JP3693466B2 - Molded gear and method for determining tooth profile of molded gear - Google Patents

Molded gear and method for determining tooth profile of molded gear Download PDF

Info

Publication number
JP3693466B2
JP3693466B2 JP16453397A JP16453397A JP3693466B2 JP 3693466 B2 JP3693466 B2 JP 3693466B2 JP 16453397 A JP16453397 A JP 16453397A JP 16453397 A JP16453397 A JP 16453397A JP 3693466 B2 JP3693466 B2 JP 3693466B2
Authority
JP
Japan
Prior art keywords
gear
tooth
radius
coefficient
root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16453397A
Other languages
Japanese (ja)
Other versions
JPH1113859A (en
Inventor
裕次 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16453397A priority Critical patent/JP3693466B2/en
Publication of JPH1113859A publication Critical patent/JPH1113859A/en
Application granted granted Critical
Publication of JP3693466B2 publication Critical patent/JP3693466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂製平歯車、焼結歯車等の成形平歯車の歯形形状に関するものである。
【0002】
【従来の技術】
従来、成形加工の平歯車の歯元形状について、円弧形状で構成されていることは全ての設計者が知っているとは限らなかったため、許容応力計算も従来の日本歯車工業規格(以下「JGMA」という)で行っており、実際の部品とは適合していない場合があった。さらに、歯元円弧半径を決定するアルゴリズムも存在せず、また、上記形状を基本とした許容応力計算式もなかった。従って、経験上から任意歯元円弧半径を決定していたため、相手歯車との干渉防止から必要以上に小さな半径を設定することが多く、強度に関して不利な場合が多かった。
【0003】
歯車は歯元形状がトロコロイド曲面としてJGMA401−01に規格されている。ここで、JGMA401−01とは、一般産業機械用の歯車について、理解が容易で、計算に過度の時間と労力を要せず、また、計算結果に個人差が生じないことを目標にして統一した計算方式を確立して、歯車及び歯車変速機の設計、製作、及び使用の全体にわたって、技術の向上、省力化、経費の低減、製品の統一化等の利点を得る目的で、一般に広く使われることを目標に歯車の強さ計算に関する規格を制定したものである。
【0004】
部品の構成上、成形歯車が必要となる場合、加工条件設定時に歯元部の円弧半径Rを数値入力する。その場合、インボリュートの基点から歯車中心への直線と歯底面を上記半径Rの円弧で接続、若しくはインボリュート面と歯底面を半径Rの円弧で接続している。このように、モジュール、歯数により一定の値の半径Rを歯元に構成するように暫定案として提示しているために、転位係数、歯数により非常に強度が低下する場合がある。実際には計算許容応力より低い部品が多く、問題が発生する可能性がある。また、その点を解消するためには、大きな安全率を設定する必要があり、非経済となっている。しかも、現在は歯元円弧の歯形強度を計算するアルゴリズムはないのが実状である。
【0005】
【発明が解決しようとする課題】
本発明は、上記課題を解決するためになされたもので、歯数、転位係数等により、個々の条件で相手歯車との干渉がなく、かつ最大の強度が得られる成形歯車の歯形形状を設定することができる。
【0006】
【課題を解決するための手段】
前記課題を解決するために請求項1記載の発明は、歯底面から任意半径の円弧歯元面が構成されているインボリュート歯車において、上記円弧歯元面の歯元円弧半径Rは、同一の歯車諸元による日本歯車工業格401−01の歯形係数と等しくなるように計算された歯元円弧半径Ryfを基準として、プラスの基準転位係数Aと対象歯車の転位係数Xを用いた以下の条件により決定することを特徴とする成形歯車。
R=Ryf+f(X)
f(X)=(X−A)/10
ただし、X<A→f(x)<0、X≧A→f(x)=0
【0007】
請求項2記載の発明は、請求項1記載の成形歯車において、上記歯元円弧半径Rの上限RmaxはA=0.3〜0.5であることを特徴とする。
【0008】
請求項3記載の発明は、請求項2記載の成形歯車において、前記歯元円弧半径の下限Rminは、上記Rmaxから0.1モジュールから0.2モジュール減じた値であることを特徴とする。
請求項4記載の発明は、歯底面から任意半径の円弧歯元面が構成されているインボリュート歯車の形状決定方法において、上記歯車の歯元円弧半径Rを、対象歯車の転移係数Xと基準となる転位係数Aを比較し、X≧Aの場合は、上記歯車と同一の歯車諸元による日本歯車工業会規格401−01の歯形係数と等しくなるよう計算した歯元円弧半径Ryfとし、X<Aの場合は、R=Ryf+f(X)、f(X)=(X−A)/10によって決定することを特徴とする。
請求項5記載の発明は、請求項4記載の歯車の形状決定方法において、上記歯車の歯元円弧半径Rの上限Rmaxは、Aを0.3から0.5とすることを特徴とする。
請求項6記載の発明は、請求項5記載の歯車の形状決定方法において、前記歯車の歯元円弧半径Rの下限Rminを、上記Rmaxより0.1から0.2モジュール減じた値とすることを特徴とする
【0009】
【発明の実施の形態】
以下、図面を参照しながら歯元円弧半径Rを補正するために用いる係数について説明し、本発明にかかる成形歯車の歯形形状についての実施の形態を説明する。
【0010】
最初にJGMA401−01における歯形係数(工具で創成される歯形)について説明する。歯形係数Yは、歯車の歯の幾何学的形状と曲げ強さを関係づける為の係数で、歯面にかかる荷重全体が歯先にかかるものとして最弱断面曲げ応力を基準として求められる。工具による創成歯形を図1に示す。最弱断面は、ホーファー30゜線、すなわち歯形の中心線1から30゜傾けた直線2、3が歯元曲面に接する点4、5を結んだ断面6となる。また、歯先面に直角な加重線7が中心線1と交わる点を8とすると、最弱断面歯厚Snfは断面6の長さ、加重高さhfは断面6と点8との距離であらわされる。また、加重線7と断面6との角度を歯直角歯先荷重角αnF、歯直角基準圧力角α(図示せず)、歯直角モジュールmとすると、歯形係数Yは次の式であらわされる。
={6(hf/mn)cosαnF}/{(Snf/mn)2cosαn}
【0011】
次に、成形歯車の歯元円弧構成の歯形の歯形係数について説明する。成形加工による平歯車は、金型加工上のアルゴリズムから、歯数、転位係数、及び歯元円弧の半径により、図2(a)、図2(b)に示されるような2通りの場合がある。図2(a)に示すように、基礎円9上のインボリュート面の基点10から歯車中心11への直線12と歯底円13とを任意半径の歯元円弧14で結んだ歯形形状とした場合と、図2(b)に示すようにインボリュート面15と歯底円16とを任意半径の歯元円弧17で結んだ歯形形状の場合である。
【0012】
歯元円弧構成歯形の歯形係数Y’は、上記Y と同様に考える。例えば図2(a)において、最弱断面は上記Y と同様にホーファー30゜線18、19が歯元円弧に接する点20、21を結んだ断面22となる。また、加重に関しては上記Y と同一となるため、歯先面に直角な加重線23が中心線24と交わる点25とすると、歯元円弧構成歯形の最弱断面歯厚Snf’は断面22の長さ、歯元円弧構成歯形の加重高さh’は断面22と点25との距離であらわされる。従って、歯元円弧構成歯形の歯形係数Y’は次の式で表される。
’={6(h’/m)cosαnF}/{(Snf’/m)2cosα
上記式は、図2(b)においても同様である。
【0013】
次に加重高さh’、最弱断面歯厚Snf’の求め方について説明する。まず歯元円弧の中心の極座標(Re、θ)を求める。Reは図2(a)、図2(b)の双方の場合とも、歯底円13、16の半径をRsとし、歯元円弧の半径をRzとすると、
Re=Rs+Rz
で表される。
θは、図2(a)と図2(b)とで求め方が異なってくる。図2(a)の場合、直線12と歯元円弧14の歯元円弧中心26との角度θ’は、中心26から直線12への垂線、この交点と歯車中心11、歯車中心と歯元円弧中心26からなる直角三角形を考えることで求められる。これに、中心線24とインボリュート面の基点10とのなす角度θ″を加えることで求められる。
【0014】
図2(b)の場合、歯元円弧中心27は基礎円28上のインボリュート面15の基点29から、基礎円28上での円弧長が歯元円弧半径と等しい点30を基点とするインボリュート線31上に位置する。従って、歯車中心32から前述のように歯元円弧中心27までの距離が求められているため、インボリュート線31との交点30を求めることで計算できる。これは、一般的に任意半径でのインボリュート面上での座標を計算するのと同じように、歯面座標と同様に求めることができる。
【0015】
歯元円弧中心の極座標(Re、θ)が求められると、歯元円弧構成歯形の最弱断面歯厚Snf’及び歯元円弧構成歯形の加重高さh’は次の式で求められる。但し、点25と歯車中心11の距離は、JGA401−01を参考とし、歯直角歯先荷重角をαnF、歯直角基準圧力角をαとする。
nf’=2(Re×sinθ−Rz×cos30゜)
’Rz×cosα/cosαnF/2−(Re×cosθ−Rz×sin30゜)
【0016】
次に、JGMA401−01の歯形係数と等しくなる歯元円弧Rの計算及び補正について説明する。JGMA401−01においては、歯車の強さ計算に関する規格が示されているが、歯元円弧半径の計算方法については記載されていない。そこで、図3において、工具創成歯形の歯形係数が、JGMA401−01の歯形係数とほぼ同等となる歯元円弧歯形の歯元円弧半径を求め、さらに補正を行う計算フローの概略を示す。歯車諸元設定32により、モジュール、歯数、転位係数を入力する。その他の歯形係数に影響する諸元、歯末のたけ、歯元のたけ、工具先端半径R等は標準的な数値に固定、設定されている。
【0017】
計算ブロック33でJGMA401−01に基づき、工具創成歯形での基準となる基準歯形係数Yの計算を行う。
【0018】
さらに、計算ブロック34で歯元円弧歯形の歯形係数Y’の計算を行う。この場合、歯元円弧半径の計算精度を設定、その範囲で、歯元円弧半径を変化させ、歯形係数Y’が基準歯形係数Yのより大きく、かつ誤差が最小の時の、歯元円弧半径Ryfを求める。Y≦Y’とし、歯形係数としては数値が大きい方が許容応力小さい。基準歯形係数 より小さい場合、相手歯車との干渉が想定される。
【0019】
求められた歯元円弧半径Ryfを計算ブロック35で補正を行い、補正後の歯元円弧半径を求める。本実施の形態では相手歯車との干渉がない最大歯元円弧半径Rmaxを求めるため、複数の補正係数での歯元円弧半径Rを求めている。補正式を次に示す。
R=Ryf+(X−A)/10
A=X:補正無 A=0.2〜0.6
この場合、歯形干渉防止の為、歯形係数同等歯元円弧半径Ryfより小さいことが前提条件となる為、補正項正の場合が、補正項=0として計算を行っている。
【0020】
相手歯車との干渉を調べる為に、相手歯車の歯先に相当する位置、歯底から0.25モジュールの高さの歯形座標を比較している。歯車中心から(歯底円半径+0.25)の半径での工具創成歯形の歯形座標と、任意半径の歯元円弧歯形の歯形座標とのX座標での比較を行い、歯元円弧歯形のX座標数値が大きいと相手歯車との干渉が考えられる。また、参考として歯車中心間距離が小さくなった場合も想定し、歯底から0.2モジュールの高さでのX座標の比較を行った。
【0021】
比較の為、歯数25と一定とし、転位係数を変化させた時の、補正無の場合、補正をした時の結果を図4に示す。数値は[工具創成歯形のX座標]−[歯元円弧歯形のX座標]で負の場合は全て0で表記している。また、図4の結果を図5にグラフとして示す。さらに、実際の歯形形状を図6に示す。左側が補正無の形状であり、右側が本発明での形状である。
【0022】
図4、図5で示されるように、補正無においては転位係数−0.5では、上記数値が約0.05となり、歯形干渉が発生、補正では0.01以下となりバックラッシュ量を考慮した場合、実用上問題がなくなる。さらに干渉に対し確実にするためには、補正IIIまでの範囲で充分となり、これ以上の補正量とすると歯元が細くなり強度上に問題が発生する。従って、歯元円弧半径の上限値として、補正項の定数部を0.3〜0.5の範囲で設定することにより、実用上干渉もない、可能な強度を得られる歯形を提供できる。
【0023】
前述のように、歯元円弧半径の上限値を設定したが、歯車を実際に用いる場合、加工上の精度(公差)が問題となる。また、歯形係数同等の歯元円弧半径の下限値は、転位係数+0.9の時、0.375モジュールとなっているが、原理的に、工具先端半径Rを0.375モジュールに設定した為、歯元はその値以下で創成されないため、歯元部に円弧R部を構成する為には、公差下限値は−0.375モジュール以上とする必要がある。公差巾として、加工上と強度上の2面から考える必要がある。歯元円弧半径が小さくなると、歯元が細くなり強度が低下してくる。この強度への影響は歯形係数値の変化、比較により判断できる。工具創成歯形を1とした時、歯元円弧歯形の強度比を強度係数として考えると、次の式で表される。
[強度係数]=[工具創成歯形の歯形係数]/[歯元円弧歯形の歯形係数]
【0024】
転位係数を0、補正された歯元円弧半径の設定を0.05モジュール単位とした時の強度係数と、設定歯元円弧半径から0.05モジュール、0.1モジュールだけ減じた時の強度係数とを図7に示す。強度係数としては、鋸歯状の変化を示し、これは、設定歯元円弧半径を0.05モジュール単位に丸め処理した場合を示している。設定半径での強度係数は歯数21では約0.95(工具創成歯形に対し約7%強度低下)となっている。また、−0.1モジュール減じた時の強度係数は設定半径に対し、さらに約0.06低下(工具創成歯形に対し約13%強度低下)となっている。
【0025】
工具創成歯形に対する強度低下は設計時に考慮されるとすれば、公差による強度低下が問題となってくる。従って、公差による強度低下を10%程度で押さえようとすると、概略計算で−0.16モジュール以上となる。加工上、モジュールが小さい場合、例えば、モジュール0.2では公差巾0.1モジュールでは実寸で0.02mmとなる。また、成形上歯元部は肉厚が厚くなり、ヒゲ等が出やすく精度が不安定となり、この公差巾では非常に困難となっている。この場合、実寸で0.04mm程度、0.2モジュール必要とされる。以上から、モジュールの大きさにより、下限値として−0.1モジュール〜−0.2モジュールに設定することで、加工上、強度上の2面から妥当な歯元円弧半径が設定できる。例えば、モジュール0.6以上は下限値−0.1モジュール、あるいはモジュール0.6未満は下限値−0.2モジュール等のように、必要に応じて細かく設定しても良い。
【0026】
【発明の効果】
請求項1記載の発明によれば、歯底面から任意半径の円弧歯元面が構成されているインボリュート歯車において、上記歯元面の歯元円弧半径R同一の歯車諸元による日本歯車工業会規格(以下「JGMA」という)401−01の歯車係数と等しくなるように計算された歯元円弧半径Ryfを基準とし転位係数X、基準となる転位係数AによりR=Ryf+f(X)、f(X)=(X−A)/10、ただし、X<A→f(x)<0、X≧A→f(x)=0の関係式により補正したため、従来の強度計算(歯形係数計算)を応用して、歯元円弧歯形まで許容応力の計算が可能になり、かつ、歯形干渉がなく、強度劣化も小さく、歯数、転位係数等によりそれぞれの条件で最適な歯元円弧半径が設定可能となる。
【0027】
請求項2記載の発明によれば、請求項1記載の発明において、上記歯元円弧半径Rの上限RmaxはA=0.3〜0.5である式を満たすようにしたため、相手歯車との干渉が問題とならないような歯元円弧半径の上限値を設定することができる。
【0028】
請求項3記載の発明によれば、請求項2記載の発明において、前記歯元円弧半径の下限Rminは、上記Rmaxから0.1モジュールから0.2モジュール減じた値であることを満たすようにしたため、上限値を基準として下限値を設定するため、公差の上限・下限での強度差を実用上可能な範囲で押さえることができ、加工上の問題から、モジュールの大きさにより巾を持たせたため、モジュールが小さく、強度をあまり必要としないものは公差巾を大きく設定する成形歯車を得ることができる。
請求項4記載の発明によれば、歯底面から任意半径の円弧歯元面が構成されているインボリュート歯車の形状決定方法において、上記歯車の歯元円弧半径Rを、対象歯車の転移係数Xと基準となる転位係数Aを比較し、X≧Aの場合は、上記歯車と同一の歯車諸元による日本歯車工業会規格401−01の歯形係数と等しくなるよう計算した歯元円弧半径Ryfとし、X<Aの場合は、R=Ryf+F(X)、f(X)=(X−A)/10によって決定するようにしたため、従来の強度計算(歯形係数計算)を応用して、歯元円弧歯 形まで許容応力の計算が可能になり、かつ、歯形干渉がなく、強度劣化も小さく、歯数、転位係数等によりそれぞれの条件で最適な歯元円弧半径の決定が可能となる。
請求項5記載の発明によれば、請求項4記載の発明において、前記歯元円弧半径の上限をRmaxとした場合、A=0.3から0.5の関係式を満たすようにしたため、相手歯車との干渉が問題とならないような歯元円弧半径の上限値を設定することが可能となる。
請求項 6 記載の発明によれば、前記歯元円弧半径Rの許容値を0.1モジュールから0.2モジュールとするようにしたため、上限値を基準として下限値を設定するため、公差の上限・下限での強度差を実用上可能な範囲で押さえることができる。また、加工上の問題から、モジュールの大きさにより巾を持たせたため、モジュールが小さく、強度をあまり必要としないものは公差巾を大きく設定することができる。
【図面の簡単な説明】
【図1】 本発明にかかる成形歯車の歯形形状の一例を示す正面図である。
【図2】 本発明にかかる成形歯車の歯形形状の別の例を示す正面図である。
【図3】 本発明にかかる成形歯車の歯元円弧半径の計算工程を示すフローチャートである。
【図4】 本発明にかかる成形歯車の歯元円弧半径の計算結果の比較を示す表である。
【図5】 本発明にかかる成形歯車の歯元円弧半径の計算結果の比較を示すグラフである。
【図6】 本発明にかかる成形歯車の歯形形状を示す正面図である。
【図7】 本発明にかかる成形歯車の強度係数を示すグラフである。
【符号の説明】
Rmax 歯元円弧半径の上限
Rmin 歯元円弧半径の下限
R 歯元円弧半径
Ryf JGMA401−01の歯形係数と等しいときの歯元円弧半径
RZ 歯元円弧半径
YF 歯形係数
X 転位係数
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tooth profile of a molded spur gear such as a resin spur gear or a sintered gear.
[0002]
[Prior art]
Conventionally, not all designers knew that the tooth root shape of a formed spur gear is configured in an arc shape, so the allowable stress calculation is also the conventional Japan Gear Industry Association standard (hereinafter “ JGMA ”), and may not be compatible with actual parts. Furthermore, there is no algorithm for determining the tooth root arc radius, and there is no allowable stress calculation formula based on the above shape. Therefore, since the arbitrary tooth root arc radius has been determined from experience, a radius smaller than necessary is often set in order to prevent interference with the mating gear, which is often disadvantageous in terms of strength.
[0003]
The gear is standardized in JGMA401-01 as the tooth root shape is a trocolloid curved surface. Here, JGMA401-01 is unified with the goal of making it easy to understand the gears for general industrial machinery, not requiring excessive time and labor for calculation, and that there is no individual difference in the calculation results. In general, it is widely used for the purpose of gaining advantages such as technical improvement, labor saving, cost reduction and product unification throughout the design, manufacture and use of gears and gear transmissions. A standard for calculating the strength of gears was established with the goal of
[0004]
If a formed gear is required due to the configuration of the part, the arc radius R of the tooth base is numerically input when setting the machining conditions. In this case, the straight line from the base point of the involute to the gear center and the tooth bottom are connected by the arc having the radius R, or the involute surface and the tooth bottom are connected by the arc having the radius R. In this way, since the provisional proposal is made so that a radius R having a constant value is formed in the tooth base depending on the module and the number of teeth, the strength may be greatly lowered depending on the dislocation coefficient and the number of teeth. Actually, there are many parts lower than the calculation allowable stress, which may cause a problem. Moreover, in order to eliminate the point, it is necessary to set a large safety factor, which is uneconomical. Moreover, there is currently no algorithm for calculating the tooth profile strength of the tooth root arc.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, and sets the tooth profile shape of a molded gear that does not interfere with the counterpart gear under individual conditions and can obtain the maximum strength by the number of teeth, the dislocation coefficient, etc. can do.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is an involute gear in which an arc tooth root surface having an arbitrary radius is formed from the tooth bottom surface, and the tooth root arc radius R of the arc tooth root surface is the same gear. based on the calculated dedendum arc half diameter R yf Japanese gear Manufacturers Association standards 4 01-01 tooth form factor and equal Kunar so by specifications, addendum modification coefficient of the positive reference shift coefficient a and the target gear X A molded gear characterized by being determined according to the following conditions using:
R = Ryf + f (X)
f (X) = (X−A) / 10
However, X <A → f (x) <0, X ≧ A → f (x) = 0
[0007]
According to a second aspect of the present invention, in the molded gear according to the first aspect , the upper limit Rmax of the root radius R is A = 0.3 to 0.5.
[0008]
According to a third aspect of the present invention, in the molded gear according to the second aspect, the lower limit Rmin of the root radius R is a value obtained by subtracting 0.2 modules from 0.1 modules to the Rmax. .
The invention according to claim 4 is the method for determining the shape of an involute gear in which an arc tooth root surface having an arbitrary radius is formed from the tooth bottom surface. If X ≧ A, the tooth root radius Ryf calculated to be equal to the tooth profile coefficient of the Japanese Gear Industry Association Standard 401-01 based on the same gear specifications as the above gear is set, and X < In the case of A, it is determined by R = Ryf + f (X), f (X) = (X−A) / 10.
According to a fifth aspect of the present invention, in the gear shape determining method according to the fourth aspect, the upper limit Rmax of the tooth root arc radius R of the gear is such that A is 0.3 to 0.5.
A sixth aspect of the present invention is the gear shape determining method according to the fifth aspect, wherein the lower limit Rmin of the tooth root arc radius R of the gear is a value obtained by subtracting 0.1 to 0.2 modules from the Rmax. and wherein the [0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, coefficients used for correcting the tooth root arc radius R will be described with reference to the drawings, and an embodiment of the tooth profile shape of the formed gear according to the present invention will be described.
[0010]
First, the tooth profile coefficient (tooth profile created by a tool) in JGMA 401-01 will be described. Tooth coefficient Y F is a coefficient for relating the geometry and bending strength of the teeth of the gear, the overall load on the tooth surface is determined based on the weakest cross-sectional bending stress as applied to the tooth tip. Fig. 1 shows a tooth profile created by a tool. The weakest cross section is a section 6 connecting points 4 and 5 where the Hoofer 30 ° line, that is, the straight lines 2 and 3 inclined by 30 ° from the center line 1 of the tooth profile, contact the root surface. If the point where the weight line 7 perpendicular to the tooth tip surface intersects the center line 1 is 8, the weakest tooth thickness Snf is the length of the cross section 6, and the weighted height hf is the distance between the cross section 6 and the point 8. It is expressed. Further, assuming that the angle between the weight line 7 and the cross section 6 is a tooth right angle tip load angle α nF , a tooth right angle reference pressure angle α n (not shown), and a tooth right angle module m n , the tooth form coefficient Y F is expressed by the following equation. It is expressed.
Y F = {6 (hf / mn) cosαnF} / {(Snf / mn) 2cosαn}
[0011]
Next, the tooth profile coefficient of the tooth profile of the tooth root arc configuration of the formed gear will be described. The spur gear by the molding process has two cases as shown in FIG. 2 (a) and FIG. 2 (b) depending on the number of teeth, the dislocation coefficient, and the radius of the tooth root arc from the algorithm for mold processing. is there. As shown in FIG. 2A, when the tooth shape is formed by connecting a straight line 12 from the base point 10 of the involute surface on the basic circle 9 to the gear center 11 and a root circle 13 with a root arc 14 having an arbitrary radius. As shown in FIG. 2B, the tooth profile is formed by connecting the involute surface 15 and the root circle 16 with a root arc 17 having an arbitrary radius.
[0012]
The tooth profile coefficient Y F ′ of the tooth arc constituting the tooth root arc is considered in the same manner as Y F described above . In example FIG. 2 (a), the weakest cross-section is the section 22 connecting the Y F as well as 20 and 21 that Hofer 30 ° line 18, 19 is in contact with the dedendum arc. Further, since the same and the Y F with respect to weight, the tooth crest to the perpendicular weighted line 23 and 25 that intersects the center line 24, the weakest cross-section tooth thickness S nf the dedendum circular arc configuration tooth 'is a cross-sectional The length 22 and the weighted height h f ′ of the tooth profile constituting the root arc are expressed by the distance between the cross section 22 and the point 25. Therefore, the tooth profile coefficient Y F ′ of the tooth profile constituting the tooth root arc is expressed by the following equation.
Y F ′ = {6 (h f ′ / m n ) cos α nF } / {(S nf ′ / m n ) 2 cos α n }
The above formula is the same in FIG.
[0013]
Next, how to obtain the weighted height h f ′ and the weakest tooth thickness S nf ′ will be described. First, polar coordinates (Re, θ) of the center of the tooth root arc are obtained. In both cases of FIG. 2 (a) and FIG. 2 (b), Re represents the radius of the root circles 13 and 16 as Rs and the radius of the root of the root as Rz.
Re = Rs + Rz
It is represented by
The way of obtaining θ differs between FIG. 2A and FIG. 2B. In the case of FIG. 2A, the angle θ ′ between the straight line 12 and the root arc 26 of the root arc 14 is a perpendicular line from the center 26 to the straight line 12, this intersection and the gear center 11, and the gear center and the root arc. It is obtained by considering a right triangle consisting of the center 26. This is obtained by adding an angle θ ″ formed by the center line 24 and the base point 10 of the involute surface.
[0014]
In the case of FIG. 2B, the tooth root arc center 27 is an involute line having a base point 29 whose arc length on the base circle 28 is equal to the tooth root arc radius from the base point 29 of the involute surface 15 on the base circle 28. 31 is located. Accordingly, since the distance from the gear center 32 to the tooth root arc center 27 is obtained as described above, it can be calculated by obtaining the intersection 30 with the involute line 31. This can be obtained in the same manner as the tooth surface coordinates, as in the case of calculating the coordinates on the involute surface at an arbitrary radius.
[0015]
When the polar coordinates (Re, θ) of the tooth root arc center are obtained, the weakest sectional tooth thickness S nf ′ of the tooth root constituting tooth profile and the weighted height h f ′ of the tooth root constituting tooth profile are obtained by the following equations. . However, the distance between the point 25 and the gear center 11, the JG M A401-01 as a reference, repelled Sumiha destination load angle alpha nF, the teeth perpendicular reference pressure angle is alpha n.
S nf ′ = 2 (Re × sin θ−Rz × cos 30 °)
h f 'Rz × cosα n / cosα nF / 2- (Re × cosθ-Rz × sin30 °)
[0016]
Next, calculation and correction of the tooth root arc R that is equal to the tooth profile coefficient of JGMA 401-01 will be described. In JGMA401-01, a standard for calculating the strength of a gear is shown, but a method for calculating a tooth root arc radius is not described. Therefore, FIG. 3 shows an outline of a calculation flow in which the tooth root arc radius of the tooth root arc tooth profile in which the tooth profile coefficient of the tool generating tooth profile is substantially equal to the tooth profile coefficient of JGMA 401-01 is obtained and further corrected. The gear specification 32 is used to input the module, the number of teeth and the dislocation coefficient. The other specifications that affect the tooth profile coefficient, the tip end, the tip base, the tool tip radius R, etc. are fixed and set to standard values.
[0017]
In calculation block 33 on the basis of JGMA401-01, the calculation of the reference tooth profile factor Y F as a reference for the tool creation teeth.
[0018]
Further, the calculation block 34 calculates the tooth profile coefficient Y F ′ of the tooth base arc tooth profile. In this case, the calculation accuracy of the tooth root arc radius is set, the tooth root arc radius is changed within the range, and the tooth root when the tooth profile coefficient Y F 'is larger than the reference tooth profile coefficient Y F and the error is minimum. The arc radius Ryf is obtained. And Y F ≦ Y F ', the allowable stress the larger numbers as the tooth profile coefficient is small. If the reference tooth profile factor Y F smaller, the interference between mating gear is assumed.
[0019]
The calculated tooth root radius Ryf is corrected by the calculation block 35, and the corrected tooth root radius is determined. In the present embodiment, the tooth root arc radius R with a plurality of correction factors is obtained in order to obtain the maximum tooth root radius Rmax without interference with the counterpart gear. The correction formula is shown below.
R = Ryf + (X−A) / 10
A = X: No correction A = 0.2 to 0.6
In this case, in order to prevent tooth profile interference, the precondition is that the tooth profile coefficient is equal to or smaller than the tooth root radius Ryf. Therefore, when the correction term is positive, the calculation is performed with the correction term = 0.
[0020]
In order to investigate the interference with the counter gear, the tooth profile coordinates of the position corresponding to the tooth tip of the counter gear and the height of 0.25 module from the tooth bottom are compared. Compare the tooth profile coordinates of the tool generating tooth profile at the radius of (tooth root radius + 0.25) from the gear center with the X coordinate of the tooth profile coordinates of the tooth root arc tooth profile of any radius. If the coordinate value is large, interference with the mating gear can be considered. For reference, the X-coordinate at a height of 0.2 module from the tooth bottom was compared with the assumption that the distance between the gear centers was reduced.
[0021]
For comparison, FIG. 4 shows the result of correction when the number of teeth is fixed at 25 and the dislocation coefficient is changed without correction. Numerical values are expressed as 0 in the case of [X coordinate of tool generating tooth profile]-[X coordinate of tooth root tooth profile] negative. Moreover, the result of FIG. 4 is shown as a graph in FIG. Furthermore, the actual tooth profile is shown in FIG. The left side is the shape without correction, and the right side is the shape according to the present invention.
[0022]
As shown in FIG. 4 and FIG. 5, without correction, when the dislocation coefficient is −0.5, the above numerical value is about 0.05, and tooth profile interference occurs. With correction I , 0.01 or less, and the backlash amount is taken into consideration. In this case, there is no practical problem. Further, in order to ensure against interference, the range up to the correction III is sufficient, and if the correction amount is larger than this, the tooth base becomes thin and a problem occurs in strength. Therefore, by setting the constant part of the correction term in the range of 0.3 to 0.5 as the upper limit value of the tooth root arc radius, it is possible to provide a tooth profile capable of obtaining possible strength without practical interference.
[0023]
As described above, the upper limit value of the tooth root arc radius is set. However, when the gear is actually used, accuracy (tolerance) in processing becomes a problem. In addition, the lower limit value of the tooth root radius equivalent to the tooth profile coefficient is 0.375 module when the dislocation coefficient is +0.9, but in principle, the tool tip radius R is set to 0.375 module. Since the tooth root is not created below that value, in order to form the arc R portion in the tooth root portion, the tolerance lower limit value needs to be −0.375 module or more. The tolerance width needs to be considered from the two aspects of processing and strength. As the tooth root arc radius decreases, the tooth root becomes thinner and the strength decreases. This influence on the strength can be judged by changing and comparing the tooth profile coefficient values. When the tool generating tooth profile is set to 1, the strength ratio of the tooth root arc tooth profile is considered as a strength coefficient, which is expressed by the following formula.
[Strength factor] = [Tooth profile of the tool generating tooth profile] / [Tooth profile of the tooth root arc tooth profile]
[0024]
Strength coefficient when the dislocation coefficient is 0 and the corrected tooth root arc radius is set to 0.05 module units, and the strength coefficient when the set tooth root arc radius is reduced by 0.05 module and 0.1 module Is shown in FIG. As the strength coefficient, a sawtooth change is shown, which shows a case where the set tooth root arc radius is rounded to 0.05 module units. The strength coefficient at the set radius is about 0.95 with 21 teeth (about 7% lower strength than the tool generating tooth profile). In addition, the strength coefficient when -0.1 module is reduced is about 0.06 lower than the set radius (about 13% lower strength than the tool generating tooth profile).
[0025]
If the strength reduction for the tool generating tooth profile is taken into consideration at the time of design, the strength reduction due to tolerance becomes a problem. Therefore, if an attempt is made to suppress a decrease in strength due to tolerance at about 10%, the approximate calculation is -0.16 module or more. For processing, if the module is small, for example, the module 0.2 has a tolerance width of 0.1 module and the actual size is 0.02 mm. In addition, the upper part of the upper part of the molding is thick, so that whiskers and the like are likely to appear, the accuracy becomes unstable, and this tolerance width is very difficult. In this case, an actual size of about 0.04 mm and 0.2 modules are required. From the above, by setting the lower limit value to -0.1 module to -0.2 module depending on the size of the module, an appropriate tooth root radius can be set from two surfaces in terms of processing and strength. For example, the module 0.6 or more may be set as required, such as a lower limit value of -0.1 module, or less than module 0.6, such as a lower limit value of -0.2 module.
[0026]
【The invention's effect】
According to the first aspect of the present invention, in an involute gear having an arc tooth root surface having an arbitrary radius from the tooth bottom surface, the tooth root arc radius R of the tooth root surface is the same as that of Japan Gear Industry. Kai standard (hereinafter referred to as "JGMA") gear coefficient of 401-01 and equal Kunar so the calculated dedendum arc half diameter R yf a reference, R rearrangement coefficient a becomes a dislocation coefficient X, reference = Ryf + f (X), f (X) = (X−A) / 10, where X <A → f (x) <0, X ≧ A → f (x) = 0 Applying the strength calculation (tooth profile coefficient calculation), it is possible to calculate the allowable stress up to the tooth root circular tooth profile, there is no tooth profile interference, the strength deterioration is small, and it is optimal for each condition depending on the number of teeth, the dislocation coefficient, etc. It is possible to set a correct root radius.
[0027]
According to the second aspect of the present invention, in the first aspect of the invention, the upper limit Rmax of the tooth root arc radius R satisfies the formula A = 0.3 to 0.5 . It is possible to set the upper limit value of the root radius so that interference does not become a problem.
[0028]
According to a third aspect of the present invention, in the second aspect of the present invention, the lower limit Rmin of the root radius R is satisfied to be a value obtained by subtracting 0.2 modules from 0.1 modules to the Rmax. because you, to set the lower limit on the basis of the upper limit value, Ki out to suppress the intensity difference between the upper and lower limits of the tolerance at practical extent possible, from processing problems, the width by the size of the module Since it is provided, a molded gear having a large tolerance width can be obtained for a small module that does not require much strength.
According to the fourth aspect of the present invention, in the method for determining the shape of an involute gear in which an arc tooth root surface having an arbitrary radius is formed from the tooth bottom surface, the tooth root arc radius R of the gear is set to a transfer coefficient X of the target gear. Comparison of the dislocation coefficient A used as a reference, and when X ≧ A, the tooth root arc radius Ryf calculated to be equal to the tooth profile coefficient of the Japan Gear Industry Association Standard 401-01 with the same gear specifications as the above gear, In the case of X <A, since R = Ryf + F (X), f (X) = (X−A) / 10, it is determined by applying the conventional strength calculation (tooth profile coefficient calculation), and the tooth root arc until the tooth form allows calculation of the allowable stress, and there is no tooth profile interference, less strength deterioration, the number of teeth, it is possible to optimal dedendum arc radius of determined for each condition by shift coefficient or the like.
According to the invention of claim 5, in the invention of claim 4, when the upper limit of the root radius is Rmax, the relational expression of A = 0.3 to 0.5 is satisfied. It is possible to set the upper limit value of the tooth root arc radius so that the interference with the gear does not become a problem.
According to the invention of claim 6, since the allowable value of the tooth root arc radius R is changed from 0.1 module to 0.2 module, the lower limit value is set on the basis of the upper limit value.・ The difference in strength at the lower limit can be suppressed within the practical range. Further, because of the processing problem, the width is given depending on the size of the module, so that the tolerance width can be set large when the module is small and does not require much strength.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a tooth profile of a formed gear according to the present invention.
FIG. 2 is a front view showing another example of the tooth profile of the formed gear according to the present invention.
FIG. 3 is a flowchart showing a calculation process of a tooth root arc radius of the formed gear according to the present invention.
FIG. 4 is a table showing a comparison of calculation results of tooth root arc radii of the formed gear according to the present invention.
FIG. 5 is a graph showing a comparison of calculation results of tooth root arc radii of the formed gear according to the present invention.
FIG. 6 is a front view showing a tooth profile of a formed gear according to the present invention.
FIG. 7 is a graph showing the strength coefficient of the formed gear according to the present invention.
[Explanation of symbols]
Rmax Upper limit of tooth root arc radius Rmin Lower limit of tooth root arc radius R tooth root arc radius Ryf tooth root arc radius when equal to JGMA401-01 tooth root radius RZ tooth root arc radius YF tooth profile coefficient X shift coefficient

Claims (6)

歯底面から任意半径の円弧歯元面が構成されているインボリュート歯車において、上記円弧歯元面の歯元円弧半径Rは、同一の歯車諸元による日本歯車工業格401−01の歯形係数と等しくなるように計算された歯元円弧半径Ryfを基準として、プラスの基準転位係数Aと対象歯車の転位係数Xを用いた以下の条件により決定することを特徴とする成形歯車。
R=Ryf+f(X)
f(X)=(X−A)/10
ただし、X<A→f(x)<0、X≧A→f(x)=0
In involute gear circular arc flank any radius from the tooth bottom is configured, dedendum circular arc radius of the circular arc flank R is tooth profile of the same gear specifications of Japanese Gear Manufacturers Association standards 4 01-01 based on the coefficient and equal Kunar so the calculated dedendum arc half diameter R yf, molding and determining the positive reference shift coefficient a and the following conditions using a shift coefficient X of the target gear gear.
R = Ryf + f (X)
f (X) = (X−A) / 10
However, X <A → f (x) <0, X ≧ A → f (x) = 0
上記歯元円弧半径Rにおいて基準転移係数Aを0.3から0.5とすることを特徴とする請求項1記載の成形歯車。The formed gear according to claim 1, wherein a reference transition coefficient A is set to 0.3 to 0.5 at the root arc radius R. 前記歯元円弧半径上公差を0モジュール、下公差を−0.1モジュールから−0.2モジュールとすることを特徴とする請求項2記載の成形歯車。 The formed gear according to claim 2, wherein the upper tolerance of the root radius R is 0 module and the lower tolerance is -0.1 module to -0.2 module. 歯底面から任意半径の円弧歯元面が構成されているインボリュート歯車の形状決定方法において、上記歯車の歯元円弧半径Rを、対象歯車の転移係数Xと基準となる転位係数Aを比較し、X≧Aの場合は、上記歯車と同一の歯車諸元による日本歯車工業会規格401−01の歯形係数と等しくなるよう計算した歯元円弧半径Ryfとし、X<Aの場合は、R=Ryf+f(X)、f(X)=(X−A)/10によって決定することを特徴とする成形歯車の歯型形状決定方法。In the method for determining the shape of an involute gear in which an arc tooth root surface having an arbitrary radius is formed from the tooth bottom surface, the tooth root arc radius R of the gear is compared with the transition coefficient X of the target gear and the reference shift coefficient A, In the case of X ≧ A, the tooth root radius Ryf calculated to be equal to the tooth profile coefficient of the Japan Gear Industry Association Standard 401-01 with the same gear specifications as the above gear is used, and when X <A, R = Ryf + f (X), f (X) = (X−A) / 10. 上記基準転移係数Aを0.3から0.5として上記歯元円弧半径Rを決定することを特徴とする請求項4記載の成形歯車の歯形形状決定方法。5. The method for determining a tooth profile shape of a formed gear according to claim 4, wherein the tooth root arc radius R is determined by setting the reference transition coefficient A to 0.3 to 0.5. 前記歯元円弧半径Rの上公差を0モジュール、下公差を−0.1から−0.2モジュールとすることを特徴とする請求項5記載の成形歯車の歯形形状決定方法。6. The method of determining a tooth profile shape of a formed gear according to claim 5, wherein the upper tolerance of the root radius R is 0 module and the lower tolerance is -0.1 to -0.2 module.
JP16453397A 1997-06-20 1997-06-20 Molded gear and method for determining tooth profile of molded gear Expired - Fee Related JP3693466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16453397A JP3693466B2 (en) 1997-06-20 1997-06-20 Molded gear and method for determining tooth profile of molded gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16453397A JP3693466B2 (en) 1997-06-20 1997-06-20 Molded gear and method for determining tooth profile of molded gear

Publications (2)

Publication Number Publication Date
JPH1113859A JPH1113859A (en) 1999-01-22
JP3693466B2 true JP3693466B2 (en) 2005-09-07

Family

ID=15794978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16453397A Expired - Fee Related JP3693466B2 (en) 1997-06-20 1997-06-20 Molded gear and method for determining tooth profile of molded gear

Country Status (1)

Country Link
JP (1) JP3693466B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089964A (en) * 2013-02-21 2013-05-08 彭敖勇 Design of bevel gear and cylindrical gear and mixed cutting method thereof
CN103697143A (en) * 2013-12-13 2014-04-02 江苏飞船股份有限公司 Large-tooth high-factor straight-tooth cylindrical gear
CN103821905A (en) * 2014-03-11 2014-05-28 华中科技大学 Involute gear tooth profile modification method, modified tooth profile and application of method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125067A1 (en) * 2001-05-23 2002-12-12 Bosch Gmbh Robert crown
JP2009160960A (en) * 2007-12-28 2009-07-23 Nsk Ltd Rack-and-pinion type steering device
CN102691773B (en) * 2012-06-06 2014-09-03 株洲齿轮有限责任公司 Computing method of rotary interference amount of double contact gears
CN109751395A (en) * 2019-03-04 2019-05-14 中车北京南口机械有限公司 Gear and gear-box, and the city rail vehicle with the gear-box

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089964A (en) * 2013-02-21 2013-05-08 彭敖勇 Design of bevel gear and cylindrical gear and mixed cutting method thereof
CN103089964B (en) * 2013-02-21 2015-12-09 彭敖勇 The design of a kind of bevel gear and cylindrical gears and mixing cutting method thereof
CN103697143A (en) * 2013-12-13 2014-04-02 江苏飞船股份有限公司 Large-tooth high-factor straight-tooth cylindrical gear
CN103821905A (en) * 2014-03-11 2014-05-28 华中科技大学 Involute gear tooth profile modification method, modified tooth profile and application of method

Also Published As

Publication number Publication date
JPH1113859A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
EP0292559B1 (en) Gear having small relative curvature at contact point
KR101679632B1 (en) Gearing of a gearwheel
US6964210B2 (en) Gear tooth profile
US4108017A (en) Standard-pitch gearing
CN109707822B (en) Design method of small-modulus harmonic transmission meshing tooth form applied to robot and detector
JP3693466B2 (en) Molded gear and method for determining tooth profile of molded gear
US9550243B2 (en) Gear and manufacturing method for the same
CN108953550B (en) Design method for point tooth surface of straight gear
EP1803974B1 (en) Gear wheel with chamfered portions
EP0622566A1 (en) Flexing contact type gears of non-profile-shifted two-circular-arc composite tooth profile
US20130118282A1 (en) Load rating optimized bevel gear toothing
CN111322373B (en) Gear pair design method based on claw helix rack knife
JP3628672B2 (en) Curve interpolation by arc
JPH0932908A (en) Designing of tooth profile of bevel gear
CN110737957A (en) method for designing section profile of cycloid disc of speed reducing mechanism
JP2008138874A (en) Gear having arcuate tooth shape and gear transmission device using the same, and gear manufacturing method
CN105127521A (en) Hobbing cutter and method for processing double involute gears
CA2548107A1 (en) Gear tooth profile curvature
CN109902437B (en) Method for modifying tooth profile of cycloidal gear, cycloidal gear and speed reducer
CN105114597A (en) Single and large negative addendum modification involute gear transmission device
CN113536472A (en) Method for calculating involute initial point of gear based on tooth profile normal method
CN109931367B (en) Linear bevel gear meshing structure, speed reducer and manufacturing method of linear bevel gear
JPH0866828A (en) Hob cutter for generating logics gear
KR102573210B1 (en) Wave gear device with 3-dimensional teeth
JP3323502B2 (en) Non-displacement two-arc composite tooth profile flexing gear system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees