JP3697147B2 - Data transmission system via metallic wire - Google Patents

Data transmission system via metallic wire Download PDF

Info

Publication number
JP3697147B2
JP3697147B2 JP2000249125A JP2000249125A JP3697147B2 JP 3697147 B2 JP3697147 B2 JP 3697147B2 JP 2000249125 A JP2000249125 A JP 2000249125A JP 2000249125 A JP2000249125 A JP 2000249125A JP 3697147 B2 JP3697147 B2 JP 3697147B2
Authority
JP
Japan
Prior art keywords
signal
power supply
point
relay device
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000249125A
Other languages
Japanese (ja)
Other versions
JP2002064656A (en
Inventor
正和 尾井
昭彦 高田
誠一 山野
昭彦 西谷
就一 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujitsu Ltd
Priority to JP2000249125A priority Critical patent/JP3697147B2/en
Publication of JP2002064656A publication Critical patent/JP2002064656A/en
Application granted granted Critical
Publication of JP3697147B2 publication Critical patent/JP3697147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はISDNによるメタリック線を利用して局装置(LT:Line Terminal)と宅内装置(NT:Network Terminal) 間を時分割多重伝送方式により通信を行う場合の中継伝送システムに関する。
【0002】
メタリック線(またはメタリック加入者線ともいう)を利用してISDNの局装置(LT)と宅内装置(NT)との間でデータを伝送する方式として,日本では短い周期で送・受信の伝送方向を切替える,いわゆる,ピンポン伝送方式を採用している。このピンポン伝送方式では,加入者線が長くなると信号遅延の増大や,回線抵抗の増加によりサービスの提供が困難になる場合があり,その解決が望まれている。
【0003】
【従来の技術】
図11は従来例の説明図であり,A.は加入者を介したISDN機器構成と参照点,B.はピンポン伝送方式の信号送受のタイミングである。A.において,80は端末装置(TEで表す:Terminal Equipment) ,81は宅内装置(または網終端装置といいNTで表す:Network Terminal) ,82はメタリック線,83は局装置(または線路終端装置といいLTで表す:Line Terminal),84は交換機(ETで表す:Exchange Terminal)である。A.はISDNに関する電信電話技術委員会(Telecommunication Technology Committee)で定めるTTC標準(JT−G961及びJT−i430)で規定されており,T点はユーザ・網インタフェースを規定する参照点,U点は加入者線とNT(宅内装置)81またはLT(局装置)83との境界を示す参照点,V点はLT(局装置)83とET(交換機)84との境界を示す参照点である。
【0004】
A.に示す構成において,メタリック線を介したLT(局装置)83とNT(宅内装置)81間でディジタル信号を伝送する方式の一つとして,時分割多重伝送方式があり,ピンポン伝送方式として知られている。図11のB.にピンポン伝送方式による信号の送受タイミングが示され,LT83はバースト周期(ほぼ2.5ms)毎にNT81に向けて信号(a,cで表す)を送出する。なお,バースト周期は加入者線を介したISDNのデータ速度(基本インタフェースの2B+Dの場合,144Kbps)を維持するのに必要な周期である。NT81がLT83からの信号(a’,c’で表す)を受信すると,最後尾を受信した後Tg(6,7個のタイムスロット分)のタイミング後にLT83へ向けて信号(bで表す)を送出する。
【0005】
このような方式では,回線遅延によりLTでの受信タイミングは回線距離に比例して増大し,適用限界距離を越えるとついには,LTでの受信信号末尾と,LTからの送信信号の先頭が衝突し,通信不能となる。
【0006】
また,日本ではISDNサービスはアナログ電話網の置き換えを前提にしているため,宅内装置(NT)81の電源には商用電源を使用せず,局装置(LT)83からの給電を前提としている。この給電電力は宅内装置(NT)に到達し,宅内装置(NT)が動作するための電源として使用される一方,その極性を利用して,局装置(LT)と宅内装置(NT)間の通信状態/待機状態を表示するのに使用している。すなわち,待機状態においてはL1線をL2線より電位を高くし(ノーマル極性),この時宅内装置(NT)は電源リセットとなっている。通信状態に遷移する時には,それまでの極性を反転させ,L2線の電位をL1線より高くすること(リバース極性)で,宅内装置(NT)の電源を投入する。
【0007】
リバース極性においては宅内装置(NT)は回線抵抗によらず一定の電力を受電する必要があるため,局装置(LT)からの給電方式は定電流給電が採用されている。また,宅内装置(NT)では入力電圧を一定に保つ必要があるため,局装置(LT)からの定電流(例えば,35mA)×NT入力電圧(一定,例えば28V)=NT受電電力一定(この場合約1W)となる。局装置(LT)の給電方式は,定電流給電であるが,回線工事者の人体保安上の問題から,給電電圧の上限を定めている(例えば,約60V),このため,回線直結(回線抵抗0Ω)から,LT出力電圧上限による回線抵抗の制限も自ずと計算できる。回線抵抗と回線抵抗上限値の算出式は次の通りである。
【0008】
回線抵抗上限値=(LT送出電圧上限−NT入力電圧)÷LT給電電流
このように,距離,回線抵抗の限界を越える地域に対してISDNサービスを適用するには,メタリック線の使用をあきらめて,図12に示す方法を用いることが考えられていた。
【0009】
図12は現状ISDNサービスの適用距離の延長方法を示す。図中,81は宅内装置(NT),82はメタリック線,83は局装置(LT),84は交換機(ET),85は遠隔装置(RT:Remote Terminal),86は光ケーブル,87はセンタ終端装置(CTで表す:Center Terminal)である。
【0010】
この場合,遠距離の加入者の宅内装置(NT)に対してだけ宅内装置(NT)の近くに遠隔装置(RT)を設け,この遠隔装置(RT)は局側に新たに設けたセンタ終端装置(CT)と光ケーブルを敷設して接続する必要がある。
【0011】
【発明が解決しようとする課題】
上記したように,交換機から遠距離の加入者に対してISDNサービスを提供するために,遠隔装置やセンタ終端装置といった新たな設備の導入や光ケーブルの敷設工事をする必要があり,莫大な設備導入費用を要し,散在するNTユーザに対してコスト面で問題があった。
【0012】
本発明は局装置(LT)から宅内装置(NT)までの距離が離れているため双方向通信のバースト周期を維持できないか,またはメタリック線の電圧降下が所定値より大きい場合にも,既存のメタリック線を利用して時分割多重伝送方式による通信を可能にするメタリック線を介したデータ伝送システムを提供することを目的とする。
【0013】
【課題を解決するための手段】
図1は本発明の原理構成である。図中,1は宅内装置(NTまたは網終端装置),2は給電アダプタ(ADP),3はメタリック線,4は中継装置,5は局装置(LTまたは線路終端装置),6は端末装置(TE),7は交換機(ET)を表す。また,給電アダプタ2の内部の2aは電源部であり,中継装置4の内部の4aはNT機能部,4bはインタフェース変換部,4cはLT機能部,4dは電源部である。
【0014】
本発明は局装置(LT)5から遠距離に位置する宅内装置(NT)1と局装置(LT)5とを結ぶメタリック線3の中間の位置に中継装置4を設けると共に,宅内装置(NT)1の近くに給電アダプタ2を設けることにより,局装置(LT)5から宅内装置(NT)1までの距離を従来の限界距離より大幅に長くすることを可能にする。
【0015】
中継装置4は設置場所が交換機からかなり離れた場所であるため,電源を外部から取れない可能性が高いので,本来宅内装置(NT)1に向けて供給する予定のリバース極性の給電(リバース給電)をこの中継装置4で取り込み,その電力で動作させる。このため宅内装置(NT)1には,局装置(LT)5からの給電が届かなくなる。そこで,給電アダプタ2は商用電源等を利用して宅内装置(NT)1にリバース給電を与え直す。中継装置4の電源部4dは局装置(LT)5からメタリック線3を介して供給される電源を受け取って,4a〜4cの各部の電源を供給し,給電アダプタ2を宅内装置(NT)1の近くに設けて電源部2aは商用電源により駆動され,宅内装置(NT)1に対する電源を発生する。中継装置4のNT機能部4aは局装置(LT)5に対して宅内装置(NT)として動作し,LT機能部4cは宅内装置(NT)1に対して局装置(LT)として動作し,インタフェース変換部4bはNT機能とLT機能を実行するための制御信号や状態信号を相互に変換する。宅内装置(NT)1は給電アダプタ2からの電源により駆動されて,宅内装置(NT)として送受信の動作を行う。
【0016】
【発明の実施の形態】
図2は本発明による中継装置の実施例のブロック構成を示す。図中,4は中継装置,4a1,4a2は図1のNT機能部4aに対応し,4a1はNT機能U点終端部,4a2はNT機能T点終端部,4b1〜4b3は図1のインタフェース変換部4bに対応し,4b1は端末側のU点と局側のT点の各信号の相互変換を行うU/Tインタフェース変換部,4b2は端末側のV点と局側のT点の各信号の相互変換を行うV/Tインタフェース変換部,4b3は端末側のV点と局側のU点の各信号の相互変換を行うV/Uインタフェース変換部,4c1,4c2は図1のLT機能部4cに対応し,4c1はLT機能U点終端部,4c2はLT機能V点終端部,4dは電源部である。
【0017】
また,中継装置4のNT機能U点終端部4a1が接続された局側のメタリック線3と,LT機能U点終端部4c1が端末側と接続されたメタリック線3は,それぞれ共に参照点のU点に接続され,この中継装置4が従来の局と端末を結ぶメタリック線上のU点と変わりがないことを表す。
【0018】
中継装置4のLTに対抗するNT機能U点終端部4a1は外部にU点インタフェースを見せ,更に中継装置4のNT側(給電アダプタ2)に対向するLT機能U点終端部4c1は外部にU点インタフェースを見せる。NT機能とLT機能のインタフェース変換は種々の方法が考えられるが,LT/NTブロックは技術的に確立しているため,NTのT点信号とLTのU点信号(制御信号/状態信号を含む)との変換,LTのV点信号とNTのU点信号(制御信号/状態信号を含む)との変換,及びNTのT点信号とLTのV点信号(制御信号/状態信号を含む)との変換を行う。
【0019】
図3は中継装置のLT機能とNT機能のインタフェース変換例である。NT部の機能はTTC標準JT−i430として標準化されており,LT部の機能はTTC標準JT−G961/G960 として標準化されている。図3にはその一部の例が示され,この例ではNT機能部はT点の信号である待機状態(INFO0),起動動作中(INFO2),(端末)起動(INFO4)といった状態信号をLT機能部のV点の指令信号(FE)またはU点の制御信号(SIG)に変換し,NTへ送信し,LT機能部のU点の状態信号(SIG)は,NT機能部の同期確立の状態信号(INFO3)へ変換して,LTへ送信される。
【0020】
図4は給電アダプタのブロック構成である。図中,2は給電アダプタ(給電ADPで表示),2aは電源部,2bはハイパスフィルタ(HPF),2cはローパスフィルタ(LPF)である。
【0021】
給電アダプタ2は,上位装置(図1の中継装置4)からメタリック線3を介して送られた信号をハイパスフィルタ2bで通過させて,下位装置(図1のNT1)に対して局給電相当の給電を電源部2aが行う。ローパスフィルタ2cは電源部2aからの給電を直流通過させるために設けられている。中継装置4は上位(局側)のLTからの給電を全て自己動作電源として使用してしまうので,給電アダプタ2に対して給電は行わない。このため給電アダプタ2は,上位装置が待機状態(ノーマル給電状態)にあるのか通信状態(リバース給電状態)にあるのかを識別できない。
【0022】
このため,給電アダプタ2内の電源部2aはNTに対して常に通信状態極性の給電(リバース給電)を行う。給電アダプタ2は宅内に設置されるため,商用電源の使用が可能であり,商用電源により駆動される。商用電源が停電した場合は,NT1(図1)も動作しなくなることが予想されるが,その下位に接続されている端末(TE)自身も商用電源を使用しているので,NTだけ動作させる意味はない。NTが無停電電源を用いている場合には,給電アダプタ2にバッテリを備えることも有効である。
【0023】
図5は中継装置における信号の受信・送信のタイミングである。図中,aはLT(図1の5),bは中継装置のNT機能部(図1の4a,図2の4a1,4a2に対応),cは中継装置のLT機能部(図1の4c,図2の4c1,4c2に対応),dはNT(図1の1に対応)の動作を表す。
【0024】
中継装置における信号送出タイミングの調整が図5に示すように行われる。すなわち,中継装置は,LTからの給電で動作するが,中継装置はNT機能部の他に,LT機能部とインタフェース変換部(図1の4b)を搭載するため,送信がNT機能部(図1の4a)とLT機能部(図1の4c)で同時に起こると動作電力が不足してしまう。そこで,動作電力の平準化を図り,電力消費を分散させている。具体的には,信号送出タイミングを調整するもので,LT機能部もNT機能部もU点インタフェースを持ちこのインタフェースで信号送受を行うが,信号送出時には送信電力を余計に消費するため,LT機能部とNT機能部が同時に送信することのないよう,両インタフェースでの送信タイミングを調整する。
【0025】
この図5の例では,LTからの送信信号が▲1▼のタイミングで中継装置へ向けて送信され,所定の遅延時間の後NT機能部で▲1▼’のタイミングで受信され,この受信信号は短いインタフェース変換の時間を経てLT機能部から▲2▼のタイミングでNTへ向けて送信され,NTで▲2▼’のタイミングで受信される。この後,NTからの信号(端末装置TEから発生した信号)は▲3▼のタイミングで送信され,中継装置のLT機能部で▲3▼’のタイミングで受信される。この信号は中継装置のNT機能部から後の時間(図に示されない)にLTへ向けて送信する。図中のNT機能部から▲4▼のタイミングで送信される信号は,NTから以前に受信した信号を送信するタイミングであり,NT機能部とLT機能部からの送信タイミングが重複しないよう調整されている。
【0026】
図5に示すバースト周期は,LTから受信した信号の中のフレーム信号を同期化することにより抽出する。バースト信号の構成は,TTC標準JT−G961に従い,図6にその例を示す。
【0027】
図6は複数種のバースト信号の構成例を示す。図6のA.は下り方向(LTからNTへの送信)の同期をとるためのトレーニング信号(SIG4)の例であり,先頭のフレームビット(フレームワードという)として16ビット(100000M000000000) が配置され(M はフレーム毎に交番),その後に「10000000」のビット列が45個配置され,最後に1ビットの直流平衡をとるビットが配置され,合計377ビットで構成される。図6のB.は上り方向(NTからLTへの送信)の同期をとるためのトレーニング信号(SIG5)の例であり,フレーム信号中のMのビット位置が異なるがその他の構成はA.と同じである。C.はLTからNTへの通信信号の一例であり,D.はNTからLTへの通信信号の例である。C.とD.には下りと上りの2B(64KbpsのBチャネルが2個)+D(16KbpsのDチャネル)の通信信号が含まれている。
【0028】
このようにバーストの先頭には上りと下りの方向に対応して固定されたフレームワードが設けられており,このフレームワードを連続して検出することにより,バースト周期を抽出することができ,この周期を利用して,上記した中継装置からLTとNT側への送信バーストの重なりを防ぎ,消費電力の分散を実現することができる。
【0029】
図7は中継装置における信号送出のシーケンスであり,図7には左側から,NT1,給電アダプタ(ADPで表示)2,中継装置4,LT5が示され,中継装置4にはLT側とNT側にU点,内部にT点,V点が配置されている。給電アダプタ2は各信号をバイパスしている。
【0030】
最初に,LT5からの同期確立用のトレーニング信号SIG4を受信すると中継装置4がNT機能部同期確立のためのクロックを抽出する。なお,このSIG4の信号の構成は上記図6のA.に示され,この信号のフレームワードを何回か検出することで,フレームを捕捉することができ,これによりクロック(400Hz)が抽出でき,そうすると当該LT側のU点からの送信タイミングを作ることができるようになる。中継装置4のLT側のU点でクロック抽出が成功すると,トレーニング信号SIG5をLT5へ送信する。この信号SIG5の構成は上記図6のB.に示され,LT5がこれを受信することで上記したSIG4と同様の方法で中継装置4からLT5の方向の同期が確立され,これにより,LT5から同期確立を表す信号SIG6が中継装置4へ送信される。中継装置4のLT側のU点では,この信号の受信によりLT同期信号(OFS:OCU Frame Sync. signal) が確認され,中継装置4のNT側のU点に対しU点起動を指示する信号を出力する。これにより,中継装置4のU点(NT側)は,給電アダプタ2をバイパスしてNT1に対し同期確立用の信号SIG4を送信し,これを受けたNT1から中継装置4に対しNT機能部同期確立クロック抽出を表す信号SIG5が送信され,これを中継装置4で受信すると,LT機能部の同期確立を表す信号SIG6が給電アダプタ2をバイパスしてNT1へ送信されてNT1と中継装置4のLT側のU点との間で双方向で同期が確立される。
【0031】
上記図4に記載した給電アダプタは,NT(宅内装置)に対して常に通信状態極性の給電(リバース給電)を与えなければならない。すなわち,給電アダプタを設けない場合は,待機状態ではメタリック線はノーマル極性にしてNTの電源をリセットし,通信状態に移行する時リバース極性にしてNTの電源を投入するが,給電アダプタを設けた場合には,給電アダプタは中継装置からの給電を受けないため,極性を検出できず,そのように極性の切替え,つまりNTのリセットができない。待機状態で,中継装置が給電アダプタの先にあるNT(宅内装置)に対してリセットをさせる代替の手段として,中継装置は本来の待機状態の給電極性(ノーマル給電)を与える代わりに,信号送出を強制的に止めてNTをフレーム同期外れ状態にする。フレーム同期外れに至ったNTは結果的に自己動作をリセットさせることになる。
【0032】
図8は本発明の中継装置を介する信号送受信のタイミングの例1である。この例では,LTから送信された信号は,一定の遅延時間後に中継装置のNT機能部で受け取られ,直ちに中継装置のLT機能部からNTへ送信される。但しNTから送信された信号は,中継装置のLT機能部で受信された後,一定の保留時間の後に中継装置のNT機能部からLTへ送信される。この例では,下り方向の信号の遅延が少ないが,上り方向の信号の遅延が比較的大きくなるが,回路距離を長くすることが可能となっている。
【0033】
図9は本発明の中継装置を介する信号送受信のタイミングの例2である。この例では,LTから中継装置へ信号が送信されるタイミングで,NTから中継装置への信号の送信が行われ,中継装置はNT機能部とLT機能部で同時に受信を行い,NT機能部で受信された信号をLT機能部からNTへ送信するタイミングと,LT機能部で受信された信号をNT機能部からLTへ送信するタイミングもほぼ同じであり,この動作が繰り返される。この例では,上記図8の場合に比べて,上りの信号の遅延が,下りの信号の遅延と同じ程度で極めて小さいことが分かる。この場合,中継装置からLTとNTの両方に対して同時に送信を行う点で,電力消費量が大きくなるという問題があるが,送信信号の回り込み(自分で送信した信号を自分で受信する動作)を防止することができる。
【0034】
図10に中継装置の実施例の構成を示す。図中,1,2,4,5は上記図1の同じ符号の各部に対応し,1はNT(宅内装置または網終端装置),1aは送信回路,1bは受信回路,1cはT点機能終端部,1dはU/T点変換部,1eはU点機能終端部,1fは送信回路,1gは受信回路,1hはDC/DC変換器,2は給電アダプタ(給電ADPで表示),2aはAC100Vの商用電源を入力してDC出力を発生するAC/DC変換器,2cはローパスフィルタ(コイル),2bは信号を通過させるハイパスフィルタ(コンデンサ),4は中継装置,4a〜4dは図1の同じ符号の各部に対応し,4aはNT機能処理部,4bはIF変換部,4cはLT機能処理部,4dはDC/DC変換器,4eはLT5への信号の送信回路,4fはLT5からの信号の受信回路,4gは給電アダプタからの信号の受信回路,4hは給電アダプタへの信号の送信回路,4iは発呼時の直流ループの電流を規定する発呼抵抗,4jはローパスフィルタ,4kはハイパスフィルタ,5はLT(局装置または回線終端装置),5aは信号処理部,5bは中継装置への信号の送信回路,5cは中継装置からの信号の受信回路,5dは局給電電源,5eはNT側(中継装置側)への極性の正極/逆極性を切替えるスイッチである。3aはLT5と中継装置4の間のメタリック線,3bは中継装置4と給電アダプタ2の間のメタリック線,3cは給電アダプタ2とNT1の間のメタリック線である。
【0035】
LT5は,交換機(ET)からの信号を,信号処理部5aで処理してNT方向(下り方向)にU点インタフェース信号を送信する。U点では図6のA.〜D.に示すビット構成(2B+D)のデータを転送する。信号処理部5aは時分割で切り換えて送信/受信を交互に行う。更に,LT5ではNTに向けて給電を行っており,スイッチ5eにより給電極性の正極/逆極性を切替えることで,待機状態/通信状態を制御する。LT5の加入者線の給電極性が逆極性(通信状態)に遷移するためには,交換機(ET)からの切り換え(着呼)または中継装置4からの発呼処理が必要である。
【0036】
本発明による中継装置4では,中継装置内部に発呼抵抗4iを備え,LT5と接続された時点で,擬似的な発呼をLT5に知らせる。その結果,LT5は逆極性の給電を行い通信状態に遷移する。この給電を中継装置4のDC/DC変換器4dが中継装置内の動作電源(例えば5V)を生成し,LT5からのトレーニング信号(図6のA.のSIG4)に応じて,逆トレーニング信号(図6のB.のSIG5)を生成する。中継装置4では,U点/T点信号をIF変換部4bで上記図3に示す信号変換を行い,下位に信号を伝送する。
【0037】
給電アダプタ2では,交流信号はそのままハイパスフィルタ2cを通過させ,中継装置4が消費した電力は,給電アダプタ2のAC/DC変換器2aの電源で再びNT1に与え直す。なお,この実施例では,コイル2b経由でDC電源が印加される。
【0038】
NT1では,給電アダプタ2を経由した交流信号(ディジタル信号)は受信回路1gに入り,U点機能終端部1eで,√f等化を行い,波形整形を行う。更に,U点/T点変換部1dでT点信号に変換し,2B+Dのデータを下位のTE(端末)に伝え,TE(端末)からのデータは上り方向に変換,処理が行われて送信される。
【0039】
(付記1)局装置(LT)と宅内装置(NT) 間を時分割多重伝送方式による メタリック線を介したデータ伝送システムにおいて,局装置に対し宅内装置のU点インタフェースを備え,宅内装置に対して局装置のU点インタフェースを備えることで両方の中継を行う中継装置を,局装置から遠隔に位置する宅内装置と局装置の間に配置してメタリック線により接続し,前記中継装置は,局装置が本来宅内装置に向けて供給する給電を局装置より取り込んで動作し,前記中継装置と宅内装置の間で宅内装置に近い位置に,宅内装置への給電を行う給電アダプタを設け,給電アダプタは電源を生成することを特徴とするメタリック線を介したデータ伝送システム。
【0040】
(付記2)付記1において,前記中継装置は,TTC標準として規定されている下り方向の制御信号として宅内装置機能のT点信号を局装置機能のV点制御信号またはU点制御信号に変換し,上り方向の状態信号として局装置機能のV点状態信号またはU点状態を宅内装置機能のT点状態信号に変換することを特徴とするメタリック線を介したデータ伝送システム。
【0041】
(付記3)付記1において,前記中継装置は,TTC標準として規定されている下り方向の制御信号として宅内装置機能のU点信号を局装置機能のV点制御信号またはU点制御信号に変換することを特徴とするメタリック線を介したデータ伝送システム。
【0042】
(付記4)付記1において,前記中継装置は,局装置からのU点同期情報の受信確立時に,局装置機能のV点制御信号を作成することを特徴とするメタリック線を介したデータ伝送システム。
【0043】
(付記5)付記1において,前記中継装置は,局装置(上り)方向と給電アダプタ(下り)方向に対して電力消費の大きい送信バーストタイミングが重ならないよう位相を調整して,中継装置の電源電圧変動を平均化することを特徴とするメタリック線を介したデータ伝送システム。
【0044】
(付記6)付記1において,前記中継装置は,局装置との同期が確立したことを確認してから,給電アダプタへの送信トレーニング信号を送信して,抽出したクロックによる安定したトレーニング信号の送出を可能とすることを特徴とするメタリック線を介したデータ伝送システム。
【0045】
(付記7)付記1において,前記中継装置は,局装置からの給電極性が待機状態を表す極性であると,給電アダプタに対して信号送出を止めることで,給電アダプタ及び宅内装置を強制的に同期外れとさせ,宅内装置の内部状態をリセットさせることを特徴とするメタリック線を介したデータ伝送システム。
【0046】
【発明の効果】
本発明によれば,従来のメタリック回線を利用したピンポン伝送方式の方式上の問題である回線距離の限界を約2倍に延長できる。また,中継装置も回線交換機能を持たせる必要がなく,更に回線を光ケーブル等に変更する必要もないため,中継装置の採用による設備コストは最小限で安価に実現することができる。
【0047】
また,中継装置を設置する場合,その中継点では商用電源等を利用する環境が整備されていない可能性が高いが,本発明によれば局からの給電だけを利用して動作するため,設置工事における電源の問題を無くすことができる。
【図面の簡単な説明】
【図1】本発明の原理構成を示す図である。
【図2】本発明による中継装置の実施例のブロック構成を示す図である。
【図3】中継装置のLT機能とNT機能のインタフェース変換例を示す図である。
【図4】給電アダプタのブロック構成を示す図である。
【図5】中継装置における信号の受信・送信のタイミングを示す図である。
【図6】複数種のバースト信号の構成例を示す図である。
【図7】中継装置における信号送出のシーケンスを示す図である。
【図8】本発明の中継装置を介する信号送受信のタイミングの例1を示す図である。
【図9】本発明の中継装置を介する信号送受信のタイミングの例2を示す図である。
【図10】中継装置の実施例の構成を示す図である。
【図11】従来例の説明図である。
【図12】現状ISDNサービスの適用距離の延長方法を示す図である。
【符号の説明】
1 宅内装置(NTまたは網終端装置)
2 給電アダプタ(ADP)
2a 電源部
3 メタリック線
4 中継装置
4a NT機能部
4b インタフェース変換部
4c LT機能部
4d 電源部
5 局装置(LTまたは線路終端装置)
6 端末装置(TE)
7 交換機(ET)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a relay transmission system in which communication is performed between a station device (LT: Line Terminal) and a home device (NT: Network Terminal) by a time division multiplex transmission method using a metallic line by ISDN.
[0002]
As a method of transmitting data between ISDN station equipment (LT) and in-home equipment (NT) using a metallic line (or also called a metallic subscriber line), transmission direction of transmission / reception is a short cycle in Japan. The so-called ping-pong transmission method is used. In this ping-pong transmission system, when the subscriber line becomes long, it may be difficult to provide a service due to an increase in signal delay and an increase in line resistance.
[0003]
[Prior art]
FIG. 11 is an explanatory diagram of a conventional example. Is the ISDN equipment configuration and reference point through the subscriber. Is the signal transmission / reception timing of the ping-pong transmission method. A. , 80 is a terminal device (TE: Terminal Equipment), 81 is an in-home device (or a network termination device, NT: Network Terminal), 82 is a metallic line, and 83 is a station device (or a line termination device). Reference numeral LT represents a line terminal) and 84 represents an exchange (represented by ET: Exchange Terminal). A. Is defined by the TTC standards (JT-G961 and JT-i430) established by the Telecommunication Technology Committee on ISDN, where T is the reference point that defines the user / network interface, and U point is the subscriber A reference point indicating the boundary between the line and NT (in-home device) 81 or LT (station device) 83, and point V is a reference point indicating the boundary between LT (station device) 83 and ET (switch) 84.
[0004]
A. In the configuration shown in FIG. 1, there is a time division multiplex transmission method as one of methods for transmitting a digital signal between an LT (station device) 83 and an NT (home device) 81 via a metallic line, which is known as a ping-pong transmission method. ing. B. of FIG. Shows the signal transmission / reception timing by the ping-pong transmission method, and the LT 83 sends signals (represented by a and c) to the NT 81 every burst period (approximately 2.5 ms). The burst period is a period necessary to maintain the ISDN data rate via the subscriber line (144 Kbps in the case of 2B + D of the basic interface). When the NT 81 receives a signal (represented by a ′ and c ′) from the LT 83, a signal (represented by b) is directed to the LT 83 after the timing of Tg (for 6 or 7 time slots) after receiving the tail. Send it out.
[0005]
In such a system, the reception timing at the LT increases in proportion to the line distance due to the line delay. When the applicable limit distance is exceeded, the end of the reception signal at the LT and the start of the transmission signal from the LT eventually collide. Communication becomes impossible.
[0006]
In Japan, the ISDN service is premised on the replacement of the analog telephone network. Therefore, the power supply of the in-home device (NT) 81 is premised on the power supply from the station device (LT) 83 without using the commercial power source. This supplied power reaches the in-home device (NT) and is used as a power source for the in-home device (NT) to operate. On the other hand, the polarity is used to connect the station device (LT) and the in-home device (NT). Used to display the communication status / standby status. That is, in the standby state, the potential of the L1 line is made higher than that of the L2 line (normal polarity), and at this time, the in-home device (NT) is reset to the power source. At the time of transition to the communication state, the in-house device (NT) is turned on by inverting the polarity so far and making the potential of the L2 line higher than the L1 line (reverse polarity).
[0007]
In the reverse polarity, the in-home device (NT) needs to receive a certain amount of power regardless of the line resistance, and therefore, a constant current power supply is adopted as a power supply method from the station device (LT). In addition, since it is necessary to keep the input voltage constant in the home device (NT), a constant current (for example, 35 mA) from the station device (LT) × NT input voltage (for example, 28 V) = NT received power constant (this In this case, about 1W). The power supply method of the station device (LT) is constant current power supply, but the upper limit of the power supply voltage is determined (for example, about 60V) because of the problem of human body safety of the line builder. The resistance of the line resistance due to the upper limit of the LT output voltage can be calculated from the resistance 0Ω). The formula for calculating the line resistance and the line resistance upper limit value is as follows.
[0008]
Line resistance upper limit = (LT sending voltage upper limit−NT input voltage) ÷ LT feeding current
As described above, in order to apply the ISDN service to an area exceeding the limits of distance and line resistance, it has been considered to give up using the metallic line and use the method shown in FIG.
[0009]
FIG. 12 shows a method for extending the application distance of the current ISDN service. In the figure, 81 is a home device (NT), 82 is a metallic line, 83 is a station device (LT), 84 is an exchange (ET), 85 is a remote device (RT), 86 is an optical cable, and 87 is a center terminal. A device (represented by CT: Center Terminal).
[0010]
In this case, a remote device (RT) is provided near the home device (NT) only for the home device (NT) of a long-distance subscriber, and this remote device (RT) is a center terminal newly provided on the station side. It is necessary to lay and connect an optical cable to the device (CT).
[0011]
[Problems to be solved by the invention]
As described above, in order to provide ISDN services to long-distance subscribers from exchanges, it is necessary to introduce new equipment such as remote equipment and center termination equipment and lay construction of optical cables. Expensive and costly for scattered NT users.
[0012]
In the present invention, since the distance from the station device (LT) to the in-home device (NT) is long, the burst cycle of bidirectional communication cannot be maintained or the voltage drop of the metallic line is larger than a predetermined value. It is an object of the present invention to provide a data transmission system via a metallic line that enables communication by a time division multiplex transmission method using the metallic line.
[0013]
[Means for Solving the Problems]
FIG. 1 shows the principle configuration of the present invention. In the figure, 1 is a home device (NT or network termination device), 2 is a power supply adapter (ADP), 3 is a metallic line, 4 is a relay device, 5 is a station device (LT or line termination device), 6 is a terminal device ( TE), 7 represents an exchange (ET). Further, 2a inside the power supply adapter 2 is a power supply unit, 4a inside the relay device 4 is an NT function unit, 4b is an interface conversion unit, 4c is an LT function unit, and 4d is a power supply unit.
[0014]
In the present invention, a relay device 4 is provided at an intermediate position between the metallic line 3 connecting the in-home device (NT) 1 and the station device (LT) 5 located at a long distance from the station device (LT) 5, and the in-home device (NT ) By providing the power supply adapter 2 near 1, the distance from the station device (LT) 5 to the home device (NT) 1 can be made significantly longer than the conventional limit distance.
[0015]
Since the relay device 4 is located far away from the switchboard, there is a high possibility that the power cannot be taken from the outside. Therefore, the reverse polarity power supply (reverse power supply) that is originally planned to be supplied to the home device (NT) 1 ) Is taken in by the relay device 4 and operated with the power. For this reason, power supply from the station device (LT) 5 does not reach the in-home device (NT) 1. Therefore, the power supply adapter 2 reapplies reverse power supply to the in-home device (NT) 1 using a commercial power source or the like. The power supply unit 4d of the relay device 4 receives the power supplied from the station device (LT) 5 via the metallic line 3, supplies the power of each unit 4a to 4c, and connects the power supply adapter 2 to the home device (NT) 1 The power supply unit 2a provided near the power source is driven by a commercial power supply, and generates power for the in-home device (NT) 1. The NT function unit 4a of the relay device 4 operates as a home device (NT) with respect to the station device (LT) 5, and the LT function unit 4c operates as a station device (LT) with respect to the home device (NT) 1, The interface conversion unit 4b mutually converts control signals and status signals for executing the NT function and the LT function. The in-home device (NT) 1 is driven by a power source from the power supply adapter 2 and performs transmission / reception operations as the in-home device (NT).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a block configuration of an embodiment of the relay apparatus according to the present invention. In the figure, 4 is a relay device, 4a1 and 4a2 correspond to the NT function unit 4a of FIG. 1, 4a1 is an NT function U point termination unit, 4a2 is an NT function T point termination unit, and 4b1 to 4b3 are interface conversions of FIG. 4b1 is a U / T interface converter that performs mutual conversion of signals at the terminal U point and the station T point, and 4b2 is a signal at the terminal V point and the station T point. 1 is a V / T interface converter for performing mutual conversion, 4b3 is a V / U interface converter for performing mutual conversion of signals at a terminal V point and a station U point, and 4c1 and 4c2 are LT function units of FIG. 4c1 is an LT function U point termination unit, 4c2 is an LT function V point termination unit, and 4d is a power supply unit.
[0017]
Further, the metallic line 3 on the station side to which the NT function U point termination unit 4a1 of the relay apparatus 4 is connected and the metallic line 3 to which the LT function U point termination unit 4c1 is connected to the terminal side are both U of the reference point. This means that the relay device 4 is connected to a point and is not different from the U point on the metallic line connecting the conventional station and the terminal.
[0018]
The NT function U point termination unit 4a1 that opposes the LT of the relay device 4 shows the U point interface to the outside, and further, the LT function U point termination unit 4c1 that faces the NT side (feed adapter 2) of the relay device 4 Show point interface. Various methods are conceivable for interface conversion between the NT function and the LT function, but since the LT / NT block is technically established, the NT T point signal and the LT U point signal (including the control signal / status signal) ), LT V point signal and NT U point signal (including control signal / status signal), NT T point signal and LT V point signal (including control signal / status signal) And conversion.
[0019]
FIG. 3 shows an example of interface conversion between the LT function and the NT function of the relay apparatus. The NT part function is standardized as TTC standard JT-i430, and the LT part function is standardized as TTC standard JT-G961 / G960. FIG. 3 shows a part of the example. In this example, the NT function unit outputs status signals such as a standby state (INFO0), starting operation (INFO2), and (terminal) starting (INFO4), which are T point signals. Converted into LT point V command signal (FE) or U point control signal (SIG) and sent to NT, LT point U state signal (SIG) established NT function synchronization Is converted to a status signal (INFO3) and transmitted to the LT.
[0020]
FIG. 4 shows a block configuration of the power supply adapter. In the figure, 2 is a power supply adapter (indicated by power supply ADP), 2a is a power supply unit, 2b is a high-pass filter (HPF), and 2c is a low-pass filter (LPF).
[0021]
The power supply adapter 2 passes the signal sent from the host device (relay device 4 in FIG. 1) via the metallic line 3 through the high-pass filter 2b, and is equivalent to the station power supply to the lower device (NT1 in FIG. 1). The power supply unit 2a supplies power. The low-pass filter 2c is provided to allow the power supply from the power supply unit 2a to pass through a direct current. Since the relay device 4 uses all the power supply from the upper (station side) LT as a self-operating power supply, the power supply adapter 2 is not supplied with power. For this reason, the power supply adapter 2 cannot identify whether the host device is in a standby state (normal power supply state) or in a communication state (reverse power supply state).
[0022]
For this reason, the power supply unit 2a in the power supply adapter 2 always performs power supply (reverse power supply) with a communication state polarity to the NT. Since the power supply adapter 2 is installed in the house, a commercial power source can be used and is driven by the commercial power source. If the commercial power supply fails, NT1 (Fig. 1) is also expected to stop operating, but the terminal (TE) connected to the lower level also uses the commercial power supply, so only NT is operated. There is no meaning. When the NT uses an uninterruptible power supply, it is also effective to provide a battery in the power supply adapter 2.
[0023]
FIG. 5 shows signal reception / transmission timing in the relay apparatus. In the figure, a is LT (5 in FIG. 1), b is an NT function unit of the relay device (corresponding to 4a in FIG. 1, 4a1 and 4a2 in FIG. 2), and c is an LT function unit of the relay device (4c in FIG. 1). , Corresponding to 4c1 and 4c2 in FIG. 2), d represents the operation of NT (corresponding to 1 in FIG. 1).
[0024]
Adjustment of signal transmission timing in the relay apparatus is performed as shown in FIG. That is, the relay device operates with power supply from the LT, but since the relay device includes the LT function unit and the interface conversion unit (4b in FIG. 1) in addition to the NT function unit, transmission is performed in the NT function unit (see FIG. 1). 1 a) and the LT function unit (4c in FIG. 1) occur simultaneously, the operating power is insufficient. Therefore, the power consumption is distributed by leveling the operating power. Specifically, it adjusts the signal transmission timing, and both the LT function unit and the NT function unit have a U-point interface, and perform signal transmission / reception with this interface. The transmission timings of both interfaces are adjusted so that the transmission unit and the NT function unit do not transmit at the same time.
[0025]
In the example of FIG. 5, the transmission signal from the LT is transmitted to the relay device at the timing {circle around (1)}, and is received at the timing {circle around (1)} by the NT function unit after a predetermined delay time. Is transmitted from the LT function unit to the NT at the timing {circle around (2)} after a short interface conversion time, and received at the timing {circle around (2)} at the NT. Thereafter, a signal from the NT (a signal generated from the terminal device TE) is transmitted at timing (3) and received at timing (3) by the LT function unit of the relay device. This signal is transmitted toward the LT at a later time (not shown in the figure) from the NT function unit of the relay apparatus. The signal transmitted from the NT function unit in the figure at the timing of (4) is the timing for transmitting the signal previously received from the NT, and is adjusted so that the transmission timing from the NT function unit and the LT function unit does not overlap. ing.
[0026]
The burst period shown in FIG. 5 is extracted by synchronizing the frame signal in the signal received from the LT. An example of the configuration of the burst signal is shown in FIG. 6 in accordance with TTC standard JT-G961.
[0027]
FIG. 6 shows a configuration example of a plurality of types of burst signals. A. of FIG. Is an example of a training signal (SIG4) for synchronization in the downstream direction (transmission from LT to NT), and 16 bits (100000M000000000) are arranged as the first frame bit (referred to as a frame word) (M is each frame) Then, 45 bit strings of “10000000” are arranged, and finally, a bit for DC balancing of 1 bit is arranged, which is composed of 377 bits in total. B. of FIG. Is an example of a training signal (SIG5) for synchronizing in the upstream direction (transmission from NT to LT). Is the same. C. Is an example of a communication signal from LT to NT. Is an example of a communication signal from NT to LT. C. And D. Includes a communication signal of 2B for downstream and upstream (two B channels of 64 Kbps) + D (D channel of 16 Kbps).
[0028]
Thus, a fixed frame word is provided at the head of the burst corresponding to the up and down directions, and the burst period can be extracted by detecting this frame word continuously. By using the period, it is possible to prevent overlapping of transmission bursts from the relay device to the LT and NT sides, and to realize power consumption distribution.
[0029]
FIG. 7 shows a signal transmission sequence in the relay device. FIG. 7 shows, from the left side, NT1, power supply adapter (indicated by ADP) 2, relay device 4, LT5, and relay device 4 includes LT side and NT side. U point and T point and V point inside. The power feeding adapter 2 bypasses each signal.
[0030]
First, when receiving the training signal SIG4 for establishing synchronization from the LT 5, the relay device 4 extracts a clock for establishing synchronization of the NT function unit. The signal configuration of the SIG4 is the same as that shown in FIG. By detecting the frame word of this signal several times, it is possible to capture the frame, thereby extracting the clock (400 Hz), and then creating the transmission timing from the U point on the LT side Will be able to. When the clock extraction is successful at the point U on the LT side of the relay device 4, a training signal SIG5 is transmitted to the LT5. The configuration of the signal SIG5 is the same as that shown in FIG. The synchronization in the direction from the relay device 4 to the LT5 is established by the same method as the SIG4 described above when the LT5 receives this, and thereby the signal SIG6 indicating the establishment of synchronization is transmitted from the LT5 to the relay device 4 Is done. At the point U on the LT side of the relay device 4, an LT synchronization signal (OFS: OCU Frame Sync. Signal) is confirmed by receiving this signal, and a signal instructing the U point on the NT side of the relay device 4 to start the point U Is output. As a result, the U point (NT side) of the relay device 4 bypasses the power supply adapter 2 and transmits a signal SIG4 for establishing synchronization to NT1. When the signal SIG5 representing the establishment clock extraction is transmitted and received by the relay device 4, the signal SIG6 representing the synchronization establishment of the LT function unit is transmitted to the NT1 bypassing the power supply adapter 2, and the LT of the NT1 and the relay device 4 is transmitted. Bidirectional synchronization is established with the U point on the side.
[0031]
The power supply adapter described in FIG. 4 must always supply power (reverse power supply) with a communication state polarity to NT (in-home device). That is, when no power adapter is provided, the metallic line is set to normal polarity in the standby state and the NT power is reset, and when shifting to the communication state, the NT power is turned on with the reverse polarity. In this case, since the power supply adapter does not receive power from the relay device, the polarity cannot be detected, and thus the polarity cannot be switched, that is, the NT cannot be reset. In the standby state, as an alternative means for the relay device to reset the NT (home device) ahead of the power supply adapter, the relay device sends out a signal instead of giving the original standby state power supply polarity (normal power supply). Is forcibly stopped to put NT in an out-of-frame state. As a result, the NT that has lost frame synchronization resets its own operation.
[0032]
FIG. 8 is a first example of timing of signal transmission / reception via the relay apparatus of the present invention. In this example, the signal transmitted from the LT is received by the NT function unit of the relay device after a certain delay time, and immediately transmitted from the LT function unit of the relay device to the NT. However, after the signal transmitted from the NT is received by the LT function unit of the relay device, it is transmitted from the NT function unit of the relay device to the LT after a certain holding time. In this example, the downstream signal delay is small, but the upstream signal delay is relatively large, but the circuit distance can be increased.
[0033]
FIG. 9 is a second example of timing of signal transmission / reception via the relay device of the present invention. In this example, the signal is transmitted from the NT to the relay device at the timing when the signal is transmitted from the LT to the relay device, and the relay device receives the NT function unit and the LT function unit at the same time. The timing at which the received signal is transmitted from the LT function unit to the NT and the timing at which the signal received by the LT function unit is transmitted from the NT function unit to the LT are substantially the same, and this operation is repeated. In this example, it can be seen that the delay of the upstream signal is as small as that of the downstream signal compared to the case of FIG. In this case, there is a problem that the power consumption becomes large in that the relay device transmits to both LT and NT at the same time, but there is a problem that the transmission signal wraps around (operation to receive the signal transmitted by itself) Can be prevented.
[0034]
FIG. 10 shows the configuration of an embodiment of the relay device. In the figure, 1, 2, 4 and 5 correspond to the same parts in FIG. 1, 1 is NT (in-home device or network termination device), 1a is a transmission circuit, 1b is a reception circuit, and 1c is a T point function. Termination unit, 1d U / T point conversion unit, 1e U point function termination unit, 1f transmission circuit, 1g reception circuit, 1h DC / DC converter, 2 power supply adapter (indicated by power supply ADP), 2a Is an AC / DC converter that inputs a commercial power supply of AC 100V and generates a DC output, 2c is a low-pass filter (coil), 2b is a high-pass filter (capacitor) that passes signals, 4 is a relay device, and 4a to 4d are diagrams 4a is an NT function processor, 4b is an IF converter, 4c is an LT function processor, 4d is a DC / DC converter, 4e is a signal transmission circuit to the LT 5, and 4f is Receiver circuit for signals from LT5, 4g feeds A signal receiving circuit from the adapter, 4h is a signal transmitting circuit to the power supply adapter, 4i is a calling resistor that defines the current of the DC loop at the time of calling, 4j is a low-pass filter, 4k is a high-pass filter, and 5 is LT ( 5a is a signal transmission circuit to the relay device, 5c is a signal reception circuit from the relay device, 5d is a local power supply, and 5e is an NT side (relay device side). ) Is a switch for switching the polarity between the positive polarity and the reverse polarity. 3a is a metallic line between the LT 5 and the relay device 4, 3b is a metallic line between the relay device 4 and the feeding adapter 2, and 3c is a metallic line between the feeding adapter 2 and NT1.
[0035]
The LT 5 processes a signal from the exchange (ET) by the signal processing unit 5a and transmits a U-point interface signal in the NT direction (downward direction). At point U, A. of FIG. ~ D. The data of the bit configuration (2B + D) shown in FIG. The signal processing unit 5a performs transmission / reception alternately by switching in a time division manner. Further, the LT 5 supplies power toward the NT, and the standby state / communication state is controlled by switching the positive / reverse polarity of the power supply polarity by the switch 5e. In order for the power supply polarity of the subscriber line of LT5 to transition to the reverse polarity (communication state), switching from the exchange (ET) (incoming call) or calling processing from the relay device 4 is required.
[0036]
In the relay device 4 according to the present invention, the call resistance 4i is provided inside the relay device, and when it is connected to the LT 5, a pseudo call is notified to the LT 5. As a result, the LT 5 supplies power of reverse polarity and transitions to a communication state. The DC / DC converter 4d of the relay device 4 generates an operation power supply (for example, 5V) in the relay device, and the reverse training signal (SIG4 of A. in FIG. 6) is received from the LT 5 for this power supply. B. SIG5) of FIG. In the relay device 4, the signal conversion shown in FIG. 3 is performed on the U point / T point signal by the IF conversion unit 4b, and the signal is transmitted to the lower order.
[0037]
In the power supply adapter 2, the AC signal passes through the high-pass filter 2c as it is, and the power consumed by the relay device 4 is reapplied to the NT1 by the power source of the AC / DC converter 2a of the power supply adapter 2. In this embodiment, a DC power source is applied via the coil 2b.
[0038]
In NT1, an AC signal (digital signal) that has passed through the power supply adapter 2 enters the receiving circuit 1g, and √f equalization is performed at the U point function termination unit 1e to perform waveform shaping. Further, the U point / T point conversion unit 1d converts the signal into a T point signal, transmits 2B + D data to the lower TE (terminal), and the data from the TE (terminal) is converted and processed in the upstream direction and transmitted. Is done.
[0039]
(Supplementary note 1) In a data transmission system via a metallic line between a station device (LT) and a home device (NT) using a time-division multiplex transmission system, a U-point interface of the home device is provided for the station device, A relay device that performs both relays by providing a U-point interface of the station device is disposed between the home device remotely located from the station device and the station device and is connected by a metallic line. The power supply that the device originally supplies to the in-home device is taken in from the station device, and is operated between the relay device and the in-home device at a position close to the in-home device. Home device A data transmission system via a metallic line, characterized in that a power supply adapter is provided for supplying power to the power supply, and the power supply adapter generates power.
[0040]
(Supplementary note 2) In Supplementary note 1, the relay device converts the T-point signal of the in-home device function into a V-point control signal or U-point control signal of the station device function as a downlink control signal defined as a TTC standard. A data transmission system via a metallic line, which converts a V point state signal or U point state of a station device function into a T point state signal of a home device function as an upstream state signal.
[0041]
(Supplementary note 3) In Supplementary note 1, the relay device converts a U-point signal of a home device function into a V-point control signal or a U-point control signal of a station device function as a downlink control signal defined as a TTC standard. A data transmission system through a metallic line.
[0042]
(Supplementary note 4) The data transmission system via metallic line according to supplementary note 1, wherein the relay device creates a V-point control signal of the station device function when reception of the U-point synchronization information from the station device is established. .
[0043]
(Supplementary note 5) In Supplementary note 1, the relay device adjusts the phase so that transmission burst timings with high power consumption do not overlap with each other in the station device (upstream) direction and the power feeding adapter (downstream) direction. A data transmission system via a metallic line, characterized by averaging voltage fluctuations.
[0044]
(Supplementary note 6) In Supplementary note 1, after confirming that synchronization with the station device has been established, the relay device transmits a transmission training signal to the power supply adapter, and sends out a stable training signal based on the extracted clock. A data transmission system via a metallic line, characterized in that
[0045]
(Supplementary note 7) In Supplementary note 1, when the power supply polarity from the station device is a polarity indicating a standby state, the relay device forcibly causes the power supply adapter and the home device to be stopped by stopping signal transmission to the power supply adapter. A data transmission system via a metallic line, characterized by being out of synchronization and resetting the internal state of the home device.
[0046]
【The invention's effect】
According to the present invention, the limit of the line distance, which is a problem in the ping-pong transmission method using the conventional metallic line, can be extended by about twice. In addition, since the relay device does not need to have a circuit switching function and further does not need to change the line to an optical cable or the like, the equipment cost due to the adoption of the relay device can be realized at a low cost.
[0047]
In addition, when installing a relay device, there is a high possibility that the environment for using a commercial power source or the like is not prepared at the relay point. However, according to the present invention, the system operates using only the power supply from the station. The problem of power supply in construction can be eliminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a principle configuration of the present invention.
FIG. 2 is a diagram showing a block configuration of an embodiment of a relay device according to the present invention.
FIG. 3 is a diagram illustrating an example of interface conversion between the LT function and the NT function of the relay device.
FIG. 4 is a diagram illustrating a block configuration of a power supply adapter.
FIG. 5 is a diagram illustrating signal reception / transmission timing in the relay apparatus;
FIG. 6 is a diagram illustrating a configuration example of a plurality of types of burst signals.
FIG. 7 is a diagram illustrating a signal transmission sequence in the relay device.
FIG. 8 is a diagram illustrating a first example of timing of signal transmission / reception via the relay device of the present invention;
FIG. 9 is a diagram illustrating a second example of timing of signal transmission / reception via the relay device of the present invention;
FIG. 10 is a diagram illustrating a configuration of an embodiment of a relay device.
FIG. 11 is an explanatory diagram of a conventional example.
FIG. 12 is a diagram showing a method for extending the application distance of the current ISDN service.
[Explanation of symbols]
1 In-home equipment (NT or network termination equipment)
2 Power supply adapter (ADP)
2a Power supply
3 metallic lines
4 relay device
4a NT function part
4b Interface converter
4c LT function part
4d power supply
5 Station equipment (LT or line termination equipment)
6 Terminal equipment (TE)
7 Exchange (ET)

Claims (5)

局装置(LT)と宅内装置(NT) 間を時分割多重伝送方式によるメタリック線を介したデータ伝送システムにおいて,
局装置に対し宅内装置のU点インタフェースを備え,宅内装置に対して局装置のU点インタフェースを備えることで両方の中継を行う中継装置を,局装置から遠隔に位置する宅内装置と局装置の間に配置して各装置間をメタリック線により接続し,
前記中継装置は,局装置が本来宅内装置に向けて供給する給電を局装置より取り込んで動作し,
前記中継装置と宅内装置の間で宅内装置に近い位置に,宅内装置への給電を行う給電アダプタを設け,給電アダプタは電源を生成することを特徴とするメタリック線を介したデータ伝送システム。
In a data transmission system via a metallic line using a time division multiplex transmission method between a station device (LT) and a home device (NT),
A relay device that performs both relays by providing a U-point interface of the home device to the station device and a U-point interface of the station device to the home device is provided between the home device and the station device remotely located from the station device. Place them between them and connect them with metallic lines,
The relay device operates by taking in the power supply that the station device originally supplies to the in-home device from the station device,
A data transmission system via a metallic line, wherein a power supply adapter for supplying power to a home device is provided between the relay device and the home device at a position close to the home device, and the power supply adapter generates power.
請求項1において,
前記中継装置は,TTC標準として規定されている下り方向の制御信号として宅内装置機能のT点信号を局装置機能のV点制御信号またはU点制御信号に変換し,上り方向の状態信号として局装置機能のV点状態信号またはU点状態信号を宅内装置機能のT点状態信号に変換することを特徴とするメタリック線を介したデータ伝送システム。
In claim 1,
The relay device converts a T-point signal of the in-home device function as a V-point control signal or U-point control signal of the station device function as a downlink control signal defined as a TTC standard, and outputs a station status signal as an uplink state signal. A data transmission system via a metallic line, which converts a V point state signal or U point state signal of a device function into a T point state signal of a home device function.
請求項1において,
前記中継装置は,TTC標準として規定されている下り方向の制御信号として宅内装置機能のU点信号を局装置機能のV点制御信号またはU点制御信号に変換することを特徴とするメタリック線を介したデータ伝送システム。
In claim 1,
The relay device converts a U-point signal of the in-home device function into a V-point control signal or a U-point control signal of the station device function as a downlink control signal defined as a TTC standard. Data transmission system through.
請求項1において,
前記中継装置は,局装置(上り)方向と給電アダプタ(下り)方向に対して電力消費の大きい送信バーストタイミングが重ならないよう位相を調整して,中継装置の電源電圧変動を平均化することを特徴とするメタリック線を介したデータ伝送システム。
In claim 1,
The relay device adjusts the phase so that transmission burst timings with high power consumption do not overlap in the station device (upstream) direction and the power supply adapter (downstream) direction, and averages the power supply voltage fluctuation of the relay device. A data transmission system via a characteristic metallic line.
請求項1において,
前記中継装置は,局装置からの給電極性が待機状態を表す極性である場合,給電アダプタに対して信号送出を止めて給電アダプタ及び宅内装置を強制的に同期外れとさせ,宅内装置の内部状態をリセットさせることを特徴とするメタリック線を介したデータ伝送システム。
In claim 1,
When the power supply polarity from the station device is a polarity indicating a standby state, the relay device stops the signal transmission to the power supply adapter, forcibly causes the power supply adapter and the home device to be out of synchronization, and the internal state of the home device. A data transmission system via a metallic line, characterized by resetting the network.
JP2000249125A 2000-08-21 2000-08-21 Data transmission system via metallic wire Expired - Lifetime JP3697147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249125A JP3697147B2 (en) 2000-08-21 2000-08-21 Data transmission system via metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249125A JP3697147B2 (en) 2000-08-21 2000-08-21 Data transmission system via metallic wire

Publications (2)

Publication Number Publication Date
JP2002064656A JP2002064656A (en) 2002-02-28
JP3697147B2 true JP3697147B2 (en) 2005-09-21

Family

ID=18738907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249125A Expired - Lifetime JP3697147B2 (en) 2000-08-21 2000-08-21 Data transmission system via metallic wire

Country Status (1)

Country Link
JP (1) JP3697147B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132340B2 (en) * 2013-05-08 2017-05-24 Necプラットフォームズ株式会社 Power reduction device and power reduction method

Also Published As

Publication number Publication date
JP2002064656A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
USRE39405E1 (en) Network link endpoint capability detection
JP3457338B2 (en) Videophone and videoconferencing equipment
US6208670B1 (en) Digital carrier system for rural telephone and data applications
JP3697147B2 (en) Data transmission system via metallic wire
JPH04100367A (en) Digital subscriber line device test system
US4835766A (en) Monitoring system capable of monitoring a sequence of digital signals flowing through a subscriber line
JP7223976B2 (en) Door phone system and communication method
JP7281648B2 (en) Door phone system and communication method
JPH10233761A (en) Light transmitting system
JP6485782B2 (en) Door phone system and communication method
JP6176507B1 (en) Door phone system and communication method
JP3976399B2 (en) Line connection device
JP2972633B2 (en) Communication terminal device
JPS645790B2 (en)
JP3837692B2 (en) Extension extension system
KR100731474B1 (en) Method of operation and management pulse code modulation relay line in ISDN
JPS60206347A (en) Circuit monitor and control equipment
JP2985778B2 (en) ISDN terminal accommodation equipment for leased line
KR100314944B1 (en) MODEM Circuit
JP2000209337A (en) Circuit monitoring system
JPH0276430A (en) Initial leading-in system additionally having reverse training signal detecting function
JPH11205478A (en) Digital line terminating equipment
JPH0522415A (en) U-point monitoring system for isdn
JP2018011114A (en) Door phone system and communication method thereof
KR20030015584A (en) System of Matching NO.7 Signalling Block in Data Communication System

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent or registration of utility model

Ref document number: 3697147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term