JP3693186B2 - Energizing time control method and electrofusion apparatus for electrofusion joint - Google Patents

Energizing time control method and electrofusion apparatus for electrofusion joint Download PDF

Info

Publication number
JP3693186B2
JP3693186B2 JP06948695A JP6948695A JP3693186B2 JP 3693186 B2 JP3693186 B2 JP 3693186B2 JP 06948695 A JP06948695 A JP 06948695A JP 6948695 A JP6948695 A JP 6948695A JP 3693186 B2 JP3693186 B2 JP 3693186B2
Authority
JP
Japan
Prior art keywords
resistance value
energization time
energization
joint
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06948695A
Other languages
Japanese (ja)
Other versions
JPH0868488A (en
Inventor
光幸 稲垣
博 大矢
亮一 岩吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP06948695A priority Critical patent/JP3693186B2/en
Publication of JPH0868488A publication Critical patent/JPH0868488A/en
Application granted granted Critical
Publication of JP3693186B2 publication Critical patent/JP3693186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • B29C66/12821Stepped joint cross-sections comprising at least one overlap joint-segment comprising at least two overlap joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • B29C66/12841Stepped joint cross-sections comprising at least one butt joint-segment comprising at least two butt joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52292Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91214Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods by measuring the electrical resistance of a resistive element belonging to one of the parts to be welded, said element acting, e.g. as a thermistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • B29C66/91311Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating
    • B29C66/91317Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating by measuring the electrical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91653Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Pipe Accessories (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱可塑性樹脂からなる継手本体内に電熱線を埋設した電気融着継手(以下、単に継手ということがある。)と、この継手の電熱線に通電することによりパイプと継手とを電気融着接続するときの通電時間制御方法及びこのとき使用する電気融着装置に関するものである。
【0002】
【従来の技術】
従来、ポリエチレンやポリブテン等の熱可塑性樹脂材料からなるパイプと継手を電気融着で接続することは良く知られている。
また、この時の通電時間制御方法として、先ず電気融着継手の内部に埋設した電熱線を流れる電流の電気抵抗を測定して、継手の品種と口径(口径は接続口の呼び径、品種はソケットやキャップ等の種類)を識別し、これから予め継手の品種口径毎に設定しておいた最適通電時間を選定し、この時間分だけを自動的に通電するようにした、いわゆる継手識別方式の通電時間制御方法(特公平3-27014号)がある。
【0003】
また、この種の電気融着継手では、ソケットのように融着接続口が2口の両口継手とキャップのように融着接続口が1口の片口継手とがある。従来、これらに使用する電熱線は同じ特性のものを接続口に連続して巻いていた。従って、その継手の電気抵抗値は、両口のソケット継手の方が片口のキャップ継手よりも2倍大きかった。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した通電時間制御方法では、電熱線自身の電気抵抗に製造上のバラツキが通常数%あるため、品種が多い場合は、品種口径毎の電気抵抗の範囲が重なり合う部分が設計上避けられずに生じてしまい、肝心な品種口径の識別をすることが出来ないことがあった。
また、上記したように従来の電気融着継手では、品種と口径を識別しようとすると、口径が同じであってもソケット(両口継手)とキャップ(片口継手)では電気抵抗値が2対1の関係になっているので、小さい口径のソケットと大きい口径のキャップとが略同じ電気抵抗値となるような場合が生じる。この時識別を誤るとソケットは過融着になりキャップは融着不足になる可能性がある。よってこの点からも品種口径を識別できないという問題があった。
また、一般に識別機能を電気融着装置に持たせると構造もまた制御も複雑になるし高価になるという問題がある。
【0005】
本発明は、多品種アイテムの継手に対し、それぞれに適切な通電時間を一義的に設定できる電気融着継手の通電時間制御方法及び電気融着装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、融着に必要な電気エネルギーを一義的に設定するために電気抵抗値と通電時間とを1対1の関係にすることによって上記目的を達成したものである。
すなわち本発明は、電熱線を埋設した電気融着継手の電気融着装置による通電時間制御方法において、
前記電気融着装置に搭載されたR−t線図記憶部には、前記電気融着継手に設けられた電熱線の電気抵抗値Rに対して通電時間tが1対1で対応する関係のR−t線図予め用意され
他方、周囲温度測定部により周囲温度を測定するステップと
前記電気融着継手の電熱線の端部に設けられたコネクタピンに、前記電気融着装置のコネクタを装着するステップと、
前記電熱線に微小電圧をかけて、抵抗値設定部により、融着しようとする継手の電熱線の電気抵抗値R1を求めるステップと
通電時間設定部により、前記電気抵抗値R1と前記R−t線図記憶部に記憶された電気抵抗値と対比して前記継手への通電時間t1を求めると共に前記環境温度に応じて前記通電時間t1を補正した通電時間t2を設定するステップと
抵抗値設定部により、通電を開始した後通電中の電気抵抗値R2を求めるステップと
比較部により、前記電気抵抗値R1と前記電気抵抗値R2とを比較するステップと
継続停止命令部により、前記電気抵抗値R1と前記電気抵抗値R2の差が所定範囲内にある時は通電を継続し通電時間t2後に通電を停止する信号を発信するまたは、前記電気抵抗値R1と前記電気抵抗値R2の差が所定範囲外にある時は警報を発する信号および通電を停止する信号を発信するステップと
からなるようにした電気融着継手の通電時間制御方法である。
なお上記において、周囲温度を測定し、この周囲温度に応じて通電時間あるいは電流値または電圧値のいずれか1つ又は2つを調節して融着に必要な電気エネルギーをその都度補正することは望ましい。
またR−t線図としては、電気抵抗値Rと通電時間tとが単調増大、あるいは単調減少するもの。電気抵抗値Rと通電時間Tとが単調増大の関係を有する線図の二以上の組み合わせ、または単調減少の関係を有する線図の二以上の組み合わせなどが望ましい。
【0007】
また本発明は、電気融着継手に設けられた電熱線の電気抵抗値Rに対して通電時間tが1対1で対応する関係のR−t線図が記憶されたR−t線図記憶部と、
融着しようとする継手の電熱線の電気抵抗値R1を求める抵抗値測定部と、
前記R−t線図と前記電気抵抗値R1とを対比することにより通電時間t1を設定する通電時間設定部と、
周囲温度を測定する周囲温度測定部と、
周囲温度に応じて前記通電時間t1を補正して通電時間t2を設定する通電時間設定部と、
通電中に電気抵抗値R2を測定し、前記電気抵抗値R1と電気抵抗値R2とを比較する比較部と、
前記電気抵抗値R1とR2が所定範囲外の時は警報を発する警報部と、
通電開始を命令する通電開始命令部と、
前記電気抵抗値R1とR2が所定範囲内の時は通電を継続し、前記電気抵抗値R1とR2が所定範囲外の時は通電を停止しかつ前記警報部に警報信号を発信する継続停止命令部とを有し、
前記各部がマイコンCPUに置かれ制御する電気融着装置である。
【0009】
【作用】
本発明の通電時間制御方法では、品種口径毎に電気抵抗値Rと通電時間tが1対1に対応するように、予めこれらをR−t線図上に設定しておくから、電気抵抗値Rを測定することにより、通電時間tが求められ、融着に必要な電気エネルギー(以下、融着エネルギーという。)Eが一義的に与えられる。ここで周囲の環境温度、即ち融着現場や季節等による抵抗値の変動に応じて通電時間を補正するとより良好な融着状態が得られる。また、通電時間でなく電流制御方式では電流値を、電圧制御方式では電圧値をそれぞれ補正制御しても良い。これは融着装置や状況に応じて適宜選択することになる。
また、融着作業前の抵抗値R1と作業中すなわち通電中の抵抗値R2が所定範囲外(例えば、R1とR2の差異が5%以上)ということは、抵抗値の測定ミス等の異常が生じていることを意味し、これにて通電を停止するから不良を未然に防ぐことが出来る。
【0010】
上記融着エネルギーは、一般に継手の融着部面積に比例するが、融着面積だけで融着エネルギーを決めると、口径の大きなパイプ及び継手はその肉厚も大きいので融着不足をおこし、また口径の小さなものではその肉厚も小さいので過融着をおこす結果となる。従って、継手の口径と融着面積の両方を加味して最適な融着エネルギーを設定しなければならない。本発明では、接続口1口当たりの融着エネルギーを継手の口径品種毎に重ならないように1対1に設定すると共に片口であるとか両口であるとかの品種には関係なく、測定した電気抵抗値に基づいて一義的に通電時間が決定され、その結果、継手の口径と肉厚に応じた融着エネルギーが供給されるようにしている。
【0011】
R−t線図は、直線であろうと曲線であろうと電気抵抗値Rと通電時間tが1対1で対応するものであれば良いが、定電流制御方式の場合、融着エネルギーEとRtは比例関係にあることから図1〜図3のような右上がりの単調増大の線図上に設定がし易い。他方、定電圧制御方式の場合は、Rtが反比例の関係にあることから右下がりの単調減少の線図が設定し易い。片口継手と両口継手については、片口継手用のR−t線図と両口継手用のR−t線図を組合せた図2のような線図が設定し易く、この時、両者の電気抵抗値は2対1であるが両者とも通電時間は等しいので1口当たりの融着エネルギーは等しくなる。また口径が小さいところでは肉厚も融着面積も変化が少ないので図3のような滑らかな線図の中にでも設定が可能となる。
【0013】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
先ず、本発明による通電時間制御方法を図1〜図3を用いて説明する。図は電気融着継手の各品種口径サイズの電気抵抗Rと通電時間tの関係(R−t線図)を示しており、図1は単調増大を、図2は2種類の単調増大する線図の組み合わせを、図3は傾きの異なる単調増大の線図の組み合わせの例である。
図1の実線は、ソケットの呼び口径10mm(S10)、13mm(S13)及び16mm(S16)の電気抵抗Rの範囲と通電時間tの関係を示し、破線で径違いソケットの呼び口径13×10mm(RS13×10)及び16×13mm(RS16×13)の電気抵抗Rの範囲と通電時間tの関係を示している。
【0014】
各電気融着継手の電気抵抗Rの範囲は、S10が1.50Ω±0.12Ω、S13が2.0Ω±0.16Ω、S16が2.50Ω±0.20Ω、RS13×10が1.75Ω±0.14Ω、RS16×13が2.30Ω±0.18Ωである。尚、電気抵抗Rの許容範囲は電熱線自身の製造上の誤差や融着強度など品質上の許容範囲から生じてくる。
図からわかる通り、S13とRS13×10及びS16とRS16×13は電気抵抗の範囲が重なり合っており、従来の方法では継手の品種口径サイズの識別が出来ない。
一方、本発明による通電時間制御方法では、品種口径サイズを識別する必要がなく、電気融着継手の電気抵抗Rに1対1に対応した通電時間tを与える方法であるため、例えばS13で測定した電気抵抗Rが許容差下限の1.84Ωの場合、通電時間tは26.8秒が自動的に与えられ、RS13×10の電気抵抗Rが許容差上限の1.89Ωの場合、通電時間tは27.8秒が自動的に与えられる。これによって、品種口径毎に設定された最適な融着エネルギーがそれぞれに与えられることになる。
【0015】
通常、継手及びパイプの呼び口径とそれぞれの肉厚は比例関係にある。即ち口径が大きくなるに従い継手及びパイプの肉厚も大きくなる。従って融着部分の熱容量も口径が大きくなるに伴って大となり、融着エネルギーも多く必要となる。 図1は定電流制御方式による実施例であり、呼び径が大になるに伴って融着エネルギーも大とするため、(En=I2 Rt(I=一定)より)大口径になるに従って電気抵抗Rと通電時間tと共に大きくするものである。本実施例では、電気抵抗Rと通電時間tとの関係をt=20R−10で表わされる線図上に設定したが、この数式にかぎる必要はなく継手の寸法、材質等に応じてt=a1R+b1 又はt=a2 R2 +b2 等で代表される単調増大の関係の中から最適なものを選ぶことで行なわれる。尚ここでa1 、a2 、b1 、b2 は定数を示す。
【0016】
他の方法として定電圧制御方式による場合は、(En =V2 t/R(V=一定)より)呼び口径が大になるに伴って融着エネルギーも大とするため、電気抵抗Rを小さくし、通電時間tを長くすることになる。従って、電気抵抗Rと通電時間tとの関係をt=a3/R+b3 又はt=a4 R+b4 等で代表される単調減少の関係の中から最適なものを選ぶことで行なわれる。ここでa3 、a4 、b3 、b4 は定数を示す。但しa4<0である。よって、定電圧制御方式の実施例としては、図示はしていないが電気抵抗Rと通電時間tを反比例のごとく右下がりの単調減少で表わされる線図上に設定することが行なわれる。
【0017】
図2はR−t線図の第2実施例を示している。この例は、キャップ(Ca)のような片口継手用の線図t=10R+15と、ソケット(S)のような両口継手用の線図t=5R+15を組み合わせたものである。尚、ここでは縦軸に通電時間tを、横軸に電気抵抗Rをとっているが、図1のようにしても構わない。
図からわかる通り、Ca20、25、30、40とS20、25、30、40の8アイテムはそれぞれ電気抵抗Rに対して通電時間tは1対1に定められている。しかもCaとSを同サイズ毎に見ると、電気抵抗Rは1対2で通電時間tは同じに設定している。例えばCa20の電気抵抗Rは約1.6Ω、S20のそれは約3.2Ωで通電時間tは両者共31秒である。従って、1口当たりの融着エネルギーはCaもSも同じ量であるから、同じ条件で両者とも良好な融着が行なえる。
【0018】
図3はR−t線図の第3実施例を示している。この例は、小口径用の線図t=1R+26と比較的大口径用の線図t=5R+15を連続的に組み合わせたものである。例えばCa10からS13程度の小口径のものは融着面積も肉厚もさほど変わらないので、通電時間tはほとんど変わらなくても電気抵抗Rを重ならないようにあるいは多少重なっても設定出来、この時の必要融着エネルギーもほぼ変わらないので適したものを与えることができる。このような線図も一例として設定可能である。
尚、本発明のR−t線図は上記した例にとらわれることなく他の変形例も可能である。例えば、口径が8〜50mmでは融着部は概ね40種類となるが、この場合電気抵抗値Rは略0.5〜9Ωの範囲で設定が出来る。また、上記した単調増大の例と同様に単調減少のR−t線図を利用することが出来ることは言うまでもない。
【0019】
次に電気融着継手を説明する。
図4〜8は、電熱線を融着部以外の部分にも余分に巻いて継手全体の電気抵抗値を調節する電気融着継手を示すもので、図4は両口継手のソケットの断面図、図5〜図7は片口継手のキャップの断面図、図8は給水栓などを接続するアダプター継手の断面図である。
先ず図4のソケット継手は、ソケット本体10の左右に樹脂パイプ1を融着接続する融着接続口11、12を設け、この融着接続口11と12の内面近くに連続して電熱線13aと13bをコイル状に巻いている。電熱線13の両端はソケット本体10から突出するコネクターピン14、15に結合しており、このコネクターピン14、15にコントローラの電源を接続して電熱線13に通電をするようにしている。融着部以外に巻く調整用の電熱線部分13cは、パイプ1を融着する際の熱によって継手本体10が溶融や変形をしないように、融着接続口11、12部分の電熱線の巻き径より大きくとり、継手本体10の肉厚のほぼ中央部に配置し、巻くピッチも融着接続口部分のピッチより大きくしてある。この付加電熱線部分13cの長さ、巻数を調節してそれぞれ品種口径毎にR−t線図上に設定することができる。
【0020】
図5のキャップ継手では、キャップ本体20の内面に樹脂パイプ1を融着接続する融着接続口21と、端部を塞ぐ閉塞壁22がある。融着接続口21には電熱線23を巻いてその両端にコネクターピン24、25を結合している。電熱線23の材質と全体の長さ及び融着接続口21に巻いた電熱線23aの長さは略図4のソケット継手の融着接続口1口当たりの電熱線13aと同じに設けている。 そして閉塞壁22側の融着接続口21にほとんど影響を与えない程度離れた融着接続口以外の部分26に全体の電気抵抗値を調整する付加電熱線23cを巻いている。付加電熱線23cを巻いた融着接続口以外の部分26は、継手本体20の肉厚を融着接続口21より厚肉に形成すると共に、電熱線23cをこの厚肉のほぼ中央部に、融着接続口21に巻いた電熱線23aの巻き径より大きくして巻いてある。このようにして電熱線23cによる熱影響を融着接続口21部分に与えないように、またキャップ本体20が熱影響で変形しないようにしている。
【0021】
図6のキャップ継手では、図4のソケット継手と同様の電熱線の材質と長さでキャップ本体30に設けている。調整用の付加電熱線33cは融着接続口31の入口側に融着接続口31の電熱線33aの巻き径より大きな径で巻いて、その内径側に金属製リング36を設けている。従って、この金属製リング36によって余分の電熱線部分の加熱による熱影響を吸収し、融着接続口31部分に影響を及ぼさないようにしている。
【0022】
図7のキャップ継手では、図4のソケット継手と同様の電熱線仕様で、調整用の付加電熱線43cはガラス繊維等の断熱材46による被覆を行い、キャップ本体40の外面に巻いてコネクターピン45に接続している。付加電熱線43cの熱はガラス繊維断熱材46によって遮断され、融着接続口41やキャップ本体40に熱影響を及ぼさないようになっている。
【0023】
図8は融着接続口51と金属製のめねじ接続口52を持つアダプター継手を示すもので、金属製のめねじ付インサート57と、これに一体に樹脂製のアダプター継手本体50を成型したものである。この場合も電熱線は、図4のソケット継手と同じ電熱線を使用している。付加電熱線53cはインサート57側の継手本体内に埋設してあり、樹脂パイプとの融着時には付加電熱線53cの発生熱はインサート57に吸収されて樹脂パイプとの融着接続口51に影響を及ぼさないようにしている。
尚、上記した電気融着継手はソケット継手と同じ電熱線を使用して調整用の付加電熱線部分で抵抗値を調節するようにしたものであったが、材質や線径を変えることによって調節するようにしてもよい。例えば、キャップ継手に対しては固有抵抗値の大きい材質の電熱線を使用したり、電熱線の線径を細くするなどして調節すれば良い。
【0024】
次に本発明の電気融着装置、すなわちコントローラについて説明する。
以下に説明する実施例のコントローラは、入力電源AC100Vからコントローラ内部で電流5.5A(可変可能)の定電流電源に変換した定電流制御方式とし、通電時間制御は上述の通り継手毎の電気抵抗値Rを読みとり、これに温度補正を加えて通電時間tを設定するようにしたものである。
図9は実施例のコントローラのブロック図である。ここではコントローラ60内のブレーカ61やリレー62を介して融着電源部63で5.5A電流の定電流電源に変換している。その後リレー64を介してコネクター66が継手側のコネクターピンに接続できるようになっている。
【0025】
次にコネクターピン間の電熱線の電気抵抗を測定して記憶する抵抗値設定部66を有し、ここで初期の抵抗値R1と通電中の抵抗値R2などを測定する。初期抵抗値R1は、予め所定のR−t線図を記憶したR−t線図記憶部67に送られ、抵抗値R1に対応する通電時間t1は通電時間設定部68で設定される。他方、周囲の環境温度を測定するサーミスタ等の温度センサ70と、この環境温度をもとに通電時間を補正する補正後の通電時間t2設定部69を有している。ここでt1を設定することなく同時に通電時間t2を求めることもあるから、これら通電時間設定部66、69は一緒のものとしても良い。また、初期に測定した抵抗値R1と通電中に測定した抵抗値R2とを比較する比較部71と、この比較結果によって通電を停止あるいは継続を命令する継続停止命令部72を有している。比較部ではR1とR2が所定の範囲内か外かを判断するもので良いが、例えば抵抗値が温度に依存しない電熱線を用いた場合は単に差が許容量内か否かを判断することになる。そして、上記した各部他はマイコンCPU77内に置かれ制御されるようになっている。また、通電の開始を命令する通電開始命令部73は本体上面に取り付けた融着開始ボタンでON/OFFし、この面にはほかに非常停止ボタンが設けられている。
【0026】
外部表示(LCD)部75は、通電時間(カウントダウン)の表示、サイズ表示及び入力電圧異常、出力電流異常、ワイヤーショート(これは通電期間中監視する。)、コネクター脱落、オーバヒート、環境温度異常(-10℃以下または40℃以上の時)などのアラームを検知し表示を行うようになっている。74はブザーで前記アラーム表示及び通電停止命令が出た時、または融着を完了した時に連動して音声出力を実行するものである。また上記したようなアラームによって融着電源やリレーをON/OFF制御できるようになっており、かつ通電停止と連動するようになっている。
76は制御用電源及び付属電源部となっており、制御用電源は例えば、アナログ用電源a、CPU用電源b、リレー用電源c、付属の工具用電源dとなっている。
【0027】
次に図10のフローチャート図をもとに実施例のコントローラの融着制御の作動について説明する。尚、図に付した番号は必ずしも制御の順番に整合しない実施例の場合もある。
1 コントローラ本体の電源をONする。このとき同時に入力電圧、周波数及び漏電等のチェックをする。
2 上記チェックと共に周囲の環境温度を温度センサで検出する。
3 次に継手のコネクターピンにコントローラの端子をそれぞれ接続する。
4 コネクターピンの両端に微小電圧をかけて、電熱線の抵抗値R1を測定する。
5 この抵抗値R1と予め設定しておいたR−t線図とを対比して通電時間t1を設定する。
6 通電時間t1を設定した後、あるいは設定と同時に上記環境温度に応じた補正を加えて通電時間t2を設定する。通電時間t2は例えば次式によって求める。t2=t1×{1−(環境温度−23℃)×温度補正係数}尚、温度補正係数は0.006〜0.01程度が好ましく、0.008がより好ましい。
実際には上式によって同時にt2を求めれば通電時間t1は設定するまでもない。そして環境温度による補正を加えない場合は時間t1で通電を停止すれば良い。
7 融着開始ボタンをONする。
8 融着電流(5.5A)を通電している途中の比較的早い時期(5秒以内程度)に再びコネクターピン間の電圧をとってこのときの抵抗値R2を測定する。
9 初期抵抗値R1と融着時の抵抗値R2を比較する。
10 R1≠R2(許容量5%を加味して)のとき異常としてアラーム信号を出しブザーを連続音で鳴らす。
11 R1=R2(許容量5%を加味して)のときは通電を継続する。
12 通電時間t2が経過したところで通電を停止する。および融着完了のブザーを間欠音で鳴らす。
以上のように通電時間の制御は、継手の品種口径を識別することなく、電熱線の抵抗値に基づいて時間設定されるだけであるから制御面でも簡易となる。
【0028】
【発明の効果】
本発明によれば、品種口径の区別なく個々の継手の電熱線の電気抵抗から直接通電時間が求められ、自動的に最適な融着エネルギーが与えられるから、誤認などの間違いがなく品質上も安定した融着接続が行なえる。また、制御も簡単なものとなり簡明な電気融着装置となる。
また電気融着継手は、融着接続口当たりの加熱容量を2口の継手も1口の継手も略同じになるようにすることで、継手とパイプの融着面積と肉厚に応じた融着エネルギーを付与することができる。
【図面の簡単な説明】
【図1】 本発明の通電時間制御方法の実施例を説明する電気抵抗Rと通電時間tの関係を示すR−t線図である。
【図2】 第2実施例のR−t線図である。
【図3】 第3実施例のR−t線図である。
【図4】 電気融着継手ソケット継手の断面図である。
【図5】 電気融着継手(キャップ継手の断面図である。
【図6】 電気融着継手(キャップ継手の断面図である。
【図7】 電気融着継手(キャップ継手の断面図である。
【図8】 電気融着継手(アダプター継手の断面図である。
【図9】 本発明の電気融着装置(コントローラ)の実施例を示すブロック図である。
【図10】 融着制御の実施例を示すフローチャート図である。
【符号の説明】
1 樹脂パイプ
10 ソケット継手本体
13、23、33、43 電熱線
13c、23c、33c、43c、63c 融着接続口部以外の電熱線
20、30、40 キャップ継手本体
22 キャップの閉塞壁
36 金属製リング
46 断熱材
50 アダプター継手本体
52 めねじ接続口
57 めねじ付インサート
60 電気融着装置(コントローラ)
66、69 抵抗値設定部
67 R−t線図記憶部
68 通電時間設定部
70 温度センサ
71 比較部
72 通電停止命令部
73 通電開始部
74 警報部(ブザー)
75 外部表示部
[0001]
[Industrial application fields]
The present invention relates to an electric fusion joint (hereinafter simply referred to as a joint) in which a heating wire is embedded in a joint body made of a thermoplastic resin, and a pipe and a joint by energizing the heating wire of the joint. The present invention relates to an energization time control method for electrical fusion connection and an electrical fusion apparatus used at this time.
[0002]
[Prior art]
Conventionally, it is well known to connect a pipe made of a thermoplastic resin material such as polyethylene or polybutene and a joint by electric fusion.
In addition, as a method for controlling the energization time at this time, first, the electrical resistance of the current flowing through the heating wire embedded in the electric fusion joint is measured, and the type and diameter of the joint (the diameter is the nominal diameter of the connection port, the type is Of the so-called joint identification method, which selects the optimum energization time set for each joint type diameter in advance and automatically energizes only this time. There is an energization time control method (Japanese Patent Publication No. 3-27014).
[0003]
In addition, in this type of electric fusion joint, there are two-part joints having two fusion connection ports such as sockets and one-way joints having one fusion connection port like caps. Conventionally, the heating wires used for these have been continuously wound around the connection port with the same characteristics. Therefore, the electrical resistance value of the joint was twice as large at the socket joint at both ports than at the cap joint at one port.
[0004]
[Problems to be solved by the invention]
However, in the energization time control method described above, since there is usually a few percent of manufacturing variation in the electrical resistance of the heating wire itself, when there are many varieties, a part where the range of electrical resistance for each caliber overlaps is avoided in the design. In some cases, it was not possible to identify the important varieties of caliber.
In addition, as described above, in the conventional electric fusion joint, when trying to distinguish between the type and the diameter, even if the diameter is the same, the socket (both mouth joint) and the cap (single mouth joint) have an electric resistance value of 2 to 1. Therefore, there may occur a case where a small-diameter socket and a large-diameter cap have substantially the same electrical resistance value. If the identification is incorrect at this time, the socket may be overfused and the cap may be underfused. Therefore, there was a problem that the variety diameter could not be identified from this point.
In general, when an electrofusion apparatus is provided with an identification function, there is a problem that the structure and control are complicated and expensive.
[0005]
An object of the present invention is to provide an energization time control method and an electrofusion apparatus for an electrofusion joint capable of uniquely setting an appropriate energization time for each of various types of joints.
[0006]
[Means for Solving the Problems]
The present invention achieves the above object by setting the electrical resistance value and the energization time in a one-to-one relationship in order to uniquely set the electrical energy required for fusion.
That is, the present invention is an energization time control method by an electric fusion apparatus of an electric fusion joint in which a heating wire is embedded,
In the Rt diagram storage unit mounted on the electrofusion apparatus, the energization time t has a one-to-one correspondence with the electrical resistance value R of the heating wire provided in the electrofusion joint. Rt diagram is prepared in advance,
On the other hand, measuring the ambient temperature by the ambient temperature measuring unit,
Attaching the connector of the electrofusion apparatus to the connector pin provided at the end of the heating wire of the electrofusion joint;
By applying a small voltage to the heating wire, the resistance value setting unit, and a step asking you to electric resistance value R1 of the heating wire of the joint to be fused,
The energization time setting unit, wherein the energizing time according to the environmental temperature with the electric resistance value R1 wherein in comparison with the electric resistance value stored in the R-t diagram storing unit obtains the energization time t1 to the joint setting an energization time t2 in which t1 is corrected;
A step of the resistance value setting unit, Ru obtains a resistance value R2 of being energized after the start of energization,
The comparing unit, and a step of comparing the electric resistance R2 and the resistance value R1,
When a difference between the electric resistance value R1 and the electric resistance value R2 is within a predetermined range, a signal to stop energization is transmitted after the energization time t2 , or the electric resistance value a step difference between the the R1 resistance value R2 is when is outside a predetermined range for transmitting a signal for stopping the signal and power to outgoing alarms,
Tona is energizing time control method for an electro-fusion joint was so that.
In the above, it is possible to measure the ambient temperature and adjust any one or two of the energization time or current value or voltage value according to the ambient temperature to correct the electrical energy necessary for fusion each time. desirable.
In addition, as the Rt diagram, the electric resistance value R and the energization time t monotonously increase or monotonously decrease. A combination of two or more diagrams in which the electric resistance value R and the energization time T have a monotonically increasing relationship or a combination of two or more diagrams in which the monotonically decreasing relationship is desirable is desirable.
[0007]
Further, the present invention is an Rt diagram memory in which an Rt diagram having a relationship in which the energization time t has a one-to-one correspondence with the electric resistance value R of the heating wire provided in the electric fusion joint is stored. And
A resistance value measuring unit for obtaining the electric resistance value R1 of the heating wire of the joint to be fused;
An energization time setting unit that sets the energization time t1 by comparing the Rt diagram and the electrical resistance value R1;
An ambient temperature measurement unit for measuring the ambient temperature;
An energization time setting unit that corrects the energization time t1 in accordance with the ambient temperature and sets the energization time t2.
A comparison unit that measures the electrical resistance value R2 during energization and compares the electrical resistance value R1 and the electrical resistance value R2,
An alarm unit that issues an alarm when the electrical resistance values R1 and R2 are outside a predetermined range;
An energization start command section for instructing energization start; and
When the electrical resistance values R1 and R2 are within a predetermined range, energization is continued, and when the electrical resistance values R1 and R2 are outside the predetermined range, energization is stopped and an alarm signal is transmitted to the alarm unit. and a part,
This is an electrofusion apparatus in which each unit is placed in and controlled by a microcomputer CPU.
[0009]
[Action]
In the energization time control method of the present invention, the electrical resistance value R and the energization time t are set in advance on the Rt chart so that the electrical resistance value R and the energization time t correspond one-to-one for each type of caliber. By measuring R, the energization time t is obtained, and electric energy (hereinafter referred to as fusion energy) E necessary for fusion is uniquely given. Here, if the energization time is corrected in accordance with the ambient temperature, that is, the change in the resistance value due to the fusion site, season, or the like, a better fusion state can be obtained. In addition, the current value may be corrected and controlled in the current control method instead of the energization time, and the voltage value may be corrected and controlled in the voltage control method. This is appropriately selected according to the fusion apparatus and the situation.
In addition, when the resistance value R1 before the fusion work and the resistance value R2 during work, that is, during energization, are out of a predetermined range (for example, the difference between R1 and R2 is 5% or more) This means that it has occurred, and since this stops the energization, defects can be prevented in advance.
[0010]
The fusion energy is generally proportional to the area of the welded portion of the joint. However, if the fusion energy is determined only by the fusion area, pipes and joints with large diameters are too thick, resulting in insufficient fusion. In the case of a small diameter, the wall thickness is also small, resulting in overfusing. Therefore, the optimum fusion energy must be set in consideration of both the joint diameter and the fusion area. In the present invention, the fusion energy per one connection port is set to 1: 1 so that it does not overlap for each caliber type of joint, and the measured electrical resistance is irrespective of the type of one port or both ports. The energization time is uniquely determined based on the value, and as a result, the fusion energy corresponding to the diameter and thickness of the joint is supplied.
[0011]
In the Rt diagram, it is sufficient that the electric resistance value R and the energization time t have a one-to-one correspondence regardless of whether it is a straight line or a curve. In the case of the constant current control method, the fusion energy E and Rt Are proportional to each other, and therefore are easy to set on a monotonically increasing diagram as shown in FIGS. On the other hand, in the case of the constant voltage control method, since Rt is in an inversely proportional relationship, it is easy to set a monotonically decreasing diagram that decreases to the right. For single-ended joints and double-ended joints, it is easy to set the diagram as shown in FIG. 2 that combines the Rt diagram for single-ended joints and the Rt diagram for double-ended joints. Although the resistance value is 2 to 1, both have the same energization time, so the fusion energy per unit is equal. Further, since the change in the thickness and the fusion area is small when the aperture is small, it can be set even in a smooth diagram as shown in FIG.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
First, the energization time control method according to the present invention will be described with reference to FIGS. The figure shows the relationship (Rt diagram) between the electrical resistance R and energization time t for each type of caliber size of the electric fusion joint. FIG. 1 shows a monotonic increase, and FIG. 2 shows two types of monotonically increasing lines. FIG. 3 is an example of combinations of monotonically increasing diagrams with different inclinations.
The solid line in FIG. 1 shows the relationship between the range of the electric resistance R of the socket nominal diameters of 10 mm (S10), 13 mm (S13) and 16 mm (S16) and the energization time t. The relationship between the range of the electrical resistance R of (RS13 × 10) and 16 × 13 mm (RS16 × 13) and the energization time t is shown.
[0014]
The range of electrical resistance R of each electric fusion joint is as follows: S10 is 1.50Ω ± 0.12Ω, S13 is 2.0Ω ± 0.16Ω, S16 is 2.50Ω ± 0.20Ω, RS13 × 10 is 1.75Ω ± 0.14Ω RS16 × 13 is 2.30Ω ± 0.18Ω. Note that the allowable range of the electric resistance R is derived from the allowable range in quality such as manufacturing error and fusion strength of the heating wire itself.
As can be seen from the figure, S13 and RS13 × 10 and S16 and RS16 × 13 have overlapping electric resistance ranges, and the conventional method cannot identify the type diameter of the joint.
On the other hand, in the energization time control method according to the present invention, there is no need to identify the type diameter, and the energization time t corresponding to the electrical resistance R of the electrofusion joint is given one-to-one. When the electrical resistance R is 1.84Ω which is the lower limit of tolerance, the energization time t is automatically given 26.8 seconds, and when the electrical resistance R of RS13 × 10 is 1.89Ω which is the upper limit of tolerance, the energization time is t is automatically given 27.8 seconds. As a result, the optimum fusion energy set for each type of caliber is given to each.
[0015]
Usually, the nominal diameters of the joints and pipes and the respective wall thicknesses are in a proportional relationship. That is, the thickness of the joint and the pipe increases as the diameter increases. Therefore, the heat capacity of the fusion part increases as the diameter increases, and a lot of fusion energy is required. FIG. 1 shows an embodiment according to a constant current control system. In order to increase the fusion energy as the nominal diameter increases, the electrical resistance increases as the diameter increases (from En = I2 Rt (I = constant)). It increases with R and energization time t. In this embodiment, the relationship between the electric resistance R and the energization time t is set on a diagram represented by t = 20R-10, but it is not necessary to limit to this mathematical formula, and t = This is done by selecting the optimum one from the monotonically increasing relationship represented by a1R + b1 or t = a2 R2 + b2. Here, a1, a2, b1 and b2 are constants.
[0016]
In the case of the constant voltage control method as another method, since the fusion energy increases as the nominal diameter increases (from En = V2 t / R (V = constant)), the electric resistance R is reduced. The energization time t is lengthened. Therefore, the optimum relationship between the electric resistance R and the energization time t is selected from the monotonically decreasing relationships represented by t = a3 / R + b3 or t = a4 R + b4. Here, a3, a4, b3 and b4 are constants. However, a4 <0. Therefore, as an embodiment of the constant voltage control system, although not shown, the electric resistance R and the energization time t are set on a diagram represented by a monotonically decreasing right downward as an inverse proportion.
[0017]
FIG. 2 shows a second embodiment of the Rt diagram. This example is a combination of a diagram t = 10R + 15 for a single-joint joint such as a cap (Ca) and a diagram t = 5R + 15 for a double-joint joint such as a socket (S). Here, the vertical axis represents the energization time t and the horizontal axis represents the electric resistance R, but it may be as shown in FIG.
As can be seen from the figure, the energization time t for the eight items Ca20, 25, 30, 40 and S20, 25, 30, 40 is set to 1: 1 for the electrical resistance R. Moreover, when Ca and S are viewed for each size, the electrical resistance R is set to 1 and the energization time t is set to be the same. For example, the electrical resistance R of Ca20 is about 1.6Ω, that of S20 is about 3.2Ω, and the energization time t is 31 seconds for both. Therefore, since the fusion energy per unit is the same amount for both Ca and S, both can perform good fusion under the same conditions.
[0018]
FIG. 3 shows a third embodiment of the Rt diagram. In this example, a diagram t = 1R + 26 for a small aperture and a diagram t = 5R + 15 for a relatively large aperture are continuously combined. For example, in the case of a small diameter of about Ca10 to S13, the fusion area and the wall thickness do not change so much, so even if the energization time t hardly changes, the electric resistance R can be set so as not to overlap or slightly overlap. Since the necessary fusion energy of the material does not substantially change, a suitable material can be provided. Such a diagram can also be set as an example.
Note that the Rt diagram of the present invention is not limited to the above-described example, and other modifications are possible. For example, when the diameter is 8 to 50 mm, there are about 40 types of fused portions. In this case, the electric resistance value R can be set within a range of about 0.5 to 9Ω. Further, it goes without saying that a monotonically decreasing Rt chart can be used as in the above-described monotonically increasing example.
[0019]
Next, the electric fusion joint will be described.
4 to 8 show an electric fusion joint that adjusts the electric resistance value of the entire joint by additionally winding a heating wire around a portion other than the fusion part, and FIG. 4 is a cross-sectional view of the socket of the double-ended joint. 5 to 7 are cross-sectional views of the cap of the single-ended joint, and FIG. 8 is a cross-sectional view of the adapter joint for connecting a water faucet and the like.
First, the socket joint of FIG. 4 is provided with fusion connection ports 11 and 12 for fusing and connecting the resin pipe 1 on the left and right sides of the socket body 10, and the heating wire 13 a is continuously provided near the inner surfaces of the fusion connection ports 11 and 12. And 13b are wound in a coil shape. Both ends of the heating wire 13 are coupled to connector pins 14 and 15 protruding from the socket body 10, and a power source of a controller is connected to the connector pins 14 and 15 so that the heating wire 13 is energized. The heating wire portion 13c for adjustment which is wound around other than the fusion portion is wound around the fusion connection ports 11 and 12 so that the joint body 10 is not melted or deformed by heat generated when the pipe 1 is fused. It is larger than the diameter, and is arranged at a substantially central part of the wall thickness of the joint body 10, and the winding pitch is larger than the pitch of the fusion splicing port portion. The length and the number of turns of the additional heating wire portion 13c can be adjusted and set on the Rt diagram for each type of diameter.
[0020]
In the cap joint of FIG. 5, there are a fusion splicing port 21 for fusing and connecting the resin pipe 1 to the inner surface of the cap body 20, and a closing wall 22 for closing the end. A heating wire 23 is wound around the fusion splicing port 21 and connector pins 24 and 25 are coupled to both ends thereof. The material and overall length of the heating wire 23 and the length of the heating wire 23a wound around the fusion splicing port 21 are substantially the same as those of the heating wire 13a per fusion splicing port of the socket joint in FIG. An additional heating wire 23c that adjusts the overall electric resistance value is wound around a portion 26 other than the fusion splice port that is separated to the extent that the fusion splicing port 21 on the blocking wall 22 side is hardly affected. The portion 26 other than the fusion splicing port around which the additional heating wire 23c is wound is formed so that the thickness of the joint body 20 is thicker than that of the fusion splicing port 21, and the heating wire 23c is substantially at the center of the thick wall. Winding is made larger than the winding diameter of the heating wire 23 a wound around the fusion splicing port 21. In this way, the cap body 20 is prevented from being deformed by the heat effect so that the heat effect of the heating wire 23c is not given to the fusion splicing port 21 portion.
[0021]
In the cap joint of FIG. 6, the cap body 30 is provided with the same material and length of heating wire as the socket joint of FIG. 4. The additional heating wire 33c for adjustment is wound around the inlet side of the fusion connection port 31 with a diameter larger than the winding diameter of the heating wire 33a of the fusion connection port 31, and a metal ring 36 is provided on the inner diameter side thereof. Therefore, the metal ring 36 absorbs the heat effect caused by heating of the extra heating wire portion, and does not affect the fusion splicing port 31 portion.
[0022]
The cap joint shown in FIG. 7 has the same heating wire specifications as the socket joint shown in FIG. 4, and the additional heating wire 43c for adjustment is covered with a heat insulating material 46 such as glass fiber, and is wound around the outer surface of the cap body 40 to be a connector pin. 45 is connected. The heat of the additional heating wire 43c is interrupted by the glass fiber heat insulating material 46 so as not to affect the fusion splicing port 41 and the cap body 40.
[0023]
FIG. 8 shows an adapter joint having a fusion splicing port 51 and a metal female screw connection port 52. A metal female screw insert 57 and a resin adapter fitting main body 50 are molded integrally therewith. Is. Also in this case, the heating wire uses the same heating wire as the socket joint of FIG. The additional heating wire 53c is embedded in the joint body on the side of the insert 57, and the heat generated by the additional heating wire 53c is absorbed by the insert 57 at the time of fusion with the resin pipe and affects the fusion connection port 51 with the resin pipe. Is not affected.
In addition, although the above-mentioned electric fusion joint was to adjust the resistance value at the additional heating wire part for adjustment using the same heating wire as the socket joint, it can be adjusted by changing the material and wire diameter. You may make it do. For example, the cap joint may be adjusted by using a heating wire made of a material having a large specific resistance value or by reducing the diameter of the heating wire.
[0024]
Next, the electrofusion apparatus, that is, the controller of the present invention will be described.
The controller of the embodiment described below adopts a constant current control method in which the input power supply AC100V is converted into a constant current power supply with a current of 5.5A (variable) inside the controller, and the energization time control is the electrical resistance value for each joint as described above. R is read, temperature correction is added to this, and energization time t is set.
FIG. 9 is a block diagram of the controller of the embodiment. Here, it is converted into a constant current power source of 5.5 A by the fusion power source 63 through the breaker 61 and the relay 62 in the controller 60. Thereafter, the connector 66 can be connected to the connector pin on the joint side via the relay 64.
[0025]
Next, a resistance value setting unit 66 for measuring and storing the electrical resistance of the heating wire between the connector pins is provided, and the initial resistance value R1 and the resistance value R2 during energization are measured here. The initial resistance value R1 is sent to the Rt diagram storage unit 67 that stores a predetermined Rt diagram in advance, and the energization time t1 corresponding to the resistance value R1 is set by the energization time setting unit 68. On the other hand, it has a temperature sensor 70 such as a thermistor for measuring the ambient environmental temperature, and a corrected energization time t2 setting unit 69 for correcting the energization time based on this environmental temperature. Here, since the energization time t2 may be obtained simultaneously without setting t1, these energization time setting units 66 and 69 may be combined. Further, it has a comparison unit 71 that compares the resistance value R1 measured in the initial stage with the resistance value R2 measured during energization, and a continuation stop command unit 72 that commands the energization to be stopped or continued according to the comparison result. The comparison unit may determine whether R1 and R2 are within a predetermined range or not. For example, when a heating wire whose resistance value does not depend on temperature is used, it is simply determined whether or not the difference is within an allowable amount. become. Then, each unit other as described above is adapted to be controlled placed in the microcomputer CPU 77. The energization start command unit 73 for instructing the start of energization is turned ON / OFF by a fusion start button attached to the upper surface of the main body, and an emergency stop button is provided on this surface.
[0026]
The external display (LCD) unit 75 displays energization time (countdown), size display, input voltage abnormality, output current abnormality, wire short (this is monitored during the energization period), connector dropout, overheating, environmental temperature abnormality ( Alarms such as -10 ° C or lower or 40 ° C or higher) are detected and displayed. Reference numeral 74 denotes a sound output in conjunction with the alarm display and energization stop command issued by the buzzer or when the fusion is completed. Further, the above-described alarm enables ON / OFF control of the fusion power source and the relay, and interlocks with the energization stop.
Reference numeral 76 denotes a control power source and an attached power source unit. The control power source is, for example, an analog power source a, a CPU power source b, a relay power source c, and an attached tool power source d.
[0027]
Next, the operation of the fusion control of the controller of the embodiment will be described based on the flowchart of FIG. Note that the numbers given in the drawings may not always match the control order.
1 Turn on the power to the controller. At the same time, the input voltage, frequency, leakage, etc. are checked.
2 Along with the above check, the ambient temperature is detected by a temperature sensor.
3 Next, connect the controller terminals to the connector pins of the joint.
4 Apply a minute voltage across the connector pin and measure the resistance value R1 of the heating wire.
5 The energization time t1 is set by comparing the resistance value R1 with a preset Rt diagram.
6 After the energization time t1 is set, or simultaneously with the setting, the energization time t2 is set by adding correction according to the environmental temperature. The energization time t2 is obtained by the following equation, for example. t2 = t1 × {1− (ambient temperature−23 ° C.) × temperature correction coefficient} The temperature correction coefficient is preferably about 0.006 to 0.01, and more preferably 0.008.
Actually, if t2 is simultaneously obtained by the above equation, the energization time t1 need not be set. If correction based on the environmental temperature is not applied, the energization may be stopped at time t1.
7 Turn on the fusion start button.
8 Take the voltage between the connector pins again at a relatively early time (within about 5 seconds) while energizing the fusion current (5.5 A), and measure the resistance value R2 at this time.
9 Compare the initial resistance value R1 and the resistance value R2 at the time of fusion.
10 When R1 ≠ R2 (with allowance of 5%), an alarm signal is issued as an abnormality and the buzzer sounds continuously.
11 When R1 = R2 (with allowance of 5%), continue energization.
12 When the energization time t2 has elapsed, the energization is stopped. And the buzzer of fusion completion is sounded intermittently.
As described above, the control of the energization time is simplified in terms of control because the time is set based on the resistance value of the heating wire without identifying the type diameter of the joint.
[0028]
【The invention's effect】
According to the present invention, the direct energization time is obtained from the electric resistance of the heating wire of each joint without distinction of the type diameter, and the optimum fusion energy is automatically given. Stable fusion splicing can be performed. In addition, the control becomes simple and a simple electrofusion apparatus is obtained.
In addition, by making the heating capacity per fusion splicing port the same for both the two joints and one joint, the electric fusion joint can be welded according to the fusion area and thickness of the joint and pipe. Energy can be imparted.
[Brief description of the drawings]
FIG. 1 is an Rt diagram illustrating a relationship between an electrical resistance R and an energization time t for explaining an embodiment of an energization time control method of the present invention.
FIG. 2 is an Rt diagram of the second embodiment.
FIG. 3 is an Rt diagram of the third embodiment.
FIG. 4 is a cross-sectional view of an electric fusion joint ( socket joint ) .
FIG. 5 is a cross-sectional view of an electric fusion joint ( cap joint ) .
FIG. 6 is a cross-sectional view of an electric fusion joint ( cap joint ) .
FIG. 7 is a cross-sectional view of an electric fusion joint ( cap joint ) .
FIG. 8 is a cross-sectional view of an electric fusion joint ( adapter joint ) .
FIG. 9 is a block diagram showing an embodiment of the electrofusion apparatus (controller) of the present invention.
FIG. 10 is a flowchart showing an example of fusion control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resin pipe 10 Socket joint main body 13, 23, 33, 43 Heating wire 13c, 23c, 33c, 43c, 63c Heating wire other than the fusion splicing port 20, 30, 40 Cap joint main body 22 Cap closing wall 36 Metal Ring 46 Heat insulating material 50 Adapter joint body 52 Female thread connection port 57 Insert with female thread 60 Electric fusion device (controller)
66, 69 Resistance value setting unit 67 Rt diagram storage unit 68 Energization time setting unit 70 Temperature sensor 71 Comparison unit 72 Energization stop command unit 73 Energization start unit 74 Alarm unit (buzzer)
75 External display

Claims (6)

電熱線を埋設した電気融着継手の電気融着装置による通電時間制御方法において、
前記電気融着装置に搭載されたR−t線図記憶部には、前記電気融着継手に設けられた電熱線の電気抵抗値Rに対して通電時間tが1対1で対応する関係のR−t線図が予め用意され、
他方、周囲温度測定部により周囲温度を測定するステップと、
前記電気融着継手の電熱線の端部に設けられたコネクタピンに、前記電気融着装置のコネクタを装着するステップと、
前記電熱線に微小電圧をかけて、抵抗値設定部により、融着しようとする継手の電熱線の電気抵抗値R1を求めるステップと、
通電時間設定部により、前記電気抵抗値R1と前記R−t線図記憶部に記憶された電気抵抗値と対比して前記継手への通電時間t1を求めると共に前記周囲温度に応じて前記通電時間t1を補正した通電時間t2を設定するステップと、
抵抗値設定部により、通電を開始した後の通電中の電気抵抗値R2を求めるステップと、
比較部により、前記電気抵抗値R1と前記電気抵抗値R2とを比較するステップと、
継続停止命令部により、前記電気抵抗値R1と前記電気抵抗値R2の差が所定範囲内にある時は通電を継続し通電時間t2後に通電を停止する信号を発信する、または、前記電気抵抗値R1と前記電気抵抗値R2の差が所定範囲外にある時は警報を発する信号および通電を停止する信号を発信するステップと、
からなることを特徴とする電気融着継手の通電時間制御方法。
In the energization time control method by the electric fusion apparatus of the electric fusion joint in which the heating wire is embedded,
In the Rt diagram storage unit mounted on the electrofusion apparatus, the energization time t has a one-to-one correspondence with the electrical resistance value R of the heating wire provided in the electrofusion joint. Rt diagram is prepared in advance,
On the other hand, measuring the ambient temperature by the ambient temperature measuring unit,
Attaching the connector of the electrofusion apparatus to the connector pin provided at the end of the heating wire of the electrofusion joint;
Applying a minute voltage to the heating wire and obtaining a resistance value R1 of the heating wire of the joint to be fused by the resistance value setting unit;
The energization time setting unit obtains the energization time t1 for the joint by comparing the electrical resistance value R1 with the electrical resistance value stored in the Rt diagram storage unit, and the energization time according to the ambient temperature. setting an energization time t2 in which t1 is corrected;
Obtaining a resistance value R2 during energization after starting energization by a resistance value setting unit;
A step of comparing the electric resistance value R1 and the electric resistance value R2 by a comparison unit;
When a difference between the electric resistance value R1 and the electric resistance value R2 is within a predetermined range, a signal to stop energization is transmitted after the energization time t2, or the electric resistance value Transmitting a signal for issuing an alarm and a signal for stopping energization when the difference between R1 and the electric resistance value R2 is outside a predetermined range;
An energization time control method for an electrofusion joint, comprising:
前記通電時間設定部は、前記周囲温度に応じて通電時間、電流値、電圧値の少なくとも1つを調節して、融着に必要な電気エネルギーを補正することを特徴とする請求項1に記載の電気融着継手の通電時間制御方法。  The said energization time setting part adjusts at least one of an energization time, an electric current value, and a voltage value according to the said ambient temperature, and correct | amends the electrical energy required for a fusion | melting. Energizing time control method for electric fusion joints. 前記R−t線図は、電気抵抗値Rと通電時間tとが単調増大、または単調減少する関係であることを特徴とする請求項1または2に記載の電気融着継手の通電時間制御方法。  3. The energization time control method for an electric fusion joint according to claim 1 or 2, wherein the Rt diagram shows a relationship in which the electric resistance value R and the energization time t monotonously increase or monotonously decrease. . 前記R−t線図は、電気抵抗値Rと通電時間tとが単調増大の関係を有する線図の二以上の組み合わせ、または単調減少の関係を有する線図の二以上の組み合わせであることを特徴とする請求項1または2に記載の電気融着継手の通電時間制御方法。  The Rt diagram is a combination of two or more diagrams having a monotonically increasing relationship between the electrical resistance value R and the energization time t, or two or more combinations of diagrams having a monotonically decreasing relationship. The energization time control method for an electrofusion joint according to claim 1 or 2, characterized in that: 前記R−t線図は、それぞれ傾斜の異なる単調増大、または単調減少する線図の組み合わせであることを特徴とする請求項1または2に記載の電気融着継手の通電時間制御方法。  3. The energization time control method for an electrofusion joint according to claim 1, wherein the Rt diagram is a combination of monotonically increasing or monotonically decreasing diagrams each having a different slope. 電気融着継手に設けられた電熱線の電気抵抗値Rに対して通電時間tが1対1で対応する関係のR−t線図が記憶されたR−t線図記憶部と、
融着しようとする継手の電熱線の電気抵抗値R1を求める抵抗値測定部と、
前記R−t線図と前記電気抵抗値R1とを対比することにより通電時間t1を設定する通電時間設定部と、
周囲温度を測定する周囲温度測定部と、
周囲温度に応じて前記通電時間t1を補正して通電時間t2を設定する通電時間設定部と、
通電中に電気抵抗値R2を測定し、前記電気抵抗値R1と電気抵抗値R2とを比較する比較部と、
前記電気抵抗値R1とR2が所定範囲外の時は警報を発する警報部と、
通電開始を命令する通電開始命令部と、
前記電気抵抗値R1とR2が所定範囲内の時は通電を継続し、前記電気抵抗値R1とR2が所定範囲外の時は通電を停止しかつ前記警報部に警報信号を発信する継続停止命令部とを有し、
前記各部がマイコンCPUに置かれ制御することを特徴とする電気融着装置。
An Rt diagram storage unit in which an Rt diagram having a relationship in which the energization time t has a one-to-one correspondence with the electric resistance value R of the heating wire provided in the electric fusion joint is stored;
A resistance value measurement unit for obtaining the electric resistance value R1 of the heating wire of the joint to be fused;
An energization time setting unit that sets the energization time t1 by comparing the Rt diagram and the electrical resistance value R1;
An ambient temperature measurement unit for measuring the ambient temperature;
An energization time setting unit that corrects the energization time t1 in accordance with the ambient temperature and sets the energization time t2.
A comparison unit that measures the electrical resistance value R2 during energization and compares the electrical resistance value R1 and the electrical resistance value R2,
An alarm unit that issues an alarm when the electrical resistance values R1 and R2 are outside a predetermined range;
An energization start command section for instructing energization start; and
When the electrical resistance values R1 and R2 are within a predetermined range, energization is continued, and when the electrical resistance values R1 and R2 are outside the predetermined range, energization is stopped and an alarm signal is transmitted to the alarm unit. And
An electrofusion apparatus, wherein each of the units is placed in and controlled by a microcomputer CPU.
JP06948695A 1994-03-28 1995-03-28 Energizing time control method and electrofusion apparatus for electrofusion joint Expired - Fee Related JP3693186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06948695A JP3693186B2 (en) 1994-03-28 1995-03-28 Energizing time control method and electrofusion apparatus for electrofusion joint

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5744194 1994-03-28
JP6-142770 1994-06-24
JP6-57441 1994-06-24
JP14277094 1994-06-24
JP06948695A JP3693186B2 (en) 1994-03-28 1995-03-28 Energizing time control method and electrofusion apparatus for electrofusion joint

Publications (2)

Publication Number Publication Date
JPH0868488A JPH0868488A (en) 1996-03-12
JP3693186B2 true JP3693186B2 (en) 2005-09-07

Family

ID=27296259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06948695A Expired - Fee Related JP3693186B2 (en) 1994-03-28 1995-03-28 Energizing time control method and electrofusion apparatus for electrofusion joint

Country Status (1)

Country Link
JP (1) JP3693186B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108356435A (en) * 2018-01-24 2018-08-03 深圳远航股份有限公司 A kind of proprietary pipe fitting Intelligent welding method and system of nuclear power

Also Published As

Publication number Publication date
JPH0868488A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US4684789A (en) Thermoplastic fitting electric welding method and apparatus
US4602148A (en) Thermoplastic fitting electric heat welding method and apparatus
JPH0140743B2 (en)
US4978837A (en) Method and apparatus for electrically heat welding thermoplastic fittings
WO1995016557A2 (en) Electrofusion fastening apparatus
JP3693186B2 (en) Energizing time control method and electrofusion apparatus for electrofusion joint
US4631107A (en) Thermoplastic fitting electric heat welding apparatus
JP2539746B2 (en) Electric fusion welding equipment for resin products
JPH079569A (en) Terminal adapter for fusion-bonding joint
JP4313445B2 (en) Fusion fusion control method and fusion control device for electric fusion joint
JP2843894B2 (en) How to connect plastic tubes
JP2962999B2 (en) Control method of energization of electric fusion joint
JP2732380B2 (en) Electric fusion welding equipment for resin products
JP2002115791A (en) Electric fusion joint
JPH02231127A (en) Method and apparatus for fusion of electrofusion joint
JP2699161B2 (en) Fusion method of thermoplastic resin products
JPH09317978A (en) Abnormality determination method in controlling current-carrying time of electric fusion joint
JP3248398B2 (en) Electrofusion method and electrofusion joint
JP3438338B2 (en) Energization control method of electrofusion type pipe joint
JP2000055280A (en) Electric fusing joint and its resistance welding control method
JPH0623846A (en) Welding method of electric welding joint
JP2541640B2 (en) Code connection structure for electric welding equipment
JPH09264483A (en) Abnormality detection method in current carrying time control of electro-fusion joint
JPH09164597A (en) Electric fusing apparatus and current supply control method
JPH11115060A (en) Electric welding device with abnormality sensing function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees