JP3693878B2 - Adhesive strength calculation method - Google Patents

Adhesive strength calculation method Download PDF

Info

Publication number
JP3693878B2
JP3693878B2 JP2000080932A JP2000080932A JP3693878B2 JP 3693878 B2 JP3693878 B2 JP 3693878B2 JP 2000080932 A JP2000080932 A JP 2000080932A JP 2000080932 A JP2000080932 A JP 2000080932A JP 3693878 B2 JP3693878 B2 JP 3693878B2
Authority
JP
Japan
Prior art keywords
calculating
wheel
film thickness
fluid film
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000080932A
Other languages
Japanese (ja)
Other versions
JP2001264193A (en
Inventor
樺 陳
巧 伴
誠 石田
栄一 前橋
綱光 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2000080932A priority Critical patent/JP3693878B2/en
Publication of JP2001264193A publication Critical patent/JP2001264193A/en
Application granted granted Critical
Publication of JP3693878B2 publication Critical patent/JP3693878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道における車輪とレール間の接触部における粘着力を高く維持して、車輪の空転や滑走を防止する改良に関する。
【0002】
【従来の技術】
鉄道工学においては、車輪とレールの接触部が乾燥状態にある場合は高い粘着力が得られることが知られている。これに対して、車輪とレールの接触部に水が介在する時は、水膜の厚さが一定範囲を超える場合に粘着力が大幅に低下する。このような粘着力の大幅低下は、車輪の空転や滑走を招来するので、これを防止する為に、加熱乾燥装置を設けたり(特開昭61−87005号公報)、レール上に砂を撒くこと(特開昭56−50803号公報)が行われている。
【0003】
【発明が解決しようとする課題】
しかし、従来技術の加熱乾燥装置の場合はレール上の水を乾燥させる為に高速になるほど多くの熱量が必要となり、加熱乾燥装置の熱量が限られている場合には高速化に充分対応できなくなるという課題がある。また、砂撒きの場合は、車輪とレールはフラットなどの損傷を受け、振動や騒音が増大するという課題があった。新幹線鉄道における高速化ならびに高加速・高減速化を実現するためには、車輪・レールの粘着特性を十分理解する必要がある。しかし、粘着現象は関係する因子の多さから、多数の研究報告が存在するにもかかわらず、物理現象として未解明な部分が多く残されている。そこで、車輪とレールの接触部がどのような状態にあれば空転や滑走を防止できるのか理論的に解明されていないという課題があった。
【0004】
本発明は上述する課題を解決するもので、実車両の粘着係数を比較的よく予測することができる、車輪とレールの接触部が湿潤状態にある場合の粘着力演算装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決する本発明方法を適用した車輪・レール接触部の粘着力演算装置は、図1に示すように、車輪の速度パラメータと荷重パラメータを用いて車輪・レール接触部の流体膜厚さを演算する流体膜厚さ演算部20と、流体膜厚さ演算部20で演算した流体膜の厚さと、車輪表面とレール表面の粗さを用いて表面突起部分の分担荷重を演算する凸凹突起部接触分担荷重演算部30と、該表面突起部分の分担荷重と流体膜分担荷重の釣り合い式から流体膜分担荷重を演算する流体膜分担荷重演算部40と、せん断方向の力釣合いを用いてトラクション係数を演算するトラクション係数演算部50とを具備している。
【0006】
このように構成された装置において、車輸・レール間のトラクション係数が演算されるので、トラクション係数が低下して車輪の空転や滑走を招来するような場合に、水温をどの程度上昇させればよいかとか、振動や騒音の問題とトラクション係数の問題を両立させる為には、レールの表面粗さをどの程度にすればよいかとか、緊急停止時にフラットなどの損傷を最小限にとどめる為にはどの程度表面粗さを増大させればよいか等の設備条件を得ることができる。
【0007】
好ましくは、車輪・レール接触部の流体の入口における発熱効果を考慮に入れる構成とすると、実測値との整合性の高い理論演算結果が得られる。また、請求項3に記載のように、流体膜厚さ演算手段は、前記流体が水の場合に、Herreburghの流体膜厚さの式を用いる構成とすると、水膜の場合の実測値との整合性の高い理論演算結果が得られる。また、流体膜厚さ演算手段は、Grubinの仮定による膜厚さ式を用いる構成とすると、更に実測値との整合性の高い水膜の理論演算結果が得られる。また、流体膜厚さ演算手段は、前記流体が油の場合に、Dowson-Higginsonの式を用いる構成とすると、油膜の場合に有用である。また、突起部接触分担荷重演算手段は、Greenwood‐Trippの接触理論を用いる構成とすると、潤滑理論で実績のある式が援用できる。
【0008】
上記課題を解決する車輪・レール接触部の粘着力演算方法は、車輪の速度パラメータと荷重パラメータを用いて車輪・レール接触部の流体膜厚さを演算する工程と、該流体膜厚さ演算工程で演算した流体膜の厚さと、車輪表面とレール表面の粗さを用いて表面突起部分の分担荷重を演算する工程と、該表面突起部分の分担荷重と流体膜分担荷重の釣り合い式から流体膜分担荷重を演算する工程と、せん断方向の力釣合いを用いてトラクション係数を演算する工程とを有することを特徴としている。
【0009】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。図1は、本発明の一実施の形態を説明する構成ブロック図、図2は流れ図である。図1において、初期条件設定部10は、車輪の転がり速度、車輪に作用する荷重、水膜の水温、レールの表面粗さ等を設定するものである(図2のS10)。水膜の水温を用いて、流体である水の粘度が演算される(図2のS12)。
【0010】
図1の流体膜厚さ演算部20は、Herreburghの流体膜厚さの式を用いて接触中心部の流体膜厚さH0を演算する(図2のS14)。
H0=3.10・U0.6・W-0.2 (1)
ここで、Uは速度パラメータ、Wは荷重パラメータである。Herreburghの流体膜厚さの式は、潤滑工学で汎用的に用いられるもので、ベアリングの軸受の寿命予測をする際に、参照値油膜の厚さを演算するのに特に有用である。更に、図1の流体膜厚さ演算部20は、Grubinの仮定による膜厚さ式により、接触中心部水膜厚さH0を用いた座標軸X方向の水膜の厚さ分布形状を演算する(図2のS16)。
H=H0+4Wh/π{X(X2-1)1/2-ln(X+[X2+1]1/2)} (2)
ここで、Xは座標値、Whは単位幅当りの水膜分担荷重である。
【0011】
図1の凸凹突起部接触分担荷重演算部30は、Greenwood‐Trippの接触理論を用いて凸凹突起部接触分担荷重を演算する(図2のS18)。Greenwood‐Trippの接触理論は、固体接触表面の粗さを考慮する場合に用いられるもので、湿潤状態に限らず乾燥状態の場合も適用でき、その式は次の関係にある。
【数1】

Figure 0003693878
ここで、Xminは水の入口の座標値、Xmaxは水の出口の座標値、wcは単位幅当りの粗さ表面突起部分の分担荷重、pcは突起部接触圧、hは水膜の厚さ、σは接触表面1(車輪表面)と表面2(レール表面)の二乗平均平方根粗さ或いは標準偏差粗さR.M.S(=√σ1 2+σ2 2)、Kcは表面粗さパラメータ、Eは等価ヤング率、Pcは無次元化した突起部接触圧である。
【0012】
図1の流体膜分担荷重演算部40は、水膜分担荷重Whと粗さ表面突起部分の分担荷重Wcの釣合い式を用いて水膜分担荷重Whを演算する(図2のS20)。
W=Wh+Wc (5)
ここで、Wは接触荷重である。収束条件は次式で与えられる。
【数2】
Figure 0003693878
ここで、Kは反復計算の回数である。求めた水膜分担荷重Whを用いて、収束条件を満たす場合には図1のトラクション係数演算部50で、せん断方向の力釣合い式である次式によりトラクション係数μを演算する(図2のS22、S26)。
μ=(μhWhcWc)/W (7)
ここで、μhは水膜のせん断抵抗、μcは境界潤滑摩擦係数である。若し、収束条件を満たさない場合は、水膜分担荷重Whを修正して図1の流体膜厚さ演算部20に戻る(図2のS22、S24)。
【0013】
次に、上記実施の形態の理論的な背景を説明する。車輪とレールの接触部に水が介在する時は、混合潤滑理論による水潤滑条件での2弾性体接触問題として捉えることができる。この解析は、水の粘度・圧力係数が小さいため、弾性−等粘度領域で近似することができる。すなわち、弾性−等粘度領域に適用するHerreburghの流体膜厚さ式を用いて水膜厚さやトラクション係数を近似的に求めることが可能である。本実施の形態では、水の入口における発熱効果を考慮し、水の粘度を修正した後に得られた水膜の厚さを用いて、各種走行条件下での車輸・レール間のトラクション係数を算出している。
【0014】
一般に、トラクション係数は車輪・レール間のすべり率によって変動し、その最大値が鉄道では粘着係数とする。本実施の形態では、トラクション係数の最大値がすべり率0.2%で発生するものと仮定している。また、各計算式で使用した共通の条件は、車輪直径が900mm、境界摩擦係数が0.14で、ヤング率とポアソン比については車輪の材料である鋼の標準値を用いている。即ち、ヤング率は206GPa、ポアソン比は0.3である。
【0015】
図3は、最大トラクション係数に影響を及ぼす表面粗さの解析結果を示している。ここでは、水温20度、単位幅当りの荷重5MN/m、滑り率0.2%、表面粗さパラメータKc0.003の条件の下で、表面粗さが0.05、0.10、0.15μmの場合を示している。表面粗さが0.15μmの場合は最大トラクション係数が列車速度に依存しない。他方、表面粗さが0.05μmの場合は最大トラクション係数が列車速度の増大と共に急減する。即ち、表面粗さは最大トラクション係数に与える影響が特に大きいことがわかった。ゆえに、車輪・レール間の粘着力を上げるためには、接触部の表面粗さを適切に管理することが大切である。
【0016】
図4は、最大トラクション係数に影響を及ぼす表面粗さパラメータKcの解析結果を示している。ここでは、表面粗さ0.10μm、水温20度、単位幅当りの荷重5MN/m、滑り率0.2%の条件の下で、表面粗さパラメータKcが0.003、0.0003の場合を示している。表面粗さパラメータKcは凸凹突起部の形状を表すもので、σが標準偏差粗さ、βが凸凹突起部の曲率半径とした場合に、次の値を選択してある。
Kc=0.003の時 σ/β=0.001 (8)
Kc=0.0003の時 σ/β=0.0001
【0017】
図5は、最大トラクション係数に影響を及ぼす荷重の解析結果を示している。ここでは、表面粗さ0.10μm、水温20度、滑り率0.2%、表面粗さパラメータKc0.003の条件の下で、単位幅当りの荷重が3、6、9MN/mの場合を示している。荷重の増加と共に、最大トラクション係数の列車速度依存性が低下する。
【0018】
図6は、最大トラクション係数に影響を及ぼす水温の解析結果を示している。ここでは、表面粗さ0.10μm、単位幅当りの荷重5MN/m、滑り率0.2%、表面粗さパラメータKc0.003の条件の下で、水温が20度、30度、50度の場合を示している。水温の上昇と共に、最大トラクション係数の列車速度依存性が低下する。
【0019】
図7は実車両の粘着係数と解析値を比較した結果図である。ここでは、表面粗さ0.16μm、温度20度、表面粗さパラメータKc0.000003の条件の下で、理論式として入口せん断熱あり▲1▼と入口せん断熱なし▲2▼の2種類を表示している。ここで、新幹線電車による実測値は列車の先頭からレール面上に散水した時の新幹線電車先頭車両の粘着係数を調べた結果である。そして、理論計算に用いたパラメータは新幹線電車の走行条件に比較的近い数値を設定した。図7により、理論解析は実車両の測定結果と比較的良好に一致しており、入口のせん断熱を考慮する場合の理論解析値は実車両の測定結果をより良く再現することが判った。
【0020】
入口のせん断熱を考慮すると、水の粘性が変化する為流体膜厚さが変化する。粘性係数は図1の流体膜厚さ演算部20の(1)式には明示的に含まれていないが、パラメータの中に含まれている。それによって、表面突起部分の分担荷重と流体膜分担荷重が変化して、両者の分担荷重に依存するトラクション係数が変化する。即ち、入口のせん断熱を考慮する場合と考慮しない場合とで、各式に用いられるパラメータ(係数や変数)の値が変化するのである。
【0021】
尚、上記実施例においてはレールの表面に水が存在する場合を示したが、本発明はこれに限定されるものではなく、実際のレールの表面に存在する水以外の油、埃、錆などが存在し、実車両の走行によって車輪・レールの表面粗さも変化するので、これらの因子を考慮する車輪・レール間の粘着係数を演算する構成としても良い。その場合は、水膜厚さを求める為に用いたHerreburghの流体膜厚さ式の代わりに、それらの因子を考慮した流体膜式、例えば油の場合はDowson-Higginsonの式を用いれば良い。
H=2.65・U0.7・W-0.13・G0.54 (9)
ここで、Gは材料パラメータである。
【0022】
【発明の効果】
以上説明したように、本発明によれば、車輪の速度パラメータと荷重パラメータを用いて車輪・レール接触部の流体膜厚さを演算する流体膜厚さ演算部と、流体膜厚さ演算部で演算した流体膜の厚さと、車輪表面とレール表面の粗さを用いて表面突起部分の分担荷重を演算する凸凹突起部接触分担荷重演算部と、該表面突起部分の分担荷重と流体膜分担荷重の釣り合い式から流体膜分担荷重を演算する流体膜分担荷重演算部と、せん断方向の力釣合いを用いてトラクション係数を演算するトラクション係数演算部とを具備する構成としたので、実車両の粘着係数と理論計算値が比較的一致する混合潤滑理論を適用した数値解析を行うことができる。この数値解析結果によると、粘着係数の低下を防止するためには、接触入口近傍の微小体積の水膜温度を上昇させ、あるいは表面粗さを増大させることが有効であることが判明した。
【0023】
さらに、Herreburghの流体膜厚さの式、Greenwood‐Trippの接触理論、および水膜分担荷重と接触分担荷重の釣り合い式を連立させ、所定の走行条件下での車輪・レール間のトラクション係数を算出する構成とすると、湿潤時の車輪・レール間の粘着係数に及ぼす各種因子の影響を検討することができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態を説明する構成ブロック図である。
【図2】 本発明の演算過程を説明する流れ図である。
【図3】 最大トラクション係数に影響を及ぼす表面粗さの解析結果を示している。
【図4】 最大トラクション係数に影響を及ぼす表面粗さパラメータの解析結果を示している。
【図5】 最大トラクション係数に影響を及ぼす単位幅当りの荷重の解析結果を示している。
【図6】 最大トラクション係数に影響を及ぼす水温の解析結果を示している。
【図7】 実車両の粘着係数と理論計算値の比較図である。
【符号の説明】
10 初期条件設定部
20 流体膜厚さ演算部
30 凸凹突起部接触分担荷重演算部
40 流体膜分担荷重演算部
50 トラクション係数演算部
Kc 表面粗さパラメータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in which the adhesion force at a contact portion between a wheel and a rail in a railway is maintained high to prevent the wheel from slipping and sliding.
[0002]
[Prior art]
In railway engineering, it is known that a high adhesive force can be obtained when a contact portion between a wheel and a rail is in a dry state. On the other hand, when water intervenes in the contact portion between the wheel and the rail, the adhesive strength is greatly reduced when the thickness of the water film exceeds a certain range. Such a significant decrease in adhesive force causes the wheels to slip or slide, and in order to prevent this, a heating and drying device is provided (Japanese Patent Laid-Open No. 61-87005), or sand is spread on the rails. (Japanese Patent Laid-Open No. 56-50803) has been carried out.
[0003]
[Problems to be solved by the invention]
However, in the case of the heating and drying apparatus of the prior art, a larger amount of heat is required to increase the speed to dry the water on the rail, and if the amount of heat of the heating and drying apparatus is limited, it cannot sufficiently cope with the increase in speed. There is a problem. In addition, in the case of sanding, there has been a problem that the wheels and rails are damaged such as flat and vibration and noise increase. In order to achieve high speed and high acceleration / deceleration in Shinkansen railways, it is necessary to fully understand the adhesion characteristics of wheels and rails. However, due to the large number of factors involved in the sticking phenomenon, there are still many unexplained physical phenomena despite the existence of numerous research reports. Therefore, there has been a problem that it has not been theoretically elucidated how the contact portion between the wheel and the rail can prevent idling and sliding.
[0004]
SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object thereof is to provide an adhesive force calculation device that can predict the adhesion coefficient of a real vehicle relatively well when the contact portion between the wheel and the rail is in a wet state. And
[0005]
[Means for Solving the Problems]
As shown in FIG. 1, the apparatus for calculating the adhesive force of the wheel / rail contact portion to which the method of the present invention that solves the above problems is applied , uses the speed parameter and the load parameter of the wheel to determine the fluid film thickness of the wheel / rail contact portion. Fluid thickness calculator 20 for calculating the thickness, the thickness of the fluid film calculated by the fluid thickness calculator 20, and the uneven projection for calculating the shared load of the surface protrusion using the roughness of the wheel surface and the rail surface Traction by using the force balance in the shearing direction, the fluid film shared load calculating unit 40 for calculating the fluid film shared load from the balance equation of the surface contact portion and the fluid film shared load And a traction coefficient calculation unit 50 for calculating a coefficient.
[0006]
In the device configured in this way, the traction coefficient between the vehicle and the rail is calculated, so if the traction coefficient decreases and the wheel slips or slides, how much the water temperature should be increased In order to balance the problems of vibration and noise with the problem of traction coefficient, how much should the surface roughness of the rail be, and in order to minimize damage such as flats during an emergency stop Can obtain equipment conditions such as how much surface roughness should be increased.
[0007]
Preferably , if the heat generation effect at the fluid inlet of the wheel / rail contact portion is taken into consideration, a theoretical calculation result having high consistency with the actual measurement value can be obtained. According to a third aspect of the present invention, when the fluid film thickness is calculated using the Herreburgh fluid film thickness equation when the fluid is water, Highly consistent theoretical calculation results can be obtained. Also, the fluid film thickness computing means when the configuration using the film thickness of expression by the assumption of Grubin, obtain further Found Theory calculation result of consistent high water film between. Also, the fluid film thickness calculating unit, when the fluid is oil, when a configuration using the equation of Dowson-Higginson, is useful when the oil film. Further, if the protrusion contact shared load calculation means is configured to use the Greenwood-Tripp contact theory, an expression having a proven record in the lubrication theory can be used.
[0008]
The method for calculating the adhesion force of the wheel / rail contact portion that solves the above-described problem includes a step of calculating the fluid film thickness of the wheel / rail contact portion using the speed parameter and the load parameter of the wheel, and the fluid thickness calculation step. The process of calculating the shared load of the surface protrusion using the thickness of the fluid film calculated in step 4 and the roughness of the wheel surface and rail surface, and the fluid film from the balance of the shared load of the surface protrusion and the fluid film shared load It has the process of calculating a shared load, and the process of calculating a traction coefficient using the force balance of a shear direction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating an embodiment of the present invention, and FIG. 2 is a flowchart. In FIG. 1, the initial condition setting unit 10 sets the rolling speed of the wheel, the load acting on the wheel, the water temperature of the water film, the surface roughness of the rail, etc. (S10 in FIG. 2). Using the water temperature of the water film, the viscosity of water as a fluid is calculated (S12 in FIG. 2).
[0010]
The fluid film thickness calculator 20 in FIG. 1 calculates the fluid film thickness H 0 at the contact center using the Herreburgh fluid film thickness equation (S14 in FIG. 2).
H 0 = 3.10 ・ U 0.6・ W -0.2 (1)
Here, U is a speed parameter, and W is a load parameter. Herreburgh's fluid film thickness formula is widely used in lubrication engineering and is particularly useful for calculating the reference oil film thickness when predicting the bearing life of a bearing. Further, the fluid film thickness calculator 20 in FIG. 1 calculates the thickness distribution shape of the water film in the direction of the coordinate axis X using the contact center water film thickness H 0 according to the film thickness equation assumed by Grubin. (S16 in FIG. 2).
H = H 0 + 4W h / π {X (X 2 -1) 1/2 -ln (X + [X 2 +1] 1/2 )} (2)
Here, X is a coordinate value, and W h is a water film shared load per unit width.
[0011]
The convex / concave protrusion contact sharing load calculating unit 30 in FIG. 1 calculates the convex / concave protrusion contact sharing load using Greenwood-Tripp contact theory (S18 in FIG. 2). The Greenwood-Tripp contact theory is used when considering the roughness of the solid contact surface, and can be applied not only to the wet state but also to the dry state, and the equation has the following relationship.
[Expression 1]
Figure 0003693878
Here, X min is the coordinate values of the inlet water, X max is the coordinate values of the outlet water, w c is shared load roughness surface protrusion per unit width, p c is the protrusion contact pressure, h is the water The thickness of the film, σ, is the root mean square roughness or standard deviation roughness of contact surface 1 (wheel surface) and surface 2 (rail surface). M.M. S (= √σ 1 2 + σ 2 2 ), K c is a surface roughness parameter, E is an equivalent Young's modulus, and P c is a dimensionless protrusion contact pressure.
[0012]
The fluid film shared load calculating unit 40 in FIG. 1 calculates the water film shared load W h using a balance formula of the water film shared load W h and the shared load W c of the roughness surface protrusion (S20 in FIG. 2). .
W = W h + W c (5)
Here, W is a contact load. The convergence condition is given by the following equation.
[Expression 2]
Figure 0003693878
Where K is the number of iterations. When the convergence condition is satisfied using the obtained water film shared load W h , the traction coefficient calculation unit 50 in FIG. 1 calculates the traction coefficient μ by the following equation which is a force balance equation in the shear direction (FIG. 2). S22, S26).
μ = (μ h W h + μ c W c ) / W (7)
Here, μ h is the shear resistance of the water film, and μ c is the boundary lubrication friction coefficient. If the convergence condition is not satisfied, the water film shared load W h is corrected and the process returns to the fluid film thickness calculator 20 in FIG. 1 (S22 and S24 in FIG. 2).
[0013]
Next, the theoretical background of the above embodiment will be described. When water is present in the contact portion between the wheel and the rail, it can be regarded as a two-elastic body contact problem under water lubrication conditions according to the mixed lubrication theory. This analysis can be approximated in the elastic-isoviscous region because the viscosity / pressure coefficient of water is small. That is, it is possible to approximately obtain the water film thickness and the traction coefficient using the Herreburgh fluid film thickness equation applied to the elastic-isoviscous region. In this embodiment, considering the heat generation effect at the water inlet, the thickness of the water film obtained after correcting the viscosity of the water is used to calculate the traction coefficient between the vehicle and the rail under various driving conditions. Calculated.
[0014]
Generally, the traction coefficient varies depending on the slip ratio between wheels and rails, and the maximum value is the adhesion coefficient for railways. In this embodiment, it is assumed that the maximum value of the traction coefficient occurs at a slip rate of 0.2%. The common conditions used in each calculation formula are a wheel diameter of 900 mm, a boundary friction coefficient of 0.14, and a standard value of steel, which is a wheel material, for Young's modulus and Poisson's ratio. That is, Young's modulus is 206 GPa and Poisson's ratio is 0.3.
[0015]
FIG. 3 shows the analysis result of the surface roughness that affects the maximum traction coefficient. Here, the surface roughness is 0.05, 0.10, 0.00 under conditions of a water temperature of 20 degrees, a load per unit width of 5 MN / m, a slip rate of 0.2%, and a surface roughness parameter Kc of 0.003. The case of 15 μm is shown. When the surface roughness is 0.15 μm, the maximum traction coefficient does not depend on the train speed. On the other hand, when the surface roughness is 0.05 μm, the maximum traction coefficient decreases rapidly as the train speed increases. That is, it was found that the surface roughness has a particularly large effect on the maximum traction coefficient. Therefore, in order to increase the adhesion between the wheels and the rails, it is important to properly manage the surface roughness of the contact portion.
[0016]
Figure 4 shows the results of analysis of influence surface roughness parameter K c to the maximum traction coefficient. Here, the surface roughness parameter K c is 0.003 and 0.0003 under the conditions of a surface roughness of 0.10 μm, a water temperature of 20 degrees, a load per unit width of 5 MN / m, and a slip rate of 0.2%. Shows the case. Surface roughness parameter K c intended to represent the shape of the uneven protrusions, sigma is the standard deviation roughness, when β is a curvature radius of the convex-concave protrusions, have selected the following values.
When K c = 0.003 σ / β = 0.001 (8)
When K c = 0.0003 σ / β = 0.0001
[0017]
FIG. 5 shows the analysis result of the load that affects the maximum traction coefficient. Here, the load per unit width is 3, 6, 9 MN / m under the conditions of a surface roughness of 0.10 μm, a water temperature of 20 degrees, a slip rate of 0.2%, and a surface roughness parameter K c of 0.003. Shows the case. As the load increases, the train speed dependency of the maximum traction coefficient decreases.
[0018]
FIG. 6 shows the analysis result of the water temperature that affects the maximum traction coefficient. Here, the water temperature is 20 degrees, 30 degrees, 50 under the conditions of a surface roughness of 0.10 μm, a load per unit width of 5 MN / m, a slip ratio of 0.2%, and a surface roughness parameter K c of 0.003. The case of degrees is shown. As the water temperature rises, the train speed dependence of the maximum traction coefficient decreases.
[0019]
FIG. 7 is a result diagram comparing the adhesion coefficient of the actual vehicle and the analysis value. Here, under the conditions of a surface roughness of 0.16 μm, a temperature of 20 degrees, and a surface roughness parameter K c of 0.000003, there are two types of theoretical equations: with inlet shear heat (1) and without inlet shear heat (2). Is displayed. Here, the actual measurement value by the Shinkansen train is a result of examining the adhesion coefficient of the leading train of the Shinkansen train when water is sprinkled on the rail surface from the top of the train. The parameters used in the theoretical calculation were set to values that were relatively close to the driving conditions of the Shinkansen train. FIG. 7 shows that the theoretical analysis is relatively well consistent with the measurement result of the actual vehicle, and the theoretical analysis value when the shear heat at the inlet is taken into account better reproduces the measurement result of the actual vehicle.
[0020]
Considering the shear heat at the inlet, the fluid film thickness changes because the viscosity of water changes. The viscosity coefficient is not explicitly included in the equation (1) of the fluid film thickness calculator 20 in FIG. 1, but is included in the parameters. Thereby, the shared load of the surface protrusion and the fluid film shared load change, and the traction coefficient depending on the shared load changes. That is, the values of parameters (coefficients and variables) used in each formula change depending on whether or not the shear heat at the inlet is taken into consideration.
[0021]
In the above embodiment, the case where water is present on the surface of the rail is shown. However, the present invention is not limited to this, and oil, dust, rust, etc. other than water present on the surface of the actual rail. Since the surface roughness of the wheels and rails varies depending on the running of the actual vehicle, a configuration may be adopted in which the adhesion coefficient between the wheels and rails is calculated considering these factors. In that case, instead of the Herreburgh fluid film thickness formula used to determine the water film thickness, a fluid film formula considering these factors, for example, in the case of oil, the Dowson-Higginson formula may be used.
H = 2.65 ・ U 0.7・ W -0.13・ G 0.54 (9)
Here, G is a material parameter.
[0022]
【The invention's effect】
As described above, according to the present invention, the fluid film thickness calculator for calculating the fluid film thickness of the wheel / rail contact portion using the wheel speed parameter and the load parameter, and the fluid film thickness calculator The uneven projection contact contact load calculation unit that calculates the shared load of the surface protrusion using the calculated thickness of the fluid film and the roughness of the wheel surface and the rail surface, the shared load of the surface protrusion and the fluid film shared load The fluid film shared load calculation unit that calculates the fluid film shared load from the balance equation and the traction coefficient calculation unit that calculates the traction coefficient using the force balance in the shear direction are used. Numerical analysis using the mixed lubrication theory, whose theoretical calculation values are relatively consistent, can be performed. According to the results of the numerical analysis, it has been proved that it is effective to increase the water film temperature of the minute volume in the vicinity of the contact inlet or increase the surface roughness in order to prevent the decrease in the adhesion coefficient.
[0023]
In addition, expression of the fluid film thickness of Herreburgh, contact theory Greenwood-Tripp, and a water film shared load is simultaneous balancing equation of contact shared load, the traction coefficient between wheels and rails in the predetermined running condition When the configuration is calculated, the influence of various factors on the adhesion coefficient between the wheels and the rails when wet can be examined.
[Brief description of the drawings]
FIG. 1 is a configuration block diagram illustrating an embodiment of the present invention.
FIG. 2 is a flowchart illustrating a calculation process according to the present invention.
FIG. 3 shows the analysis result of the surface roughness affecting the maximum traction coefficient.
FIG. 4 shows the analysis result of the surface roughness parameter that affects the maximum traction coefficient.
FIG. 5 shows the analysis result of the load per unit width that affects the maximum traction coefficient.
FIG. 6 shows the analysis result of the water temperature that affects the maximum traction coefficient.
FIG. 7 is a comparison diagram of an adhesion coefficient of an actual vehicle and a theoretical calculation value.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Initial condition setting part 20 Fluid film | membrane film thickness calculating part 30 Concave-convex projection part contact shared load calculating part 40 Fluid film shared load calculating part 50 Traction coefficient calculating part
K c surface roughness parameter

Claims (2)

車輪の速度パラメータと荷重パラメータを用いて車輪・レール接触部の流体膜厚さを演算する工程と、該流体膜厚さ演算工程で演算した流体膜の厚さと、車輪表面とレール表面の粗さを用いて表面突起部分の分担荷重を演算する工程と、該表面突起部分の分担荷重と流体膜分担荷重の釣り合い式から流体膜分担荷重を演算する工程と、せん断方向の力釣合いを用いてトラクション係数を演算する工程とを有し、
前記流体膜厚さを演算する工程は、前記流体が水の場合に、 Herreburgh の流体膜厚さの式を用いるとともに、 Grubin の仮定による膜厚さ式を用い、
前記流体が油の場合に、 Dowson-Higginson の式を用い、
前記突起部接触分担荷重演算工程は、 Greenwood Tripp の接触理論を用いることを特徴とする車輪・レール接触部の粘着力演算方法。
The process of calculating the fluid film thickness of the wheel / rail contact portion using the wheel speed parameter and the load parameter, the fluid film thickness calculated in the fluid film thickness calculation process, and the wheel surface and rail surface roughness Calculating the shared load of the surface protrusion using the surface, calculating the fluid film shared load from the balanced expression of the shared load of the surface protrusion and the fluid film, and the traction using force balance in the shear direction And calculating a coefficient ,
In the step of calculating the fluid film thickness, when the fluid is water, the Herreburgh fluid film thickness formula is used, and the Grubin assumption film thickness formula is used.
When the fluid is oil, use the Dowson-Higginson formula,
The method for calculating the adhesive force of a wheel / rail contact portion is characterized in that the contact load sharing load calculating step uses a Greenwood - Tripp contact theory.
車輪・レール接触部の流体の入口における発熱効果を考慮に入れることを特徴とする請求項1に記載の車輪・レール接触部の粘着力演算方法。The method for calculating the adhesive force of the wheel / rail contact portion according to claim 1, wherein a heat generation effect at the fluid inlet of the wheel / rail contact portion is taken into consideration.
JP2000080932A 2000-03-22 2000-03-22 Adhesive strength calculation method Expired - Fee Related JP3693878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080932A JP3693878B2 (en) 2000-03-22 2000-03-22 Adhesive strength calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080932A JP3693878B2 (en) 2000-03-22 2000-03-22 Adhesive strength calculation method

Publications (2)

Publication Number Publication Date
JP2001264193A JP2001264193A (en) 2001-09-26
JP3693878B2 true JP3693878B2 (en) 2005-09-14

Family

ID=18597954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080932A Expired - Fee Related JP3693878B2 (en) 2000-03-22 2000-03-22 Adhesive strength calculation method

Country Status (1)

Country Link
JP (1) JP3693878B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053182B2 (en) * 2008-06-06 2012-10-17 公益財団法人鉄道総合技術研究所 Evaluation method of adhesion coefficient measured between rail and wheel
DE102011110047A1 (en) * 2011-08-12 2013-02-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Emergency brake device for a rail vehicle, brake system for a rail vehicle and rail vehicle
DE102011113073C5 (en) * 2011-09-09 2022-03-10 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Improved Braking for a Rail Vehicle
JP6081053B2 (en) 2011-10-31 2017-02-15 三菱重工業株式会社 Radial roller bearings, rotating machines using radial roller bearings, and design methods for radial roller bearings
CN108791324B (en) * 2018-07-16 2023-06-20 湖南工业大学 Heavy-duty locomotive traction total amount consistency system and control distribution method
JP7360977B2 (en) 2019-07-08 2023-10-13 Ntn株式会社 Bearing parts lifespan diagnosis method, bearing parts lifespan diagnosis device, and bearing parts lifespan diagnosis program

Also Published As

Publication number Publication date
JP2001264193A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
Chen et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions
Polach Creep forces in simulations of traction vehicles running on adhesion limit
Chen et al. Adhesion between rail/wheel under water lubricated contact
Eadie et al. The role of high positive friction (HPF) modifier in the control of short pitch corrugations and related phenomena
Trummer et al. Wheel-rail creep force model for predicting water induced low adhesion phenomena
Krause et al. Wear of wheel-rail surfaces
Vakkalagadda et al. Performance analyses of brake blocks used by Indian Railways
DE602005017410D1 (en) METHOD FOR CALCULATING A LOAD VALVE SLIP CURVE OF A TIRE
US6923050B2 (en) Automatic control method, usable in particular for maintaining the slip of a tire at an optimum level
JP3693878B2 (en) Adhesive strength calculation method
Ding et al. Application of the semi-Hertzian method to the prediction of wheel wear in heavy haul freight car
Dirks et al. Prediction of wheel profile wear and crack growth–comparisons with measurements
Chen et al. Influence of axle load on wheel/rail adhesion under wet conditions in consideration of running speed and surface roughness
Ivanov et al. Study of the influence of the brake shoe temperature and wheel tread on braking effectiveness
Liu et al. The effect of rolling speed on lateral adhesion at wheel/rail interface under dry and wet condition
Jin et al. A numerical method for prediction of curved rail wear
Giménez et al. Introduction of a friction coefficient dependent on the slip in the FastSim algorithm
Liao et al. A novel active adhesion control design for high speed trains without vehicle speed measurement
Magel et al. On some aspects of the wheel/rail interaction
Pradhan et al. Application of semi-hertzian approach to predict the dynamic behavior of railway vehicles through a wear evolution model
Fries et al. Analytical methods for wheel and rail wear prediction
Chen et al. Influential factors on adhesion between wheel and rail under wet conditions
RU2489283C2 (en) Vehicle drive and brake force control device, method of vehicle drive and brake force control and vehicle with said device
Zhang et al. Effect of surface micro-grooved textures in suppressing stick-slip vibration in high-speed train brake systems
Liu et al. On the wheel rolling contact fatigue of high power AC locomotives running in complicated environments

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees