JP3694540B2 - Sliding member and sliding device using the same - Google Patents

Sliding member and sliding device using the same Download PDF

Info

Publication number
JP3694540B2
JP3694540B2 JP26782094A JP26782094A JP3694540B2 JP 3694540 B2 JP3694540 B2 JP 3694540B2 JP 26782094 A JP26782094 A JP 26782094A JP 26782094 A JP26782094 A JP 26782094A JP 3694540 B2 JP3694540 B2 JP 3694540B2
Authority
JP
Japan
Prior art keywords
sliding
lubricant
porous body
sliding member
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26782094A
Other languages
Japanese (ja)
Other versions
JPH08128448A (en
Inventor
浩一 長崎
勝治 鎌田
泰志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26782094A priority Critical patent/JP3694540B2/en
Publication of JPH08128448A publication Critical patent/JPH08128448A/en
Application granted granted Critical
Publication of JP3694540B2 publication Critical patent/JP3694540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明はバルブ、メカニカルシール、スライダーなどの摺動部材に関し、特に流体の通路の連通または遮断を行うバルブ用弁体に関するものである。
【0002】
【従来技術の課題】
バルブ本体内に収納した固定弁体に対し、可動弁体を操作レバーの操作によって摺接した状態で相対移動させることにより、流体の通路の開閉、切り替え、調節、混合等の制御を行わしめるようにしたバルブは、既に数多くのものが提案されている。
【0003】
湯水混合栓に用いられるフォーセットバルブについても、2枚のディスク状弁体を互いに摺接した状態で相対移動させることによって、各弁体に形成した流体通路の開閉を行うようになっている。
【0004】
例えば、図7(A)に示されるように、固定弁体30と可動弁体20を互いの摺接面21、31で接した状態としておいて、図7(B)に示すようにレバー40の操作で可動弁体20を動かすことによって、互いの弁体に形成した流体通路22、32の開閉を行い、供給流体の開閉、調整などの制御をするようになっている。
【0005】
上記可動弁体20、固定弁体30として用いられる摺動部材は、摺動性やシール性を保つために高い寸法精度が要求されるうえ、互いに絶えず擦り合わされるため摩耗が激しく、常に流体にさらされるため腐食も激しかった。そこで近年、高精度に加工することが可能であり、耐摩耗性や耐食性にも優れたセラミックスが摺動部材として使われるようになってきた。
【0006】
また、このフォーセットバルブ以外にも、各種シール部品や軸受部品など、シール性の必要な摺動部材にセラミックスが使われるようになっている。
【0007】
ところで、フォーセットバルブに対しては、「固定弁体と可動弁体が凝着することなく、常に操作レバーによる操作が軽くスムースに行え、操作時に不快な異音を発することがないこと」といった操作上の要求の他に、当然のことながら供給流体のシールが必要であり、「水漏れ(リーク)のないこと」といった機能上の要求がある。
【0008】
しかし、摺動性とシール性は相反するものであり、シール性を高めようとすると摺動性が悪くなることが知られている。この典型的な例がリンキング(凝着)と呼ばれるもので、これは極めて平滑な面を持った1対の部材同士を摺り合わせたときに発生する引っかかりや張り付いて動かなくなる現象のことを指している。
【0009】
しかも、一般にセラミックスは高精度加工と高剛性によって優れたシール性が得られる反面、自己潤滑性には劣る場合が多い。
【0010】
そこで、潤滑性の改善を図り、前述のような軽快な操作力を得るために、摺動面にシリコーングリスを塗布した状態で使う方法が一般に採られている。ところが、緻密なセラミックスの摺接面間にグリスを塗布しただけでは数千回程の使用でグリスの流出がみられ、これにともない操作力が上昇し、しまいには弁体どうしが凝着してしまうなど、耐久性に乏しいものであった。
【0011】
このような問題を改善する手段として、特公昭58−161982号公報に「含フッ素重合体をセラミックスに結合させたセラミックス複合体」に係わる発明が、特開平2−239171号公報に「凹穴に潤滑剤を保持させるセラミック」に係わる発明が、特公平2−51864号公報に「β型SiC質の摺動部材」に係わる発明が、特公平2−28548号公報に「3次元網目構造SiC質の摺動部材」に係わる発明が、特公平3−1274号公報に「網目構造SiCにスピンドル油を含浸した摺動部材」に係わる発明が、特公平3−4511号公報に「実質的に収縮しないSiCに合成樹脂を含浸した摺動部材」に係わる発明が、特公平4−69118号公報に「3次元網目構造のセラミック多孔体にフッ素系オイルを含浸した摺動部材」に係わる発明が、特公平5−18790号公報に「3次元網目構造の多孔質酸化物セラミックに合成樹脂を充填した摺動部材」に係わる発明が、特公平4−56908号公報に「3次元網目構造のセラミック多孔体にフッ素系・シリコーン系樹脂を含浸した摺動部材」に係わる発明がそれぞれ開示され、多孔質セラミック体の気孔中に樹脂等の潤滑剤を含浸させた摺動部材が提案されている。
【0012】
また、特開平2−239171号公報には、緻密質セラミックス体の摺動面に凹穴または溝部を備え、この中に潤滑剤を保持させるようにした摺動部材が提案されている。
【0013】
さらに、以上のような液体潤滑剤を使ったもの以外にも、固体潤滑剤を使ったものとして、特開平1−261570号公報に「摺動面にダイヤモンド状カーボン薄膜を形成したメカニカルシール」に係わる発明が、特公平3−223190号公報に「アモルファスダイヤモンド薄膜を形成したセラミック製摺動部構造」に係わる発明が開示されている。
【0014】
【発明が解決しようとする課題】
ところで最近、おいしい水への要求が非常に高まり、湯水混合栓などの吐水口先端部に水のミネラル分だけを残し塩素分や不純物を取り除くことのできるような浄水器を取り付けるケースが増えてきている。そして、これに伴いバルブ内部の水圧、特に吐水側の圧力が上昇するようになってきた。
【0015】
このため、3次元網目構造などを持つ多孔質セラミック体に潤滑剤を含浸したものでは、水圧によって含浸した潤滑剤が押し出され、しまいには弁体外部に通じる微小な流路が無数に発生し、弁体から水がリークしてしまうといった致命的な欠陥が発生することがあった。
【0016】
また、特開平2−239171号公報に示すようにセラミックスの摺動面に単なる凹部や溝部を形成し、この中に潤滑剤を保持したものでは、バルブ内の高い水圧によって短期間のうちに潤滑剤が洗い出され、耐久性のないものであった。
【0017】
一方、緻密質セラミックスの表面にダイヤモンド状カーボン薄膜や非晶質硬質炭素膜など、いわゆる合成疑似ダイヤモンド(DLC)をコーティングしたものは、自己潤滑性に乏しいセラミックを改質でき、リークの恐れもなく、摺動性の著しい改善が図られるが、摺動時に不快な異音を発することがあり、いまだ完全な摺動部材とはなっていなかった。
【0018】
【課題を解決するための手段】
以上のような問題点に鑑みて本発明は、吸水率が2%未満の緻密質セラミックス体の摺動面に、凹部を形成するとともに、該凹部の表面側には摺動面に対する面積比率が3〜50%を占める多孔質体から成る潤滑剤保持機構を、内部側に潤滑剤を溜める構造としたことを特徴とし、さらに上記凹部の内部側に押圧板とバネを配置し、上記潤滑剤を多孔質体を介して表面に押し出すようにしたことを特徴とし、さらに上記摺動部材と、摺動面に合成疑似ダイヤモンド薄膜をコーティングした摺動部材とを組み合わせてなることを特徴とするものである。
【0019】
この潤滑剤保持機構とは、細長部及び/又は鋭角部を有するディンプルを緻密質セラミックス体の摺動面に複数備えたものである。ここでディンプルとは、摺動面に備えた独立の凹部のことであり、その平面形状が細長部及び/又は鋭角部を有するものである。また、上記細長部とは、短径に対する長径の比が3以上であるような部分のことであり、鋭角部とは二つの直線または曲線が鋭角で交わるような部分のことを言う。これらの細長部や鋭角部では潤滑剤が保持されやすく、ディンプルから潤滑剤が流出することを防止できるのである。
【0020】
また、上記潤滑剤保持機構とは、緻密質セラミックス体の摺動面の一部に備えた多孔質体から成るものでも良い。例えば、摺動面に形成した凹部中に多孔質体を配置したり、緻密質セラミックスと一体的に連続した多孔質セラミックスであっても良い。これらの多孔質体に潤滑剤を保持させれば、流出を防止することができる。
【0021】
また、本発明は、上記の潤滑剤保持機構を有する摺動部材と、摺動面に合成疑似ダイヤモンド薄膜をコーティングした摺動部材とを組み合わせて摺動装置を構成することにより、その摺動特性を最大に引き出し、滑らかな操作力と異音の発生のない快適な操作環境を提供するものである。
【0022】
【作用】
本発明によれば、摺動面の一部に潤滑剤保持機構を有するため優れた摺動性を長期間維持し、かつ潤滑剤保持機構以外の部分は平坦な緻密質セラミックスからなるためシール性を高くすることができる。
【0023】
【実施例】
以下本発明をディスクバルブに応用した実施例を図によって説明する。
【0024】
図1に示すように、ディスク状の緻密質セラミックス体10の摺動面11の一部に、多数のディンプル12を備え、このディンプル12内に潤滑剤13を保持してある。そして、この摺動部材10の摺動面11同士を摺接させればディスクバルブとして用いることができる。
【0025】
このディンプル12は、摺動面11に形成した凹部であり、その平面形状が、細長部及び/又は鋭角部を有するものである。例えば図1(a)に示すディンプル12は星型であり鋭角部12bを有し、図1(b)に示すディンプル12は長方形で細長部12aを有し、図1(c)に示すディンプル12は円形連鎖形であり鋭角部12bを有する。ここで、細長部12aとは、短径に対する長径の比が3以上であるような細長い部分のことであり、鋭角部12bとは二つの直線または曲線が鋭角で交わるような部分のことを言う。例えばボイド等のように複雑な凹凸状の平面形状をした凹部は多数の細長部及び/又は鋭角部を有することになる。
【0026】
本発明のディンプル12は、少なくとも一部にこれらの細長部12a及び/又は鋭角部12bを保持しているため、潤滑剤13が保持されやすく、ディンプル12から潤滑剤13が流出することを防止でき、潤滑剤保持機構を成すのである。
【0027】
なお、各ディンプル12は、シール性を保つために摺動面11以外の面とは連通しない閉塞したものとしてある。また、ディンプル12が大きいと潤滑剤13を保持する作用が乏しくなるため、ディンプル12の長径の長さは1mm以下、好ましくは10〜300μmの範囲内とする。さらに、ディンプル12の深さは、深いほど多くの潤滑剤13を保持できるため、長径の長さと同じかそれ以上とすることが好ましい。また、ディンプル12の合計面積は、摺動面11全体の3〜50%を占めていることが好ましい。これは、3%未満であると潤滑作用が乏しく、50%を越えると摺動面11の耐摩耗性が低くなるためである。
【0028】
さらに、ディンプル12を除く摺動面11は平坦度3μm以下、好ましくは1μm以下の極めて平坦な面となっている。これは、摺動面11におけるシール性を高くするためである。
【0029】
前記緻密質セラミックス体10としては、耐摩耗性および耐チッピング性すなわち硬度および靱性の高い材料を使用しなければならないが、これにはアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウムなどを主成分とするセラミックスが最適である。そして、これらの原料に対しアルミナであればSiO2 、MgO等、窒化珪素に対しては周期律表2a、3a族元素の酸化物・窒化物、ジルコニアに対してはY2 3 、CaO、MgO、CeO2 等、炭化珪素に対してはC、B、Al2 3 等の助剤を添加して焼成すれば、実質的に3%以上の収縮を伴うことによって強固で堅牢かつ靱性および耐摩耗性に優れたセラミック体を得ることができる。
【0030】
このとき、これらのセラミック原料に樹脂、発泡剤、ウイスカー等を添加混合して、所定形状に成形した後に焼成すれば、添加した樹脂や発泡剤が焼成中に焼失して、閉塞したディンプル12を有する緻密質セラミックス体10を容易に得ることができる。この時、これらの樹脂や発泡剤の添加量、粒子径などを変化させることで、粒子の凝集などにより、円形連鎖形など変化に富んだ形状のディンプル12を得ることができる。
【0031】
また、必ずしも樹脂や発泡剤を混入させる必要はなく、通常のセラミック原料を用いて、成形時に、加圧面にディンプル12に対応する凸形状を備えた金型を用いてプレス加工したり、あるいは切削加工を施すことによって、さまざまな形状のディンプル12を形成することもできる。
【0032】
最後に、得られた焼結体の摺動面11を研磨して、平坦度3μm以下、好ましくは1μm以下としたのち、ディンプル12に潤滑剤13を充填すればよい。充填させる方法としては、ディスペンサー等で加圧注入する方法や、加熱により低粘度化した潤滑剤中に浸漬したのち、真空または加圧下で注入するなどの充填方法を用いればよい。
【0033】
また、潤滑剤13としては植物油、鉱物油、合成潤滑油系の潤滑剤を用いる。
植物油系としては、例えば天然の植物油に含まれる食物ステリンまたは食物油を精製して得られる脂肪酸グリセライトを基油にした油を用い、鉱物油系としては、パラフィン、ナフテン、芳香族から選択される液状飽和炭化水素を主体とする鉱物油を用い、合成潤滑油系としては、エーテル系、エステル系、フッ素系、シリコーン系等を用いる。また、これらの潤滑剤13は、液状、グリース状、ワックス状などいずれの状態であっても使用可能である。
【0034】
次に本発明の他の実施例を説明する。
【0035】
図2に斜視図を、図3(a)に断面図を示すように、この摺動部材は、緻密質セラミックス体10の摺動面11の一部に凹部10aを形成し、該凹部10a中に金属、合成樹脂、セラミックス等からなる多孔質体14を埋め込み、この多孔質体14に潤滑剤13を含浸させたものである。そして、この緻密室セラミックス体10の摺動面11同士を摺接させればディスクバルブとして用いることができる。
【0036】
この時、多孔質体14が潤滑剤保持機構となるため、潤滑剤13の流出を防止し、長期間良好な摺動性を保つことができる。
【0037】
また、上記凹部10aは摺動面11以外の面には連通しない閉塞孔としてある。また、摺動面11の面積に対する凹部10a(多孔質体14)の面積の合計の割合は3〜50%とすることが好ましい。これは、3%未満であると潤滑作用が乏しく、50%を越えると摺動面11の耐摩耗性が低くなるためである。
【0038】
また、摺動面11の多孔質体14を除く面は平坦度3μm以下、好ましくは1μm以下の極めて平坦な面とすることにより、シール性を高くしてある。
【0039】
なお、母体となる緻密質セラミックス体10としては、前記実施例と同様に耐摩耗性および耐チッピング性に優れたアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウムなどを主成分とするセラミックスが最適である。
【0040】
そして、これらのセラミックス原料を成形する時に金型や切削加工によって、あるいは焼成後の研削加工によって凹部10aを設け、しかるのち該凹部10aに金属、合成樹脂、セラミックス等からなる多孔質体14を埋め込むことによって本発明の摺動部材を得ることができる。
【0041】
この場合、嵌め合いによる挿入でも、挿入したあと機械的あるいは化学的に接合させたものでも、焼き嵌めやその他による圧入であっても良いが、緻密質セラミックス体10の摺動面11から、多孔質体14が突出しないようにする必要がある。これは、多孔質体14が摺動面11から突出すると、もう一方の摺動部材と組み合わせた時に、水圧によってリークしてしまうためである。
【0042】
そして、多孔質体14を除く摺動面11を平坦度を3μm以下、好ましくは1μm以下に研摩したのち、多孔質体14に潤滑剤13を含浸すればよい。含浸させる方法としては、前記実施例と同様に、加熱により低粘度化した潤滑剤中に多孔質体14を浸漬したのち、真空または加圧下で含浸するなどの含浸方法を用いればよい。あるいは、あらかじめ含油した多孔質体14を用いることもできる。
【0043】
また、他の実施例を図3(b)に示すように、多孔質体14は凹部10aの全てを満たす必要はなく、表面部のみに多孔質体14を備え、凹部10aの内部に潤滑剤13を溜める構造としても良い。さらには、図3(c)に示すように凹部10aの下部に押圧板15とバネ16を備えて、潤滑剤13を表面に強制的に押し出すような構造としたものであっても良い。
【0044】
さらに本発明の他の実施例を図4、5に示すように、緻密質セラミックス体10の摺動面11の一部に、セラミックスの多孔質体14を一体的に形成した傾斜性セラミックス材を用い、この多孔質体14に潤滑剤13を含浸させたものであっても良い。
【0045】
この多孔質体14は摺動面11以外の面には連通しない閉塞されたものであり、全体にわたって3次元的な網目構造を持つものであってはならない。そして、多孔質体14となった部分は摺動面11全体の面積に対し3〜50%を占め、また、多孔質体14を除く摺動面11は平坦度3μm以下、好ましくは1μm以下の極めて平坦な面となっている。
【0046】
このような傾斜性セラミックス材の製造方法は、セラミックス原料を成形する時に、摺動面11となる部分に凹部を設け、凹部中に母材よりも焼結温度の高いセラミック原料を充填し、母材の焼結温度で焼成することによって、凹部に充填したセラミック部分は焼結不良となり、細目構造を持つ多孔質体14が形成された傾斜型セラミックス材が得られる。また、成形圧力を母材より低く設定することでも、多孔質体14は形成可能である。
【0047】
しかる後、多孔質体14を除く摺動面11を研摩して、平坦度を3μm以下、好ましくは1μm以下とし、多孔質体14に潤滑剤13を含浸すればよい。含浸させる方法としては、前述のような方法を用いればよい。
【0048】
また、以上の図2〜5に示す多孔質体14を備えた実施例において、多孔質体14の気孔については、平均気孔径が200μm未満、好ましくは100μm以下の細かい穴を持った構造であることが望ましい。このような細目構造であれば、潤滑剤13の流出がほどよく調和され、いつまでも潤滑に適した量がにじみ出てくるからである。
【0049】
以上の本発明実施例に係る摺動部材をフォーセットバルブとして用いる場合は、図6に示すように、緻密質セラミックス体10に流体通路17を形成して弁体とし、二つの緻密質セラミックス体10同士を互いの摺動面11を摺接させて摺動させれば良い。この時、摺動面11には、ディンプル12や多孔質体14による潤滑剤保持機構から常に潤滑剤13が導き出されることにより、摺動性の向上を図ることができる。
【0050】
また、潤滑剤13が含まれる部分はディンプル12あるいは多孔質体14による潤滑剤保持機構を有しているため、高い水圧に対しても容易に潤滑剤13が流れ出すことなく、潤滑に最適な量だけが、いつまでも摺動面11に保たれることになる。
【0051】
しかも、潤滑剤13が含まれる潤滑剤保持機構は、摺動面11以外の面と連通していない閉塞された構造であるため、流体が外部に漏れ出すことはない。
【0052】
なお、以上のような本発明の摺動部材においては、母体となる緻密質セラミックス体10の吸水率を1%未満として、流体が外部に漏れ出る恐れを皆無としなければならない。
【0053】
また、母体となる緻密質セラミックス体10の摺動面11に対し、潤滑剤保持機構から成る含油部分の面積比率は、3〜50%であることが望ましい。この理由は、含油部分の面積率が3%より小さいと摺動時に導き出される潤滑剤13の実質的な量が少なくなって操作力を低減する効果が乏しいためであり、50%以上では摺動面11の耐摩耗性が低くなってしまうからである。
【0054】
あるいは、前記緻密質セラミックス体10の体積に対して、潤滑剤13の体積が3%以上含浸されたものであることが好ましい。その理由は、潤滑剤13の含浸量が3%より少ないと摺動特性を向上させることが困難であるからである。
【0055】
ところで、図6には、本発明の摺動部材同士を摺動させる例を示したが、一方のみを本発明の摺動部材とし、他方は潤滑剤保持機構を有しない緻密質セラミック体としたものでも良い。例えば、可動弁体と固定弁体からなるフォーセットバルブを構成する場合、2つの弁体の少なくとも一方を本発明のセラミック摺動部材で構成すればよい。
【0056】
さらに好ましくは、一方の弁体を本発明に係る摺動部材とし、他方の弁体を緻密質セラミックスで形成し、該緻密質セラミックスの摺動面上に、PVDやCVDなどの蒸着手段によって得られる合成疑似ダイヤモンド薄膜(非晶質硬質炭素膜・ダイヤモンドライクカーボン・DLC・I−カーボン)をコーティングしたものにすれば良い。この組合せによれば、さらに摺動性に優れ、合成疑似ダイヤモンドだけでは解決が困難であった異音の発生をも解消することができる。
【0057】
これは、合成疑似ダイヤモンドの特性上、潤滑油との親和性が極めて良いためであり、合成疑似ダイヤモンドからなる固体潤滑剤と液体潤滑剤の相乗効果により、著しい摺動性の改善が図れるという理由による。
【0058】
さらに、以上の実施例では平面同士を摺動させる例を示したが、この他に摺動面が円筒状や球面状等となったものでも本発明のセラミック摺動部材を適用することもできる。
【0059】
したがって、本発明の摺動部材は、フォーセットバルブに限らず、ボールバルブやスライダー、あるいは各種軸受など様々な用途に用いることができる。
【0060】
実験例1
ここで、図1に示すディンプル12を有する本発明の摺動部材において、ディンプル12の最適な形状などを求める実験を行った。
【0061】
摺動部材を成す緻密質セラミックス体10をアルミナセラミックスにより形成し、図1に示すような外径30mm、厚さ10mm、直径5mmのディスク状体として流体通路を設けてフォーセットバルブを設計した。この時、表1に示すように緻密質セラミックス体10の吸水率、摺動面11に対するディンプル12の面積の比率、および金型プレスによりディンプル12の形状を様々に変化させたものを試作し、ディンプル12中には潤滑剤13としてシリコーングリスを充填した。
【0062】
なお、吸水率はアルキメデス法により測定し、またディンプル12の形状は顕微鏡による拡大写真をもとにして判定した。
【0063】
【表1】

Figure 0003694540
【0064】
まず、図6に示すように1対の緻密質セラミックス体10を30kgの荷重で上下から押さえつけながら、図7に示すような浄水器を取り付けた給水栓にセットした。この時、吸水率が2%以上の緻密質セラミックス体10を用いたものは、水圧により水漏れが発生した。ゆえに、緻密質セラミックス体10は吸水率が2%未満、望ましくは1%以下でなければならないことがわかった。
【0065】
さらに、一方の緻密質セラミックス体10(可動弁体)のみを回転させ、まずディンプル12の形状が星形のものについて、初期操作力とディンプル12の面積比率との関係を調べたところ、図8に示す通りの結果となった。
【0066】
この結果より明らかに、摺動面11の面積に対するディンプル12の面積の比率が3%未満では、摺動性に劣り初期操作力が大きいことがわかった。これは、ディンプル12の面積比率が3%未満では、摺動面11を覆うほどの潤滑剤13が表面に導き出されず、かつ充填された潤滑剤13そのものの量が不十分であるためである。しかし、ディンプル12の面積比率が50%を超えると摺動面11の摩耗が確認され、耐久性に難が生じてきたことから、ディンプル12の面積比率は3〜50%の範囲にすることが好ましい。
【0067】
次に、ディンプル12の面積比率を3%とし、その形状を種々変更して摺動試験を行った。その結果を表2に示すように、ディンプル12の形状が真円形状のものでは、軽快な操作力の数値基準である0.8kg以下の操作力を、保証摺動回数である10万回まで維持できないことがわかった。これに対し、本発明実施例である長方形、星形、円形連鎖形のディンプル12を有するものでは、0.8kg以下の操作力を10万回以上維持することができた。
【0068】
これは、ディンプル12の形状が真円の場合、水圧によって潤滑剤13が洗い出されやすいのに対し、本発明実施例である長方形、星形、円形連鎖形等の細長部及び/又は鋭角部を有する形状のディンプル12は潤滑剤13の保持力が強く、10万回以上の長期にわたって良好な摺動性を維持できるためである。
【0069】
なお、表2はディンプル12の面積比率が3%のときの結果であるが、面積比率を変化させても同様の結果であった。
【0070】
また、弁体として全体に貫通した気孔を持つ多孔質体に潤滑剤13を含浸したものを用い、上記と同様の方法で摺動試験したところ、8万回程度の操作回数で弁体側面から水漏れが発生し、実用に供しないことを確認した。
【0071】
【表2】
Figure 0003694540
【0072】
なお、この実験例では緻密質セラミックス体10としてアルミナを用いたが、窒化珪素、ジルコニア、炭化珪素、窒化アルミニウム等の各セラミックスを用いても、ほぼ同様の結果であった。
【0073】
また、この実験例では潤滑剤13としてシリコーングリスを用いたが、植物油、鉱物油、その他の合成潤滑油を用いても、ほぼ同様に異音の発生を伴うことなく良好な摺動特性が得られた。
【0074】
このように、本発明のディンプル12を有する摺動部材において、吸水率1%以下の緻密質セラミックス体10を母体とし、摺動面11に対して3〜50%の面積比率で、細長部及び/又は鋭角部を有するディンプル12を設け、このディンプル12に潤滑剤13を保持すれば、リークがなく、摺動特性に優れ、かつ摩耗も少ないことから、長期間好適に使用できることがわかる。
【0075】
実験例2
次に、図2に示す多孔質体14を備えた本発明の摺動部材について、多孔質体14の気孔径などの最適範囲を求める実験を行った。
【0076】
摺動部材を成す緻密質セラミックス体10をアルミナセラミックスで形成し、図2に示すような外径30mm、厚さ10mm、直径5mmのディスク状体で流体通路を設けてフォーセットバルブを設計し、この摺動面11に表3に示すような種々の面積比率で凹部10aを設け、該凹部10aに平均気孔径を様々に変化させた窒化珪素からなる多孔質体14を装填し、これに潤滑剤13として植物油を含油したものを試作した。
【0077】
なお、平均気孔径は走査型電子顕微鏡(SEM)による拡大写真をもとにして測定したものである。
【0078】
【表3】
Figure 0003694540
【0079】
実験例1と同様に、1対の緻密質セラミックス体10を30kgの荷重で上下から押さえつけながら、図7のように給水栓にセットし、一方の緻密質セラミッス体10(可動弁体)のみを回転させて操作力を調べた。まず多孔質体14の平均気孔径が10μmのものについて、初期操作力と凹部10aの面積比率との関係を調べたところ、図9に示すとおりであった。
【0080】
この結果より明らかに、凹部10aの面積比率が摺動面11に対して3%未満では、摺動性に劣ることがわかった。これは、凹部10aには潤滑剤13が充填された多孔質体14が装填されていることから、凹部10aの面積比率が3%未満では、必要とする潤滑量を満たし得ないためである。しかし、凹部10aの面積比率が50%を超えると摺動面11に摩耗が確認され、耐久性に難があることから、凹部10aの面積比率は3〜50%の範囲が好ましい。
【0081】
さらに、凹部10aの面積比率を3%とし、多孔質体14の平均気孔径を種々変更して同様の摺動試験を行った。その結果を表4に示すように、多孔質体14の平均気孔径が200μm以上のものは、軽快な操作力の基準である0.8kg以下を10万回以上維持できないことがわかった。
【0082】
これは、多孔質体14の気孔径が200μm以上のものでは、水圧によって潤滑剤13が洗い出されやすいためである。これに対し、気孔径が200μm未満、好適には100μm以下のものでは潤滑剤13の保持力が強く、操作回数10万回以上の長期にわたって軽快な摺動性を維持できた。
【0083】
なお、凹部10aの面積比率を種々に変化させても同様の結果であった。
【0084】
【表4】
Figure 0003694540
【0085】
ゆえに、装填する多孔質体14は平均気孔径が200μm未満、望ましくは100μm以下、さらに好ましくは10μm以下の細目構造を持つものが良いといえる。
【0086】
なお、多孔質体14の材質について、ここでは多孔質の窒化珪素セラミックスを用いたが、他のセラミックスや金属や合成樹脂を用いてもほぼ同様の結果であった。
【0087】
また、この実験例では潤滑剤13として植物油を用いたが、鉱物油および合成潤滑油を用いても、ほぼ同様に異音の発生を伴うことなく良好な摺動特性が得られた。
【0088】
このように、多孔質体14を備えた本発明の摺動部材において、吸水率1%以下の緻密質セラミックス体10を母体とし、摺動面11に対して3〜50%の面積比率で凹部10aを設け、該凹部10aに200μm未満の平均気孔径を持つ多孔質体14を装填し、これに潤滑剤13を含浸させたものは、リークがなく、摺動特性に優れ、かつ摩耗も少ないことから、長期間好適に使用できることがわかる。
【0089】
実験例3
次に、図4、5に示す傾斜性セラミックス材を用いた本発明の摺動部材について、多孔質体14部分の気孔径などの最適範囲を求める実験を行った。
【0090】
摺動部材を成す緻密質アルミナセラミックス体10をアルミナセラミックスで形成し、図4に示すような外径30mm、厚さ10mm、直径5mmのディスク状体で流体通路を設けてフォーセットバルブを設計した。このアルミナ原料の成形時に、摺動面11となる部分に凹部を設け、ここに母材である96%アルミナ成形体より焼結温度の高い99%アルミナ粉末を充填したのち、再プレスを行い、これを96%アルミナの焼成温度である1610℃で焼成することによって、表5に示すような種々の平均気孔径、及び面積比率を持つ多孔質体14を一体的に形成し、これに潤滑材13として鉱物油の1種である流動パラフィンを含浸したものを試作した。
【0091】
なお、気孔径は走査型電子顕微鏡(SEM)による拡大写真をもとにして測定したものである。
【0092】
【表5】
Figure 0003694540
【0093】
実験例1と同様に、1対の摺動部材を30kgの荷重で上下から押さえつけながら、図7のように給水栓にセットし、一方の摺動部材(可動弁体)のみを回転させ、まず多孔質体14の気孔径が10μmのものについて、初期操作力と多孔質体14の面積比率との関係を調べたところ、図10に示す通りであった。
【0094】
この結果より明らかに、摺動面11に対する多孔質体14の面積比率が3%未満では、摺動性に劣ることがわかった。これは、多孔質体14には潤滑剤13が充填されていることから、多孔質体14の面積比率が3%未満では、必要とする潤滑量を満たし得ないためである。しかし、多孔質体14の面積比率が50%を超えると摺動面11に摩耗が確認され、耐久性に難があることから、多孔質体14の面積比率は3〜50%の範囲が好ましい。
【0095】
さらに、多孔質体14の面積比率を3%とし、多孔質体14の平均気孔径を種々変更して摺動試験を進めたところ、多孔質体14の平均気孔径が200μm以上のものは、軽快な操作力の基準である0.8kg以下を10万回維持できないことがわかった。
【0096】
ゆえに、多孔質体14の平均気孔径は200μm未満、望ましくは100μm以下、さらに好ましくは10μm以下の細目構造を持つものが良いといえる。この結果は、多孔質体14の面積比率を種々に変化させても同様であった。
【0097】
また、この実験例ではアルミナセラミックスを用いたが、窒化珪素、ジルコニア、炭化珪素、窒化アルミニウム等の各セラミックスを用いても、ほぼ同様の結果であった。また、この実験例では鉱物油系の潤滑剤を用いたが、植物油および合成潤滑油を用いても、ほぼ同様に異音の発生を伴うことなく良好な摺動特性が得られた。
【0098】
このように、本発明の傾斜性セラミックス材を用いた摺動部材において、吸水率1%以下の緻密質セラミックス体10を母体とし、摺動面11に対して3〜50%の面積比率で200μm未満の平均気孔径を持つ多孔質体14を一体的に形成し、該多孔質体14に潤滑剤13を含浸したものは、リークがなく、摺動特性に優れ、かつ摩耗も少ないことから、長期間好適に使用できることがわかる。
【0099】
さらに、本発明に係る摺動部材と、緻密質セラミックスの摺動面に合成疑似ダイヤモンド薄膜をコーティングした摺動部材とを組み合わせたものは、操作回数50万回を超えても軽快な操作力を維持するなど極めて良好な摺動性が得られ、しかも異音の発生もないことがわかった。
【0100】
また、合成疑似ダイヤモンド薄膜をコーティングした摺動部材だけでは、摺動時にキーキーというような不快な異音の発生を伴うことがあったが、本発明の潤滑材保持機構を有する摺動部材と組み合わせることによって異音の発生が解消されることも確認した。
【0101】
【発明の効果】
叙上のように本発明によれば、緻密質セラミックス体の摺動面の一部に、ディンプルまたは多孔質体からなる潤滑材保持機構を備え、この中に潤滑材を保持したことによって、流体圧力により潤滑剤が短期間のうちに流出することがなく、長期間良好な摺動特性を維持できるとともに、潤滑材保持機構以外の摺動面は平坦性の高い緻密質セラミックスからなるため高いシールを維持することができる。
【0102】
そして、本発明の摺動部材と、摺動面に合成疑似ダイヤモンド薄膜を備えた摺動部材とを組み合わせれば、その摺動特性を最大に引き出し、滑らかな操作力と異音の発生のない快適な操作環境を提供することができる。
【図面の簡単な説明】
【図1】(a)〜(c)は、本発明実施例による摺動部材の斜視図である。
【図2】本発明の他の実施例を示す斜視図である。
【図3】(a)は図2中のX−X線拡大断面図、(b)(c)はそれぞれ他の実施例を示す拡大断面図である。
【図4】本発明の他の実施例を示す斜視図である。
【図5】図4中のY−Y線拡大断面図である。
【図6】本発明の摺動部材を利用したディスクバルブを示す斜視図である。
【図7】(A)(B)は給水栓に組み込まれた一般的なフォーセットバルブの模式図である。
【図8】本発明の摺動部材における初期操作力とディンプルの面積比率との関係を示すグラフである。
【図9】本発明の摺動部材における初期操作力と凹部の面積比率との関係を示すグラフである。
【図10】本発明の摺動部材における初期操作力と多孔質体の面積比率との関係を示すグラフである。
【符号の説明】
10 :緻密質セラミックス体
10a:凹部
11 :摺動面
12 :ディンプル
12a:細長部
12b:鋭角部
13 :潤滑剤
14 :多孔質体[0001]
[Industrial application fields]
The present invention relates to a sliding member such as a valve, a mechanical seal, and a slider, and more particularly to a valve body for a valve that communicates or blocks a fluid passage.
[0002]
[Prior art issues]
The movable valve body is moved relative to the fixed valve body housed in the valve body while being in sliding contact with the operation lever, so that the fluid passage is opened, closed, switched, adjusted, mixed, etc. Numerous valves have already been proposed.
[0003]
The force valve used in the hot and cold water mixing valve also opens and closes the fluid passage formed in each valve body by relatively moving the two disc-shaped valve bodies in a state of sliding contact with each other.
[0004]
For example, as shown in FIG. 7A, the fixed valve body 30 and the movable valve body 20 are in contact with each other at the sliding contact surfaces 21 and 31, and the lever 40 as shown in FIG. By moving the movable valve body 20 by the above operation, the fluid passages 22 and 32 formed in the respective valve bodies are opened and closed, and the supply fluid is opened and closed and adjusted.
[0005]
The sliding members used as the movable valve body 20 and the fixed valve body 30 are required to have high dimensional accuracy in order to maintain slidability and sealing performance, and are constantly rubbed against each other, so that they are intensively worn and are always used as fluids. Corrosion was also severe due to the exposure. Therefore, in recent years, ceramics that can be processed with high accuracy and are excellent in wear resistance and corrosion resistance have come to be used as sliding members.
[0006]
In addition to this facet valve, ceramics are used for sliding members that need to be sealed, such as various seal parts and bearing parts.
[0007]
By the way, for a faucet valve, “the fixed valve body and the movable valve body do not stick together, the operation with the operation lever can always be performed lightly and smoothly, and no unpleasant noise is generated during the operation”. In addition to the operational requirements, naturally, the supply fluid must be sealed, and there is a functional requirement such as “no leakage”.
[0008]
However, slidability and sealability are contradictory, and it is known that slidability deteriorates if an attempt is made to improve the sealability. A typical example of this is called linking, which refers to a phenomenon that occurs when a pair of members with extremely smooth surfaces are rubbed together and become stuck and stuck. ing.
[0009]
Moreover, in general, ceramics have excellent sealing properties due to high precision processing and high rigidity, but are often inferior in self-lubricating properties.
[0010]
Therefore, in order to improve the lubricity and obtain the light operating force as described above, a method of using silicone grease applied to the sliding surface is generally employed. However, just applying grease between the sliding surfaces of dense ceramics causes the grease to flow out after several thousand uses, which increases the operating force and eventually causes the valve bodies to stick together. The durability was poor.
[0011]
As means for improving such problems, Japanese Patent Publication No. 58-161982 discloses an invention relating to “a ceramic composite in which a fluorine-containing polymer is bonded to ceramics”. The invention relating to “ceramics for retaining a lubricant” is disclosed in Japanese Patent Publication No. 2-51864, and the invention relating to “β-type SiC sliding member” is disclosed in Japanese Patent Publication No. 2-28548 as “three-dimensional network SiC material”. The invention relating to “sliding member of” is disclosed in Japanese Patent Publication No. 3-1274, and the invention relating to “sliding member obtained by impregnating mesh structure SiC with spindle oil” is disclosed in Japanese Patent Publication No. 3-4511 as “substantially shrinking”. The invention relating to “a sliding member in which SiC is impregnated with synthetic resin” is disclosed in Japanese Patent Publication No. 4-69118 as “a sliding member in which a ceramic porous body having a three-dimensional network structure is impregnated with fluorine oil” No. 5-18790 discloses an invention related to “sliding member in which a porous oxide ceramic having a three-dimensional network structure is filled with a synthetic resin”, and Japanese Patent Publication No. 4-56908 discloses “three-dimensional. The invention relating to the sliding member in which a porous ceramic body with a mesh structure is impregnated with a fluorine-based or silicone-based resin is disclosed, and a sliding member in which pores of the porous ceramic body are impregnated with a lubricant such as a resin is proposed. Has been.
[0012]
Japanese Laid-Open Patent Publication No. 2-239171 proposes a sliding member in which a sliding surface of a dense ceramic body is provided with a concave hole or a groove and a lubricant is held therein.
[0013]
Furthermore, in addition to those using liquid lubricants as described above, as a method using solid lubricants, Japanese Patent Application Laid-Open No. 1-261570 discloses a “mechanical seal in which a diamond-like carbon thin film is formed on a sliding surface”. Japanese Patent Publication No. 3-223190 discloses an invention related to “a ceramic sliding part structure in which an amorphous diamond thin film is formed”.
[0014]
[Problems to be solved by the invention]
By the way, recently, the demand for delicious water has increased greatly, and there are increasing cases of attaching water purifiers that can remove chlorine and impurities by leaving only water minerals at the tip of the water outlet, such as a hot water tap. Yes. Along with this, the water pressure inside the valve, particularly the pressure on the water discharge side, has come to increase.
[0015]
For this reason, when a porous ceramic body having a three-dimensional network structure or the like is impregnated with a lubricant, the lubricant impregnated by water pressure is pushed out, resulting in an infinite number of minute flow paths leading to the outside of the valve body. In some cases, fatal defects such as water leaking from the valve body may occur.
[0016]
Further, as shown in Japanese Patent Laid-Open No. 2-239171, in the case where a mere recess or groove is formed on the sliding surface of the ceramic and the lubricant is held therein, the lubrication is performed within a short period of time due to the high water pressure in the valve. The agent was washed out and was not durable.
[0017]
On the other hand, the surface of dense ceramics coated with so-called synthetic pseudo diamond (DLC), such as diamond-like carbon thin film and amorphous hard carbon film, can modify the ceramic with poor self-lubricity, and there is no risk of leakage Although the slidability is remarkably improved, an unpleasant noise may be generated at the time of sliding, and it has not yet become a complete sliding member.
[0018]
[Means for Solving the Problems]
  In view of the above problems, the present invention forms a recess on the sliding surface of a dense ceramic body having a water absorption rate of less than 2%, and the surface ratio of the recess has an area ratio to the sliding surface. The lubricant holding mechanism comprising a porous body occupying 3 to 50% has a structure in which the lubricant is stored inside, and further, a pressing plate and a spring are arranged inside the recess, and the lubricant Characterized by being extruded on the surface through a porous body, and further characterized by combining the above-mentioned sliding member and a sliding member coated with a synthetic pseudo diamond thin film on the sliding surface It is.
[0019]
The lubricant holding mechanism is provided with a plurality of dimples having an elongated portion and / or an acute angle portion on a sliding surface of a dense ceramic body. Here, the dimple is an independent recess provided on the sliding surface, and its planar shape has an elongated portion and / or an acute angle portion. The elongated portion is a portion where the ratio of the major axis to the minor axis is 3 or more, and the acute angle portion is a portion where two straight lines or curves intersect at an acute angle. These elongated portions and acute angle portions can easily hold the lubricant and prevent the lubricant from flowing out of the dimples.
[0020]
The lubricant holding mechanism may be a porous body provided on a part of the sliding surface of the dense ceramic body. For example, a porous body may be disposed in a recess formed on the sliding surface, or a porous ceramic that is integrally continuous with a dense ceramic. If a lubricant is held in these porous bodies, outflow can be prevented.
[0021]
Further, the present invention provides a sliding device by combining a sliding member having the above-described lubricant holding mechanism and a sliding member having a sliding surface coated with a synthetic pseudo-diamond thin film. It is intended to provide a comfortable operating environment that draws out the maximum amount of noise and does not generate abnormal noise.
[0022]
[Action]
According to the present invention, since the lubricant holding mechanism is provided on a part of the sliding surface, excellent slidability is maintained for a long period of time, and the portion other than the lubricant holding mechanism is made of a flat dense ceramic, so that the sealing property is maintained. Can be high.
[0023]
【Example】
An embodiment in which the present invention is applied to a disk valve will be described below with reference to the drawings.
[0024]
As shown in FIG. 1, a large number of dimples 12 are provided on a part of the sliding surface 11 of the disk-shaped dense ceramic body 10, and a lubricant 13 is held in the dimples 12. If the sliding surfaces 11 of the sliding member 10 are brought into sliding contact with each other, it can be used as a disk valve.
[0025]
The dimple 12 is a recess formed in the sliding surface 11, and the planar shape thereof has an elongated portion and / or an acute angle portion. For example, the dimple 12 shown in FIG. 1 (a) has a star shape and has an acute angle portion 12b. The dimple 12 shown in FIG. 1 (b) has a rectangular and elongated portion 12a, and the dimple 12 shown in FIG. 1 (c). Is a circular chain shape and has an acute angle portion 12b. Here, the elongated portion 12a is an elongated portion whose ratio of the major axis to the minor axis is 3 or more, and the acute angle portion 12b is a portion where two straight lines or curves intersect at an acute angle. . For example, a concave portion having a complicated uneven planar shape such as a void has a large number of elongated portions and / or acute angle portions.
[0026]
Since the dimple 12 of the present invention holds the elongated portion 12a and / or the acute angle portion 12b at least in part, the lubricant 13 can be easily held, and the lubricant 13 can be prevented from flowing out of the dimple 12. It forms a lubricant holding mechanism.
[0027]
Each dimple 12 is closed so as not to communicate with a surface other than the sliding surface 11 in order to maintain a sealing property. Further, since the function of holding the lubricant 13 becomes poor when the dimple 12 is large, the length of the long diameter of the dimple 12 is set to 1 mm or less, preferably 10 to 300 μm. Furthermore, since the depth of the dimple 12 can hold more lubricant 13 as it is deeper, it is preferable that the depth of the dimple 12 be equal to or greater than the length of the major axis. The total area of the dimples 12 preferably occupies 3 to 50% of the entire sliding surface 11. This is because if it is less than 3%, the lubricating action is poor, and if it exceeds 50%, the wear resistance of the sliding surface 11 becomes low.
[0028]
Further, the sliding surface 11 excluding the dimple 12 is a very flat surface with a flatness of 3 μm or less, preferably 1 μm or less. This is to increase the sealing performance on the sliding surface 11.
[0029]
As the dense ceramic body 10, a material having high wear resistance and chipping resistance, that is, high hardness and toughness, must be used, which includes alumina, zirconia, silicon nitride, silicon carbide, aluminum nitride and the like as main components. The ceramic is the most suitable. And if these materials are alumina, SiO2For silicon nitride, MgO, etc. Periodic Table 2a, Group 3a element oxides and nitrides, Y for zirconia2OThree, CaO, MgO, CeO2Etc., C, B, Al for silicon carbide2OThreeIf an auxiliary agent such as the above is added and fired, a ceramic body that is strong and robust, and has excellent toughness and wear resistance can be obtained by substantially contracting 3% or more.
[0030]
At this time, if resin, foaming agent, whisker and the like are added to and mixed with these ceramic raw materials and then molded into a predetermined shape and then fired, the added resin and foaming agent are burned down during firing, and the closed dimple 12 is removed. The dense ceramic body 10 can be easily obtained. At this time, by changing the addition amount of these resins and foaming agents, the particle diameter, and the like, the dimple 12 having a variety of shapes such as a circular chain shape can be obtained due to aggregation of the particles.
[0031]
In addition, it is not always necessary to mix a resin or a foaming agent. At the time of molding, a normal ceramic raw material is used, and pressing is performed using a mold having a convex shape corresponding to the dimple 12 on the pressing surface, or cutting. Dimples 12 having various shapes can be formed by processing.
[0032]
Finally, the sliding surface 11 of the obtained sintered body is polished to have a flatness of 3 μm or less, preferably 1 μm or less, and then the dimple 12 is filled with the lubricant 13. As a filling method, a method of injecting under pressure with a dispenser or the like, or a method of infusion under vacuum or under pressure after immersion in a lubricant whose viscosity has been reduced by heating may be used.
[0033]
As the lubricant 13, a vegetable oil, mineral oil, or synthetic lubricant is used.
As the vegetable oil system, for example, dietary sterin contained in natural vegetable oil or oil based on fatty acid glycerite obtained by refining dietary oil is used, and the mineral oil system is selected from paraffin, naphthene, and aromatic A mineral oil mainly composed of liquid saturated hydrocarbons is used, and ether-based, ester-based, fluorine-based, silicone-based, etc. are used as synthetic lubricating oil systems. Further, these lubricants 13 can be used in any state such as liquid, grease or wax.
[0034]
Next, another embodiment of the present invention will be described.
[0035]
As shown in the perspective view of FIG. 2 and the cross-sectional view of FIG. 3A, this sliding member forms a recess 10a in a part of the sliding surface 11 of the dense ceramic body 10, and the recess 10a A porous body 14 made of a metal, a synthetic resin, ceramics, or the like is embedded, and the porous body 14 is impregnated with a lubricant 13. If the sliding surfaces 11 of the dense chamber ceramic body 10 are brought into sliding contact with each other, it can be used as a disk valve.
[0036]
At this time, since the porous body 14 serves as a lubricant holding mechanism, it is possible to prevent the lubricant 13 from flowing out and maintain good slidability for a long period of time.
[0037]
The recess 10a is a blocking hole that does not communicate with any surface other than the sliding surface 11. Moreover, it is preferable that the ratio of the sum total of the area of the recessed part 10a (porous body 14) with respect to the area of the sliding surface 11 shall be 3 to 50%. This is because if it is less than 3%, the lubricating action is poor, and if it exceeds 50%, the wear resistance of the sliding surface 11 becomes low.
[0038]
Further, the surface of the sliding surface 11 excluding the porous body 14 is a very flat surface having a flatness of 3 μm or less, preferably 1 μm or less, thereby improving the sealing performance.
[0039]
As the dense ceramic body 10 as the base material, ceramics mainly composed of alumina, zirconia, silicon nitride, silicon carbide, aluminum nitride, etc., which are excellent in wear resistance and chipping resistance, are the same as in the above embodiment. It is.
[0040]
Then, when these ceramic raw materials are formed, a recess 10a is provided by a die, cutting, or grinding after firing, and then the porous body 14 made of metal, synthetic resin, ceramics or the like is embedded in the recess 10a. Thus, the sliding member of the present invention can be obtained.
[0041]
In this case, it may be inserted by fitting, mechanically or chemically joined after insertion, or press-fitted by shrink fitting or the like, but from the sliding surface 11 of the dense ceramic body 10, it is porous. It is necessary to prevent the mass 14 from protruding. This is because if the porous body 14 protrudes from the sliding surface 11, it leaks due to water pressure when combined with the other sliding member.
[0042]
Then, after polishing the sliding surface 11 excluding the porous body 14 to a flatness of 3 μm or less, preferably 1 μm or less, the porous body 14 may be impregnated with the lubricant 13. As the impregnation method, an impregnation method such as impregnation under vacuum or pressure after the porous body 14 is immersed in a lubricant whose viscosity has been reduced by heating may be used, as in the above-described embodiment. Alternatively, a porous body 14 previously impregnated with oil can also be used.
[0043]
Further, as shown in FIG. 3 (b), the porous body 14 does not need to fill all of the recesses 10a, and the porous body 14 is provided only on the surface portion, and the lubricant is provided in the recesses 10a. It is good also as a structure which accumulates 13. Further, as shown in FIG. 3 (c), a pressing plate 15 and a spring 16 may be provided at the lower part of the recess 10a so that the lubricant 13 is forcedly pushed out to the surface.
[0044]
Further, as shown in FIGS. 4 and 5, a gradient ceramic material in which a ceramic porous body 14 is integrally formed on a part of a sliding surface 11 of a dense ceramic body 10 as shown in FIGS. The porous body 14 may be impregnated with the lubricant 13.
[0045]
The porous body 14 is closed so as not to communicate with a surface other than the sliding surface 11 and should not have a three-dimensional network structure as a whole. And the part used as the porous body 14 occupies 3 to 50% with respect to the whole area of the sliding surface 11, and the sliding surface 11 except the porous body 14 has a flatness of 3 μm or less, preferably 1 μm or less. The surface is extremely flat.
[0046]
Such a gradient ceramic material manufacturing method includes a step of providing a concave portion in a portion that becomes the sliding surface 11 when forming a ceramic raw material, filling the concave portion with a ceramic raw material having a higher sintering temperature than the base material, By firing at the sintering temperature of the material, the ceramic portion filled in the recess becomes poorly sintered, and an inclined ceramic material in which the porous body 14 having a fine structure is formed is obtained. The porous body 14 can also be formed by setting the molding pressure lower than that of the base material.
[0047]
Thereafter, the sliding surface 11 excluding the porous body 14 is polished to have a flatness of 3 μm or less, preferably 1 μm or less, and the porous body 14 may be impregnated with the lubricant 13. As a method of impregnation, the method as described above may be used.
[0048]
In the embodiment provided with the porous body 14 shown in FIGS. 2 to 5 described above, the pores of the porous body 14 have a structure with fine pores having an average pore diameter of less than 200 μm, preferably 100 μm or less. It is desirable. This is because with such a fine structure, the outflow of the lubricant 13 is moderately harmonized, and an amount suitable for lubrication oozes out forever.
[0049]
When the sliding member according to the above-described embodiment of the present invention is used as a facet valve, as shown in FIG. 6, a fluid passage 17 is formed in the dense ceramic body 10 to form a valve body, and two dense ceramic bodies are formed. What is necessary is just to slide 10 by making the sliding surfaces 11 mutually contact. At this time, the sliding property can be improved by always deriving the lubricant 13 from the lubricant holding mechanism by the dimples 12 and the porous body 14 on the sliding surface 11.
[0050]
Further, since the portion including the lubricant 13 has a lubricant holding mechanism by the dimple 12 or the porous body 14, the lubricant 13 does not easily flow out even at a high water pressure, and the optimum amount for lubrication. However, only the sliding surface 11 is kept forever.
[0051]
In addition, since the lubricant holding mechanism including the lubricant 13 has a closed structure that does not communicate with any surface other than the sliding surface 11, the fluid does not leak to the outside.
[0052]
In the sliding member of the present invention as described above, the water absorption rate of the dense ceramic body 10 serving as the base must be less than 1% to eliminate any risk of fluid leaking outside.
[0053]
In addition, the area ratio of the oil-containing portion made of the lubricant holding mechanism with respect to the sliding surface 11 of the dense ceramic body 10 serving as the base is desirably 3 to 50%. The reason for this is that if the area ratio of the oil-impregnated portion is smaller than 3%, the substantial amount of the lubricant 13 derived at the time of sliding is reduced and the effect of reducing the operating force is poor. This is because the wear resistance of the surface 11 is lowered.
[0054]
Alternatively, the volume of the lubricant 13 is preferably impregnated by 3% or more with respect to the volume of the dense ceramic body 10. The reason is that if the amount of the lubricant 13 impregnated is less than 3%, it is difficult to improve the sliding characteristics.
[0055]
FIG. 6 shows an example in which the sliding members of the present invention are slid, but only one of them is the sliding member of the present invention, and the other is a dense ceramic body having no lubricant holding mechanism. Things can be used. For example, when configuring a forceset valve composed of a movable valve element and a fixed valve element, at least one of the two valve elements may be formed of the ceramic sliding member of the present invention.
[0056]
More preferably, one valve body is a sliding member according to the present invention, and the other valve body is formed of dense ceramics, and is obtained by vapor deposition means such as PVD or CVD on the sliding surface of the dense ceramics. A synthetic pseudo diamond thin film (amorphous hard carbon film / diamond-like carbon / DLC / I-carbon) may be coated. According to this combination, it is further excellent in slidability, and it is possible to eliminate the generation of abnormal noise that was difficult to solve with only synthetic pseudo diamond.
[0057]
This is because the synthetic pseudo-diamond has a very good affinity with the lubricating oil, and because of the synergistic effect of the solid lubricant and the liquid lubricant made of synthetic pseudo-diamond, the slidability can be significantly improved. by.
[0058]
Further, in the above embodiment, an example in which the planes are slid is shown, but the ceramic sliding member of the present invention can be applied even if the sliding surface is cylindrical or spherical. .
[0059]
Therefore, the sliding member of the present invention can be used for various applications such as a ball valve, a slider, and various bearings as well as the force valve.
[0060]
Experimental example 1
Here, in the sliding member of the present invention having the dimple 12 shown in FIG. 1, an experiment for obtaining an optimum shape of the dimple 12 was performed.
[0061]
A dense ceramic body 10 constituting a sliding member is formed of alumina ceramics, and a fluid passage is provided as a disk-like body having an outer diameter of 30 mm, a thickness of 10 mm, and a diameter of 5 mm as shown in FIG. At this time, as shown in Table 1, the water absorption rate of the dense ceramic body 10, the ratio of the area of the dimple 12 to the sliding surface 11, and the shape of the dimple 12 varied by a die press were prototyped, The dimple 12 was filled with silicone grease as the lubricant 13.
[0062]
The water absorption was measured by the Archimedes method, and the shape of the dimple 12 was determined based on an enlarged photograph taken with a microscope.
[0063]
[Table 1]
Figure 0003694540
[0064]
First, as shown in FIG. 6, a pair of dense ceramic bodies 10 were pressed from above and below with a load of 30 kg, and set to a water faucet equipped with a water purifier as shown in FIG. At this time, in the case of using the dense ceramic body 10 having a water absorption rate of 2% or more, water leakage occurred due to water pressure. Therefore, it has been found that the dense ceramic body 10 should have a water absorption of less than 2%, preferably 1% or less.
[0065]
Further, only one of the dense ceramic bodies 10 (movable valve body) was rotated, and when the shape of the dimple 12 was a star, the relationship between the initial operating force and the area ratio of the dimple 12 was examined. The result was as shown in.
[0066]
Clearly from this result, it was found that when the ratio of the area of the dimple 12 to the area of the sliding surface 11 is less than 3%, the sliding force is poor and the initial operating force is large. This is because when the area ratio of the dimples 12 is less than 3%, the lubricant 13 that covers the sliding surface 11 is not led to the surface, and the amount of the filled lubricant 13 itself is insufficient. However, if the area ratio of the dimple 12 exceeds 50%, wear of the sliding surface 11 has been confirmed, and the durability has become difficult. Therefore, the area ratio of the dimple 12 should be in the range of 3 to 50%. preferable.
[0067]
Next, a sliding test was performed by changing the shape ratio of the dimple 12 to 3% and changing its shape. As shown in Table 2, when the shape of the dimple 12 is a perfect circle, an operation force of 0.8 kg or less, which is a numerical standard for a light operation force, is up to 100,000 times, which is the guaranteed number of sliding times. I found that it was not possible to maintain. On the other hand, the operation force of 0.8 kg or less could be maintained 100,000 times or more with the rectangular, star and circular chain dimples 12 according to the embodiment of the present invention.
[0068]
This is because when the shape of the dimple 12 is a perfect circle, the lubricant 13 is easily washed out by water pressure, whereas the elongated portion and / or the acute angle portion such as a rectangle, a star, or a circular chain shape, which is an embodiment of the present invention. This is because the dimple 12 having a shape having a strong retention of the lubricant 13 can maintain good slidability over a long period of 100,000 times or more.
[0069]
Table 2 shows the results when the area ratio of the dimple 12 is 3%, but similar results were obtained even when the area ratio was changed.
[0070]
Further, when a porous body having pores penetrating the whole as a valve body was impregnated with the lubricant 13 and subjected to a sliding test in the same manner as described above, the valve body was operated from the side surface of the valve body with about 80,000 operations. It was confirmed that water leakage occurred and it was not put to practical use.
[0071]
[Table 2]
Figure 0003694540
[0072]
In this experimental example, alumina was used as the dense ceramic body 10, but the same results were obtained even when ceramics such as silicon nitride, zirconia, silicon carbide, and aluminum nitride were used.
[0073]
Further, in this experimental example, silicone grease was used as the lubricant 13, but even when vegetable oil, mineral oil, or other synthetic lubricants were used, good sliding characteristics were obtained with almost no abnormal noise. It was.
[0074]
As described above, in the sliding member having the dimple 12 of the present invention, the dense ceramic body 10 having a water absorption rate of 1% or less is used as a base, and the elongated portion and the sliding portion 11 have an area ratio of 3 to 50%. It can be seen that if the dimple 12 having an acute angle portion is provided and the lubricant 13 is held on the dimple 12, there is no leakage, the sliding property is excellent, and the wear is small, so that the dimple 12 can be suitably used for a long time.
[0075]
Experimental example 2
Next, for the sliding member of the present invention provided with the porous body 14 shown in FIG. 2, an experiment for obtaining an optimum range such as the pore diameter of the porous body 14 was performed.
[0076]
A dense ceramic body 10 that forms a sliding member is formed of alumina ceramics, and a fluid passage is provided by a disk-shaped body having an outer diameter of 30 mm, a thickness of 10 mm, and a diameter of 5 mm as shown in FIG. The sliding surface 11 is provided with recesses 10a having various area ratios as shown in Table 3, and the recesses 10a are loaded with a porous body 14 made of silicon nitride having various average pore diameters and lubricated. An agent 13 containing vegetable oil was made as a trial.
[0077]
The average pore diameter was measured based on an enlarged photograph using a scanning electron microscope (SEM).
[0078]
[Table 3]
Figure 0003694540
[0079]
As in Experimental Example 1, while pressing a pair of dense ceramic bodies 10 from above and below with a load of 30 kg, they are set on the water tap as shown in FIG. 7, and only one dense ceramic body 10 (movable valve body) is placed. The operating force was examined by rotating. First, when the average pore diameter of the porous body 14 was 10 μm, the relationship between the initial operating force and the area ratio of the recesses 10a was examined and as shown in FIG.
[0080]
Obviously, from this result, it was found that when the area ratio of the recess 10a is less than 3% with respect to the sliding surface 11, the sliding property is inferior. This is because the porous body 14 filled with the lubricant 13 is loaded in the recess 10a, so that the required lubrication amount cannot be satisfied if the area ratio of the recess 10a is less than 3%. However, if the area ratio of the recess 10a exceeds 50%, wear on the sliding surface 11 is confirmed, and durability is difficult. Therefore, the area ratio of the recess 10a is preferably in the range of 3 to 50%.
[0081]
Further, the same sliding test was performed by changing the area ratio of the recess 10a to 3% and changing the average pore diameter of the porous body 14 variously. As shown in Table 4, it was found that the porous body 14 having an average pore diameter of 200 μm or more cannot maintain 0.8 kg or less, which is a standard for light operating force, 100,000 times or more.
[0082]
This is because the lubricant 13 is easily washed out by water pressure when the pore size of the porous body 14 is 200 μm or more. On the other hand, when the pore diameter is less than 200 μm, preferably 100 μm or less, the holding force of the lubricant 13 is strong, and light slidability can be maintained for a long period of time of 100,000 times or more.
[0083]
The same result was obtained even when the area ratio of the recess 10a was variously changed.
[0084]
[Table 4]
Figure 0003694540
[0085]
Therefore, it can be said that the porous body 14 to be loaded should have a fine structure with an average pore diameter of less than 200 μm, desirably 100 μm or less, more preferably 10 μm or less.
[0086]
Here, as the material of the porous body 14, porous silicon nitride ceramics was used here, but the results were almost the same even when other ceramics, metal, or synthetic resin was used.
[0087]
In this experimental example, vegetable oil was used as the lubricant 13, but even when mineral oil and synthetic lubricating oil were used, good sliding characteristics were obtained almost without any abnormal noise.
[0088]
As described above, in the sliding member of the present invention provided with the porous body 14, the dense ceramic body 10 having a water absorption rate of 1% or less is used as a base, and the concave portion is formed with an area ratio of 3 to 50% with respect to the sliding surface 11. 10a is provided, and a porous body 14 having an average pore diameter of less than 200 μm is loaded in the recess 10a, and this is impregnated with a lubricant 13, so that there is no leakage, excellent sliding characteristics, and little wear. Thus, it can be seen that it can be suitably used for a long time.
[0089]
Experimental example 3
Next, with respect to the sliding member of the present invention using the gradient ceramic material shown in FIGS. 4 and 5, an experiment was performed to obtain the optimum range such as the pore diameter of the porous body 14 portion.
[0090]
A dense alumina ceramic body 10 constituting a sliding member is formed of alumina ceramics, and a fluid passage is provided by a disk-like body having an outer diameter of 30 mm, a thickness of 10 mm, and a diameter of 5 mm as shown in FIG. . At the time of molding this alumina raw material, a concave portion is provided in the portion that becomes the sliding surface 11, and after filling 99% alumina powder having a sintering temperature higher than that of the base material 96% alumina molded body, re-pressing is performed, By firing this at 1610 ° C., which is the firing temperature of 96% alumina, the porous body 14 having various average pore diameters and area ratios as shown in Table 5 is integrally formed, and a lubricant is formed thereon. A sample impregnated with liquid paraffin, which is a kind of mineral oil, was prepared as No. 13.
[0091]
The pore diameter was measured based on an enlarged photograph taken with a scanning electron microscope (SEM).
[0092]
[Table 5]
Figure 0003694540
[0093]
As in Experimental Example 1, while pressing a pair of sliding members from above and below with a load of 30 kg, set the water faucet as shown in FIG. 7 and rotate only one sliding member (movable valve body). When the pore size of the porous body 14 was 10 μm, the relationship between the initial operating force and the area ratio of the porous body 14 was examined, and the result was as shown in FIG.
[0094]
Clearly, it was found that when the area ratio of the porous body 14 to the sliding surface 11 is less than 3%, the sliding property is inferior. This is because the porous body 14 is filled with the lubricant 13, and therefore the required amount of lubrication cannot be satisfied if the area ratio of the porous body 14 is less than 3%. However, if the area ratio of the porous body 14 exceeds 50%, wear on the sliding surface 11 is confirmed, and durability is difficult. Therefore, the area ratio of the porous body 14 is preferably in the range of 3 to 50%. .
[0095]
Furthermore, when the area ratio of the porous body 14 was 3% and the average pore diameter of the porous body 14 was variously changed and the sliding test was advanced, the porous body 14 having an average pore diameter of 200 μm or more was It was found that 0.8 kg or less, which is a standard for light operating force, cannot be maintained 100,000 times.
[0096]
Therefore, it can be said that the porous body 14 should have an average pore diameter of less than 200 μm, desirably 100 μm or less, more preferably 10 μm or less. This result was the same even when the area ratio of the porous body 14 was variously changed.
[0097]
In this experimental example, alumina ceramics were used, but the results were almost the same when using ceramics such as silicon nitride, zirconia, silicon carbide, and aluminum nitride. In this experimental example, a mineral oil-based lubricant was used, but even when vegetable oil and synthetic lubricant were used, good sliding characteristics were obtained almost without any abnormal noise.
[0098]
Thus, in the sliding member using the gradient ceramic material of the present invention, the dense ceramic body 10 having a water absorption rate of 1% or less is used as a base, and the area ratio of 3 to 50% with respect to the sliding surface 11 is 200 μm. Since the porous body 14 having an average pore diameter of less than 1 is integrally formed and the porous body 14 is impregnated with the lubricant 13, there is no leakage, excellent sliding characteristics, and less wear. It can be seen that it can be suitably used for a long time.
[0099]
Furthermore, the combination of the sliding member according to the present invention and the sliding member in which the sliding surface of the dense ceramic is coated with the synthetic pseudo-diamond thin film has a light operating force even when the number of operations exceeds 500,000 times. It was found that extremely good slidability such as maintenance was obtained, and no abnormal noise was generated.
[0100]
In addition, the sliding member coated with the synthetic pseudo-diamond thin film alone may cause an unpleasant noise such as a key when sliding, but is combined with the sliding member having the lubricant holding mechanism of the present invention. It was also confirmed that the generation of abnormal noise was eliminated.
[0101]
【The invention's effect】
As described above, according to the present invention, a part of the sliding surface of the dense ceramic body is provided with a lubricant holding mechanism made of dimples or a porous body, and the lubricant is held in the lubricant holding mechanism. Lubricant does not flow out in a short period of time due to pressure, can maintain good sliding characteristics for a long time, and the sliding surface other than the lubricant holding mechanism is made of dense ceramics with high flatness, so it has a high seal Can be maintained.
[0102]
If the sliding member of the present invention is combined with the sliding member having the synthetic pseudo-diamond thin film on the sliding surface, the sliding characteristics are maximized, and there is no smooth operation force and no abnormal noise. A comfortable operating environment can be provided.
[Brief description of the drawings]
1A to 1C are perspective views of a sliding member according to an embodiment of the present invention.
FIG. 2 is a perspective view showing another embodiment of the present invention.
3A is an enlarged cross-sectional view taken along line XX in FIG. 2, and FIGS. 3B and 3C are enlarged cross-sectional views showing other embodiments, respectively.
FIG. 4 is a perspective view showing another embodiment of the present invention.
5 is an enlarged sectional view taken along line YY in FIG. 4;
FIG. 6 is a perspective view showing a disk valve using the sliding member of the present invention.
FIGS. 7A and 7B are schematic views of a general faucet valve incorporated in a faucet.
FIG. 8 is a graph showing the relationship between the initial operating force and the dimple area ratio in the sliding member of the present invention.
FIG. 9 is a graph showing the relationship between the initial operating force and the area ratio of the recesses in the sliding member of the present invention.
FIG. 10 is a graph showing the relationship between the initial operating force and the area ratio of the porous body in the sliding member of the present invention.
[Explanation of symbols]
10: Dense ceramic body
10a: recess
11: Sliding surface
12: Dimple
12a: Elongated part
12b: acute angle part
13: Lubricant
14: porous body

Claims (3)

吸水率が2%未満の緻密質セラミックス体の摺動面に、凹部を形成するとともに、該凹部の表面側には摺動面に対する面積比率が3〜50%を占める多孔質体から成る潤滑剤保持機構を、内部側に潤滑剤を溜める構造としたことを特徴とする摺動部材。Lubricant comprising a porous body in which a concave portion is formed on the sliding surface of a dense ceramic body having a water absorption rate of less than 2%, and the surface ratio of the concave portion occupies an area ratio of 3 to 50% with respect to the sliding surface A sliding member characterized in that the holding mechanism has a structure in which a lubricant is stored inside. 上記凹部の内部側に押圧板とバネを配置し、上記潤滑剤を多孔質体を介して表面に押し出すようにしたことを特徴とする請求項に記載の摺動部材。2. The sliding member according to claim 1 , wherein a pressing plate and a spring are arranged on the inner side of the concave portion, and the lubricant is pushed out to the surface through a porous body. 請求項1または2記載の摺動部材と、摺動面に合成疑似ダイヤモンド薄膜をコーティングした摺動部材とを組み合わせてなる摺動装置。A sliding device comprising a combination of the sliding member according to claim 1 or 2 and a sliding member having a sliding surface coated with a synthetic pseudo diamond thin film.
JP26782094A 1994-10-31 1994-10-31 Sliding member and sliding device using the same Expired - Fee Related JP3694540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26782094A JP3694540B2 (en) 1994-10-31 1994-10-31 Sliding member and sliding device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26782094A JP3694540B2 (en) 1994-10-31 1994-10-31 Sliding member and sliding device using the same

Publications (2)

Publication Number Publication Date
JPH08128448A JPH08128448A (en) 1996-05-21
JP3694540B2 true JP3694540B2 (en) 2005-09-14

Family

ID=17450065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26782094A Expired - Fee Related JP3694540B2 (en) 1994-10-31 1994-10-31 Sliding member and sliding device using the same

Country Status (1)

Country Link
JP (1) JP3694540B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823325B2 (en) * 1998-07-29 2006-09-20 ダイキン工業株式会社 Compressor bearings for refrigerators and compressors for refrigerators
JP4332977B2 (en) * 2000-03-13 2009-09-16 日産自動車株式会社 Shim for valve lifter and manufacturing method thereof
US6739238B2 (en) * 2000-11-20 2004-05-25 Nissan Motor Co., Ltd. Sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure
JP2004144135A (en) * 2002-10-22 2004-05-20 Nippon Pillar Packing Co Ltd Slide member and its manufacturing method
EP2735720A1 (en) * 2012-11-26 2014-05-28 Wärtsilä Switzerland Ltd. Piston for combustion engine
JP6196136B2 (en) * 2013-11-28 2017-09-13 京セラ株式会社 Sliding device
JP2017106585A (en) * 2015-12-11 2017-06-15 Toto株式会社 Ceramic structure for faucet device, slide valve for faucet device and cartridge for faucet device
JP6570581B2 (en) 2017-07-13 2019-09-04 株式会社不二製作所 Ceramic surface treatment method and ceramic product
JP6840637B2 (en) 2017-07-28 2021-03-10 株式会社不二製作所 Method of forming fine dimples on the surface of hard and brittle materials
JP7177741B2 (en) * 2019-03-29 2022-11-24 日本ピラー工業株式会社 SLIDING MATERIAL, BEARING DEVICE, AND SLIDING MATERIAL MANUFACTURING METHOD
US20230349422A1 (en) * 2020-08-24 2023-11-02 Kyocera Corporation Sliding member

Also Published As

Publication number Publication date
JPH08128448A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
JP3694540B2 (en) Sliding member and sliding device using the same
US5322735A (en) Roller body, method of its manufacture, and of roller or plain bearings
US6338906B1 (en) Metal-infiltrated ceramic seal
CA2510168C (en) Valve component with multiple surface layers
US4997192A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
KR100219923B1 (en) Sliding member for use with lightweight metal
JP5289464B2 (en) SLIDING PARTS, MECHANICAL SEAL, FORSET VALVE AND ROLLING SUPPORT EQUIPPED WITH THE SAME
JP4977033B2 (en) Mechanical seal ring
JP3447390B2 (en) Sliding device
US5823510A (en) Sintered ceramics material and disk valve assembly
JP2000170768A (en) Sliding member
JP4199504B2 (en) Sliding parts and manufacturing method thereof
JP3654861B2 (en) Rotary joint for CMP equipment
JP3481774B2 (en) Ceramic sliding device
JP2007119338A (en) Ceramic member, ceramic member production method, ceramic sliding member and sliding device
JP5626715B2 (en) Sliding member and mechanical seal
JP2009156294A (en) Floating ring mechanical seal
JPH08233121A (en) Faucet valve
JP2729657B2 (en) Ceramic disc valve
JPH07332361A (en) Sliding device and manufacture thereof
JPH0658434A (en) Ceramic sliding member
JPH01316517A (en) Sliding member and manufacture thereof
JPH06265030A (en) Disc valve made of ceramic
JP3389414B2 (en) Sliding device
JPH0668332B2 (en) Valve with valve body made of porous composite

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees