JP3695527B2 - Plasma display panel and manufacturing method thereof - Google Patents

Plasma display panel and manufacturing method thereof Download PDF

Info

Publication number
JP3695527B2
JP3695527B2 JP2001329275A JP2001329275A JP3695527B2 JP 3695527 B2 JP3695527 B2 JP 3695527B2 JP 2001329275 A JP2001329275 A JP 2001329275A JP 2001329275 A JP2001329275 A JP 2001329275A JP 3695527 B2 JP3695527 B2 JP 3695527B2
Authority
JP
Japan
Prior art keywords
discharge space
substrate
tip tube
display panel
side substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001329275A
Other languages
Japanese (ja)
Other versions
JP2003132793A (en
Inventor
和久 東福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2001329275A priority Critical patent/JP3695527B2/en
Publication of JP2003132793A publication Critical patent/JP2003132793A/en
Application granted granted Critical
Publication of JP3695527B2 publication Critical patent/JP3695527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマディスプレイパネル及びその製造方法に関し、特に、前面側及び背面側の2枚の基板の間に形成される放電空間を排気し、これに放電用のガスを導入する技術に関する。
【0002】
【従来の技術】
プラズマディスプレイパネル(PDP)は、基本的に、一主面に長尺状の複数の電極を備える前面側ガラスと、同じく一主面に長尺状の複数の電極を備える背面側ガラス基板の2枚のガラス基板とを、前面側ガラス基板の電極形成面と背面側ガラス基板の電極形成面とが互いに向い合せで、しかも両方のガラス基板の電極が互いに直交するようにして所定の距離を隔てて対面させ、双方のガラス基板どうしをガラス基板の縁辺で気密に封着して、2枚のガラス基板間に形成された気密性の中空空間(放電空間)内を排気した後、放電用ガスを所定の圧力まで導入し封止した構造を持っている。
【0003】
図2に、PDPの一例の断面図を示す。図2を参照して、この図に示すPDPは、マトリクス表示方式のAC形3電極面放電型PDPであって、前面側ガラス基板1と背面側ガラス基板2とが、距離を隔てて対面している。上記2枚のガラス基板1,2どうしの間には、各ガラス基板の縁辺に、低融点のガラス層からなる額縁状の封止層3Aが配置されている。前面側及び背面側の2枚のガラス基板は、それぞれのガラス基板の縁辺で上記封止層3Aに気密に固着(封着)されて気密性の放電空間4を形成しており、この放電空間4に、例えばArとXeとの混合ガスのような、放電用の希ガスが所定の圧力で封入されている。
【0004】
前面側ガラス基板1の内面には、面放電を行わせるためのX表示電極とY表示電極とが、それぞれ複数本ずつ紙面左右方向に走っている(図2には、X表示電極5で代表させている)。これらX表示電極とY表示電極とは、どちらも長尺状の電極で、互いに1本おきに交互して並行に走っていて、X表示電極1本とこれに隣接するY表示電極1本とで一組をなして1走査線をなしている。X(Y)表示電極5上には、電極を被覆する誘電体層6と、その誘電体層6を保護するMgO膜7とが設けられている。
【0005】
一方、背面側ガラス基板2の内面には、上記X(Y)表示電極5と直交する方向(紙面に垂直の方向)に、長尺状のアドレス電極8が複数本、並行して走っている。各アドレス電極8どうしの間には、高さが100〜200μm程度の長尺状の隔壁9がアドレス電極8に沿って設けられ、更に、蛍光体膜10が、アドレス電極8の上面、隔壁9の側面及び背面側ガラス基板2の露出面を覆って設けられている。
【0006】
上述のPDPにおいて、これを前面側ガラス基板1或いは背面側ガラス基板2に垂直な方向から見たとき、X表示電極及びY表示電極の組とアドレス電極との交点が行及び列をなしてマトリクス状に並ぶことになり、そのマトリクス状に並んでいる交点の一つ一つがそれぞれ単位の発光領域(画素)になっている。すなわち、X,Y表示電極の組とアドレス電極との交点がマトリクス状に並んでいる領域が表示領域になる。
【0007】
ここで、上述の隔壁9は前面側ガラス基板1に接触していて、放電空間4のX(Y)表示電極5の伸長方向を、アドレス電極単位で物理的に区切っている。この隔壁9は、隣り合うアドレスの画素間で誤放電が生じクロストークが発生するのを防ぐためのもので、良好な表示画質を得るために欠かせない。
【0008】
上に述べたPDPは、概略、下記のプロセスで製造される。先ず、前面側ガラス基板1及び背面側ガラス基板2に対し、個別に、X(Y)表示電極5、誘電体層6及びMgO膜7や、アドレス電極8、隔壁9、蛍光体膜10を形成する。その後、一方のガラス基板の電極形成面に、額縁状の封止層3Aを形成し、更に、もう一方のガラス基板を電極形成面を内側にして重ね合せ、互いに押し当てた状態で熱処理を行う。これにより、前面側ガラス基板1の縁辺と封止層3A及び、背面側ガラス基板2の縁辺と封止層3Aとが気密的に融着され、気密性の中空の放電空間4が形成される。
【0009】
次いで、放電空間4内を排気し、放電用のガスを所定の圧力まで導入した後、封止する。
【0010】
このように、PDPの製造に際しては、放電空間内を排気する過程と、排気後の放電空間内に放電用のガスを導入する過程と、放電空間を封止する過程とが欠かせない。その放電空間内の排気、放電空間内へのガス導入、封止に従来行われていた方法の一例(従来例1)が、特開平8−255573号公報に記載されている。図3に、上記公報の図2を再掲して示す。尚、以下では、説明の都合上、図中の符号及び名称に、上記公報中で用いられているものとは異なる符合及び名称を用いることがある。図3を参照して、背面側ガラス基板2には、表示領域11の外側で封止層3Aより内側の領域に、放電空間4の内外を通じる貫通孔12Aが1つ設けられている。この図に示す例の場合は、矩形状の表示領域の左手前側の隅に設けられている。そして、その貫通孔12Aには、放電空間4とは反対側の面に、中空のガラス管であるチップ管13Aが、背面側ガラス基板2に垂直に融着されている。尚、図3は、完成後のPDPを示しているので、チップ管13Aは先端部分で封じ切られた後の形状になっているが、製造プロセスの途中段階では、チップ管は上面及び下面の両端面とも開放の円筒である。
【0011】
この従来例1に係るPDPを製造するに当って、放電空間4の排気及び放電用ガスの導入には、上述のチップ管13Aを用いる。すなわち、前面側ガラス基板1と背面側ガラス基板2とを融着して一体化し、放電空間4を形成した後、放電空間の排気に先立って、背面側ガラス基板に設けておいた貫通孔12Aに、予め、両端面開放のチップ管13Aを融着する。そして、このチップ管13Aに図示しない排気装置と放電用ガスのボンベとを切替え可能に連結し、放電空間内を排気し放電用ガスを導入した後、チップ管13Aを溶断して封じ切るのである。
【0012】
ところで、放電空間4の間隙の寸法(前面側ガラス基板1と背面側ガラス基板2との間の距離:ほぼ隔壁9の高さと考えてよい)は、画面の平面寸法の大きさに関わりなく100〜200μm程度である。そこで、従来例1の場合、画面の寸法が大きくなるにつれて、排気による放電空間内部の十分な真空度確保と清浄化が困難になるという問題が生じる。特に、放電空間4をアドレス単位で仕切っている隔壁9が排気抵抗を高くしているので、貫通孔12Aから離れた画素空間にはどうしても不純ガスが残りやすい。排気による放電空間内部の清浄化が不十分であると、排気後にいくら所定の組成の放電用ガスを充填しても、画素内のガスの組成は目的どおりの組成にならず、放電を妨げる現象が生じ表示動作が不安定になってしまう。
【0013】
上述のような、貫通孔12Aからの遠近が原因で生じる表示動作の不安定現象を改善するには、例えば図4に示すように、貫通孔12Aを複数個設けて排気効率を高めることが考えられる(従来例2)。図4に示すPDPの場合は、矩形状の放電空間の四隅全てに貫通孔を1つずつ設け、それぞれにチップ管13B〜13Eを1つずつ融着している。
【0014】
しかしながら、このように貫通孔の数、延いてはチップ管の数を多くすると、背面ガラス側基板へのチップ管13B〜13Eの取付け、チップ管13B〜13Eと排気装置やガスボンベとの連結、チップ管13B〜13Eの封じ切りといった一連の排気、ガス導入、封止作業がチップ管の数だけ必要になり、単に作業工数が増えるだけでなく、作業ミスやこれに伴う不良発生が増加してしまう。
【0015】
そこで、前述の特開平8−255573号公報は、背面側ガラス基板に設ける貫通孔の数は複数個にしながらチップ管は1つにする工夫をして、チップ管と排気装置との連結作業は簡単で、しかもチップ管からの遠近の違いによる放電空間内の排気状態の違いを小さくしている(従来例3)。図5に、上記公報の図1を再掲して示す。図5を参照して、背面側ガラス基板2には、表示領域の外側に、2つの貫通孔12L、12Rが左右に分けて設けられている。背面側ガラス基板2の放電空間とは反対の面側には、更に、もう1枚のガラス基板(ガス溜め用ガラス基板)14が配置されていて、このガス溜め用ガラス基板14に、貫通孔12Bが1つ設けられている。
【0016】
上記ガス溜め用ガラス基板14と背面側ガラス基板2とは、それぞれの基板の縁辺に配置された低融点ガラス製の額縁状の封止層3Bに気密に融着されて、気密性のガス溜め空間15Aを形成している。このガス溜め空間15Aと放電空間4とは、背面側ガラス基板2に設けられている上記2つの貫通孔12L,12Rによって連通している。
【0017】
この従来例3に係るPDPにおいては、放電空間4の排気過程までの間の適当な段階で、ガス溜め用ガラス基板の貫通孔12Bにチップ管13Fを融着し、そのチップ管13Fとガス溜め空間15Aとを介して放電空間4を排気し、また放電用ガスを導入する。従って、チップ管と排気装置やガスボンベとの連結は1箇所だけで済む。しかも、放電空間4内は背面側ガラス基板2の適当な位置に設けられた複数の貫通孔12L,12Rによって排気されるので、チップ管13Fからの遠近による放電空間内の排気状態の差は、従来例2(図4参照)におけると同様に、小さくできる。
【0018】
【発明が解決しようとする課題】
上述したように、従来例3の技術によれば、チップ管と排気装置との連結作業は簡単で、しかも、チップ管からの遠近による放電空間内の排気状態の差を小さくできる。
【0019】
しかし、従来例3に係るPDPにおいては、ガス溜め用ガラス基板14は背面側ガラス基板2と同程度の大きさを有していることから、PDP全体の重量が増してしまう。また、ガス溜め空間15Aの間隙(背面側ガラス基板2とガス溜め用ガラス基板14との間の距離)の分、PDP全体の厚みも増えてしまう。更には、ガス溜め用ガラス基板14の内面に、背面側ガラス基板2とガス溜め用ガラス基板14との間の間隔を規定するためのスペーサ16を点在配置しなければならず、ただでさえそのための製造工程が増えて製造コストが上昇するのに、パネルが大型化すれば、それに伴ってガス溜め用ガラス基板14も大きくなり撓みも大きくなるので、スペーサ16を広い範囲に精度よく配置しなければならなくなり、その制御のために製造工程が複雑になる。
【0020】
結局、パネル全体の重量も厚さも増し、そのうえ製造コストも上昇する。このことは、大型の壁掛けTVの有望な候補とされるPDPにとって、非常に重要な問題である。
【0021】
従って、本発明は、放電空間を排気するときのチップ管と排気装置との連結作業が簡単で、放電空間内でのチップ管からの遠近に起因する排気状態のむらがなく、従来例3に係るPDPに比べパネル全体の重量増加も厚さ増加も少なく、しかも製造が容易なPDPとこれを製造する方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明のプラズマディスプレイパネルは、一主面に電極を備える前面側基板と一主面に電極を備える背面側基板とを所定の距離をもって対面させ、各々の基板の縁辺を封着して得た放電空間内に放電用のガスを封入してなるプラズマディスプレイパネルにおいて、前記背面側基板は、表示領域の外側に設けられた、表裏を通じる複数の貫通孔と、前記放電空間とは反対側の面上に気密的に固着された無底有蓋の箱形の通気導管であって、前記背面側基板の縁辺を回廊状に巡って前記貫通孔を覆い、内部の空間が始端、終端の別なくエンドレスにつながった構造の通気導管と、前記放電用のガスの封入の際に前記放電空間を排気しまたこれにガスを導入するための、前記通気導管に設けられたチップ管とを有することを特徴とする。
【0023】
上記のプラズマディスプレイパネルは、前記一主面に電極を有する前面側基板を製造する過程と、前記一主面に電極を有し、前記表示領域となるべき領域の外側には前記複数の貫通孔を有する背面側基板を製造する過程と、前記前面側基板と背面側基板とを各々の基板の電極形成面を内側にして所定の距離をもって対面させ、各々の基板の縁辺を気密に封着する封着過程と、前記前面側基板と背面側基板との間に作られる放電空間を排気したのち放電空間内に放電用のガスを導入し、封止する封入過程とを含むプラズマディスプレイパネルの製造方法において、予め、前記無底有蓋の箱形の通気導管と封じ切り前のチップ管とを一体に形成する過程と、前記チップ管と一体に形成した通気導管を、予め、前記背面側基板の前記電極形成面とは反対の側の面上に、前記貫通孔を覆うようにして気密に固着する過程とを設け、前記封入過程では、前記放電空間を前記チップ管を介して排気し、排気後の放電空間内に前記チップ管を介して前記放電用のガスを導入した後、前記チップ管を封じ切ることを特徴とするプラズマディスプレイパネルの製造方法によって製造できる。
【0024】
または、予め、前記無底有蓋の箱形の通気導管と封じ切り前のチップ管とを一体に形成する過程を設け、前記封着工程では、前面側基板と背面側基板とを各々の基板の縁辺で気密に封着すると同時に、前記予めチップ管と一体に形成した通気導管を、前記背面側基板の前記電極形成面とは反対の側の面上に、前記貫通孔を覆うようにして気密に固着し、前記封入過程では、前記放電空間を前記チップ管を介して排気し、排気後の放電空間内に前記チップ管を介して前記放電用のガスを導入した後、前記チップ管を封じ切ることを特徴とするプラズマディスプレイパネルの製造方法によって製造できる。
【0025】
【発明の実施の形態】
次に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明の一実施例に係るPDPの全体を示す斜視図及び、A−a切断線における断面図である。図1を参照して、この実施例に係るPDPはマトリクス表示方式のAC形3電極面放電型のPDPであって、放電空間4の内部の構造は、図2に示した一般的なPDPと同じである。
【0026】
本実施例に係るPDPは、外見から言えば、従来例1、従来例2及び従来例3に対し、背面側ガラス基板2の放電空間とは反対側の面上に通気導管17を備えている点と、その通気導管17の側壁に、チップ管13Gが1つ、背面側ガラス基板2と平行な方向に向けて設けられている点が異なっている。また、その外見上の特徴を実現するための製造方法も異なっている。そこで、以下では、上述の相違点を中心にして説明する。
【0027】
本実施例に係るPDPにおける背面側ガラス基板2は、表示領域の外側で封止層3Aより内側の領域に、2つの貫通孔12L,12Rを備えている。これら2つの貫通孔は、矩形状の表示領域の向い合う短辺の中央近傍に、一つずつ配置されている。
【0028】
背面側ガラス基板2には、また、放電空間4の反対側の面上に通気導管17が設けられている。この通気導管17はガラス成形品で、無底有蓋の箱の構造をしていて、背面側ガラス基板2の縁辺を回廊状に取り囲んで2つの貫通孔12L,12Rを覆っている。回廊の初めと終りとはつながっていて、従って、通気導管の内部の空間はエンドレスに連通している。この通気導管17は、背面側ガラス基板2との間にできるエンドレスの中空空間(ガス溜め空間15B)の排気抵抗が放電空間4の排気抵抗より小さくなるような、最小の大きさにしてある。
【0029】
上記通気導管17の側壁には、これもガラス成形品のチップ管13Gが1つ、背面側ガラス基板2と平行な方向に向けて設けられている。尚、図1(a)は完成後のPDPを表しているので、チップ管13Gは封じ切られた状態になっているが、このチップ管13Gは放電空間内の排気、放電用ガスの導入が終るまでの間は、両端開放の円筒である。
【0030】
本実施例において、背面側ガラス基板2と上記通気導管17とで作られるガス溜め空間15Bと、前面側ガラス基板1と背面側ガラス基板2との間の放電空間4とは、背面側ガラス基板2に設けた2つの貫通孔12L,12Rで連通している。そこで、PDPの製造プロセスの中で、放電空間4を排気し、放電用ガスを導入する際は、上記チップ管13Gに排気装置及び放電ガスのガスボンベを切替え可能に連結して、チップ管13Gを介して放電空間内を排気し、また排気後の放電空間にガスを導入する。排気の際、ガス溜め空間15Bの排気抵抗の方が隔壁9で仕切られた放電空間4の排気抵抗より小さいので、放電空間4は、従来例2におけるように、複数(この場合は、2つ)の貫通孔12L,12Rのそれぞれに個別に排気装置を連結して、同時に排気するのと同じような状態になる。従って、従来例1におけるように1つの貫通孔だけで排気するのとは違って、貫通孔とそれから最も遠い部分との間の距離が短くなり、チップ管はただ1つであるにも拘らず、放電空間4の排気は効率的にむらなく行われる。しかも、排気装置とチップ管との連結はただ一箇所で済むので、作業を迅速に行うことができる。
【0031】
本実施例に係るPDPは、以下のようにして製造する。先ず、従来公知の方法で、前面側ガラス基板1及び背面側ガラス基板2のそれぞれに、個別に各構成部材を設ける。すなわち、前面側ガラス基板1に、X(Y)表示電極5、誘電体層6及びMgO膜7を順次形成する。また、背面側ガラス基板2に、アドレス電極8、隔壁9及び蛍光体膜10を順次形成する。尚、背面側ガラス基板2には、表示領域の外側に、貫通穴12L,12Rを予め設けておく。
【0032】
一方、上述の前面側及び背面側ガラス基板の準備とは別に、チップ管13G付きの、無底有蓋、箱形の通気導管17を準備する。それには、チップ管13Gと箱形通気導管17とが一体になった構造のカーボン型を用い、ガラス成形によりチップ管13Gと通気導管17とを一体的に成形する。
【0033】
そして、前面側ガラス基板1または背面側ガラス基板2の電極形成側の面の縁辺に、幅2〜4mm程度の低融点ガラス製の額縁状封止層3Aを配設する。又、背面側ガラス基板2の放電空間4とは反対側の面上の、通気導管17が固着されるべき位置にも、低融点ガラスの層18を配設する。
【0034】
そうしておいて、前面側ガラス基板1と背面側ガラス基板2とを重ね合せ、更にチップ管13G付きの通気導管17を背面側ガラス基板2の所定の位置に載置し、互いに押し当てた状態で加熱する。これにより、ガラス基板1,2と、封止層3Aと、チップ管付き通気導管17が気密に融着される。
【0035】
その後、従来公知の方法で、チップ管13Gに排気装置と放電用ガスのガスボンベとを切替え可能に連結する。そして、放電空間4を、チップ管13G、通気導管17、2つの貫通孔12L,12Rを介して排気し、放電用ガスを所定の圧力まで導入し、チップ管13Gを封じ切って本実施例に係るPDPを完成する。
【0036】
本実施例は、従来例3とは違って、ガス溜め空間15A(図5参照)を形成するための、背面側ガラス基板2と同じ大きさのガス溜め用ガラス基板14(同)は必要としない。従って、PDP全体の重量増加は、小さい。
【0037】
また、従来例3において必要であったガス溜め用ガラス基板14の撓み防止のためのスペーサ16(同)は不要である。従って、スペーサ配設のための作業が不要で、製造工程が簡単である。まして、従来例3の場合は、PDPの大型化に伴ってスペーサ16を精度よく配設しなければならなくなっていって、作業が高度化、複雑化してくるのに対し、本実施例においては、スペーサ配設作業そのものがないのであるから、PDPの大小にかかわらず同じ作業のままで済む。
【0038】
また、本実施例においては、箱形通気導管17とチップ管13Gとを予め一体に成形するので、排気工程に先立ってチップ管を通気導管に取り付ける工程が不要で、製造工程が簡単である。
【0039】
更には、通気導管17は箱形で側壁を持っているので、チップ管13Gをその側壁に取り付けることによって、背面側ガラス基板2に平行な方向に向けることができる。従って、従来例3のようにチップ管13F(図5参照)をガス溜め用ガラス基板14に垂直な方向にしか取り付けられず、その分PDPの厚さが厚くなってしまうのとは違って、PDPの厚さ増加も小さくて済む。
【0040】
尚、実施例においては、通気導管17とチップ管13Gとを予め一体に成形しておいて、その一体化通気導管17と、前面側ガラス基板1と、背面側ガラス基板2とを一度の熱処理で融着させる例について述べたが、製造工程順は必ずしもこれに限られるものではない。すなわち、チップ管13G付きの一体化通気導管17を予め背面側ガラス基板2に融着させておいて、その後、その通気導管17付きの背面側ガラス2と前面側ガラス基板1とを融着させてもよい。或いは、先に前面側ガラス基板1と背面側ガラス基板2とを融着しておいて、その後に一体化通気導管17を背面側ガラス基板に融着させてもよい。
【0041】
更には、通気導管17とチップ管13Gとを別々に用意しておいて、後からチップ管13Gを通気導管17に取り付けるようにしても、チップ管13Gを背面側ガラス基板2に平行な方向に取り付けることができる。本発明において、通気導管17は無底有蓋の箱形であって側壁を持っているので、その側壁に貫通孔を設けておいて、その側壁の貫通孔に別に用意しておいたチップ管13Gを従来公知の方法で融着すればよいからである。このような、チップ管13Gを後から通気導管17に取り付ける製造方法の場合でも、チップ管13Gと、通気導管17と、前面側ガラス基板1と、背面側ガラス基板2の融着順は、どのようにでもできる。但し、背面側ガラス基板2には蛍光体膜10が設けられ、その蛍光体膜10には熱によって劣化するものもあることを考慮すると、背面側ガラス基板2の熱履歴が一番少なくなるような製造工程順にすることが望ましい。
【0042】
尚、実施例においては、背面側ガラス基板100に2つの貫通孔12L,12Rを設けた例について述べたが、勿論、貫通孔は3つ以上であってもよい。数や開口面積は、背面側ガラス基板2の機械的強度に差し支えない程度に多いほうがよいであろう。
【0043】
【発明の効果】
以上説明したように、本発明によれば、放電空間を排気するときのチップ管と排気装置との接続作業が簡単で、放電空間内でのチップ管からの遠近に起因する排気状態のむらがなく、パネル全体の重量増加も厚さ増加も少なく、しかも製造が容易なPDPとこれを製造する方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係るPDPの斜視図及び断面図である。
【図2】PDPの基本的な構造を示す断面図である。
【図3】従来例1に係るPDPの斜視図である。
【図4】従来例2に係るPDPの斜視図である。
【図5】従来例3に係るPDPの断面図である。
【符号の説明】
1 前面側ガラス基板
2 背面側ガラス基板
3A 封止層
4 放電空間
5 表示電極
6 誘電体層
7 MgO膜
8 アドレス電極
9 隔壁
10 蛍光体膜
11 表示領域
12L,12R 貫通孔
13G チップ管
15B ガス溜め空間
17 通気導管
18 低融点ガラス層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma display panel and a method for manufacturing the same, and more particularly to a technique for exhausting a discharge space formed between two substrates on the front side and the back side and introducing a discharge gas into the discharge space.
[0002]
[Prior art]
A plasma display panel (PDP) is basically a front glass having a plurality of long electrodes on one main surface and a back glass substrate having a plurality of long electrodes on one main surface. Two glass substrates are separated from each other by a predetermined distance so that the electrode forming surface of the front glass substrate and the electrode forming surface of the rear glass substrate face each other, and the electrodes of both glass substrates are orthogonal to each other. The two glass substrates are hermetically sealed at the edges of the glass substrate, and the gas is discharged from the gas-tight hollow space (discharge space) formed between the two glass substrates. Is introduced to a predetermined pressure and sealed.
[0003]
FIG. 2 shows a cross-sectional view of an example of a PDP. Referring to FIG. 2, the PDP shown in FIG. 2 is a matrix display AC type three-electrode surface discharge type PDP, and the front glass substrate 1 and the rear glass substrate 2 face each other at a distance. ing. Between the two glass substrates 1 and 2, a frame-shaped sealing layer 3A made of a low-melting glass layer is disposed on the edge of each glass substrate. The two glass substrates on the front side and the back side are hermetically fixed (sealed) to the sealing layer 3A at the edge of each glass substrate to form an airtight discharge space 4, and this discharge space 4, a rare gas for discharge, such as a mixed gas of Ar and Xe, is sealed at a predetermined pressure.
[0004]
On the inner surface of the front glass substrate 1, a plurality of X display electrodes and Y display electrodes for causing surface discharge are run in the horizontal direction on the paper surface (represented by the X display electrode 5 in FIG. 2). ) The X display electrode and the Y display electrode are both long electrodes, and run alternately every other line in parallel. One X display electrode and one Y display electrode adjacent thereto Thus, one scan line is formed. On the X (Y) display electrode 5, a dielectric layer 6 that covers the electrode and an MgO film 7 that protects the dielectric layer 6 are provided.
[0005]
On the other hand, on the inner surface of the rear glass substrate 2, a plurality of long address electrodes 8 run in parallel in a direction orthogonal to the X (Y) display electrode 5 (direction perpendicular to the paper surface). . Between each address electrode 8, a long partition wall 9 having a height of about 100 to 200 μm is provided along the address electrode 8, and the phosphor film 10 is formed on the upper surface of the address electrode 8, the partition wall 9. And the exposed surface of the back side glass substrate 2 are provided.
[0006]
In the above PDP, when viewed from a direction perpendicular to the front glass substrate 1 or the rear glass substrate 2, the intersection of the X display electrode and Y display electrode pair and the address electrode forms a row and a column. Each of the intersections arranged in the matrix form a unit light emitting region (pixel). That is, a region where the intersections of the X and Y display electrode pairs and the address electrodes are arranged in a matrix is a display region.
[0007]
Here, the above-described barrier rib 9 is in contact with the front glass substrate 1, and physically extends the extending direction of the X (Y) display electrode 5 in the discharge space 4 in units of address electrodes. This partition wall 9 is for preventing erroneous discharge between adjacent address pixels and causing crosstalk, and is indispensable for obtaining a good display image quality.
[0008]
The above-described PDP is generally manufactured by the following process. First, an X (Y) display electrode 5, a dielectric layer 6, an MgO film 7, an address electrode 8, a partition wall 9, and a phosphor film 10 are individually formed on the front side glass substrate 1 and the back side glass substrate 2. To do. Thereafter, a frame-shaped sealing layer 3A is formed on the electrode forming surface of one glass substrate, and the other glass substrate is overlaid with the electrode forming surface inside, and heat treatment is performed in a state where they are pressed against each other. . As a result, the edge of the front glass substrate 1 and the sealing layer 3A and the edge of the rear glass substrate 2 and the sealing layer 3A are hermetically fused, and an airtight hollow discharge space 4 is formed. .
[0009]
Next, the inside of the discharge space 4 is evacuated, and a discharge gas is introduced to a predetermined pressure, followed by sealing.
[0010]
Thus, in manufacturing the PDP, a process of exhausting the discharge space, a process of introducing a discharge gas into the discharge space after exhaust, and a process of sealing the discharge space are indispensable. An example of a conventional method (conventional example 1) for exhausting the discharge space, introducing gas into the discharge space, and sealing is described in Japanese Patent Laid-Open No. 8-255573. FIG. 3 shows again FIG. 2 of the above publication. In the following, for convenience of explanation, the reference numerals and names in the figures may be different from those used in the above publication. With reference to FIG. 3, the back side glass substrate 2 is provided with one through-hole 12 </ b> A passing through the inside and outside of the discharge space 4 in a region outside the display region 11 and inside the sealing layer 3 </ b> A. In the case of the example shown in this figure, it is provided at the corner on the left front side of the rectangular display area. A chip tube 13 </ b> A, which is a hollow glass tube, is fused to the through-hole 12 </ b> A perpendicularly to the rear glass substrate 2 on the surface opposite to the discharge space 4. 3 shows the completed PDP, the tip tube 13A has a shape after being sealed at the tip portion. However, in the middle of the manufacturing process, the tip tube is formed on the upper surface and the lower surface. Both end faces are open cylinders.
[0011]
In manufacturing the PDP according to Conventional Example 1, the above-described tip tube 13A is used for exhausting the discharge space 4 and introducing the discharge gas. That is, the front glass substrate 1 and the rear glass substrate 2 are fused and integrated to form the discharge space 4, and then the through-hole 12A provided in the rear glass substrate prior to the discharge of the discharge space. In addition, the tip tube 13A having both end surfaces open is fused in advance. Then, an exhaust device (not shown) and a discharge gas cylinder are connected to the tip tube 13A in a switchable manner. After the discharge space is exhausted and the discharge gas is introduced, the tip tube 13A is melted and sealed. .
[0012]
By the way, the dimension of the gap of the discharge space 4 (distance between the front glass substrate 1 and the rear glass substrate 2: almost the height of the barrier ribs 9) is 100 regardless of the plane dimension of the screen. It is about -200 micrometers. Therefore, in the case of Conventional Example 1, as the screen size increases, there arises a problem that it becomes difficult to ensure and clean a sufficient degree of vacuum inside the discharge space by exhaust. In particular, since the partition wall 9 that partitions the discharge space 4 by address unit increases the exhaust resistance, impure gas tends to remain in the pixel space far from the through hole 12A. If the inside of the discharge space is not sufficiently cleaned by the exhaust, the gas composition in the pixel does not become the intended composition even if the discharge gas having a predetermined composition is filled after the exhaust. And the display operation becomes unstable.
[0013]
In order to improve the unstable phenomenon of the display operation caused by the distance from the through hole 12A as described above, for example, as shown in FIG. 4, it is considered to increase the exhaust efficiency by providing a plurality of through holes 12A. (Conventional example 2). In the case of the PDP shown in FIG. 4, one through hole is provided in each of the four corners of the rectangular discharge space, and the tip tubes 13B to 13E are fused to each one.
[0014]
However, if the number of through-holes and thus the number of tip tubes are increased, the attachment of the tip tubes 13B to 13E to the rear glass side substrate, the connection between the tip tubes 13B to 13E and the exhaust device or the gas cylinder, the tips A series of exhaust, gas introduction, and sealing operations such as sealing of the tubes 13B to 13E are required as many as the number of chip tubes, which not only increases the number of work steps but also increases the number of operation errors and associated defects. .
[0015]
Therefore, in the above-mentioned Japanese Patent Application Laid-Open No. 8-255573, the number of through-holes provided in the back glass substrate is made plural, and the tip tube and the exhaust device are connected by devising one chip tube. It is simple, and the difference in the exhaust state in the discharge space due to the difference in distance from the tip tube is reduced (conventional example 3). FIG. 5 shows again FIG. 1 of the above publication. Referring to FIG. 5, the back side glass substrate 2 is provided with two through holes 12 </ b> L and 12 </ b> R separately on the left and right sides outside the display area. Another glass substrate (gas reservoir glass substrate) 14 is further arranged on the side of the rear glass substrate 2 opposite to the discharge space, and the gas reservoir glass substrate 14 has a through hole. One 12B is provided.
[0016]
The gas reservoir glass substrate 14 and the back glass substrate 2 are hermetically fused to a frame-shaped sealing layer 3B made of low-melting glass disposed on the edge of each substrate, and an airtight gas reservoir. A space 15A is formed. The gas reservoir space 15 </ b> A and the discharge space 4 communicate with each other through the two through holes 12 </ b> L and 12 </ b> R provided in the rear glass substrate 2.
[0017]
In the PDP according to Conventional Example 3, the tip tube 13F is fused to the through hole 12B of the gas reservoir glass substrate at an appropriate stage until the discharge process of the discharge space 4, and the tip tube 13F and the gas reservoir are fused. The discharge space 4 is exhausted through the space 15A, and a discharge gas is introduced. Therefore, the tip tube and the exhaust device or gas cylinder need only be connected at one location. Moreover, since the inside of the discharge space 4 is exhausted by the plurality of through holes 12L and 12R provided at appropriate positions on the back side glass substrate 2, the difference in the exhaust state in the discharge space due to the distance from the tip tube 13F is As in the conventional example 2 (see FIG. 4), the size can be reduced.
[0018]
[Problems to be solved by the invention]
As described above, according to the technique of Conventional Example 3, the connecting operation between the tip tube and the exhaust device is simple, and the difference in the exhaust state in the discharge space due to the distance from the tip tube can be reduced.
[0019]
However, in the PDP according to Conventional Example 3, since the gas reservoir glass substrate 14 has the same size as the rear glass substrate 2, the weight of the entire PDP increases. In addition, the thickness of the entire PDP increases by the gap (the distance between the back-side glass substrate 2 and the gas reservoir glass substrate 14) of the gas reservoir space 15A. Furthermore, spacers 16 for defining the distance between the rear glass substrate 2 and the gas reservoir glass substrate 14 must be disposed on the inner surface of the gas reservoir glass substrate 14, even just. For this reason, the manufacturing process is increased and the manufacturing cost is increased. However, if the panel is increased in size, the gas reservoir glass substrate 14 is increased and the bending is increased accordingly. Therefore, the spacer 16 is accurately arranged in a wide range. And the manufacturing process is complicated by the control.
[0020]
Eventually, the overall weight and thickness of the panel will increase, and the manufacturing cost will increase. This is a very important problem for a PDP that is a promising candidate for a large wall-mounted TV.
[0021]
Therefore, according to the present invention, the connecting operation between the tip tube and the exhaust device when exhausting the discharge space is simple, and there is no unevenness in the exhaust state due to the distance from the tip tube in the discharge space. An object of the present invention is to provide a PDP that is less likely to increase in weight and thickness of the entire panel than a PDP and that can be easily manufactured, and a method for manufacturing the PDP.
[0022]
[Means for Solving the Problems]
The plasma display panel of the present invention was obtained by facing a front side substrate having electrodes on one main surface and a back side substrate having electrodes on one main surface at a predetermined distance, and sealing the edges of each substrate. In the plasma display panel in which the discharge gas is sealed in the discharge space, the back substrate is provided on the outer side of the display area, and has a plurality of through holes passing through the front and back sides, and the opposite side of the discharge space. A box-shaped, ventilated duct with a bottom and a lid, hermetically fixed on the surface, covering the through-hole around the edge of the back-side substrate in a corridor, and the internal space is independent of the beginning and end A vent conduit having a structure connected to an endless, and a tip tube provided in the vent conduit for exhausting the discharge space and introducing gas into the discharge gas when the discharge gas is sealed. Features.
[0023]
The plasma display panel includes a process of manufacturing a front substrate having an electrode on the one main surface, and an electrode on the one main surface, and the plurality of through-holes outside the region to be the display region. Manufacturing the back side substrate having the above-mentioned structure, the front side substrate and the back side substrate face each other with a predetermined distance with the electrode forming surface of each substrate facing inside, and the edges of each substrate are hermetically sealed A plasma display panel manufacturing method comprising: a sealing process; and a sealing process in which a discharge gas is introduced into the discharge space after sealing the discharge space formed between the front substrate and the back substrate and sealed. In the method, the step of previously forming the bottomless covered box-shaped vent conduit and the tip tube before sealing is integrated, and the vent conduit integrally formed with the tip tube is previously formed on the back side substrate. What is the electrode forming surface? A process of fixing the airtightly so as to cover the through-hole on the pair-side surface, and in the sealing process, the discharge space is exhausted through the tip tube, and the discharge space is exhausted After the discharge gas is introduced through the chip tube, the chip tube is sealed, and the plasma display panel can be manufactured by the manufacturing method.
[0024]
Alternatively, a process of integrally forming the bottomless covered box-shaped ventilation conduit and the tip tube before sealing is provided in advance, and in the sealing step, the front substrate and the rear substrate are connected to each substrate. At the same time hermetically sealing at the edge, the vent conduit formed integrally with the tip tube is hermetically sealed on the surface of the back side substrate opposite to the electrode forming surface so as to cover the through hole. In the sealing process, the discharge space is evacuated through the tip tube, the discharge gas is introduced into the discharged discharge space through the tip tube, and then the tip tube is sealed. The plasma display panel can be manufactured by a method for manufacturing a plasma display panel.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an entire PDP according to an embodiment of the present invention and a cross-sectional view taken along line Aa. Referring to FIG. 1, the PDP according to this embodiment is a matrix display AC type three-electrode surface discharge type PDP, and the internal structure of the discharge space 4 is the same as that of the general PDP shown in FIG. The same.
[0026]
In terms of appearance, the PDP according to the present embodiment is provided with a ventilation conduit 17 on the surface opposite to the discharge space of the rear glass substrate 2 with respect to Conventional Example 1, Conventional Example 2, and Conventional Example 3. The difference is that one tip tube 13G is provided on the side wall of the ventilation conduit 17 in a direction parallel to the rear glass substrate 2. Also, the manufacturing method for realizing the appearance feature is different. Therefore, the following description will focus on the above differences.
[0027]
The back glass substrate 2 in the PDP according to the present embodiment includes two through holes 12L and 12R in a region outside the display region and inside the sealing layer 3A. These two through holes are arranged one by one in the vicinity of the center of the short sides facing each other in the rectangular display area.
[0028]
The rear glass substrate 2 is also provided with a ventilation conduit 17 on the surface opposite to the discharge space 4. The ventilation conduit 17 is a glass molded product and has a bottomless covered box structure, and surrounds the edge of the rear side glass substrate 2 in a corridor shape and covers the two through holes 12L and 12R. The beginning and end of the corridor are connected, so the space inside the vent conduit communicates endlessly. The ventilation conduit 17 has a minimum size such that the exhaust resistance of the endless hollow space (gas reservoir space 15B) formed between the rear side glass substrate 2 and the exhaust resistance of the discharge space 4 is smaller.
[0029]
On the side wall of the ventilation conduit 17, one tip tube 13 </ b> G, which is also a glass molded product, is provided in a direction parallel to the rear glass substrate 2. Since FIG. 1A shows a completed PDP, the tip tube 13G is in a sealed state. However, the tip tube 13G has exhaust in the discharge space and introduction of discharge gas. Until the end, the cylinder is open at both ends.
[0030]
In this embodiment, the gas reservoir space 15B formed by the rear glass substrate 2 and the vent conduit 17 and the discharge space 4 between the front glass substrate 1 and the rear glass substrate 2 are the rear glass substrate. The two through holes 12L and 12R provided in 2 communicate with each other. Therefore, when the discharge space 4 is exhausted and the discharge gas is introduced in the manufacturing process of the PDP, the exhaust tube and the gas cylinder of the discharge gas are connected to the tip tube 13G so that the tip tube 13G can be switched. The gas is introduced into the discharge space after evacuation. At the time of exhaust, the exhaust resistance of the gas reservoir space 15B is smaller than the exhaust resistance of the discharge space 4 partitioned by the partition walls 9, so that there are a plurality of discharge spaces 4 (in this case, two in this case). ) Is individually connected to each of the through holes 12L and 12R and exhausted at the same time. Therefore, unlike the case of exhausting with only one through hole as in the conventional example 1, the distance between the through hole and the farthest part is shortened, and there is only one tip tube. The discharge space 4 is exhausted efficiently and uniformly. In addition, since the exhaust device and the tip tube can be connected to only one place, the operation can be performed quickly.
[0031]
The PDP according to the present embodiment is manufactured as follows. First, each constituent member is individually provided on each of the front glass substrate 1 and the back glass substrate 2 by a conventionally known method. That is, the X (Y) display electrode 5, the dielectric layer 6 and the MgO film 7 are sequentially formed on the front glass substrate 1. Further, the address electrodes 8, the barrier ribs 9 and the phosphor film 10 are sequentially formed on the rear glass substrate 2. The rear glass substrate 2 is provided with through holes 12L and 12R in advance outside the display area.
[0032]
On the other hand, separately from the preparation of the front and back glass substrates described above, a bottomless, covered, box-shaped ventilation conduit 17 with a tip tube 13G is prepared. For this purpose, a carbon mold having a structure in which the tip tube 13G and the box-shaped vent conduit 17 are integrated is used, and the tip tube 13G and the vent conduit 17 are integrally molded by glass molding.
[0033]
Then, a frame-shaped sealing layer 3A made of low melting point glass having a width of about 2 to 4 mm is disposed on the edge of the surface on the electrode forming side of the front glass substrate 1 or the back glass substrate 2. Further, a low-melting glass layer 18 is disposed on the surface of the rear glass substrate 2 opposite to the discharge space 4 at a position where the ventilation conduit 17 is to be fixed.
[0034]
Then, the front side glass substrate 1 and the back side glass substrate 2 were overlapped, and the ventilation conduit 17 with the tip tube 13G was placed at a predetermined position on the back side glass substrate 2 and pressed against each other. Heat in state. As a result, the glass substrates 1 and 2, the sealing layer 3 </ b> A, and the vent conduit 17 with the tip tube are hermetically fused.
[0035]
Thereafter, the exhaust device and the gas cylinder for the discharge gas are connected to the tip tube 13G in a switchable manner by a conventionally known method. Then, the discharge space 4 is evacuated through the tip tube 13G, the ventilation conduit 17, and the two through holes 12L and 12R, the discharge gas is introduced to a predetermined pressure, the tip tube 13G is sealed, and this embodiment is performed. The PDP is completed.
[0036]
Unlike the conventional example 3, the present embodiment requires a gas reservoir glass substrate 14 (same as the rear-side glass substrate 2) for forming the gas reservoir space 15A (see FIG. 5). do not do. Therefore, the weight increase of the entire PDP is small.
[0037]
Further, the spacer 16 (same as above) for preventing the gas reservoir glass substrate 14 from being bent in the third conventional example is unnecessary. Therefore, the work for arranging the spacers is unnecessary and the manufacturing process is simple. In the case of the conventional example 3, the spacers 16 must be arranged with high precision as the PDP becomes larger, and the work becomes more sophisticated and complicated. Since there is no spacer arrangement work itself, the same work can be performed regardless of the size of the PDP.
[0038]
Further, in the present embodiment, the box-shaped ventilation conduit 17 and the tip tube 13G are integrally formed in advance, so that the step of attaching the tip tube to the ventilation conduit prior to the exhausting step is unnecessary, and the manufacturing process is simple.
[0039]
Furthermore, since the ventilation conduit 17 has a box shape and has a side wall, the tip tube 13G can be directed in a direction parallel to the rear glass substrate 2 by attaching the tip tube 13G to the side wall. Therefore, unlike the conventional example 3, the tip tube 13F (see FIG. 5) can be attached only in the direction perpendicular to the gas reservoir glass substrate 14, and the thickness of the PDP is increased accordingly. The increase in the thickness of the PDP can be small.
[0040]
In the embodiment, the ventilation conduit 17 and the tip tube 13G are formed integrally in advance, and the integrated ventilation conduit 17, the front side glass substrate 1, and the rear side glass substrate 2 are subjected to a single heat treatment. However, the order of the manufacturing process is not necessarily limited to this. That is, the integrated ventilation conduit 17 with the tip tube 13G is previously fused to the rear glass substrate 2, and then the rear glass 2 with the ventilation conduit 17 and the front glass substrate 1 are fused. May be. Alternatively, the front side glass substrate 1 and the back side glass substrate 2 may be fused first, and then the integrated ventilation conduit 17 may be fused to the back side glass substrate.
[0041]
Furthermore, even if the ventilation conduit 17 and the tip tube 13G are prepared separately, and the tip tube 13G is attached to the ventilation conduit 17 later, the tip tube 13G is placed in a direction parallel to the rear glass substrate 2. Can be attached. In the present invention, since the ventilation conduit 17 is a box shape with a bottomless lid and has a side wall, a through hole is provided in the side wall, and the tip tube 13G prepared separately in the through hole in the side wall. This is because it may be fused by a conventionally known method. Even in the case of such a manufacturing method in which the tip tube 13G is attached to the ventilation conduit 17 later, the order of fusion of the tip tube 13G, the ventilation conduit 17, the front glass substrate 1, and the rear glass substrate 2 is any. You can do as well. However, considering that the phosphor film 10 is provided on the rear glass substrate 2 and that the phosphor film 10 may be deteriorated by heat, the thermal history of the rear glass substrate 2 is minimized. It is desirable to follow the order of the manufacturing processes.
[0042]
In addition, in the Example, although the example which provided two through-holes 12L and 12R in the back side glass substrate 100 was described, of course, three or more through-holes may be sufficient. The number and the opening area should be as large as possible so as not to affect the mechanical strength of the back glass substrate 2.
[0043]
【The invention's effect】
As described above, according to the present invention, the connection work between the tip tube and the exhaust device when exhausting the discharge space is simple, and there is no unevenness in the exhaust state caused by the distance from the tip tube in the discharge space. Further, it is possible to provide a PDP that is less likely to increase in weight and thickness of the entire panel and that can be easily manufactured, and a method for manufacturing the PDP.
[Brief description of the drawings]
FIG. 1 is a perspective view and a cross-sectional view of a PDP according to an embodiment of the present invention.
FIG. 2 is a sectional view showing a basic structure of a PDP.
FIG. 3 is a perspective view of a PDP according to Conventional Example 1;
4 is a perspective view of a PDP according to Conventional Example 2. FIG.
5 is a cross-sectional view of a PDP according to Conventional Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Front side glass substrate 2 Back side glass substrate 3A Sealing layer 4 Discharge space 5 Display electrode 6 Dielectric layer 7 MgO film 8 Address electrode 9 Partition 10 Phosphor film 11 Display area 12L, 12R Through-hole 13G Chip tube 15B Gas reservoir Space 17 Ventilation conduit 18 Low melting point glass layer

Claims (7)

一主面に電極を備える前面側基板と一主面に電極を備える背面側基板とを所定の距離をもって対面させ、各々の基板の縁辺を封着して得た放電空間内に放電用のガスを封入してなるプラズマディスプレイパネルにおいて、
前記背面側基板は、表示領域の外側に設けられた、表裏を通じる複数の貫通孔と、
前記放電空間とは反対側の面上に気密的に固着された無底有蓋の箱形の通気導管であって、前記背面側基板の縁辺を回廊状に巡って前記貫通孔を覆い、内部の空間が始端、終端の別なくエンドレスにつながった構造の通気導管と、
前記放電用のガスの封入の際に前記放電空間を排気しまたこれにガスを導入するための、前記通気導管に設けられたチップ管とを有することを特徴とするプラズマディスプレイパネル。
Gas for discharge in the discharge space obtained by facing the front side substrate having electrodes on one main surface and the back side substrate having electrodes on one main surface with a predetermined distance and sealing the edges of each substrate In a plasma display panel encapsulating
The back side substrate is provided outside the display area, a plurality of through holes through the front and back, and
A box-shaped, ventilated duct with a bottom, which is airtightly fixed on a surface opposite to the discharge space, covering the through-hole around the edge of the back-side substrate in a gallery shape, A ventilation conduit with a structure where the space is connected to the endless end and end,
A plasma display panel comprising: a tip tube provided in the ventilation conduit for exhausting the discharge space and introducing gas into the discharge space when the discharge gas is sealed.
前記チップ管と前記通気導管とが一体で形成されていることを特徴とする、請求項1に記載のプラズマディスプレイパネル。The plasma display panel according to claim 1, wherein the tip tube and the ventilation conduit are integrally formed. 前記チップ管は、前記通気導管の側壁に、前記背面側基板の主面に平行な方向に向けて設けられていることを特徴とする、請求項1又は請求項2に記載のプラズマディスプレイパネル。3. The plasma display panel according to claim 1, wherein the tip tube is provided on a side wall of the ventilation conduit in a direction parallel to a main surface of the back-side substrate. 前記通気導管の排気抵抗が、前記放電空間の排気抵抗より小なることを特徴とする、請求項1乃至3の何れか1項に記載のプラズマディスプレイパネル。4. The plasma display panel according to claim 1, wherein an exhaust resistance of the ventilation conduit is smaller than an exhaust resistance of the discharge space. 5. 前記チップ管は一つであることを特徴とする、請求項1乃至4の何れか1項に記載のプラズマディスプレイパネル。The plasma display panel according to claim 1, wherein the number of the tip tubes is one. 請求項1に記載のプラズマディスプレイパネルを製造する方法であって、前記一主面に電極を有する前面側基板を製造する過程と、前記一主面に電極を有し、前記表示領域となるべき領域の外側には前記複数の貫通孔を有する背面側基板を製造する過程と、前記前面側基板と背面側基板とを各々の基板の電極形成面を内側にして所定の距離をもって対面させ、各々の基板の縁辺を気密に固着する封着過程と、前記前面側基板と背面側基板との間に作られる放電空間を排気したのち放電空間内に放電用のガスを導入し、封止する封入過程とを含むプラズマディスプレイパネルの製造方法において、
予め、前記無底有蓋の箱形の通気導管と封じ切り前のチップ管とを一体に形成する過程を設け、
前記封着工程では、前面側基板と背面側基板とを各々の基板の縁辺で気密に封着すると同時に、前記予めチップ管と一体に形成した通気導管を、前記背面側基板の前記電極形成面とは反対の側の面上に、前記貫通孔を覆うようにして気密に固着し、
前記封入過程では、前記放電空間を前記チップ管を介して排気し、排気後の放電空間内に前記チップ管を介して前記放電用のガスを導入した後、前記チップ管を封じ切ることを特徴とするプラズマディスプレイパネルの製造方法。
The method of manufacturing a plasma display panel according to claim 1, wherein a process for manufacturing a front side substrate having an electrode on the one main surface, and an electrode on the one main surface to be the display region. A process of manufacturing a back side substrate having a plurality of through holes on the outside of the region, and the front side substrate and the back side substrate face each other with a predetermined distance with the electrode forming surface of each substrate facing inside, A sealing process for hermetically fixing the edge of the substrate, and sealing which introduces a discharge gas into the discharge space after exhausting the discharge space formed between the front substrate and the back substrate In a method of manufacturing a plasma display panel including a process,
In advance, a process of integrally forming the bottomed covered box-shaped ventilation conduit and the tip tube before sealing is provided,
In the sealing step, the front side substrate and the back side substrate are hermetically sealed at the edges of the respective substrates, and at the same time, the ventilation conduit formed integrally with the chip tube is formed on the electrode forming surface of the back side substrate. On the surface opposite to the above, the airtightly fixed so as to cover the through hole,
In the sealing process, the discharge space is evacuated through the tip tube, the discharge gas is introduced into the discharged discharge space through the tip tube, and then the tip tube is sealed off. A method for manufacturing a plasma display panel.
請求項1に記載のプラズマディスプレイパネルを製造する方法であって、前記一主面に電極を有する前面側基板を製造する過程と、前記一主面に電極を有し、前記表示領域となるべき領域の外側には前記複数の貫通孔を有する背面側基板を製造する過程と、前記前面側基板と背面側基板とを各々の基板の電極形成面を内側にして所定の距離をもって対面させ、各々の基板の縁辺を気密に封着する封着過程と、前記前面側基板と背面側基板との間に作られる放電空間を排気したのち放電空間内に放電用のガスを導入し、封止する封入過程とを含むプラズマディスプレイパネルの製造方法において、
予め、前記無底有蓋の箱形の通気導管と封じ切り前のチップ管とを一体に形成する過程と、
前記チップ管と一体に形成した通気導管を、予め、前記背面側基板の前記電極形成面とは反対の側の面上に、前記貫通孔を覆うようにして気密に固着する過程とを設け、
前記封入過程では、前記放電空間を前記チップ管を介して排気し、排気後の放電空間内に前記チップ管を介して前記放電用のガスを導入した後、前記チップ管を封じ切ることを特徴とするプラズマディスプレイパネルの製造方法。
The method of manufacturing a plasma display panel according to claim 1, wherein a process for manufacturing a front side substrate having an electrode on the one main surface, and an electrode on the one main surface to be the display region. A process of manufacturing a back side substrate having a plurality of through holes on the outside of the region, and the front side substrate and the back side substrate face each other with a predetermined distance with the electrode forming surface of each substrate facing inside, A sealing process for hermetically sealing the edge of the substrate, and after discharging the discharge space formed between the front substrate and the rear substrate, a discharge gas is introduced into the discharge space and sealed In a manufacturing method of a plasma display panel including an encapsulation process,
In advance, the process of integrally forming the bottomless covered box-shaped ventilation conduit and the tip tube before sealing,
A process of fixing a ventilation conduit formed integrally with the tip tube in advance on the surface on the side opposite to the electrode forming surface of the back side substrate so as to cover the through hole,
In the sealing process, the discharge space is evacuated through the tip tube, the discharge gas is introduced into the discharged discharge space through the tip tube, and then the tip tube is sealed off. A method for manufacturing a plasma display panel.
JP2001329275A 2001-10-26 2001-10-26 Plasma display panel and manufacturing method thereof Expired - Fee Related JP3695527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329275A JP3695527B2 (en) 2001-10-26 2001-10-26 Plasma display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329275A JP3695527B2 (en) 2001-10-26 2001-10-26 Plasma display panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003132793A JP2003132793A (en) 2003-05-09
JP3695527B2 true JP3695527B2 (en) 2005-09-14

Family

ID=19145203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329275A Expired - Fee Related JP3695527B2 (en) 2001-10-26 2001-10-26 Plasma display panel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3695527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038188B1 (en) * 2004-11-01 2011-06-01 주식회사 오리온 Flat display panel having exhaust hole within display area
US7601044B2 (en) * 2005-05-16 2009-10-13 Panasonic Corporation Method of manufacturing plural plasma display panels incorporating through ports at peripheral corners of each manufactured display

Also Published As

Publication number Publication date
JP2003132793A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP3933480B2 (en) Plasma display panel
KR100474781B1 (en) Plasma display panel and manufacturing method thereof
JP3695527B2 (en) Plasma display panel and manufacturing method thereof
KR100329565B1 (en) plasma display panel and the fabrication method thereof
JPH04274141A (en) Plasma display panel
KR20090009721A (en) Plasma display panel and methods for manufature thereof
KR20080029751A (en) Plasma display panel and manufacturing method thereof
KR100490822B1 (en) Plasma display panel
JP2001325889A (en) Plasma display panel
JP4241201B2 (en) Plasma display panel
KR100867506B1 (en) Plasma display panel
JP4736731B2 (en) Plasma display panel
JPH08255573A (en) Plasma display panel
JP2007066660A (en) Plasma display panel
KR100767684B1 (en) A plasma display panel and a method for manufacturing it
JP2000331613A (en) Displaying discharge tube
KR100350618B1 (en) assembled plasma display panel
KR20060082528A (en) Plasma display panel
JP2002008543A (en) Ac type plasma display panel, substrate for the same, and ac type plasma display device
KR100749419B1 (en) Plasma display panel
KR100599706B1 (en) Plasma display panel
KR100578864B1 (en) Plasma display panel
JP4760178B2 (en) Plasma display panel
KR100892826B1 (en) Plasma display panel and method of manufacturing the same
KR100627304B1 (en) Plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041001

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees