting
KR101271958B1 (en) Melting Apparatus
EP3415252B1 (en) Caster tip arrangement for a continuous caster
JP4872647B2 (en) Heating and cooling equipment for clad material manufacturing equipment
JP6241615B2 (en) Ingot preheater
US9004270B2 (en) Link belt for use in furnaces
KR20060077743A (en) Flow applicator for applying a liquid, in particular molten metal, onto a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees